1
|
do Carmo Santos ML, Silva Santos A, Pereira Silva de Novais D, dos Santos Lopes N, Pirovani CP, Micheli F. The family of glutathione peroxidase proteins and their role against biotic stress in plants: a systematic review. FRONTIERS IN PLANT SCIENCE 2025; 16:1425880. [PMID: 40051871 PMCID: PMC11882536 DOI: 10.3389/fpls.2025.1425880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/09/2025] [Indexed: 03/09/2025]
Abstract
Introduction Glutathione peroxidases (GPXs) are extensively studied for their indispensable roles in eliminating reactive oxygen species by catalyzing the reduction of hydrogen peroxide or lipid peroxides to prevent cell damage. However, knowledge of GPXs in plants still has many gaps to be filled. Thus, we present the first systematic review (SR) aimed at examining the function of GPXs and their protective role against cell death in plants subjected to biotic stress. Methods To guide the SR and avoid bias, a protocol was developed that contained inclusion and exclusion criteria based on PRISMA guidelines. Three databases (PubMed, Science Direct, and Springer) were used to identify relevant studies for this research were selected. Results A total of 28 articles related to the proposed objective. The results highlight the importance of GPXs in plant defense against biotic stress, including their role in protecting against cell death, similar to the anti-apoptotic GPXs in animals. Data from gene expression and protein accumulation studies in plants under various biotic stresses reveal that GPXs can both increase resistance and susceptibility to pathogens. In addition to their antioxidant functions, GPXs act as sensors and transmitters of H2O2 signals, integrating with the ABA signaling pathway during stress. Discussion These findings show that GPXs delay senescence or reinforce physical barriers, thereby modulating resistance or susceptibility to pathogens. Additionally, their functions are linked to their cellular localization, which demonstrates an evolutionary relationship between the studied isoforms and their role in plant defense. This information broadens the understanding of molecular strategies involving GPX isoforms and provides a foundation for discussions and actions aimed at controlling necrotrophic and/or hemibiotrophic pathogens.
Collapse
Affiliation(s)
- Maria Luíza do Carmo Santos
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Ilhéus, Brazil
| | - Ariana Silva Santos
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Ilhéus, Brazil
| | - Diogo Pereira Silva de Novais
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Ilhéus, Brazil
- Instituto Federal de Educação Ciência e Tecnologia da Bahia (IFBA), Bahia, Brazil
| | - Natasha dos Santos Lopes
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Ilhéus, Brazil
| | - Carlos Priminho Pirovani
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Ilhéus, Brazil
| | - Fabienne Micheli
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Ilhéus, Brazil
- CIRAD, UMR AGAP, Montpellier, France
| |
Collapse
|
2
|
Chaouachi L, Marín-Sanz M, Barro F, Karmous C. Genetic diversity of durum wheat (Triticum turgidum ssp. durum) to mitigate abiotic stress: Drought, heat, and their combination. PLoS One 2024; 19:e0301018. [PMID: 38574054 PMCID: PMC10994418 DOI: 10.1371/journal.pone.0301018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/09/2024] [Indexed: 04/06/2024] Open
Abstract
Drought and heat are the main abiotic constraints affecting durum wheat production. This study aimed to screen for tolerance to drought, heat, and combined stresses in durum wheat, at the juvenile stage under controlled conditions. Five durum wheat genotypes, including four landraces and one improved genotype, were used to test their tolerance to abiotic stress. After 15 days of growing, treatments were applied as three drought levels (100, 50, and 25% field capacity (FC)), three heat stress levels (24, 30, and 35°C), and three combined treatments (100% FC at 24°C, 50% FC at 30°C and 25% FC at 35°C). The screening was performed using a set of morpho-physiological, and biochemical traits. The results showed that the tested stresses significantly affect all measured parameters. The dry matter content (DM) decreased by 37.1% under heat stress (35°C), by 37.3% under severe drought stress (25% FC), and by 53.2% under severe combined stress (25% FC at 35°C). Correlation analyses of drought and heat stress confirmed that aerial part length, dry matter content, hydrogen peroxide content, catalase, and Glutathione peroxidase activities could be efficient screening criteria for both stresses. The principal component analysis (PCA) showed that only the landrace Aouija tolerated the three studied stresses, while Biskri and Hedhba genotypes were tolerant to drought and heat stresses and showed the same sensitivity under combined stress. Nevertheless, improved genotype Karim and the landrace Hmira were the most affected genotypes by drought, against a minimum growth for the Hmira genotype under heat stress. The results showed that combined drought and heat stresses had a more pronounced impact than simple effects. In addition, the tolerance of durum wheat to drought and heat stresses involves several adjustments of morpho-physiological and biochemical responses, which are proportional to the stress intensity.
Collapse
Affiliation(s)
- Latifa Chaouachi
- Laboratory of Genetics and Cereal Breeding (LR14 AGR01), National Institute of Agronomy of Tunisia, Carthage University, Carthage, Tunisia
| | - Miriam Marín-Sanz
- Department of Plant Breeding, Institute for Sustainable Agriculture-Spanish National Research Council (IAS-CSIC), Córdoba, Spain
| | - Francisco Barro
- Department of Plant Breeding, Institute for Sustainable Agriculture-Spanish National Research Council (IAS-CSIC), Córdoba, Spain
| | - Chahine Karmous
- Laboratory of Genetics and Cereal Breeding (LR14 AGR01), National Institute of Agronomy of Tunisia, Carthage University, Carthage, Tunisia
| |
Collapse
|
3
|
Tyagi S, Shumayla, Sharma Y, Madhu, Sharma A, Pandey A, Singh K, Upadhyay SK. TaGPX1-D overexpression provides salinity and osmotic stress tolerance in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111881. [PMID: 37806453 DOI: 10.1016/j.plantsci.2023.111881] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Glutathione peroxidases (GPXs) are known to play an essential role in guarding cells against oxidative stress by catalyzing the reduction of hydrogen peroxide and organic hydroperoxides. The current study aims functional characterization of the TaGPX1-D gene of bread wheat (Triticum aestivum) for salinity and osmotic stress tolerance. To achieve this, we initially performed the spot assays of TaGPX1-D expressing yeast cells. The growth of recombinant TaGPX1-D expressing yeast cells was notably higher than the control cells under stress conditions. Later, we generated transgenic Arabidopsis plants expressing the TaGPX1-D gene and investigated their tolerance to various stress conditions. The transgenic plants exhibited improved tolerance to both salinity and osmotic stresses compared to the wild-type plants. The higher germination rates, increased antioxidant enzymes activities, improved chlorophyll, carotenoid, proline and relative water contents, and reduced hydrogen peroxide and MDA levels in the transgenic lines supported the stress tolerance mechanism. Overall, this study demonstrated the role of TaGPX1-D in abiotic stress tolerance, and it can be used for improving the tolerance of crops to environmental stressors, such as salinity and osmotic stress in future research.
Collapse
Affiliation(s)
- Shivi Tyagi
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Shumayla
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Yashraaj Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India; Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Madhu
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, New Delhi, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
4
|
Wang S, Sun X, Miao X, Mo F, Liu T, Chen Y. Genome-Wide Analysis and Expression Profiling of the Glutathione Peroxidase-like Enzyme Gene Family in Solanum tuberosum. Int J Mol Sci 2023; 24:11078. [PMID: 37446254 PMCID: PMC10342349 DOI: 10.3390/ijms241311078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Glutathione peroxidase-like enzyme is an important enzymatic antioxidant in plants. It is involved in scavenging reactive oxygen species, which can effectively prevent oxidative damage and improve resistance. GPXL has been studied in many plants but has not been reported in potatoes, the world's fourth-largest food crop. This study identified eight StGPXL genes in potatoes for the first time through genome-wide bioinformatics analysis and further studied the expression patterns of these genes using qRT-PCR. The results showed that the expression of StGPXL1 was significantly upregulated under high-temperature stress, indicating its involvement in potato defense against high-temperature stress, while the expression levels of StGPXL4 and StGPXL5 were significantly downregulated. The expression of StGPXL1, StGPXL2, StGPXL3, and StGPXL6 was significantly upregulated under drought stress, indicating their involvement in potato defense against drought stress. After MeJA hormone treatment, the expression level of StGPXL6 was significantly upregulated, indicating its involvement in the chemical defense mechanism of potatoes. The expression of all StGPXL genes is inhibited under biotic stress, which indicates that GPXL is a multifunctional gene family, which may endow plants with resistance to various stresses. This study will help deepen the understanding of the function of the potato GPXL gene family, provide comprehensive information for the further analysis of the molecular function of the potato GPXL gene family as well as a theoretical basis for potato molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Yue Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (S.W.); (X.S.); (X.M.); (F.M.); (T.L.)
| |
Collapse
|
5
|
Madhu, Sharma A, Kaur A, Tyagi S, Upadhyay SK. Glutathione Peroxidases in Plants: Innumerable Role in Abiotic Stress Tolerance and Plant Development. JOURNAL OF PLANT GROWTH REGULATION 2023; 42:598-613. [DOI: 10.1007/s00344-022-10601-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/02/2022] [Indexed: 10/09/2024]
|
6
|
Zhang M, Li W, Li S, Gao J, Gan T, Li Q, Bao L, Jiao F, Su C, Qian Y. Quantitative Proteomics and Functional Characterization Reveal That Glutathione Peroxidases Act as Important Antioxidant Regulators in Mulberry Response to Drought Stress. PLANTS 2022; 11:plants11182350. [PMID: 36145752 PMCID: PMC9500794 DOI: 10.3390/plants11182350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022]
Abstract
Mulberry (Morus alba L.) has been an economically important food crop for the domesticated silkworm, Bombyx mori, in China for more than 5000 years. However, little is known about the mechanism underlying mulberry response to environmental stress. In this study, quantitative proteomics was applied to elucidate the molecular mechanism of drought response in mulberry. A total of 604 differentially expressed proteins (DEPs) were identified via LC-MS/MS. The proteomic profiles associated with antioxidant enzymes, especially five glutathione peroxidase (GPX) isoforms, as a scavenger of reactive oxygen species (ROS), were systematically increased in the drought-stressed mulberry. This was further confirmed by gene expression and enzymatic activity. Furthermore, overexpression of the GPX isoforms led to enhancements in both antioxidant system and ROS-scavenging capacity, and greater tolerance to drought stress in transgenic plants. Taken together, these results indicated that GPX-based antioxidant enzymes play an important role in modulating mulberry response to drought stress, and higher levels of GPX can improve drought tolerance through enhancing the capacity of the antioxidant system for ROS scavenging.
Collapse
Affiliation(s)
- Minjuan Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wenqiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Shuaijun Li
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Junru Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Tiantian Gan
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Qinying Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Lijun Bao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Feng Jiao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chao Su
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Correspondence: (C.S.); (Y.Q.)
| | - Yonghua Qian
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Correspondence: (C.S.); (Y.Q.)
| |
Collapse
|
7
|
Bela K, Riyazuddin R, Csiszár J. Plant Glutathione Peroxidases: Non-Heme Peroxidases with Large Functional Flexibility as a Core Component of ROS-Processing Mechanisms and Signalling. Antioxidants (Basel) 2022; 11:antiox11081624. [PMID: 36009343 PMCID: PMC9404953 DOI: 10.3390/antiox11081624] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
Glutathione peroxidases (GPXs) are non-heme peroxidases catalyzing the reduction of H2O2 or organic hydroperoxides to water or corresponding alcohols using glutathione (GSH) or thioredoxin (TRX) as a reducing agent. In contrast to animal GPXs, the plant enzymes are non-seleno monomeric proteins that generally utilize TRX more effectively than GSH but can be a putative link between the two main redox systems. Because of the substantial differences compared to non-plant GPXs, use of the GPX-like (GPXL) name was suggested for Arabidopsis enzymes. GPX(L)s not only can protect cells from stress-induced oxidative damages but are crucial components of plant development and growth. Due to fine-tuning the H2O2 metabolism and redox homeostasis, they are involved in the whole life cycle even under normal growth conditions. Significantly new mechanisms were discovered related to their transcriptional, post-transcriptional and post-translational modifications by describing gene regulatory networks, interacting microRNA families, or identifying Lys decrotonylation in enzyme activation. Their involvement in epigenetic mechanisms was evidenced. Detailed genetic, evolutionary, and bio-chemical characterization, and comparison of the main functions of GPXs, demonstrated their species-specific roles. The multisided involvement of GPX(L)s in the regulation of the entire plant life ensure that their significance will be more widely recognized and applied in the future.
Collapse
Affiliation(s)
- Krisztina Bela
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62., H-6726 Szeged, Hungary
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
- Correspondence:
| |
Collapse
|
8
|
Yan H, Nie Y, Cui K, Sun J. Integrative Transcriptome and Metabolome Profiles Reveal Common and Unique Pathways Involved in Seed Initial Imbibition Under Artificial and Natural Salt Stresses During Germination of Halophyte Quinoa. FRONTIERS IN PLANT SCIENCE 2022; 13:853326. [PMID: 35498713 PMCID: PMC9039654 DOI: 10.3389/fpls.2022.853326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/28/2022] [Indexed: 05/31/2023]
Abstract
Salt stress is a major environmental factor that seriously restricts quinoa seed germination. However, the key regulatory mechanisms underlying the effect of salt stress on the initial imbibition stage of quinoa seeds are unclear. In this study, dry seeds (0 h) and imbibed (8 h) seeds with 450 mM NaCl (artificial salt) and 100% brackish water of Yellow River Estuary (BW, natural salt) were used to assess the key salt responses based on germination, transcriptome, and metabolome analyses. The results indicated that the capacity of germinating seeds to withstand these two salt stresses was similar due to the similarities in the germination percentage, germination index, mean germination time, and germination phenotypes. Combined omics analyses revealed that the common and unique pathways were induced by NaCl and BW. Starch and sucrose metabolism were the only commonly enriched pathways in which the genes were significantly changed. Additionally, amino sugar and nucleotide sugar metabolism, and ascorbate and aldarate metabolism were preferably enriched in the NaCl group. However, glutathione metabolism tended to enrich in the BW group where glutathione peroxidase, peroxiredoxin 6, and glutathione S-transferase were significantly regulated. These findings suggest that the candidates involved in carbohydrate metabolism and antioxidant defense can regulate the salt responses of seed initial imbibition, which provide valuable insights into the molecular mechanisms underlying the effect of artificial and natural salt stresses.
Collapse
Affiliation(s)
| | | | | | - Juan Sun
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
9
|
Wang X, Liu X, An YQC, Zhang H, Meng D, Jin Y, Huo H, Yu L, Zhang J. Identification of Glutathione Peroxidase Gene Family in Ricinus communis and Functional Characterization of RcGPX4 in Cold Tolerance. FRONTIERS IN PLANT SCIENCE 2021; 12:707127. [PMID: 34804079 PMCID: PMC8602854 DOI: 10.3389/fpls.2021.707127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Glutathione peroxidases (GPXs) protect cells against damage caused by reactive oxygen species (ROS) and play key roles in regulating many biological processes. Here, five GPXs were identified in the Ricinus communis genome. Phylogenetic analysis displayed that the GPXs were categorized into five groups. Conserved domain and gene structure analyses showed that the GPXs from different plant species harbored four highly similar motifs and conserved exon-intron arrangement patterns, indicating that their structure and function may have been conserved during evolution. Several abiotic stresses and hormone-responsive cis-acting elements existed in the promoters of the RcGPXs. The expression profiles indicated that the RcGPXs varied substantially, and some RcGPXs were coordinately regulated under abiotic stresses. Overexpression of RcGPX4 in Arabidopsis enhanced cold tolerance at seed germination but reduced freezing tolerance at seedlings. The expression of abscisic acid (ABA) signaling genes (AtABI4 and AtABI5), ABA catabolism genes (AtCYP707A1 and AtCYP707A2), gibberellin acid (GA) catabolism gene (AtGA2ox7), and cytokinin (CTK)-inducible gene (AtARR6) was regulated in the seeds of transgenic lines under cold stress. Overexpression of RcGPX4 can disturb the hydrogen peroxide (H2O2) homeostasis through the modulation of some antioxidant enzymes and compounds involved in the GSH-ascorbate cycle in transgenic plants. Additionally, RcGPX4 depended on the MAPK3-ICE1-C-repeat-binding factor (CBF)-COR signal transduction pathway and ABA-dependent pathway to negatively regulate the freezing tolerance of transgenic plants. This study provides valuable information for understanding the potential function of RcGPXs in regulating the abiotic stress responses of castor beans.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Horqin Plant Stress Biology Research Institute of Inner Mongolia Minzu University, Tongliao, China
| | - Xuming Liu
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Horqin Plant Stress Biology Research Institute of Inner Mongolia Minzu University, Tongliao, China
| | - Yong-qiang Charles An
- U.S. Department of Agriculture-Agricultural Research Service, Plant Genetics Research Unit, Donald Danforth Plant Science Center, Saint Louis, MO, United States
| | - Hongyu Zhang
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Horqin Plant Stress Biology Research Institute of Inner Mongolia Minzu University, Tongliao, China
| | - Di Meng
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Horqin Plant Stress Biology Research Institute of Inner Mongolia Minzu University, Tongliao, China
| | - Yanan Jin
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Horqin Plant Stress Biology Research Institute of Inner Mongolia Minzu University, Tongliao, China
| | - Hongyan Huo
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Horqin Plant Stress Biology Research Institute of Inner Mongolia Minzu University, Tongliao, China
| | - Lili Yu
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Jixing Zhang
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Horqin Plant Stress Biology Research Institute of Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
10
|
Rajput VD, Harish, Singh RK, Verma KK, Sharma L, Quiroz-Figueroa FR, Meena M, Gour VS, Minkina T, Sushkova S, Mandzhieva S. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. BIOLOGY 2021; 10:267. [PMID: 33810535 PMCID: PMC8066271 DOI: 10.3390/biology10040267] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
The stationary life of plants has led to the evolution of a complex gridded antioxidant defence system constituting numerous enzymatic components, playing a crucial role in overcoming various stress conditions. Mainly, these plant enzymes are superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione S-transferases (GST), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR), which work as part of the antioxidant defence system. These enzymes together form a complex set of mechanisms to minimise, buffer, and scavenge the reactive oxygen species (ROS) efficiently. The present review is aimed at articulating the current understanding of each of these enzymatic components, with special attention on the role of each enzyme in response to the various environmental, especially abiotic stresses, their molecular characterisation, and reaction mechanisms. The role of the enzymatic defence system for plant health and development, their significance, and cross-talk mechanisms are discussed in detail. Additionally, the application of antioxidant enzymes in developing stress-tolerant transgenic plants are also discussed.
Collapse
Affiliation(s)
- Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Harish
- Department of Botany, Mohan Lal Sukhadia University, Udaipur, Rajasthan 313001, India;
| | - Rupesh Kumar Singh
- Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Lav Sharma
- Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Francisco Roberto Quiroz-Figueroa
- Laboratorio de Fitomejoramiento Molecular, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa (CIIDIR-IPN Unidad Sinaloa), Instituto Politécnico Nacional, Blvd. Juan de Dios Bátiz Paredes no. 250, Col. San Joachín, C.P., 81101 Guasave, Mexico;
| | - Mukesh Meena
- Department of Botany, Mohan Lal Sukhadia University, Udaipur, Rajasthan 313001, India;
| | - Vinod Singh Gour
- Amity Institute of Biotechnology, Amity University Rajasthan, NH 11C, Kant Kalwar, Jaipur 303002, India;
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| |
Collapse
|
11
|
Xie Y, Hou X. Molecular Assessment of the Toxic Mechanism of the Latest Neonicotinoid Dinotefuran with Glutathione Peroxidase 6 from Arabidopsis thaliana. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:638-645. [PMID: 33398988 DOI: 10.1021/acs.jafc.0c05948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With widespread applications of the latest neonicotinoid in agriculture, dinotefuran has gradually become a hazardous contaminant for plants through the generation of excessive reactive oxygen species. However, the potential toxic mechanisms of oxidative damages to plants induced by dinotefuran are still unknown. As a core component of the glutathione antioxidant enzyme system, glutathione peroxidases have been used as biomarkers to reflect excessive oxidative stress. In this study, the hazardous effects of dinotefuran on AtGPX6 were investigated at the molecular level. The intrinsic fluorescence intensity of AtGPX6 was quenched using the static quenching mechanism upon binding with dinotefuran. Moreover, a single binding site was predicted for AtGPX6 toward dinotefuran, and the complex formation was presumed to be driven by hydrogen bonds or van der Waals forces, which conformed with the molecular docking results. In addition, AtGPX6 exhibited moderate binding affinity with dinotefuran based on the bio-layer interferometry assay. In addition, the loosening and unfolding of the protein skeleton of AtGPX6 with the addition of dinotefuran were explored along with the increase of hydrophobicity around tryptophan residues. Lastly, the toxic effects of dinotefuran on the root growth of Arabidopsis seedlings were also examined. The exploration of the binding mechanism of dinotefuran with AtGPX6 at the molecular level would provide the toxicity assessment of dinotefuran on plants.
Collapse
Affiliation(s)
- Yanhua Xie
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaomin Hou
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
12
|
Kot I, Kmieć K. Poplar Tree Response to Feeding by the Petiole Gall Aphid Pemphigus spyrothecae Pass. INSECTS 2020; 11:insects11050282. [PMID: 32380670 PMCID: PMC7291223 DOI: 10.3390/insects11050282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 11/16/2022]
Abstract
Pemphigus spyrothecae Pass. which is a member of the subfamily Pemphiginae is one of the gall-inducing aphids that occurs on poplar trees. Phloem feeding of a founding mother on leaf petiole results in the formation of a new organ, i.e., the spiral gall. This study documents aphid development inside the galls during the growing season and the effect of their feeding on leaf architecture and physiology of the host plant. In particular, leaf length, width, and area were measured, as well as hydrogen peroxide (H2O2) content, electrolyte leakage (EL), malondialdehyde (MDA) concentration, and the activity of ascorbate (APX) and guaiacol peroxidase (GPX) were determined in galls and galled leaves. The presence of petiole galls significantly decreased the length, width, and leaf area. Aphid activity increased H2O2 concentration in galls and EL from galls and leaf tissues, which was accompanied by a strong decrease in MDA content and both peroxidase activities, especially in gall tissues. It can be suggested that P. spyrothecae can manipulate physiological machinery of the host plant for its own benefit.
Collapse
|
13
|
Yang Y, Wang N, Zhao S. Functional characterization of a WRKY family gene involved in somatic embryogenesis in Panax ginseng. PROTOPLASMA 2020; 257:449-458. [PMID: 31760482 DOI: 10.1007/s00709-019-01455-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
As a perennial herbaceous species, Panax ginseng is widely cultivated and used as traditional herbal medicine. The root of Panax ginseng commonly remains expensive as conventional breeding of Panax ginseng is difficult. Somatic embryogenesis (S.E.) is a useful tool for plant propagation and optimal model for understanding the mechanisms of plant embryogenesis. In Panax ginseng, increasing studies have been widely performed to optimize the technology of S.E., while the underlying mechanism remains unclear. In this paper, we cloned and identified a WRKY family gene named PgWRKY6 which is upregulated in response to 2,4-D (2,4-dichlorophenoxyacetic acid)-induced embryogenic callus development. The silencing of PgWRKY6 obviously reduces the induction rate of embryogenic callus, indicating its crucial role in S.E. of Panax ginseng hairy root. The expressions of several ROS-scavenging genes are also inducible during embryogenic callus development, and the transcriptions of PgGST, PgAPX1, and PgSOD are demonstrated to be regulated by PgWRKY6. Recombinant PgWRKY6, an approximate 40-KDa protein purified from Escherichia coli, shows a specific DNA-binding activity with a potential recognition site of TTGAC(C/T). This work demonstrated that as a conserved WRKY family transcription factor, PgWRKY6 functions upstream of PgGST, PgAPX1, and PgSOD, and potentially mediated auxins -ROS signaling pathway in the process of S.E. in Panax species.
Collapse
Affiliation(s)
- Yu Yang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions, Jining Medical University, No. 133 Hehua Street, Jining, China
- School of Life Sciences, Jilin University, No. 5988, Renmin Street, Nanguan District, Changchun, China
| | - Ni Wang
- Changchun Vocational Institute of Technology, No. 3278 Weixing Street, Changchun, China
| | - Shoujing Zhao
- School of Life Sciences, Jilin University, No. 5988, Renmin Street, Nanguan District, Changchun, China.
| |
Collapse
|
14
|
Fibroin Delays Chilling Injury of Postharvest Banana Fruit via Enhanced Antioxidant Capability during Cold Storage. Metabolites 2019; 9:metabo9070152. [PMID: 31340556 PMCID: PMC6680957 DOI: 10.3390/metabo9070152] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
storage Banana fruit after harvest is susceptible to chilling injury, which is featured by peel browning during cold, and it easily loses its nutrition and economic values. This study investigated the role of fibroin treatment in delaying peel browning in association with the antioxidant capability of postharvest banana fruit during cold storage. Compared to the control fruit, fibroin-treated fruit contained higher amounts of Pro and Cys during overall storage as well as higher glutathione (GSH) during the middle of storage. Conversely, fibroin-treated fruit exhibited a lower peel browning index and reactive oxygen species (ROS) level during overall storage as well as lower contents of hexadecanoic acid and octadecanoic acid by the end of storage compared to control fruit. In addition, fibroin-treated banana fruit showed higher activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in relation to upregulation SOD, CAT, and GR as well as peroxiredoxins (MT3 and GRX) during the middle of storage. These results highlighted the role of fibroin treatment in reducing peel browning by enhancing the antioxidant capability of harvested banana fruit during cold storage.
Collapse
|
15
|
Jia T, Wang J, Chang W, Fan X, Sui X, Song F. Proteomics Analysis of E. angustifolia Seedlings Inoculated with Arbuscular Mycorrhizal Fungi under Salt Stress. Int J Mol Sci 2019; 20:ijms20030788. [PMID: 30759832 PMCID: PMC6386820 DOI: 10.3390/ijms20030788] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 01/20/2023] Open
Abstract
To reveal the mechanism of salinity stress alleviation by arbuscular mycorrhizal fungi (AMF), we investigated the growth parameter, soluble sugar, soluble protein, and protein abundance pattern of E. angustifolia seedlings that were cultured under salinity stress (300 mmol/L NaCl) and inoculated by Rhizophagus irregularis (RI). Furthermore, a label-free quantitative proteomics approach was used to reveal the stress-responsive proteins in the leaves of E. angustifolia. The result indicates that the abundance of 75 proteins in the leaves was significantly influenced when E. angustifolia was inoculated with AMF, which were mainly involved in the metabolism, signal transduction, and reactive oxygen species (ROS) scavenging. Furthermore, we identified chorismate mutase, elongation factor mitochondrial, peptidyl-prolyl cis-trans isomerase, calcium-dependent kinase, glutathione S-transferase, glutathione peroxidase, NADH dehydrogenase, alkaline neutral invertase, peroxidase, and other proteins closely related to the salt tolerance process. The proteomic results indicated that E. angustifolia seedlings inoculated with AMF increased the secondary metabolism level of phenylpropane metabolism, enhanced the signal transduction of Ca2+ and ROS scavenging ability, promoted the biosynthesis of protein, accelerated the protein folding, and inhibited the degradation of protein under salt stress. Moreover, AMF enhanced the synthesis of ATP and provided sufficient energy for plant cell activity. This study implied that symbiosis of halophytes and AMF has potential as an application for the improvement of saline-alkali soils.
Collapse
Affiliation(s)
- Tingting Jia
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China.
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Jian Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China.
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Wei Chang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China.
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Xiaoxu Fan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China.
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Xin Sui
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China.
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China.
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
16
|
Asadi N, Kheradmand A, Gholami M, Moradi FH. Effect of ghrelin on the biochemical and histopathology parameters and spermatogenesis cycle following experimental varicocele in rat. Andrologia 2018; 50:e13106. [DOI: 10.1111/and.13106] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/21/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Nematollah Asadi
- Razi Herbal Medicines Research Center; Lorestan University of Medical Sciences; Khorramabad Iran
- Animal Science Research Institute (ASRI); Jihad-e-Agriculture Ministry; Karaj Iran
| | - Arash Kheradmand
- Department of Clinical Sciences, School of Veterinary Medicine; Lorestan University; Khorramabad Iran
| | | | - Forouzan Hadipour Moradi
- Razi Herbal Medicines Research Center; Lorestan University of Medical Sciences; Khorramabad Iran
| |
Collapse
|
17
|
Tyagi S, Himani, Sembi JK, Upadhyay SK. Gene architecture and expression analyses provide insights into the role of glutathione peroxidases (GPXs) in bread wheat (Triticum aestivum L.). JOURNAL OF PLANT PHYSIOLOGY 2018; 223:19-31. [PMID: 29471272 DOI: 10.1016/j.jplph.2018.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 05/05/2023]
Abstract
Glutathione peroxidases (GPXs) are redox sensor proteins that maintain a steady-state of H2O2 in plant cells. They exhibit distinct sub-cellular localization and have diverse functionality in response to different stimuli. In this study, a total of 14 TaGPX genes and three splice variants were identified in the genome of Triticum aestivum and evaluated for various physicochemical properties. The TaGPX genes were scattered on the various chromosomes of the A, B, and D sub-genomes and clustered into five homeologous groups based on high sequence homology. The majority of genes were derived from the B sub-genome and localized on chromosome 2. The intron-exon organization, motif and domain architecture, and phylogenetic analyses revealed the conserved nature of TaGPXs. The occurrence of both development-related and stress-responsive cis-acting elements in the promoter region, the differential expression of these genes during various developmental stages, and the modulation of expression in the presence of biotic and abiotic stresses suggested their diverse role in T. aestivum. The majority of TaGPX genes showed higher expression in various leaf developmental stages. However, TaGPX1-A1 was upregulated in the presence of each abiotic stress treatment. A co-expression analysis revealed the interaction of TaGPXs with numerous development and stress-related genes, which indicated their vital role in numerous biological processes. Our study revealed the opportunities for further characterization of individual TaGPX proteins, which might be useful in designing future crop improvement strategies.
Collapse
Affiliation(s)
- Shivi Tyagi
- Department of Botany, Panjab University, Chandigarh,160014, India
| | - Himani
- Department of Botany, Panjab University, Chandigarh,160014, India
| | - Jaspreet K Sembi
- Department of Botany, Panjab University, Chandigarh,160014, India
| | | |
Collapse
|
18
|
Genome-wide identification of glutathione peroxidase (GPX) gene family and their response to abiotic stress in cucumber. 3 Biotech 2018. [PMID: 29515965 DOI: 10.1007/s13205-018-1185-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plant glutathione peroxidases (GPXs) are non-heme thiol peroxidases that play vital roles in maintaining H2O2 homeostasis and regulating plant response to abiotic stress. Here, we performed a comparative genomic analysis of the GPX gene family in cucumber (Cucumis sativus). As a result, a total of 6 CsGPX genes were identified, which were unevenly located in four out of the seven chromosomes in cucumber genome. Based on the phylogenetic analysis, the GPX genes of cucumber, Arabidopsis and rice could be classified into five groups. Analysis of the distribution of conserved domains of GPX proteins showed that all these proteins contain three highly conserved motifs, as well as other conserved sequences and residues. Gene structure analysis revealed a conserved exon-intron organization pattern of these genes. Through analyzing the promoter regions of CsGPX genes, many hormone-, stress-, and development-responsive cis-elements were identified. Moreover, we also investigated their expression patterns in different tissues and developmental stages as well as in response to abiotic stress and x acid (ABA) treatments. The qRT-PCR results showed that the transcripts of CsGPX genes varied largely under abiotic stress and ABA treatments at different time points. These results demonstrate that cucumber GPX gene family may function in tissue development and plant stress responses.
Collapse
|
19
|
Zhang L, Wu M, Teng Y, Jia S, Yu D, Wei T, Chen C, Song W. Overexpression of the Glutathione Peroxidase 5 ( RcGPX5) Gene From Rhodiola crenulata Increases Drought Tolerance in Salvia miltiorrhiza. FRONTIERS IN PLANT SCIENCE 2018; 9:1950. [PMID: 30687353 PMCID: PMC6333746 DOI: 10.3389/fpls.2018.01950] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/14/2018] [Indexed: 05/18/2023]
Abstract
Excessive cellular accumulation of reactive oxygen species (ROS) due to environmental stresses can critically disrupt plant development and negatively affect productivity. Plant glutathione peroxidases (GPXs) play an important role in ROS scavenging by catalyzing the reduction of H2O2 and other organic hydroperoxides to protect plant cells from oxidative stress damage. RcGPX5, a member of the GPX gene family, was isolated from a traditional medicinal plant Rhodiola crenulata and constitutively expressed in Salvia miltiorrhiza under control of the CaMV 35S promoter. Transgenic plants showed increased tolerance to oxidative stress caused by application of H2O2 and drought, and had reduced production of malondialdehyde (MDA) compared with the wild type. Under drought stress, seedlings of the transgenic lines wilted later than the wild type and recovered growth 1 day after re-watering. In addition, the reduced glutathione (GSH) and total glutathione (T-GSH) contents were higher in the transgenic lines, with increased enzyme activities including glutathione reductase (GR), ascorbate peroxidase (APX), and GPX. These changes prevent H2O2 and O2 - accumulation in cells of the transgenic lines compared with wild type. Overexpression of RcGPX5 alters the relative expression levels of multiple endogenous genes in S. miltiorrhiza, including transcription factor genes and genes in the ROS and ABA pathways. In particular, RcGPX5 expression increases the mass of S. miltiorrhiza roots while reducing the concentration of the active ingredients. These results show that heterologous expression of RcGPX5 in S. miltiorrhiza can affect the regulation of multiple biochemical pathways to confer tolerance to drought stress, and RcGPX5 might act as a competitor with secondary metabolites in the S. miltiorrhiza response to environmental stimuli.
Collapse
|
20
|
Wang Y, Han H, Cui B, Hou Y, Wang Y, Wang Q. A glutathione peroxidase from Antarctic psychrotrophic bacterium Pseudoalteromonas sp. ANT506: Cloning and heterologous expression of the gene and characterization of recombinant enzyme. Bioengineered 2017; 8:742-749. [PMID: 28873004 DOI: 10.1080/21655979.2017.1373534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A glutathione peroxidase (GPx) gene, designated as PsGPx, was cloned from Antarctic psychrotrophic bacterium Pseudoalteromonas sp. ANT506 and expressed in Escherichia coli. The full-length PsGPx contained a 585-bp encoding 194 amino acids with predicted molecular masses of approx. 21.7 kDa. Multiple sequence alignments revealed that PsGPx belonged to the thioredoxin-like superfamily. PsGPx was heterologously overexpressed in E. coli, purified and characterized. The maximum catalytic temperature and pH value for recombinant PsGPx (rPsGPx) were 30°C and pH 9.0, respectively. rPsGPx retained 45% of the maximum activity at 0°C and exhibited high thermolability with a half-life of approx. 40 min at 40°C. In addition, the enzymatic activity of rPsGPx was still manifested under 3 M NaCl. The Km and Vmax values of the recombinant enzyme using GSH and H2O2 as substrates were 1.73 mM and 16.28 nmol/mL/min versus 2.46 mM and 21.50 nmol/mL/min, respectively.
Collapse
Affiliation(s)
- Yatong Wang
- a School of Marine and Technology , Harbin Institute of Technology , Weihai , Shandong , P.R. China
| | - Han Han
- a School of Marine and Technology , Harbin Institute of Technology , Weihai , Shandong , P.R. China
| | - Bingqing Cui
- a School of Marine and Technology , Harbin Institute of Technology , Weihai , Shandong , P.R. China
| | - Yanhua Hou
- a School of Marine and Technology , Harbin Institute of Technology , Weihai , Shandong , P.R. China
| | - Yifan Wang
- a School of Marine and Technology , Harbin Institute of Technology , Weihai , Shandong , P.R. China
| | - Quanfu Wang
- a School of Marine and Technology , Harbin Institute of Technology , Weihai , Shandong , P.R. China
| |
Collapse
|
21
|
Attacha S, Solbach D, Bela K, Moseler A, Wagner S, Schwarzländer M, Aller I, Müller SJ, Meyer AJ. Glutathione peroxidase-like enzymes cover five distinct cell compartments and membrane surfaces in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2017; 40:1281-1295. [PMID: 28102911 DOI: 10.1111/pce.12919] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 05/27/2023]
Abstract
Glutathione peroxidase-like enzymes (GPXLs) constitute a family of eight peroxidases in Arabidopsis thaliana. In contrast to the eponymous selenocysteine glutathione peroxidases in mammalian cells that use glutathione as electron donor, GPXLs rely on cysteine instead of selenocysteine for activity and depend on the thioredoxin system for reduction. Although plant GPXLs have been implicated in important agronomic traits such as drought tolerance, photooxidative tolerance and immune responses, there remain major ambiguities regarding their subcellular localization. Because their site of action is a prerequisite for an understanding of their function, we investigated the localization of all eight GPXLs in stable Arabidopsis lines expressing N-terminal and C-terminal fusions with redox-sensitive green fluorescent protein 2 (roGFP2) using confocal microscopy. GPXL1 and GPXL7 were found in plastids, while GPXL2 and GPXL8 are cytosolic nuclear. The N-terminal target peptide of GPXL6 is sufficient to direct roGFP2 into mitochondria. Interestingly, GPXL3, GPXL4 and GPXL5 all appear to be membrane bound. GPXL3 was found exclusively in the secretory pathway where it is anchored by a single N-terminal transmembrane domain. GPXL4 and GPXL5 are anchored to the plasma membrane. Presence of an N-terminal myristoylation motif and genetic disruption of membrane association through targeted mutagenesis point to myristoylation as essential for membrane localization.
Collapse
Affiliation(s)
- Safira Attacha
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - David Solbach
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Krisztina Bela
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Stephan Wagner
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Markus Schwarzländer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Isabel Aller
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Stefanie J Müller
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| |
Collapse
|
22
|
Chen M, Li K, Li H, Song CP, Miao Y. The Glutathione Peroxidase Gene Family in Gossypium hirsutum: Genome-Wide Identification, Classification, Gene Expression and Functional Analysis. Sci Rep 2017; 7:44743. [PMID: 28300195 PMCID: PMC5353742 DOI: 10.1038/srep44743] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/13/2017] [Indexed: 12/31/2022] Open
Abstract
The plant glutathione peroxidase (GPX) family consists of multiple isoenzymes with distinct subcellular locations, tissue-specific expression patterns and environmental stress responses. In this study, 13 putative GPXs from the genome of Gossypium hirsutum (GhGPXs) were identified and a conserved pattern among plant GPXs were exhibited, besides this they also responded to multiple environmental stresses and we predicted that they had hormone responsive cis-elements in their promoter regions. Most of the GhGPXs on expression in yeast can scavenge H2O2. Our results showed that different members of the GhGPX gene family were co-ordinately regulated under specific environmental stress conditions, and suggested the importance of GhGPXs in hormone treatments and abiotic stress responses.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/metabolism
- Exons/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant
- Genetic Complementation Test
- Genome, Plant
- Glutathione Peroxidase/chemistry
- Glutathione Peroxidase/classification
- Glutathione Peroxidase/genetics
- Glutathione Peroxidase/metabolism
- Gossypium/drug effects
- Gossypium/enzymology
- Gossypium/genetics
- Gossypium/physiology
- Hydrogen Peroxide/pharmacology
- Introns/genetics
- Multigene Family
- Organ Specificity/drug effects
- Organ Specificity/genetics
- Phylogeny
- Plant Growth Regulators/pharmacology
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Protoplasts/drug effects
- Protoplasts/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Saccharomyces cerevisiae/drug effects
- Saccharomyces cerevisiae/growth & development
- Sequence Homology, Nucleic Acid
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Subcellular Fractions/drug effects
- Subcellular Fractions/metabolism
Collapse
Affiliation(s)
- Mingyang Chen
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Kun Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Haipeng Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Chun-Peng Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| |
Collapse
|
23
|
Glutathione peroxidase 1 expression, malondialdehyde levels and histological alterations in the liver of Acrossocheilus fasciatus exposed to cadmium chloride. Gene 2016; 578:210-8. [DOI: 10.1016/j.gene.2015.12.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 11/12/2015] [Accepted: 12/11/2015] [Indexed: 11/23/2022]
|
24
|
Bela K, Horváth E, Gallé Á, Szabados L, Tari I, Csiszár J. Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. JOURNAL OF PLANT PHYSIOLOGY 2015; 176:192-201. [PMID: 25638402 DOI: 10.1016/j.jplph.2014.12.014] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 05/18/2023]
Abstract
The plant glutathione peroxidase (GPX) family consists of multiple isoenzymes with distinct subcellular locations which exhibit different tissue-specific expression patterns and environmental stress responses. Contrary to most of their counterparts in animal cells, plant GPXs contain cysteine instead of selenocysteine in their active site and while some of them have both glutathione peroxidase and thioredoxin peroxidase functions, the thioredoxin regenerating system is much more efficient in vitro than the glutathione system. At present, the function of these enzymes in plants is not completely understood. The occurrence of thiol-dependent activities of plant GPX isoenzymes suggests that - besides detoxification of H2O2 and organic hydroperoxides - they may be involved in regulation of the cellular redox homeostasis by maintaining the thiol/disulfide or NADPH/NADP(+) balance. GPXs may represent a link existing between the glutathione- and the thioredoxin-based system. The various thiol buffers, including Trx, can affect a number of redox reactions in the cells most probably via modulation of thiol status. It is still required to identify the in vivo reductant for particular GPX isoenzymes and partners that GPXs interact with specifically. Recent evidence suggests that plant GPXs does not only protect cells from stress induced oxidative damage but they can be implicated in plant growth and development. Following a more general introduction, this study summarizes present knowledge on plant GPXs, highlighting the results on gene expression analysis, regulation and signaling of Arabidopsis thaliana GPXs and also suggests some perspectives for future research.
Collapse
Affiliation(s)
- Krisztina Bela
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Edit Horváth
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Ágnes Gallé
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre of HAS, Temesvári krt. 62., H-6726 Szeged, Hungary
| | - Irma Tari
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary.
| |
Collapse
|
25
|
Gao F, Chen J, Ma T, Li H, Wang N, Li Z, Zhang Z, Zhou Y. The glutathione peroxidase gene family in Thellungiella salsuginea: genome-wide identification, classification, and gene and protein expression analysis under stress conditions. Int J Mol Sci 2014; 15:3319-35. [PMID: 24566152 PMCID: PMC3958914 DOI: 10.3390/ijms15023319] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/17/2014] [Accepted: 02/17/2014] [Indexed: 01/23/2023] Open
Abstract
Glutathione peroxidases (GPX) catalyze the reduction of H2O2 or organic hydroperoxides to water or corresponding alcohols using reduced glutathione, which plays an essential role in ROS (reactive oxygen species) homeostasis and stress signaling. Thellungiella salsuginea (Eutrema salsugineum), a relative of Arabidopsis thaliana, displays an extremely high level of tolerance to salt, drought, cold and oxidative stresses. The enzymatic antioxidant systems may contribute to the stress tolerance of T. salsuginea. In the present study, we aimed at understanding the roles of the antioxidant enzymes in T. salsuginea by focusing on the GPX family. We identified the eight GPX genes in T. salsuginea, and the structure of the N-terminal domains indicated their putative chloroplastic, mitochondrial and cytoplasmic location. The exon-intron organization of these genes exhibited a conserved pattern among plant GPX genes. Multiple environmental stresses and hormone response related cis-acting elements were predicted in the promoters of TsGPX genes. The gene and protein expression profiles of TsGPXs in response to high level of salinity and osmotic stresses, in leaves and roots of T. salsuginea were investigated using real-time RT-PCR and western blotting analysis. Our result showed that different members of the GPX gene family were coordinately regulated under specific environmental stress conditions, and supported the important roles of TsGPXs in salt and drought stress response in T. salsuginea.
Collapse
Affiliation(s)
- Fei Gao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Jing Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Tingting Ma
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Huayun Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Ning Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Zhanglei Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Zichen Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
26
|
Jain P, Bhatla SC. Signaling role of phospholipid hydroperoxide glutathione peroxidase (PHGPX) accompanying sensing of NaCl stress in etiolated sunflower seedling cotyledons. PLANT SIGNALING & BEHAVIOR 2014; 9:e977746. [PMID: 25517199 PMCID: PMC4623265 DOI: 10.4161/15592324.2014.977746] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sunflower seedlings subjected to 120 mM NaCl stress exhibit high total peroxidase activity, differential expression of its isoforms and accumulation of lipid hydroperoxides. This coincides with high specific activity of phospholipid hydroperoxide glutathione peroxidase (PHGPX) in the 10,000g supernatant from the homogenates of 2-6 d old seedling cotyledons. An upregulation of PHGPX activity by NaCl is evident from Western blot analysis. Confocal laser scanning microscopic (CLSM) analysis of sections of cotyledons incubated with anti-GPX4 (PHGPX) antibody highlights an enhanced cytosolic accumulation of PHGPX, particularly around the secretory canals. Present work, thus, highlights sensing of NaCl stress in sunflower seedlings in relation with lipid hydroperoxide accumulation and its scavenging through an upregulation of PHGPX activity in the cotyledons.
Collapse
Affiliation(s)
- Prachi Jain
- Laboratory of Plant Physiology and Biochemistry; Department of Botany; University of Delhi; Delhi, India
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry; Department of Botany; University of Delhi; Delhi, India
- Correspondence to: Satish C Bhatla;
| |
Collapse
|