1
|
Singh M, Chatzinakos C, Barr PB, Gentry AE, Bigdeli TB, Webb BT, Peterson RE. Trans-ancestry Genome-Wide Analyses in UK Biobank Yield Novel Risk Loci for Major Depression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.22.25322721. [PMID: 40061314 PMCID: PMC11888526 DOI: 10.1101/2025.02.22.25322721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Most genome-wide association studies (GWASs) of depression focus on broad, heterogeneous outcomes, limiting the discovery of genomic risk loci specific to major depressive disorder (MDD). Previous UK Biobank (UKB) studies had limited ability to pinpoint MDD-associated loci due to a smaller sample with strictly defined MDD outcomes and further exclusion of many participants based on ancestry or relatedness, significantly underutilizing this resource's potential for elucidating the genetic architecture of MDD. Here, we present novel genomic insights into MDD by fully utilizing existing UKB data through (1) a trans-ancestry GWAS pipeline using two complementary approaches controlling for population structure and relatedness and (2) an increased sample with MDD symptom-level data across two mental health assessments. We identified strict MDD outcomes among 211,535 participants, representing a 38% increase in eligible participants from prior studies with only one assessment. Ancestrally inclusive analyses yielded 61 genomic risk loci across depression phenotypes, compared to 47 in the analyses restricted to participants genetically similar to European ancestry. Fourteen of these loci, including five novel, were associated with strict MDD phenotypes, whereas only one locus has been previously reported in UKB. MDD-associated genomic loci and predicted gene expression levels showed little overlap with broad depression, indicating higher specificity. Notably, polygenic scores based on these results were significantly associated with depression diagnoses across ancestry groups in the All of Us Research Program, highlighting the shared genetic architecture across populations. While the trans-ancestry analyses, which included non-European participants, increased the number of associated loci, the discovery of non-European ancestry-specific loci was limited, underscoring the need for larger, globally representative studies of MDD. Importantly, beyond these results, our GWAS pipeline will facilitate inclusive analyses of other traits and disorders, helping improve statistical power, representation, and generalizability in genomic studies.
Collapse
Affiliation(s)
- Madhurbain Singh
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Chris Chatzinakos
- Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Peter B Barr
- Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Amanda Elswick Gentry
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Tim B Bigdeli
- Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Bradley T Webb
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Roseann E Peterson
- Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
2
|
Yang W, Mei FC, Lin W, White MA, Li L, Li Y, Pan S, Cheng X. Protein SUMOylation promotes cAMP-independent EPAC1 activation. Cell Mol Life Sci 2024; 81:283. [PMID: 38963422 PMCID: PMC11335207 DOI: 10.1007/s00018-024-05315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Protein SUMOylation is a prevalent stress-response posttranslational modification crucial for maintaining cellular homeostasis. Herein, we report that protein SUMOylation modulates cellular signaling mediated by cAMP, an ancient and universal stress-response second messenger. We identify K561 as a primary SUMOylation site in exchange protein directly activated by cAMP (EPAC1) via site-specific mapping of SUMOylation using mass spectrometry. Sequence and site-directed mutagenesis analyses reveal that a functional SUMO-interacting motif in EPAC1 is required for the binding of SUMO-conjugating enzyme UBC9, formation of EPAC1 nuclear condensate, and EPAC1 cellular SUMOylation. Heat shock-induced SUMO modification of EPAC1 promotes Rap1/2 activation in a cAMP-independent manner. Structural modeling and molecular dynamics simulation studies demonstrate that SUMO substituent on K561 of EPAC1 promotes Rap1 interaction by increasing the buried surface area between the SUMOylated receptor and its effector. Our studies identify a functional SUMOylation site in EPAC1 and unveil a novel mechanism in which SUMOylation of EPAC1 leads to its autonomous activation. The findings of SUMOylation-mediated activation of EPAC1 not only provide new insights into our understanding of cellular regulation of EPAC1 but also will open up a new field of experimentation concerning the cross-talk between cAMP/EPAC1 signaling and protein SUMOylation, two major cellular stress response pathways, during cellular homeostasis.
Collapse
Affiliation(s)
- Wenli Yang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Texas Therapeutics Institute, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Fang C Mei
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Texas Therapeutics Institute, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Wei Lin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Texas Therapeutics Institute, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Mark A White
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Li Li
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Yue Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Cell Therapy Manufacturing Center, 2130 W Holcombe Blvd, Houston, TX, 77030, USA
| | - Sheng Pan
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA.
- Texas Therapeutics Institute, The University of Texas Health Science Center, Houston, TX, USA.
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
3
|
Sun Y, Hao M, Wu H, Zhang C, Wei D, Li S, Song Z, Tao Y. Unveiling the role of CaMKII in retinal degeneration: from biological mechanism to therapeutic strategies. Cell Biosci 2024; 14:59. [PMID: 38725013 PMCID: PMC11084033 DOI: 10.1186/s13578-024-01236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a family of broad substrate specificity serine (Ser)/threonine (Thr) protein kinases that play a crucial role in the Ca2+-dependent signaling pathways. Its significance as an intracellular Ca2+ sensor has garnered abundant research interest in the domain of neurodegeneration. Accumulating evidences suggest that CaMKII is implicated in the pathology of degenerative retinopathies such as diabetic retinopathy (DR), age-related macular degeneration (AMD), retinitis pigmentosa (RP) and glaucoma optic neuropathy. CaMKII can induce the aberrant proliferation of retinal blood vessels, influence the synaptic signaling, and exert dual effects on the survival of retinal ganglion cells and pigment epithelial cells. Researchers have put forth multiple therapeutic agents, encompassing small molecules, peptides, and nucleotides that possess the capability to modulate CaMKII activity. Due to its broad range isoforms and splice variants therapeutic strategies seek to inhibit specifically the CaMKII are confronted with considerable challenges. Therefore, it becomes crucial to discern the detrimental and advantageous aspects of CaMKII, thereby facilitating the development of efficacious treatment. In this review, we summarize recent research findings on the cellular and molecular biology of CaMKII, with special emphasis on its metabolic and regulatory mechanisms. We delve into the involvement of CaMKII in the retinal signal transduction pathways and discuss the correlation between CaMKII and calcium overload. Furthermore, we elaborate the therapeutic trials targeting CaMKII, and introduce recent developments in the zone of CaMKII inhibitors. These findings would enrich our knowledge of CaMKII, and shed light on the development of a therapeutic target for degenerative retinopathy.
Collapse
Affiliation(s)
- Yuxin Sun
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Mengyu Hao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Chengzhi Zhang
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Wei
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Li
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Zhang T, Dolga AM, Eisel ULM, Schmidt M. Novel crosstalk mechanisms between GluA3 and Epac2 in synaptic plasticity and memory in Alzheimer's disease. Neurobiol Dis 2024; 191:106389. [PMID: 38142840 DOI: 10.1016/j.nbd.2023.106389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease which accounts for the most cases of dementia worldwide. Impaired memory, including acquisition, consolidation, and retrieval, is one of the hallmarks in AD. At the cellular level, dysregulated synaptic plasticity partly due to reduced long-term potentiation (LTP) and enhanced long-term depression (LTD) underlies the memory deficits in AD. GluA3 containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are one of key receptors involved in rapid neurotransmission and synaptic plasticity. Recent studies revealed a novel form of GluA3 involved in neuronal plasticity that is dependent on cyclic adenosine monophosphate (cAMP), rather than N-methyl-d-aspartate (NMDA). However, this cAMP-dependent GluA3 pathway is specifically and significantly impaired by amyloid beta (Aβ), a pathological marker of AD. cAMP is a key second messenger that plays an important role in modulating memory and synaptic plasticity. We previously reported that exchange protein directly activated by cAMP 2 (Epac2), acting as a main cAMP effector, plays a specific and time-limited role in memory retrieval. From electrophysiological perspective, Epac2 facilities the maintenance of LTP, a cellular event closely associated with memory retrieval. Additionally, Epac2 was found to be involved in the GluA3-mediated plasticity. In this review, we comprehensively summarize current knowledge regarding the specific roles of GluA3 and Epac2 in synaptic plasticity and memory, and their potential association with AD.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
5
|
Yang W, Mei FC, Lin W, White MA, Li L, Li Y, Pan S, Cheng X. Protein SUMOylation promotes cAMP-independent EPAC1 activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574738. [PMID: 38260470 PMCID: PMC10802480 DOI: 10.1101/2024.01.08.574738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Exchange protein directly activated by cAMP (EPAC1) mediates the intracellular functions of a critical stress-response second messenger, cAMP. Herein, we report that EPAC1 is a cellular substrate of protein SUMOylation, a prevalent stress-response posttranslational modification. Site-specific mapping of SUMOylation by mass spectrometer leads to identifying K561 as a primary SUMOylation site in EPAC1. Sequence and site-directed mutagenesis analyses reveal a functional SUMO-interacting motif required for cellular SUMOylation of EPAC1. SUMO modification of EPAC1 mediates its heat shock-induced Rap1/2 activation in a cAMP-independent manner. Structural modeling and molecular dynamics simulation studies demonstrate that SUMO substituent on K561 of EPAC1 promotes Rap1 interaction by increasing the buried surface area between the SUMOylated receptor and its effector. Our studies identify a functional SUMOylation site in EPAC1 and unveil a novel mechanism in which SUMOylation of EPAC1 leads to its autonomous activation. The findings of SUMOylation-mediated activation of EPAC1 not only provide new insights into our understanding of cellular regulation of EPAC1 but also will open up a new field of experimentation concerning the cross-talk between cAMP/EPAC1 signaling and protein SUMOylation, two major cellular stress response pathways, during cellular homeostasis.
Collapse
|
6
|
Sunshine MD, Bindi VE, Nguyen BL, Doerr V, Boeno FP, Chandran V, Smuder AJ, Fuller DD. Oxygen therapy attenuates neuroinflammation after spinal cord injury. J Neuroinflammation 2023; 20:303. [PMID: 38110993 PMCID: PMC10729514 DOI: 10.1186/s12974-023-02985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Acute hyperbaric O2 (HBO) therapy after spinal cord injury (SCI) can reduce inflammation and increase neuronal survival. To our knowledge, it is unknown if these benefits of HBO require hyperbaric vs. normobaric hyperoxia. We used a C4 lateralized contusion SCI in adult male and female rats to test the hypothesis that the combination of hyperbaria and 100% O2 (i.e. HBO) more effectively mitigates spinal inflammation and neuronal loss, and enhances respiratory recovery, as compared to normobaric 100% O2. Experimental groups included spinal intact, SCI no O2 therapy, and SCI + 100% O2 delivered at normobaric pressure (1 atmosphere, ATA), or at 2- or 3 ATA. O2 treatments lasted 1-h, commenced within 2-h of SCI, and were repeated for 10 days. The spinal inflammatory response was assessed with transcriptomics (RNAseq) and immunohistochemistry. Gene co-expression network analysis showed that the strong inflammatory response to SCI was dramatically diminished by both hyper- and normobaric O2 therapy. Similarly, both HBO and normobaric O2 treatments reduced the prevalence of immunohistological markers for astrocytes (glial fibrillary acidic protein) and microglia (ionized calcium binding adaptor molecule) in the injured spinal cord. However, HBO treatment also had unique impacts not detected in the normobaric group including upregulation of an anti-inflammatory cytokine (interleukin-4) in the plasma, and larger inspiratory tidal volumes at 10-days (whole body-plethysmography measurements). We conclude that normobaric O2 treatment can reduce the spinal inflammatory response after SCI, but pressured O2 (i.e., HBO) provides further benefit.
Collapse
Affiliation(s)
- Michael D Sunshine
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Victoria E Bindi
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Branden L Nguyen
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Vivian Doerr
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Franccesco P Boeno
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | | | - Ashley J Smuder
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA.
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
7
|
Parsons EC, Hoffmann R, Baillie GS. Revisiting the roles of cAMP signalling in the progression of prostate cancer. Biochem J 2023; 480:1599-1614. [PMID: 37830741 PMCID: PMC10586777 DOI: 10.1042/bcj20230297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Prostate cancer is one of the most common cancers in men and one of the top causes of death in men worldwide. Development and function of both normal prostate cells and early-stage prostate cancer cells are dependent on the cross-talk between androgen signalling systems and a variety of other transduction pathways which drive differentiation of these cells towards castration-resistance. One such signalling pathway is the ubiquitous cAMP signalling axis which functions to activate spatially restricted pools of cAMP effectors such as protein kinase A (PKA). The importance of both PKA and cAMP in the development of prostate cancer, and their interactions with the androgen receptor, were the focus of a review by Merkle and Hoffmann in 2010. In this updated review, we revisit this topic with analysis of current PKA-related prostate cancer literature and introduce novel information on the relevance of another cAMP effector, the exchange protein directly activated by cAMP (EPAC).
Collapse
Affiliation(s)
- Emma C. Parsons
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Bearsden, Glasgow G61 1QH, U.K
| | - Ralf Hoffmann
- Oncology, Philips Research Eindhoven, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands
- School of Cardiovascular & Metabolic Health, University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K
| | - George S. Baillie
- School of Cardiovascular & Metabolic Health, University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K
| |
Collapse
|
8
|
Mehlig K, Foraita R, Nagrani R, Wright MN, De Henauw S, Molnár D, Moreno LA, Russo P, Tornaritis M, Veidebaum T, Lissner L, Kaprio J, Pigeot I. Genetic associations vary across the spectrum of fasting serum insulin: results from the European IDEFICS/I.Family children's cohort. Diabetologia 2023; 66:1914-1924. [PMID: 37420130 PMCID: PMC10473990 DOI: 10.1007/s00125-023-05957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/27/2023] [Indexed: 07/09/2023]
Abstract
AIMS/HYPOTHESIS There is increasing evidence for the existence of shared genetic predictors of metabolic traits and neurodegenerative disease. We previously observed a U-shaped association between fasting insulin in middle-aged women and dementia up to 34 years later. In the present study, we performed genome-wide association (GWA) analyses for fasting serum insulin in European children with a focus on variants associated with the tails of the insulin distribution. METHODS Genotyping was successful in 2825 children aged 2-14 years at the time of insulin measurement. Because insulin levels vary during childhood, GWA analyses were based on age- and sex-specific z scores. Five percentile ranks of z-insulin were selected and modelled using logistic regression, i.e. the 15th, 25th, 50th, 75th and 85th percentile ranks (P15-P85). Additive genetic models were adjusted for age, sex, BMI, survey year, survey country and principal components derived from genetic data to account for ethnic heterogeneity. Quantile regression was used to determine whether associations with variants identified by GWA analyses differed across quantiles of log-insulin. RESULTS A variant in the SLC28A1 gene (rs2122859) was associated with the 85th percentile rank of the insulin z score (P85, p value=3×10-8). Two variants associated with low z-insulin (P15, p value <5×10-6) were located on the RBFOX1 and SH3RF3 genes. These genes have previously been associated with both metabolic traits and dementia phenotypes. While variants associated with P50 showed stable associations across the insulin spectrum, we found that associations with variants identified through GWA analyses of P15 and P85 varied across quantiles of log-insulin. CONCLUSIONS/INTERPRETATION The above results support the notion of a shared genetic architecture for dementia and metabolic traits. Our approach identified genetic variants that were associated with the tails of the insulin spectrum only. Because traditional heritability estimates assume that genetic effects are constant throughout the phenotype distribution, the new findings may have implications for understanding the discrepancy in heritability estimates from GWA and family studies and for the study of U-shaped biomarker-disease associations.
Collapse
Affiliation(s)
- Kirsten Mehlig
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Ronja Foraita
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Rajini Nagrani
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Marvin N Wright
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
- Department of Mathematics and Computer Science, University of Bremen, Bremen, Germany
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Stefaan De Henauw
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Dénes Molnár
- Department of Paediatrics, Medical School, University of Pécs, Pécs, Hungary
| | - Luis A Moreno
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, University of Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Paola Russo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | | | | | - Lauren Lissner
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Iris Pigeot
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
- Department of Mathematics and Computer Science, University of Bremen, Bremen, Germany
| |
Collapse
|
9
|
Bohuslavova R, Fabriciova V, Smolik O, Lebrón-Mora L, Abaffy P, Benesova S, Zucha D, Valihrach L, Berkova Z, Saudek F, Pavlinkova G. NEUROD1 reinforces endocrine cell fate acquisition in pancreatic development. Nat Commun 2023; 14:5554. [PMID: 37689751 PMCID: PMC10492842 DOI: 10.1038/s41467-023-41306-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
NEUROD1 is a transcription factor that helps maintain a mature phenotype of pancreatic β cells. Disruption of Neurod1 during pancreatic development causes severe neonatal diabetes; however, the exact role of NEUROD1 in the differentiation programs of endocrine cells is unknown. Here, we report a crucial role of the NEUROD1 regulatory network in endocrine lineage commitment and differentiation. Mechanistically, transcriptome and chromatin landscape analyses demonstrate that Neurod1 inactivation triggers a downregulation of endocrine differentiation transcription factors and upregulation of non-endocrine genes within the Neurod1-deficient endocrine cell population, disturbing endocrine identity acquisition. Neurod1 deficiency altered the H3K27me3 histone modification pattern in promoter regions of differentially expressed genes, which resulted in gene regulatory network changes in the differentiation pathway of endocrine cells, compromising endocrine cell potential, differentiation, and functional properties.
Collapse
Affiliation(s)
- Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Valeria Fabriciova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Ondrej Smolik
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Laura Lebrón-Mora
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Zuzana Berkova
- Diabetes Centre, Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Frantisek Saudek
- Diabetes Centre, Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia.
| |
Collapse
|
10
|
Yang W, Xia F, Mei F, Shi S, Robichaux WG, Lin W, Zhang W, Liu H, Cheng X. Upregulation of Epac1 Promotes Pericyte Loss by Inducing Mitochondrial Fission, Reactive Oxygen Species Production, and Apoptosis. Invest Ophthalmol Vis Sci 2023; 64:34. [PMID: 37651112 PMCID: PMC10476449 DOI: 10.1167/iovs.64.11.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
Purpose The pathogenic mechanisms behind the development of ischemic retinopathy are complex and poorly understood. This study investigates the involvement of exchange protein directly activated by cAMP (Epac)1 signaling in pericyte injury during ischemic retinopathy, including diabetic retinopathy, a disease that threatens vision. Methods Mouse models of retinal ischemia-reperfusion injury and type 1 diabetes induced by streptozotocin were used to investigate the pathogenesis of these diseases. The roles of Epac1 signaling in the pathogenesis of ischemic retinopathy were determined by an Epac1 knockout mouse model. The cellular and molecular mechanisms of Epac1-mediated pericyte dysfunction in response to high glucose were investigated by specific modulation of Epac1 activity in primary human retinal pericytes using Epac1-specific RNA interference and a pharmacological inhibitor. Results Ischemic injury or diabetes-induced retinal capillary degeneration were associated with an increased expression of Epac1 in the mouse retinal vasculature, including both endothelial cells and pericytes. Genetic deletion of Epac1 protected ischemic injury-induced pericyte loss and capillary degeneration in the mouse retina. Furthermore, high glucose-induced Epac1 expression in retinal pericytes was accompanied by increased Drp1 phosphorylation, mitochondrial fission, reactive oxygen species production, and caspase 3 activation. Inhibition of Epac1 via RNA interference or pharmacological approaches blocked high glucose-mediated mitochondrial dysfunction and caspase 3 activation. Conclusions Our study reveals an important role of Epac1 signaling in mitochondrial dynamics, reactive oxygen species production, and apoptosis in retinal pericytes and identifies Epac1 as a therapeutic target for treating ischemic retinopathy.
Collapse
Affiliation(s)
- Wenli Yang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| | - Fan Xia
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Fang Mei
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| | - Shuizhen Shi
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - William G. Robichaux
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| | - Wei Lin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| | - Wenbo Zhang
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
- Department of Neurobiology, University of Texas Medical Branch, Galveston, Texas, United States
| | - Hua Liu
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| |
Collapse
|
11
|
Helena GA, Watanabe T, Kato Y, Shiraki N, Kume S. Activation of cAMP (EPAC2) signaling pathway promotes hepatocyte attachment. Sci Rep 2023; 13:12352. [PMID: 37524826 PMCID: PMC10390557 DOI: 10.1038/s41598-023-39712-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/29/2023] [Indexed: 08/02/2023] Open
Abstract
Primary Human Hepatocyte (PHH) remains undefeated as the gold standard in hepatic studies. Despite its valuable properties, partial attachment loss due to the extraction process and cryopreservation remained the main hurdle in its application. We hypothesized that we could overcome the loss of PHH cell attachment through thawing protocol adjustment and medium composition. We reported a novel use of a medium designed for iPSC-derived hepatocytes, increasing PHH attachment on the collagen matrix. Delving further into the medium composition, we discovered that removing BSA and exposure to cAMP activators such as IBMX and Forskolin benefit PHH attachment. We found that activating EPAC2, the cAMP downstream effector, by S-220 significantly increased PHH attachment. We also found that EPAC2 activation induced bile canaliculi formation in iPS-derived hepatocytes. Combining these factors in studies involving PHH or iPS-hepatocyte culture provides promising means to improve cell attachment and maintenance of hepatic function.
Collapse
Affiliation(s)
- Grace Aprilia Helena
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Teruhiko Watanabe
- Life Science Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., 21 Suzukawa, Isehara, Kanagawa, 259-1146, Japan
| | - Yusuke Kato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Nobuaki Shiraki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
12
|
Keefe JA, Moore OM, Ho KS, Wehrens XHT. Role of Ca 2+ in healthy and pathologic cardiac function: from normal excitation-contraction coupling to mutations that cause inherited arrhythmia. Arch Toxicol 2023; 97:73-92. [PMID: 36214829 PMCID: PMC10122835 DOI: 10.1007/s00204-022-03385-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 01/19/2023]
Abstract
Calcium (Ca2+) ions are a key second messenger involved in the rhythmic excitation and contraction of cardiomyocytes throughout the heart. Proper function of Ca2+-handling proteins is required for healthy cardiac function, whereas disruption in any of these can cause cardiac arrhythmias. This comprehensive review provides a broad overview of the roles of Ca2+-handling proteins and their regulators in healthy cardiac function and the mechanisms by which mutations in these proteins contribute to inherited arrhythmias. Major Ca2+ channels and Ca2+-sensitive regulatory proteins involved in cardiac excitation-contraction coupling are discussed, with special emphasis on the function of the RyR2 macromolecular complex. Inherited arrhythmia disorders including catecholaminergic polymorphic ventricular tachycardia, long QT syndrome, Brugada syndrome, short QT syndrome, and arrhythmogenic right-ventricular cardiomyopathy are discussed with particular emphasis on subtypes caused by mutations in Ca2+-handling proteins.
Collapse
Affiliation(s)
- Joshua A Keefe
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA.,Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Oliver M Moore
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA.,Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kevin S Ho
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA.,Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA. .,Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Center for Space Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Hernández C, Gómez-Peralta F, Simó-Servat O, García-Ramírez M, Abreu C, Gómez-Rodríguez S, Simó R. Usefulness of circulating EPAC1 as biomarkers of therapeutic response to GLP-1 receptor agonists. Acta Diabetol 2022; 59:1437-1442. [PMID: 35925404 DOI: 10.1007/s00592-022-01928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
AIMS The response to Glucagon-like peptide-1 receptor agonists (GLP-1RAs) is highly varia-ble among patients. Thus, the identification of predictive biomarkers of therapeutic response to GLP-1 RA could help us to optimize the use of this class of drugs. GLP-1RAs increase exchange proteins directly activated by cAMP (EPAC). The aim of the present study was to assess whether the increase of EPAC1 after GLP-1RAs treatment could be a biomarker of clinical response. METHODS After showing that GLP-1 (10 ng/mL) significantly increased the expression of EPAC1 in human endo-thelial vascular cells (HUVEC), a pilot clinical study was planned. For this purpose 49 patients with type 2 diabetes who started treatment with liraglutide were included. EPAC1 concentration was determined by ELISA before and at one month of liraglutide treatment. RESULTS We found that serum concentration of EPAC1 increased significantly after treatment with liraglutide. Only in those patients in whom EPAC1 increased (64%), a significant decrease in HbA1c, LDL-C, body mass index (BMI), and waist circumference was shown. CONCLUSIONS This pilot study suggests that the increase of circulating EPAC1 after GLP-1RAs treatment could be a useful biomarker to predict clinical GLP1-RAs response.
Collapse
Affiliation(s)
- Cristina Hernández
- Department of Endocrinology, Vall d'Hebron University Hospital, Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), Madrid, Spain
| | | | - Olga Simó-Servat
- Department of Endocrinology, Vall d'Hebron University Hospital, Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), Madrid, Spain
| | - Marta García-Ramírez
- Centro de Investigación Biomédica en Red de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), Madrid, Spain
| | - Cristina Abreu
- Endocrinology and Nutrition Unit, Hospital General de Segovia, Segovia, Spain
| | | | - Rafael Simó
- Department of Endocrinology, Vall d'Hebron University Hospital, Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), Madrid, Spain.
| |
Collapse
|
14
|
Xiao X, Luo Y, Peng D. Updated Understanding of the Crosstalk Between Glucose/Insulin and Cholesterol Metabolism. Front Cardiovasc Med 2022; 9:879355. [PMID: 35571202 PMCID: PMC9098828 DOI: 10.3389/fcvm.2022.879355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
Glucose and cholesterol engage in almost all human physiological activities. As the primary energy substance, glucose can be assimilated and converted into diverse essential substances, including cholesterol. Cholesterol is mainly derived from de novo biosynthesis and the intestinal absorption of diets. It is evidenced that glucose/insulin promotes cholesterol biosynthesis and uptake, which have been targeted by several drugs for lipid-lowering, e.g., bempedoic acid, statins, ezetimibe, and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors. Inversely, these lipid-lowering drugs may also interfere with glucose metabolism. This review would briefly summarize the mechanisms of glucose/insulin-stimulated cholesterol biosynthesis and uptake, and discuss the effect and mechanisms of lipid-lowering drugs and genetic mutations on glucose homeostasis, aiming to help better understand the intricate relationship between glucose and cholesterol metabolism.
Collapse
|
15
|
Yang W, Robichaux WG, Mei FC, Lin W, Li L, Pan S, White MA, Chen Y, Cheng X. Epac1 activation by cAMP regulates cellular SUMOylation and promotes the formation of biomolecular condensates. SCIENCE ADVANCES 2022; 8:eabm2960. [PMID: 35442725 PMCID: PMC9020664 DOI: 10.1126/sciadv.abm2960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Protein SUMOylation plays an essential role in maintaining cellular homeostasis when cells are under stress. However, precisely how SUMOylation is regulated, and a molecular mechanism linking cellular stress to SUMOylation, remains elusive. Here, we report that cAMP, a major stress-response second messenger, acts through Epac1 as a regulator of cellular SUMOylation. The Epac1-associated proteome is highly enriched with components of the SUMOylation pathway. Activation of Epac1 by intracellular cAMP triggers phase separation and the formation of nuclear condensates containing Epac1 and general components of the SUMOylation machinery to promote cellular SUMOylation. Furthermore, genetic knockout of Epac1 obliterates oxidized low-density lipoprotein-induced cellular SUMOylation in macrophages, leading to suppression of foam cell formation. These results provide a direct nexus connecting two major cellular stress responses to define a molecular mechanism in which cAMP regulates the dynamics of cellular condensates to modulate protein SUMOylation.
Collapse
Affiliation(s)
- Wenli Yang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - William G. Robichaux
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Fang C. Mei
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Wei Lin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Li Li
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Sheng Pan
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Mark A. White
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Yuan Chen
- Department of Surgery and Moores Cancer Center, UC San Diego Health, La Jolla, CA, USA
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
16
|
Ni Z, Cheng X. Origin and Isoform Specific Functions of Exchange Proteins Directly Activated by cAMP: A Phylogenetic Analysis. Cells 2021; 10:cells10102750. [PMID: 34685730 PMCID: PMC8534922 DOI: 10.3390/cells10102750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/09/2021] [Accepted: 10/09/2021] [Indexed: 12/21/2022] Open
Abstract
Exchange proteins directly activated by cAMP (EPAC1 and EPAC2) are one of the several families of cellular effectors of the prototypical second messenger cAMP. To understand the origin and molecular evolution of EPAC proteins, we performed a comprehensive phylogenetic analysis of EPAC1 and EPAC2. Our study demonstrates that unlike its cousin PKA, EPAC proteins are only present in multicellular Metazoa. Within the EPAC family, EPAC1 is only associated with chordates, while EPAC2 spans the entire animal kingdom. Despite a much more contemporary origin, EPAC1 proteins show much more sequence diversity among species, suggesting that EPAC1 has undergone more selection and evolved faster than EPAC2. Phylogenetic analyses of the individual cAMP binding domain (CBD) and guanine nucleotide exchange (GEF) domain of EPACs, two most conserved regions between the two isoforms, further reveal that EPAC1 and EPAC2 are closely clustered together within both the larger cyclic nucleotide receptor and RAPGEF families. These results support the notion that EPAC1 and EPAC2 share a common ancestor resulting from a fusion between the CBD of PKA and the GEF from RAPGEF1. On the other hand, the two terminal extremities and the RAS-association (RA) domains show the most sequence diversity between the two isoforms. Sequence diversities within these regions contribute significantly to the isoform-specific functions of EPACs. Importantly, unique isoform-specific sequence motifs within the RA domain have been identified.
Collapse
Affiliation(s)
- Zhuofu Ni
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
- Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-500-7487
| |
Collapse
|
17
|
EPAC2 acts as a negative regulator in Matrigel-driven tubulogenesis of human microvascular endothelial cells. Sci Rep 2021; 11:19453. [PMID: 34593918 PMCID: PMC8484440 DOI: 10.1038/s41598-021-98906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/16/2021] [Indexed: 11/08/2022] Open
Abstract
Angiogenesis is physiologically essential for embryogenesis and development and reinitiated in adult animals during tissue growth and repair. Forming new vessels from the walls of existing vessels occurs as a multistep process coordinated by sprouting, branching, and a new lumenized network formation. However, little is known regarding the molecular mechanisms that form new tubular structures, especially molecules regulating the proper network density of newly formed capillaries. This study conducted microarray analyses in human primary microvascular endothelial cells (HMVECs) plated on Matrigel. The RAPGEF4 gene that encodes exchange proteins directly activated by cAMP 2 (EPAC2) proteins was increased in Matrigel-driven tubulogenesis. Tube formation was suppressed by the overexpression of EPAC2 and enhanced by EPAC2 knockdown in endothelial cells. Endothelial cell morphology was changed to round cell morphology by EPAC2 overexpression, while EPAC2 knockdown showed an elongated cell shape with filopodia-like protrusions. Furthermore, increased EPAC2 inhibited endothelial cell migration, and ablation of EPAC2 inversely enhanced cell mobility. These results suggest that EPAC2 affects the morphology and migration of microvascular endothelial cells and is involved in the termination and proper network formation of vascular tubes.
Collapse
|
18
|
NCOR1 Sustains Colorectal Cancer Cell Growth and Protects against Cellular Senescence. Cancers (Basel) 2021; 13:cancers13174414. [PMID: 34503224 PMCID: PMC8430780 DOI: 10.3390/cancers13174414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary NCOR1 is a scaffold protein that interacts with multiple partners to repress gene transcription. NCOR1 controls immunometabolic functions in several tissues and has been recently shown to protect against experimental colitis in mice. Our laboratory has observed a pro-proliferative role of NCOR1 in normal intestinal epithelial cells. However, it is unclear whether NCOR1 is functionally involved in colon cancer. This study demonstrated that NCOR1 is required for colorectal cancer cell growth. Depletion of NCOR1 caused these cells to become senescent. Transcriptomic signatures confirmed these observations but also predicted the potential for these cells to become pro-invasive. Thus, NCOR1 plays a novel role in preventing cancer-associated senescence and could represent a target for controlling colon cancer progression. Abstract NCOR1 is a corepressor that mediates transcriptional repression through its association with nuclear receptors and specific transcription factors. Some evidence supports a role for NCOR1 in neonatal intestinal epithelium maturation and the maintenance of epithelial integrity during experimental colitis in mice. We hypothesized that NCOR1 could control colorectal cancer cell proliferation and tumorigenicity. Conditional intestinal epithelial deletion of Ncor1 in ApcMin/+ mice resulted in a significant reduction in polyposis. RNAi targeting of NCOR1 in Caco-2/15 and HT-29 cell lines led to a reduction in cell growth, characterized by cellular senescence associated with a secretory phenotype. Tumor growth of HT-29 cells was reduced in the absence of NCOR1 in the mouse xenografts. RNA-seq transcriptome profiling of colon cancer cells confirmed the senescence phenotype in the absence of NCOR1 and predicted the occurrence of a pro-migration cellular signature in this context. SOX2, a transcription factor essential for pluripotency of embryonic stem cells, was induced under these conditions. In conclusion, depletion of NCOR1 reduced intestinal polyposis in mice and caused growth arrest, leading to senescence in human colorectal cell lines. The acquisition of a pro-metastasis signature in the absence of NCOR1 could indicate long-term potential adverse consequences of colon-cancer-induced senescence.
Collapse
|
19
|
Khegay II. Vasopressin Receptors in Blood Vessels and Proliferation of Endotheliocytes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021040129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Kwak JH, Lee YK, Jun MH, Roh M, Seo H, Lee J, Lee K, Lee JA. Autophagy activity contributes to the impairment of social recognition in Epac2 -/- mice. Mol Brain 2021; 14:100. [PMID: 34183057 PMCID: PMC8240198 DOI: 10.1186/s13041-021-00814-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 06/16/2021] [Indexed: 11/10/2022] Open
Abstract
Autophagy is a lysosomal degradation pathway that regulates cellular homeostasis. It is constitutively active in neurons and controls the essential steps of neuronal development, leading to its dysfunction in neurodevelopmental disorders. Although mTOR-associated impaired autophagy has previously been reported in neurodevelopmental disorders, there is lack of information about the dysregulation of mTOR-independent autophagy in neurodevelopmental disorders. In this study, we investigated whether the loss of Epac2, involved in the mTOR-independent pathway, affects autophagy activity and whether the activity of autophagy is associated with social-behavioral phenotypes in mice with Epac2 deficiencies. We observed an accumulation of autophagosomes and a significant increase in autophagic flux in Epac2-deficient neurons, which had no effect on mTOR activity. Next, we examined whether an increase in autophagic activity contributed to the social behavior exhibited in Epac2-/- mice. The social recognition deficit observed in Epac2-/- mice recovered in double transgenic Epac2-/-: Atg5+/- mice. Our study suggests that excessive autophagy due to Epac2 deficiencies may contribute to social recognition defects through an mTOR-independent pathway.
Collapse
Affiliation(s)
- Ji-Hye Kwak
- Behavioral Neural Circuitry and Physiology Laboratory, Department of Anatomy, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - You-Kyung Lee
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, South Korea
| | - Mi-Hee Jun
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, South Korea
| | - Mootaek Roh
- Behavioral Neural Circuitry and Physiology Laboratory, Department of Anatomy, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Hyunhyo Seo
- Behavioral Neural Circuitry and Physiology Laboratory, Department of Anatomy, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Juhyun Lee
- Behavioral Neural Circuitry and Physiology Laboratory, Department of Anatomy, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Kyungmin Lee
- Behavioral Neural Circuitry and Physiology Laboratory, Department of Anatomy, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea.
| | - Jin-A Lee
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, South Korea.
| |
Collapse
|
21
|
Sena RM, Twiss JL, Gardiner AS, Dell’Orco M, Linsenbardt DN, Perrone-Bizzozero NI. The RNA-Binding Protein HuD Regulates Alternative Splicing and Alternative Polyadenylation in the Mouse Neocortex. Molecules 2021; 26:2836. [PMID: 34064652 PMCID: PMC8151252 DOI: 10.3390/molecules26102836] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/18/2022] Open
Abstract
The neuronal Hu/ELAV-like proteins HuB, HuC and HuD are a class of RNA-binding proteins that are crucial for proper development and maintenance of the nervous system. These proteins bind to AU-rich elements (AREs) in the untranslated regions (3'-UTRs) of target mRNAs regulating mRNA stability, transport and translation. In addition to these cytoplasmic functions, Hu proteins have been implicated in alternative splicing and alternative polyadenylation in the nucleus. The purpose of this study was to identify transcriptome-wide effects of HuD deletion on both of these nuclear events using RNA sequencing data obtained from the neocortex of Elavl4-/- (HuD KO) mice. HuD KO affected alternative splicing of 310 genes, including 17 validated HuD targets such as Cbx3, Cspp1, Snap25 and Gria2. In addition, deletion of HuD affected polyadenylation of 53 genes, with the majority of significantly altered mRNAs shifting towards usage of proximal polyadenylation signals (PAS), resulting in shorter 3'-UTRs. None of these genes overlapped with those showing alternative splicing events. Overall, HuD KO had a greater effect on alternative splicing than polyadenylation, with many of the affected genes implicated in several neuronal functions and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rebecca M. Sena
- Department Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.M.S.); (A.S.G.); (M.D.)
| | - Jeffery L. Twiss
- Department Biological Sciences, University of South Carolina, Columbia, SC 29208, USA;
| | - Amy S. Gardiner
- Department Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.M.S.); (A.S.G.); (M.D.)
- Department Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Michela Dell’Orco
- Department Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.M.S.); (A.S.G.); (M.D.)
| | - David N. Linsenbardt
- Department Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.M.S.); (A.S.G.); (M.D.)
| | - Nora I. Perrone-Bizzozero
- Department Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.M.S.); (A.S.G.); (M.D.)
| |
Collapse
|
22
|
Zhou S, Fang J, Hu M, Pan S, Liu D, Xing G, Liu Z. Determining the influence of high glucose on exosomal lncRNAs, mRNAs, circRNAs and miRNAs derived from human renal tubular epithelial cells. Aging (Albany NY) 2021; 13:8467-8480. [PMID: 33714195 PMCID: PMC8034913 DOI: 10.18632/aging.202656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
Diabetic nephropathy is a lethal disease that can lead to chronic kidney disease and end-stage kidney disease. Exosomes, which are nanosized extracellular vesicles, are closely involved in intercellular communication. Most importantly, exosomes play critical roles in disease occurrence and development. However, the function of exosomes in diabetic nephropathy progression has not been fully elucidated. In the present study, we determined the expression profiles and differences of lncRNAs, mRNAs, circRNAs and miRNAs in exosomes derived from human renal tubular epithelial cells with or without high glucose (HG) treatment. A total of 169 lncRNAs, 885 mRNAs, 3 circRNAs and 152 miRNAs were differentially expressed in exosomes secreted by HG-challenged HK-2 cells (HG group) compared with controls (NC group). The functions of differentially expressed mRNAs, mRNAs colocalized or coexpressed with differentially expressed lncRNAs (DElncRNAs), potential target genes of miRNAs and source genes of circRNAs were investigated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. According to these differentially expressed RNAs, we established an integrated circRNA-lncRNA-miRNA-mRNA regulatory network. In conclusion, our study suggested that exosomal lncRNAs, mRNAs, circRNAs and miRNAs participate in the progression of diabetic nephropathy and may be possible biomarkers and therapeutic targets in diabetic nephropathy.
Collapse
Affiliation(s)
- Sijie Zhou
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P. R. China.,Research Center for Kidney Disease, Henan Province, Zhengzhou 450052, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, P. R. China
| | - Jiuyuan Fang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Mingyang Hu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P. R. China.,Research Center for Kidney Disease, Henan Province, Zhengzhou 450052, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, P. R. China
| | - Shaokang Pan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P. R. China.,Research Center for Kidney Disease, Henan Province, Zhengzhou 450052, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, P. R. China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P. R. China.,Research Center for Kidney Disease, Henan Province, Zhengzhou 450052, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, P. R. China
| | - Guolan Xing
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P. R. China.,Research Center for Kidney Disease, Henan Province, Zhengzhou 450052, P. R. China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P. R. China.,Research Center for Kidney Disease, Henan Province, Zhengzhou 450052, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, P. R. China
| |
Collapse
|
23
|
Robichaux WG, Mei FC, Yang W, Wang H, Sun H, Zhou Z, Milewicz DM, Teng BB, Cheng X. Epac1 (Exchange Protein Directly Activated by cAMP 1) Upregulates LOX-1 (Oxidized Low-Density Lipoprotein Receptor 1) to Promote Foam Cell Formation and Atherosclerosis Development. Arterioscler Thromb Vasc Biol 2020; 40:e322-e335. [PMID: 33054390 DOI: 10.1161/atvbaha.119.314238] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The cAMP second messenger system, a major stress-response pathway, plays essential roles in normal cardiovascular functions and in pathogenesis of heart diseases. Here, we test the hypothesis that the Epac1 (exchange protein directly activated by cAMP 1) acts as a major downstream effector of cAMP signaling to promote atherogenesis and represents a novel therapeutic target. Approach and Results: To ascertain Epac1's function in atherosclerosis development, a triple knockout mouse model (LTe) was generated by crossing Epac1-/- mice with atherosclerosis-prone LDb mice lacking both Ldlr and Apobec1. Deletion of Epac1 led to a significant reduction of atherosclerotic lesion formation as measured by postmortem staining, accompanied by attenuated macrophage/foam cell infiltrations within atherosclerotic plaques as determined by immunofluorescence staining in LTe animals compared with LDb littermates. Primary bone marrow-derived macrophages were isolated from Epac1-null and wild-type mice to investigate the role of Epac1 in lipid uptake and foam cell formation. ox-LDLs (oxidized low-density lipoproteins) stimulation of bone marrow-derived macrophages led to elevated intracellular cAMP and Epac1 levels, whereas an Epac-specific agonist, increased lipid accumulation in wild-type, but not Epac1-null, bone marrow-derived macrophages. Mechanistically, Epac1 acts through PKC (protein kinase C) to upregulate LOX-1 (ox-LDL receptor 1), a major scavenger receptor for ox-LDL uptake, exerting a feedforward mechanism with ox-LDL to increase lipid uptake and propel foam cell formation and atherogenesis. CONCLUSIONS Our study demonstrates a fundamental role of cAMP/Epac1 signaling in vascular remodeling by promoting ox-LDL uptake and foam cell formation during atherosclerosis lesion development. Therefore, Epac1 represents a promising, unexplored therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology (W.G.R., F.C.M., W.Y., H.W., X.C.), McGovern Medical School, The University of Texas Health Science Center, Houston.,Texas Therapeutics Institute (W.G.R., F.C.M., W.Y., H.W., X.C.), McGovern Medical School, The University of Texas Health Science Center, Houston.,Brown Foundation Institute of Molecular Medicine (W.G.R., F.C.M., W.Y., H.W., H.S., B.-B.T.), McGovern Medical School, The University of Texas Health Science Center, Houston
| | - Fang C Mei
- Department of Integrative Biology and Pharmacology (W.G.R., F.C.M., W.Y., H.W., X.C.), McGovern Medical School, The University of Texas Health Science Center, Houston.,Texas Therapeutics Institute (W.G.R., F.C.M., W.Y., H.W., X.C.), McGovern Medical School, The University of Texas Health Science Center, Houston.,Brown Foundation Institute of Molecular Medicine (W.G.R., F.C.M., W.Y., H.W., H.S., B.-B.T.), McGovern Medical School, The University of Texas Health Science Center, Houston
| | - Wenli Yang
- Department of Integrative Biology and Pharmacology (W.G.R., F.C.M., W.Y., H.W., X.C.), McGovern Medical School, The University of Texas Health Science Center, Houston.,Texas Therapeutics Institute (W.G.R., F.C.M., W.Y., H.W., X.C.), McGovern Medical School, The University of Texas Health Science Center, Houston.,Brown Foundation Institute of Molecular Medicine (W.G.R., F.C.M., W.Y., H.W., H.S., B.-B.T.), McGovern Medical School, The University of Texas Health Science Center, Houston
| | - Hui Wang
- Department of Integrative Biology and Pharmacology (W.G.R., F.C.M., W.Y., H.W., X.C.), McGovern Medical School, The University of Texas Health Science Center, Houston.,Texas Therapeutics Institute (W.G.R., F.C.M., W.Y., H.W., X.C.), McGovern Medical School, The University of Texas Health Science Center, Houston.,Brown Foundation Institute of Molecular Medicine (W.G.R., F.C.M., W.Y., H.W., H.S., B.-B.T.), McGovern Medical School, The University of Texas Health Science Center, Houston
| | - Hua Sun
- Brown Foundation Institute of Molecular Medicine (W.G.R., F.C.M., W.Y., H.W., H.S., B.-B.T.), McGovern Medical School, The University of Texas Health Science Center, Houston
| | - Zhen Zhou
- Division of Medical Genetics, Department of Internal Medicine (Z.Z., D.M.M.), McGovern Medical School, The University of Texas Health Science Center, Houston
| | - Dianna M Milewicz
- Division of Medical Genetics, Department of Internal Medicine (Z.Z., D.M.M.), McGovern Medical School, The University of Texas Health Science Center, Houston
| | - Ba-Bie Teng
- Brown Foundation Institute of Molecular Medicine (W.G.R., F.C.M., W.Y., H.W., H.S., B.-B.T.), McGovern Medical School, The University of Texas Health Science Center, Houston
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology (W.G.R., F.C.M., W.Y., H.W., X.C.), McGovern Medical School, The University of Texas Health Science Center, Houston.,Texas Therapeutics Institute (W.G.R., F.C.M., W.Y., H.W., X.C.), McGovern Medical School, The University of Texas Health Science Center, Houston
| |
Collapse
|
24
|
Qureshi U, Khan MI, Ashraf S, Hameed A, Hafizur RM, Rafique R, Khan KM, Ul-Haq Z. Identification of novel Epac2 antagonists through in silico and in vitro analyses. Eur J Pharm Sci 2020; 153:105492. [PMID: 32730843 DOI: 10.1016/j.ejps.2020.105492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/18/2020] [Accepted: 07/27/2020] [Indexed: 11/26/2022]
Abstract
cAMP-dependent guanine nucleotide exchange factor (Epac) is a key regulator in signal transduction and represents an excellent drug target to be investigated against various diseases. To date, very few modulators selective for Epac are available; however, there is still an unmet need of isoform-selective inhibitors. In the present study, ligand-based pharmacophores were designed to investigating structurally diverse molecules as Epac2 inhibitors. Pharmacophore models were developed using reported allosteric site inhibitors. The developed models were used to screen 95 thousand compounds from the National Cancer Institute (NCI), Maybride, and our in-house ICCBS Database. The binding mode and efficiency of the screened hits was investigated using molecular docking simulation on the allosteric site of Epac2 apo-protein (PDB ID: 2BYV) followed by ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) profiling Furthermore, obtained in silico screened hits were subjected to in vitro assay for insulin secretion. We identified, three lead molecules RDR02145, AAK-399, and AAD-026 reducing, insulin secretion. Remarkably, a higher inhibitory effect on insulin secretion was observed in AAK-399, and AAD-026 as compared to that of standard Epac2 non-competitive allosteric site inhibitor, MAY0132. Furthermore, Dynamic simulation studies of lead compounds proved the structural stability of the Epac2 auto-inhibited state. These findings underline the potential of these compounds as valuable pharmacological tools for designing future selective probes to inhibit the Epac-mediated signaling pathway.
Collapse
Affiliation(s)
- Urooj Qureshi
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - M Israr Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sajda Ashraf
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Abdul Hameed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Rahman M Hafizur
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Rafaila Rafique
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zaheer Ul-Haq
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
25
|
Caruana DA, Dudek SM. Adenosine A 1 Receptor-Mediated Synaptic Depression in the Developing Hippocampal Area CA2. Front Synaptic Neurosci 2020; 12:21. [PMID: 32612520 PMCID: PMC7307308 DOI: 10.3389/fnsyn.2020.00021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022] Open
Abstract
Immunolabeling for adenosine A1 receptors (A1Rs) is high in hippocampal area CA2 in adult rats, and the potentiating effects of caffeine or other A1R-selective antagonists on synaptic responses are particularly robust at Schaffer collateral synapses in CA2. Interestingly, the pronounced staining for A1Rs in CA2 is not apparent until rats are 4 weeks old, suggesting that developmental changes other than receptor distribution underlie the sensitivity of CA2 synapses to A1R antagonists in young animals. To evaluate the role of A1R-mediated postsynaptic signals at these synapses, we tested whether A1R agonists regulate synaptic transmission at Schaffer collateral inputs to CA2 and CA1. We found that the selective A1R agonist CCPA caused a lasting depression of synaptic responses in both CA2 and CA1 neurons in slices obtained from juvenile rats (P14), but that the effect was observed only in CA2 in slices prepared from adult animals (~P70). Interestingly, blocking phosphodiesterase activity with rolipram inhibited the CCPA-induced depression in CA1, but not in CA2, indicative of robust phosphodiesterase activity in CA1 neurons. Likewise, synaptic responses in CA2 and CA1 differed in their sensitivity to the adenylyl cyclase activator, forskolin, in that it increased synaptic transmission in CA2, but had little effect in CA1. These findings suggest that the A1R-mediated synaptic depression tracks the postnatal development of immunolabeling for A1Rs and that the enhanced sensitivity to antagonists in CA2 at young ages is likely due to robust adenylyl cyclase activity and weak phosphodiesterase activity rather than to enrichment of A1Rs.
Collapse
Affiliation(s)
- Douglas A. Caruana
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
- Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Research Triangle Park, NC, United States
| | - Serena M. Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Research Triangle Park, NC, United States
| |
Collapse
|
26
|
Richard SA. EPAC2: A new and promising protein for glioma pathogenesis and therapy. Oncol Rev 2020; 14:446. [PMID: 32395202 PMCID: PMC7204831 DOI: 10.4081/oncol.2020.446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/16/2020] [Indexed: 01/02/2023] Open
Abstract
Gliomas are prime brain cancers which are initiated by malignant modification of neural stem cells, progenitor cells and differentiated glial cells such as astrocyte, oligodendrocyte as well as ependymal cells. Exchange proteins directly activated by cAMP (EPACs) are crucial cyclic adenosine 3’,5’-monophosphate (cAMP)-determined signaling pathways. Cyclic AMP-intermediated signaling events were utilized to transduce protein kinase A (PKA) leading to the detection of EPACs or cAMP-guanine exchange factors (cAMP-GEFs). EPACs have been detected as crucial proteins associated with the pathogenesis of neurological disorders as well as numerous human diseases. EPAC proteins have two isoforms. These isoforms are EPAC1 and EPAC2. EPAC2 also known as Rap guanine nucleotide exchange factor 4 (RAPGEF4) is generally expression in all neurites. Higher EAPC2 levels was detected in the cortex, hippocampus as well as striatum of adult mouse brain. Activation as well as over-secretion of EPAC2 triggers apoptosis in neurons and EPAC-triggered apoptosis was intermediated via the modulation of Bcl-2 interacting member protein (BIM). EPAC2 secretory levels has proven to be more in low-grade clinical glioma than high-grade clinical glioma. This review therefore explores the effects of EPAC2/RAPGEF4 on the pathogenesis of glioma instead of EPAC1 because EPAC2 and not EPAC1 is predominately expressed in the brain. Therefore, EPAC2 is most likely to modulate glioma pathogenesis rather than EPAC1.
Collapse
Affiliation(s)
- Seidu A Richard
- Department of Medicine, Princefield University, Ho, Ghana, West Africa
| |
Collapse
|
27
|
Luchowska-Stańska U, Morgan D, Yarwood SJ, Barker G. Selective small-molecule EPAC activators. Biochem Soc Trans 2019; 47:1415-1427. [PMID: 31671184 PMCID: PMC6824682 DOI: 10.1042/bst20190254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
The cellular signalling enzymes, EPAC1 and EPAC2, have emerged as key intracellular sensors of the secondary messenger cyclic 3',5'-adenosine monophosphate (cyclic adenosine monophosphate) alongside protein kinase A. Interest has been galvanised in recent years thanks to the emergence of these species as potential targets for new cardiovascular disease therapies, including vascular inflammation and insulin resistance in vascular endothelial cells. We herein summarise the current state-of-the-art in small-molecule EPAC activity modulators, including cyclic nucleotides, sulphonylureas, and N-acylsulphonamides.
Collapse
Affiliation(s)
- Urszula Luchowska-Stańska
- Institute of Biological Chemistry, Biophysics, and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - David Morgan
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Stephen J. Yarwood
- Institute of Biological Chemistry, Biophysics, and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Graeme Barker
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| |
Collapse
|
28
|
Sivertsen Åsrud K, Pedersen L, Aesoy R, Muwonge H, Aasebø E, Nitschke Pettersen IK, Herfindal L, Dobie R, Jenkins S, Berge RK, Henderson NC, Selheim F, Døskeland SO, Bakke M. Mice depleted for Exchange Proteins Directly Activated by cAMP (Epac) exhibit irregular liver regeneration in response to partial hepatectomy. Sci Rep 2019; 9:13789. [PMID: 31551444 PMCID: PMC6760117 DOI: 10.1038/s41598-019-50219-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
The exchange proteins directly activated by cAMP 1 and 2 (Epac1 and Epac2) are expressed in a cell specific manner in the liver, but their biological functions in this tissue are poorly understood. The current study was undertaken to begin to determine the potential roles of Epac1 and Epac2 in liver physiology and disease. Male C57BL/6J mice in which expression of Epac1 and/or Epac2 are deleted, were subjected to partial hepatectomy and the regenerating liver was analyzed with regard to lipid accumulation, cell replication and protein expression. In response to partial hepatectomy, deletion of Epac1 and/or Epac2 led to increased hepatocyte proliferation 36 h post surgery, and the transient steatosis observed in wild type mice was virtually absent in mice lacking both Epac1 and Epac2. The expression of the protein cytochrome P4504a14, which is implicated in hepatic steatosis and fibrosis, was substantially reduced upon deletion of Epac1/2, while a number of factors involved in lipid metabolism were significantly decreased. Moreover, the number of Küpffer cells was affected, and Epac2 expression was increased in the liver of wild type mice in response to partial hepatectomy, further supporting a role for these proteins in liver function. This study establishes hepatic phenotypic abnormalities in mice deleted for Epac1/2 for the first time, and introduces Epac1/2 as regulators of hepatocyte proliferation and lipid accumulation in the regenerative process.
Collapse
Affiliation(s)
| | - Line Pedersen
- Department of Biomedicine, The University of Bergen, Bergen, Norway
| | - Reidun Aesoy
- Department of Clinical Science, The University of Bergen, Bergen, Norway
| | - Haruna Muwonge
- Department of Biomedicine, The University of Bergen, Bergen, Norway
| | - Elise Aasebø
- Department of Clinical Science, The University of Bergen, Bergen, Norway
- Department of Biomedicine, The Proteomic Unit at The University of Bergen (PROBE), University of Bergen, 5009, Bergen, Norway
| | | | - Lars Herfindal
- Department of Clinical Science, The University of Bergen, Bergen, Norway
| | - Ross Dobie
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Stephen Jenkins
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Rolf Kristian Berge
- Department of Clinical Science, The University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Neil Cowan Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Frode Selheim
- Department of Biomedicine, The University of Bergen, Bergen, Norway
- Department of Clinical Science, The University of Bergen, Bergen, Norway
| | | | - Marit Bakke
- Department of Biomedicine, The University of Bergen, Bergen, Norway
| |
Collapse
|
29
|
Jiang M, Zhuang Y, Zu WC, Jiao L, Richard SA, Zhang S. Overexpression of EPAC2 reduces the invasion of glioma cells via MMP-2. Oncol Lett 2019; 17:5080-5086. [PMID: 31186720 PMCID: PMC6507491 DOI: 10.3892/ol.2019.10200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/26/2019] [Indexed: 01/15/2023] Open
Abstract
Exchange proteins directly activated by cAMP (EPACs) are crucial cyclic adenosine 3′,5′-monophosphate- determined signaling pathway intercessors, which are associated with the pathogenesis of neurological disorders and numerous human diseases. To the best of our knowledge, the role of EPAC2 signaling via matrix metalloproteinase 2 (MMP-2) in the pathogenesis of glioma has not been studied. Therefore, the present study focused on the role of EPAC2 in glioma, and assessed the invasiveness of human glioma cell lines following EPAC2 overexpression. Expression levels of EPAC2 in normal brain tissues and clinical glioma specimens were detected by western blotting. An EPAC2 overexpression vector was transfected into U251 and U87 cell lines to increase the expression levels of EPAC2. Expression levels of MMP-2 were detected by western blotting, and the invasive abilities of glioma cells were detected by a Transwell assay. EPAC2 was relatively highly expressed in normal brain tissue, while EPAC2 expression was significantly decreased in clinical glioma specimens (P<0.01). In vitro transfection of EPAC2 overexpression vector significantly reduced the MMP-2 protein levels of glioma cells, and, at the same time, the invasive cell number was significantly decreased in a Transwell assay. The present study demonstrated that MMP-2 regulation via EPAC2 overexpression is a novel promising therapeutic route in malignant types of glioma.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Department of Neurosurgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yan Zhuang
- Department of Neurosurgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Wang-Cun Zu
- Department of Neurosurgery, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Lei Jiao
- Department of Neurosurgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Seidu A Richard
- Department of Neurosurgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China.,Department of Immunology, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Department of Medicine, Princefield University, P.O. Box MA 128, Ho, Volta Region, Ghana
| | - Shiming Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
30
|
Maczewsky J, Kaiser J, Gresch A, Gerst F, Düfer M, Krippeit-Drews P, Drews G. TGR5 Activation Promotes Stimulus-Secretion Coupling of Pancreatic β-Cells via a PKA-Dependent Pathway. Diabetes 2019; 68:324-336. [PMID: 30409782 DOI: 10.2337/db18-0315] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/31/2018] [Indexed: 11/13/2022]
Abstract
The Takeda-G-protein-receptor-5 (TGR5) mediates physiological actions of bile acids. Since it was shown that TGR5 is expressed in pancreatic tissue, a direct TGR5 activation in β-cells is currently postulated and discussed. The current study reveals that oleanolic acid (OLA) affects murine β-cell function by TGR5 activation. Both a Gαs inhibitor and an inhibitor of adenylyl cyclase (AC) prevented stimulating effects of OLA. Accordingly, OLA augmented the intracellular cAMP concentration. OLA and two well-established TGR5 agonists, RG239 and tauroursodeoxycholic acid (TUDCA), acutely promoted stimulus-secretion coupling (SSC). OLA reduced KATP current and elevated current through Ca2+ channels. Accordingly, in mouse and human β-cells, TGR5 ligands increased the cytosolic Ca2+ concentration by stimulating Ca2+ influx. Higher OLA concentrations evoked a dual reaction, probably due to activation of a counterregulating pathway. Protein kinase A (PKA) was identified as a downstream target of TGR5 activation. In contrast, inhibition of phospholipase C and phosphoinositide 3-kinase did not prevent stimulating effects of OLA. Involvement of exchange protein directly activated by cAMP 2 (Epac2) or farnesoid X receptor (FXR2) was ruled out by experiments with knockout mice. The proposed pathway was not influenced by local glucagon-like peptide 1 (GLP-1) secretion from α-cells, shown by experiments with MIN6 cells, and a GLP-1 receptor antagonist. In summary, these data clearly demonstrate that activation of TGR5 in β-cells stimulates insulin secretion via an AC/cAMP/PKA-dependent pathway, which is supposed to interfere with SSC by affecting KATP and Ca2+ currents and thus membrane potential.
Collapse
Affiliation(s)
- Jonas Maczewsky
- Institute of Pharmacy, Department of Pharmacology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Julia Kaiser
- Institute of Pharmacy, Department of Pharmacology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Anne Gresch
- Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, University of Münster, Münster, Germany
| | - Felicia Gerst
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Martina Düfer
- Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, University of Münster, Münster, Germany
| | - Peter Krippeit-Drews
- Institute of Pharmacy, Department of Pharmacology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Gisela Drews
- Institute of Pharmacy, Department of Pharmacology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
31
|
Wang Q, Zhao C, Jin L, Zhang H, Miao Q, Liu H, Zhang D. AWRK6, a Novel GLP-1 Receptor Agonist, Attenuates Diabetes by Stimulating Insulin Secretion. Int J Mol Sci 2018; 19:ijms19103053. [PMID: 30301245 PMCID: PMC6213269 DOI: 10.3390/ijms19103053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/30/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
Diabetes is a metabolic disorder leading to many complications. The treatment of diabetes mainly depends on hypoglycemic drugs, often with side effects, which drive us to develop novel agents. AWRK6 was a peptide developed from the antimicrobial peptide Dybowskin-2CDYa in our previous study, and the availability of AWRK6 on diabetes intervention was unknown. Here, in vivo and in vitro experiments were carried out to investigate the effects of AWRK6 against diabetes. In diabetic mice, induced by high-fat diet followed by streptozocin (STZ) administration, the daily administration of AWRK6 presented acute and sustained hypoglycemic effects. The plasma insulin was significantly elevated by AWRK6 during an oral glucose tolerance test (OGTT). The relative β cell mass in diabetic mice was increased by AWRK6 treatment. The body weight and food intake were remarkably reduced by AWRK6 administration. In the mouse pancreatic β cell line Min6 cells, the intracellular calcium concentration was found to be enhanced under the treatment with AWRK6, and protein kinase A (PKA) inhibitor H-89 and Epac2 inhibitor HJC0350 represented inhibitory effects of the insulinotropic function of AWRK6. By FITC-AWRK6 incubation and GLP-1 receptor (GLP-1R) knockdown, AWRK6 proved to be a novel GLP-1R agonist. In addition, AWRK6 showed no toxicity in cell viability and membrane integrity in Min6 cells, and no hypoglycemia risk and no lethal toxicity in mice. In summary, AWRK6 was found as a novel agonist of GLP-1R, which could stimulate insulin secretion to regulate blood glucose and energy metabolism, via cAMP-calcium signaling pathway, without significant toxicity. The peptide AWRK6 might become a novel candidate for diabetes treatment.
Collapse
Affiliation(s)
- Qiuyu Wang
- School of Life Science, Liaoning University, Shenyang 110036, China.
| | - Chunlin Zhao
- School of Life Science, Liaoning University, Shenyang 110036, China.
| | - Lili Jin
- School of Life Science, Liaoning University, Shenyang 110036, China.
| | - Hanyu Zhang
- School of Life Science, Liaoning University, Shenyang 110036, China.
| | - Qifan Miao
- School of Life Science, Liaoning University, Shenyang 110036, China.
| | - Hongsheng Liu
- Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province, Liaoning University, Shenyang 110036, China.
| | - Dianbao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China.
| |
Collapse
|
32
|
Zhang C, Liu H, Chen S, Luo Y. Evaluating the effects of IADHFL on inhibiting DPP-IV activity and expression in Caco-2 cells and contributing to the amount of insulin released from INS-1 cells in vitro. Food Funct 2018; 9:2240-2250. [PMID: 29553151 DOI: 10.1039/c7fo01950e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dipeptidyl peptidase-IV (DPP-IV) is a serine exo-peptidase that can inactivate incretins by removing N-terminal dipeptides. Currently, inhibiting the DPP-IV activity is a common treatment for type 2 diabetes (T2D). The goal of this study is to investigate whether IADHFL, a novel DPP-IV inhibitory peptide identified from bighead carp (Hypophthalmichthys nobilis), has the potential to modulate T2D. IADHFL remained stable after simulated gastrointestinal digestion and significantly decreased the activity and expression of both soluble and membrane-bound DPP-IV after 24 h and 48 h of treatment. Intact peptide absorption was observed, but a percentage of the peptide was degraded while passing through a monolayer of Caco-2 cells. In addition, a double-layered cell model showed that the peptide could increase insulin secretion from INS-1 cells after glucose treatments of 2.8 mM and 16.7 mM. Finally, IADHFL could regulate the expression levels of genes associated with insulin secretion and T2D in INS-1 cells.
Collapse
Affiliation(s)
- Chi Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China
| | - Huaigao Liu
- Beijing Guotai Biotechnology Co., Ltd, Beijing 100011, China.
| | - Shangwu Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China
| | - Yongkang Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China
| |
Collapse
|
33
|
Kwak SH, Chae J, Lee S, Choi S, Koo BK, Yoon JW, Park JH, Cho B, Moon MK, Lim S, Cho YM, Moon S, Kim YJ, Han S, Hwang MY, Cho YS, Lee MS, Jang HC, Kang HM, Park T, Cho NH, Kim K, Kim JI, Park KS. Nonsynonymous Variants in PAX4 and GLP1R Are Associated With Type 2 Diabetes in an East Asian Population. Diabetes 2018; 67:1892-1902. [PMID: 29941447 DOI: 10.2337/db18-0361] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/12/2018] [Indexed: 11/13/2022]
Abstract
We investigated ethnicity-specific exonic variants of type 2 diabetes (T2D) and its related clinical phenotypes in an East Asian population. We performed whole-exome sequencing in 917 T2D case and control subjects, and the findings were validated by exome array genotyping in 3,026 participants. In silico replication was conducted for seven nonsynonymous variants in an additional 13,122 participants. Single-variant and gene-based association tests for T2D were analyzed. A total of 728,838 variants were identified by whole-exome sequencing. Among nonsynonymous variants, PAX4 Arg192His increased risk of T2D and GLP1R Arg131Gln decreased risk of T2D in genome-wide significance (odds ratio [OR] 1.48, P = 4.47 × 10-16 and OR 0.84, P = 3.55 × 10-8, respectively). Another variant at PAX4 192 codon Arg192Ser was nominally associated with T2D (OR 1.62, P = 5.18 × 10-4). In T2D patients, PAX4 Arg192His was associated with earlier age at diagnosis, and GLP1R Arg131Gln was associated with decreased risk of cardiovascular disease. In control subjects without diabetes, the PAX4 Arg192His was associated with higher fasting glucose and GLP1R Arg131Gln was associated with lower fasting glucose and HbA1c level. Gene-based analysis revealed that SLC30A8 was most significantly associated with decreased risk of T2D (P = 1.0 × 10-4). In summary, we have identified nonsynonymous variants associated with risk of T2D and related phenotypes in Koreans.
Collapse
Affiliation(s)
- Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jeesoo Chae
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seungbok Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sungkyoung Choi
- Research Institute of Basic Sciences, Seoul National University, Seoul, Republic of Korea
| | - Bo Kyung Koo
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Ji Won Yoon
- Department of Internal Medicine, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin-Ho Park
- Department of Family Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Belong Cho
- Department of Family Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Min Kyong Moon
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Young Min Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sanghoon Moon
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Young Jin Kim
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Sohee Han
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Mi Yeong Hwang
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | - Myung-Shik Lee
- Severance Biomedical Science Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hak C Jang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyun Min Kang
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI
| | - Taesung Park
- Department of Statistics, Seoul National University, Seoul, Republic of Korea
| | - Nam H Cho
- Department of Preventive Medicine and Public Health, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kyunga Kim
- Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jong-Il Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
34
|
Anterior Pituitary Transcriptome Suggests Differences in ACTH Release in Tame and Aggressive Foxes. G3-GENES GENOMES GENETICS 2018; 8:859-873. [PMID: 29378821 PMCID: PMC5844307 DOI: 10.1534/g3.117.300508] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Domesticated species exhibit a suite of behavioral, endocrinological, and morphological changes referred to as "domestication syndrome." These changes may include a reduction in reactivity of the hypothalamic-pituitary-adrenal (HPA) axis and specifically reduced adrenocorticotropic hormone release from the anterior pituitary. To investigate the biological mechanisms targeted during domestication, we investigated gene expression in the pituitaries of experimentally domesticated foxes (Vulpes vulpes). RNA was sequenced from the anterior pituitary of six foxes selectively bred for tameness ("tame foxes") and six foxes selectively bred for aggression ("aggressive foxes"). Expression, splicing, and network differences identified between the two lines indicated the importance of genes related to regulation of exocytosis, specifically mediated by cAMP, organization of pseudopodia, and cell motility. These findings provide new insights into biological mechanisms that may have been targeted when these lines of foxes were selected for behavior and suggest new directions for research into HPA axis regulation and the biological underpinnings of domestication.
Collapse
|
35
|
Overexpression of exchange protein directly activated by cAMP-1 (EPAC1) attenuates bladder cancer cell migration. Biochem Biophys Res Commun 2017; 495:64-70. [PMID: 29111327 DOI: 10.1016/j.bbrc.2017.10.142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022]
Abstract
Exchange protein directly activated by cAMP (EPAC) is a mediator of a cAMP signaling pathway that is independent of protein kinase A. EPAC has two isoforms (EPAC1 and EPAC2) and is a cAMP-dependent guanine nucleotide exchange factor for the small GTPases, Rap1 and Rap2. Recent studies suggest that EPAC1 has both positive and negative influences on cancer and is involved in cell proliferation, apoptosis, migration and metastasis. We report that EPAC1 and EPAC2 expression levels were significantly lower in bladder cancer tissue than in normal bladder tissue. In addition, bladder cancer cell lines showed reduced EPAC1 mRNA expression. Furthermore, EPAC1 overexpression in bladder cancer cell lines induced morphologic changes and markedly suppressed cell migration without affecting cell viability. The overexpressed EPAC1 preferentially localized at cell-cell interfaces. In conclusion, reduced EPAC1 expression in bladder tumors and poor migration of EPAC1-overexpressing cells implicate EPAC1 as an inhibitor of bladder cancer cell migration.
Collapse
|
36
|
van den Berg ME, Warren HR, Cabrera CP, Verweij N, Mifsud B, Haessler J, Bihlmeyer NA, Fu YP, Weiss S, Lin HJ, Grarup N, Li-Gao R, Pistis G, Shah N, Brody JA, Müller-Nurasyid M, Lin H, Mei H, Smith AV, Lyytikäinen LP, Hall LM, van Setten J, Trompet S, Prins BP, Isaacs A, Radmanesh F, Marten J, Entwistle A, Kors JA, Silva CT, Alonso A, Bis JC, de Boer R, de Haan HG, de Mutsert R, Dedoussis G, Dominiczak AF, Doney ASF, Ellinor PT, Eppinga RN, Felix SB, Guo X, Hagemeijer Y, Hansen T, Harris TB, Heckbert SR, Huang PL, Hwang SJ, Kähönen M, Kanters JK, Kolcic I, Launer LJ, Li M, Yao J, Linneberg A, Liu S, Macfarlane PW, Mangino M, Morris AD, Mulas A, Murray AD, Nelson CP, Orrú M, Padmanabhan S, Peters A, Porteous DJ, Poulter N, Psaty BM, Qi L, Raitakari OT, Rivadeneira F, Roselli C, Rudan I, Sattar N, Sever P, Sinner MF, Soliman EZ, Spector TD, Stanton AV, Stirrups KE, Taylor KD, Tobin MD, Uitterlinden A, Vaartjes I, Hoes AW, van der Meer P, Völker U, Waldenberger M, Xie Z, Zoledziewska M, Tinker A, Polasek O, Rosand J, Jamshidi Y, van Duijn CM, Zeggini E, Jukema JW, Asselbergs FW, Samani NJ, Lehtimäki T, et alvan den Berg ME, Warren HR, Cabrera CP, Verweij N, Mifsud B, Haessler J, Bihlmeyer NA, Fu YP, Weiss S, Lin HJ, Grarup N, Li-Gao R, Pistis G, Shah N, Brody JA, Müller-Nurasyid M, Lin H, Mei H, Smith AV, Lyytikäinen LP, Hall LM, van Setten J, Trompet S, Prins BP, Isaacs A, Radmanesh F, Marten J, Entwistle A, Kors JA, Silva CT, Alonso A, Bis JC, de Boer R, de Haan HG, de Mutsert R, Dedoussis G, Dominiczak AF, Doney ASF, Ellinor PT, Eppinga RN, Felix SB, Guo X, Hagemeijer Y, Hansen T, Harris TB, Heckbert SR, Huang PL, Hwang SJ, Kähönen M, Kanters JK, Kolcic I, Launer LJ, Li M, Yao J, Linneberg A, Liu S, Macfarlane PW, Mangino M, Morris AD, Mulas A, Murray AD, Nelson CP, Orrú M, Padmanabhan S, Peters A, Porteous DJ, Poulter N, Psaty BM, Qi L, Raitakari OT, Rivadeneira F, Roselli C, Rudan I, Sattar N, Sever P, Sinner MF, Soliman EZ, Spector TD, Stanton AV, Stirrups KE, Taylor KD, Tobin MD, Uitterlinden A, Vaartjes I, Hoes AW, van der Meer P, Völker U, Waldenberger M, Xie Z, Zoledziewska M, Tinker A, Polasek O, Rosand J, Jamshidi Y, van Duijn CM, Zeggini E, Jukema JW, Asselbergs FW, Samani NJ, Lehtimäki T, Gudnason V, Wilson J, Lubitz SA, Kääb S, Sotoodehnia N, Caulfield MJ, Palmer CNA, Sanna S, Mook-Kanamori DO, Deloukas P, Pedersen O, Rotter JI, Dörr M, O'Donnell CJ, Hayward C, Arking DE, Kooperberg C, van der Harst P, Eijgelsheim M, Stricker BH, Munroe PB. Discovery of novel heart rate-associated loci using the Exome Chip. Hum Mol Genet 2017; 26:2346-2363. [PMID: 28379579 PMCID: PMC5458336 DOI: 10.1093/hmg/ddx113] [Show More Authors] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/18/2017] [Indexed: 01/06/2023] Open
Abstract
Resting heart rate is a heritable trait, and an increase in heart rate is associated with increased mortality risk. Genome-wide association study analyses have found loci associated with resting heart rate, at the time of our study these loci explained 0.9% of the variation. This study aims to discover new genetic loci associated with heart rate from Exome Chip meta-analyses.Heart rate was measured from either elecrtrocardiograms or pulse recordings. We meta-analysed heart rate association results from 104 452 European-ancestry individuals from 30 cohorts, genotyped using the Exome Chip. Twenty-four variants were selected for follow-up in an independent dataset (UK Biobank, N = 134 251). Conditional and gene-based testing was undertaken, and variants were investigated with bioinformatics methods.We discovered five novel heart rate loci, and one new independent low-frequency non-synonymous variant in an established heart rate locus (KIAA1755). Lead variants in four of the novel loci are non-synonymous variants in the genes C10orf71, DALDR3, TESK2 and SEC31B. The variant at SEC31B is significantly associated with SEC31B expression in heart and tibial nerve tissue. Further candidate genes were detected from long-range regulatory chromatin interactions in heart tissue (SCD, SLF2 and MAPK8). We observed significant enrichment in DNase I hypersensitive sites in fetal heart and lung. Moreover, enrichment was seen for the first time in human neuronal progenitor cells (derived from embryonic stem cells) and fetal muscle samples by including our novel variants.Our findings advance the knowledge of the genetic architecture of heart rate, and indicate new candidate genes for follow-up functional studies.
Collapse
Affiliation(s)
- Marten E van den Berg
- Department of Medical Informatics Erasmus MC - University Medical Center Rotterdam, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Helen R Warren
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.,NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Claudia P Cabrera
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.,NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Niek Verweij
- University Medical Center Groningen, University of Groningen, Department of Cardiology, the Netherlands
| | - Borbala Mifsud
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.,NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nathan A Bihlmeyer
- Predoctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA, 21205
| | - Yi-Ping Fu
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics; University Medicine and Ernst-Moritz-Arndt-University Greifswald; Greifswald, 17475, Germany.,DZHK (German Centre for Cardiovascular Research); partner site Greifswald; Greifswald, 17475, Germany
| | - Henry J Lin
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA 90502, USA.,Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Giorgio Pistis
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy.,Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Nabi Shah
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, DD1 9SY, UK.,Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, 22060, Pakistan
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA 98101, USA
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-Universität, Munich, Germany
| | - Honghuang Lin
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Hao Mei
- Department of Data Science, University of Mississippi Medical Center, Jackson, MI, USA
| | - Albert V Smith
- Icelandic Heart Association, 201 Kopavogur, Iceland.,Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of Medicine, Arvo, D339, P.O. Box 100, FI-33014 Tampere, Finland
| | - Leanne M Hall
- Department of Cardiovascular Sciences, University of Leicester, Cardiovascular Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK.,NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Jessica van Setten
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands.,Department of Gerontology and Geriatrics, Leiden university Medical Center, Leiden, the Netherlands
| | - Bram P Prins
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom, CB10 1SA.,Cardiogenetics Lab, Genetics and Molecular Cell Sciences Research Centre, Cardiovascular and Cell Sciences Institute, St George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Aaron Isaacs
- CARIM School for Cardiovascular Diseases, Maastricht Centre for Systems Biology (MaCSBio), Dept. of Biochemistry, Maastricht University, Universiteitssingel 60, 6229 ER Maastricht, NL
| | - Farid Radmanesh
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142
| | - Jonathan Marten
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4?2XU, UK
| | - Aiman Entwistle
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.,NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Jan A Kors
- Department of Medical Informatics Erasmus MC - University Medical Center Rotterdam, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Claudia T Silva
- Genetic Epidemiology Unit, Dept. of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, NL.,Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá, Colombia.,GENIUROS Group, Genetics and Genomics Research Center CIGGUR, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, 30322
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA 98101, USA
| | - Rudolf de Boer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, the Netherlands
| | - Hugoline G de Haan
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens 17671, Greece
| | - Anna F Dominiczak
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Alex S F Doney
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, DD1?9SY, UK
| | - Patrick T Ellinor
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Ruben N Eppinga
- University Medical Center Groningen, University of Groningen, Department of Cardiology, the Netherlands
| | - Stephan B Felix
- Department of Internal Medicine B - Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine; University Medicine Greifswald; Greifswald, 17475, Germany & DZHK (German Centre for Cardiovascular Research); partner site Greifswald; Greifswald, 17475, Germany
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA 90502, USA
| | - Yanick Hagemeijer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, the Netherlands
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Susan R Heckbert
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA 98101, USA.,Group Health Research Institute, Group Health Cooperative, 1730 Minor Ave, Suite 1600, Seattle, WA, USA
| | - Paul L Huang
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Shih-Jen Hwang
- Population Sciences Branch, Division of Intramural Research, NHLBI, NIH, Bethesda MD, USA
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and University of Tampere School of Medicine, Finn-Medi 1, 3th floor, P.O. Box 2000, FI-33521 Tampere, Finland
| | - Jørgen K Kanters
- Laboratory of Experimental Cardiology, University of Copenhagen, Copenhagen, Denmark
| | - Ivana Kolcic
- Faculty of Medicine, University of Split, Split, Croatia
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Man Li
- Division of Nephrology & Hypertension, Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT 84109, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA 90502, USA
| | - Allan Linneberg
- Research Centre for Prevention and Health, Capital Region of Denmark, Copenhagen, Denmark.,Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simin Liu
- Brown University School of Public Health, Providence, Rhode Island 02912, USA
| | | | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.,NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London SE1 9RT, UK
| | - Andrew D Morris
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH8?9AG, UK
| | - Antonella Mulas
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy
| | - Alison D Murray
- Aberdeen Biomedical Imaging Centre, Lilian Sutton Building, University of Aberdeen, Foresterhill, Aberdeen AB25?2ZD, UK
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Cardiovascular Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK.,NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Marco Orrú
- Unita Operativa Complessa di Cardiologia, Presidio Ospedaliero Oncologico Armando Businco Cagliari , Azienda Ospedaliera Brotzu Cagliari, Caglliari, Italy
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF GCRC, Glasgow G12 8TA, UK
| | - Annette Peters
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - David J Porteous
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4?2XU, UK
| | - Neil Poulter
- School of Public Health, Imperial College London, W2?1PG, UK
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Health Services, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA 98101, USA.,Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA
| | - Lihong Qi
- University of California Davis, One Shields Ave Ms1c 145, Davis, CA 95616 USA
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, and Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, P.O. Box 52, FI-20521 Turku, Finland
| | - Fernando Rivadeneira
- Human Genomics Facility Erasmus MC - University Medical Center Rotterdam, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Carolina Roselli
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Igor Rudan
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH8?9AG, UK
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF GCRC, Glasgow G12?8TA, UK
| | - Peter Sever
- National Heart and Lung Institute, Imperial College London, W2?1PG, UK
| | - Moritz F Sinner
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-Universität, Munich, Germany
| | - Elsayed Z Soliman
- Epidemiological Cardiology Research Center (EPICARE), Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Alice V Stanton
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Kathleen E Stirrups
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.,Division of Genomic Outcomes, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA.,Departments of Pediatrics, Medicine, and Human Genetics, UCLA, Los Angeles, CA, USA
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester LE1?7RH, UK
| | - André Uitterlinden
- Human Genotyping Facility Erasmus MC - University Medical Center Rotterdam, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Ilonca Vaartjes
- Julius Center for Health Sciences and Primary Care, University Medical Center, PO Box 85500, 3508 GA Utrecht, the Netherlands
| | - Arno W Hoes
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Peter van der Meer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, the Netherlands
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics; University Medicine and Ernst-Moritz-Arndt-University Greifswald; Greifswald, 17475, Germany.,DZHK (German Centre for Cardiovascular Research); partner site Greifswald; Greifswald, 17475, Germany
| | - Melanie Waldenberger
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH8 9AG, UK.,Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Zhijun Xie
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | | | - Andrew Tinker
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.,NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia.,Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH8 9AG, UK
| | - Jonathan Rosand
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142
| | - Yalda Jamshidi
- Cardiogenetics Lab, Genetics and Molecular Cell Sciences Research Centre, Cardiovascular and Cell Sciences Institute, St George's, University of London, Cranmer Terrace, London, SW17?0RE, UK
| | - Cornelia M van Duijn
- Genetic Epidemiology Unit, Dept. of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, NL
| | - Eleftheria Zeggini
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom, CB10?1SA
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, the Netherlands.,Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, the Netherlands.,Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Cardiovascular Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK.,NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of Medicine, Arvo, D338, P.O. Box 100, FI-33014 Tampere, Finland
| | - Vilmundur Gudnason
- Icelandic Heart Association, 201 Kopavogur, Iceland.,Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - James Wilson
- Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MI, USA
| | - Steven A Lubitz
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Stefan Kääb
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-Universität, Munich, Germany
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Departments of Medicine and Epidemiology, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA 98101, USA
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.,NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Colin N A Palmer
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, DD1?9SY, UK
| | - Serena Sanna
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Panos Deloukas
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA 90502, USA
| | - Marcus Dörr
- Department of Internal Medicine B - Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine; University Medicine Greifswald; Greifswald, 17475, Germany & DZHK (German Centre for Cardiovascular Research); partner site Greifswald; Greifswald, 17475, Germany
| | | | - Caroline Hayward
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4?2XU, UK
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA, 21205 and
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Pim van der Harst
- University Medical Center Groningen, University of Groningen, Department of Cardiology, the Netherlands
| | - Mark Eijgelsheim
- Department of Epidemiology Erasmus MC - University Medical Center Rotterdam, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Bruno H Stricker
- Department of Epidemiology Erasmus MC - University Medical Center Rotterdam, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.,NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, EC1M 6BQ, UK
| |
Collapse
|
37
|
Seino S, Sugawara K, Yokoi N, Takahashi H. β-Cell signalling and insulin secretagogues: A path for improved diabetes therapy. Diabetes Obes Metab 2017; 19 Suppl 1:22-29. [PMID: 28880474 DOI: 10.1111/dom.12995] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 12/26/2022]
Abstract
Insulin secretagogues including sulfonylureas, glinides and incretin-related drugs such as dipeptidyl peptidase 4 (DPP-4) inhibitors and glucagon-like peptide-1 receptor agonists are widely used for treatment of type 2 diabetes. In addition, glucokinase activators and G-protein-coupled receptor 40 (GPR40) agonists also have been developed, although the drugs are not clinically usable. These different drugs exert their effects on insulin secretion by different mechanisms. Recent advances in β-cell signalling studies have not only deepened our understanding of insulin secretion but also revealed novel mechanisms of insulin secretagogues. Clarification of the signalling mechanisms of the insulin secretagogues will contribute to improved drug therapy for diabetes.
Collapse
Affiliation(s)
- Susumu Seino
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenji Sugawara
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Norihide Yokoi
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Harumi Takahashi
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
38
|
Tengholm A, Gylfe E. cAMP signalling in insulin and glucagon secretion. Diabetes Obes Metab 2017; 19 Suppl 1:42-53. [PMID: 28466587 DOI: 10.1111/dom.12993] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 01/24/2023]
Abstract
The "second messenger" archetype cAMP is one of the most important cellular signalling molecules with central functions including the regulation of insulin and glucagon secretion from the pancreatic β- and α-cells, respectively. cAMP is generally considered as an amplifier of insulin secretion triggered by Ca2+ elevation in the β-cells. Both messengers are also positive modulators of glucagon release from α-cells, but in this case cAMP may be the important regulator and Ca2+ have a more permissive role. The actions of cAMP are mediated by protein kinase A (PKA) and the guanine nucleotide exchange factor Epac. The present review focuses on how cAMP is regulated by nutrients, hormones and neural factors in β- and α-cells via adenylyl cyclase-catalysed generation and phosphodiesterase-mediated degradation. We will also discuss how PKA and Epac affect ion fluxes and the secretory machinery to transduce the stimulatory effects on insulin and glucagon secretion. Finally, we will briefly describe disturbances of the cAMP system associated with diabetes and how cAMP signalling can be targeted to normalize hypo- and hypersecretion of insulin and glucagon, respectively, in diabetic patients.
Collapse
Affiliation(s)
- Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Erik Gylfe
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
39
|
Zhu Y, Mei F, Luo P, Cheng X. A cell-based, quantitative and isoform-specific assay for exchange proteins directly activated by cAMP. Sci Rep 2017; 7:6200. [PMID: 28740152 PMCID: PMC5524698 DOI: 10.1038/s41598-017-06432-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/13/2017] [Indexed: 12/17/2022] Open
Abstract
Extensive functional studies of the exchange protein directly activated by cAMP (EPAC) family of signaling molecules have demonstrated that EPAC proteins play a fundamental role in several physiological and pathophysiological responses, therefore are attractive drug targets. In this report, the development of a cell-based, medium to high throughput screening assay that is capable of monitoring EPAC-mediated activation of cellular Rap1 in an isoform-specific manner is described. This assay adapts a conventional ELISA format with immobilized RalGDS-RBD as a bait to selectively capture GTP-bound active Rap1. As a result, it fills an urgent need for a cell-based EPAC assay that can be conveniently performed using microtiter plates for the discovery and/or validation of isoform-specific EPAC agonists and antagonists.
Collapse
Affiliation(s)
- Yingmin Zhu
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Health Science Center, Houston, Texas, USA
| | - Fang Mei
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Health Science Center, Houston, Texas, USA
| | - Pei Luo
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Health Science Center, Houston, Texas, USA
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Health Science Center, Houston, Texas, USA.
| |
Collapse
|
40
|
Gao R, Yang T, Xu W. Enemies or weapons in hands: investigational anti-diabetic drug glibenclamide and cancer risk. Expert Opin Investig Drugs 2017; 26:853-864. [PMID: 28541801 DOI: 10.1080/13543784.2017.1333104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epidemiological evidence suggests that diabetes is associated with elevated cancer risk through the actions of hyperglycemia, hyperinsulinemia and chronic inflammation. Metformin, a first-line medication for type 2 diabetes mellitus, arouses growing concerns on its anti-cancer effect. However, data regarding the effect of glibenclamide on tumor growth and cancer risk are less consistent, which may be a potential anti-cancer drug. Areas covered: In this review, we clarified probable underlying mechanisms in preclinical studies and reviewed epidemiological evidence on glibenclamide's cancer risk in clinical studies. Glibenclamide inhibited carcinogenesis through ATP-binding cassette protein super-family and ATP-sensitive potassium channels, while majority of clinical researches reported an increased or non-significant elevated cancer risk of glibenclamide users compared with metformin users. Other sulfonylureas and diarylsulfonylureas were also briefly introduced. Expert opinion: The inconsistency between the results of studies was probably ascribed to undiscovered mechanisms, confounding factors, inconsistent comparators and publication bias. Existing clinical trials were prone to be afflicted by time-related bias including immortal time bias, time-window bias, and time-lag bias. Glibenclimiade could be a promising and well-tolerated anti-neoplastic drug targeting ATP-binding cassette protein super-family and KATP channels, but its efficacy still needs to be proven in well-designed long-term randomized controlled clinical trials.
Collapse
Affiliation(s)
- Rui Gao
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital , Nanjing , China
- b Department of Hematology , The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital , Nanjing , China
| | - Tao Yang
- a Department of Endocrinology , The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital , Nanjing , China
| | - Wei Xu
- b Department of Hematology , The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital , Nanjing , China
| |
Collapse
|
41
|
Wang P, Liu Z, Chen H, Ye N, Cheng X, Zhou J. Exchange proteins directly activated by cAMP (EPACs): Emerging therapeutic targets. Bioorg Med Chem Lett 2017; 27:1633-1639. [PMID: 28283242 PMCID: PMC5397994 DOI: 10.1016/j.bmcl.2017.02.065] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/07/2017] [Accepted: 02/26/2017] [Indexed: 11/22/2022]
Abstract
Exchange proteins directly activated by cAMP (EPACs) are critical cAMP-dependent signaling pathway mediators. The discovery of EPAC proteins has significantly facilitated understanding on cAMP-dependent signaling pathway and efforts along this line open new avenues for developing novel therapeutics for cancer, diabetes, heart failure, inflammation, infections, neurological disorders and other human diseases. Over the past decade, important progress has been made in the identification of EPAC agonists, antagonists and their biological and pharmacological applications. In this review, we briefly summarize recently reported novel functions of EPACs and the discovery of their small molecule modulators. The challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center, Houston, TX 77030, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States.
| |
Collapse
|
42
|
|
43
|
Lewis AE, Aesoy R, Bakke M. Role of EPAC in cAMP-Mediated Actions in Adrenocortical Cells. Front Endocrinol (Lausanne) 2016; 7:63. [PMID: 27379015 PMCID: PMC4904129 DOI: 10.3389/fendo.2016.00063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/30/2016] [Indexed: 12/31/2022] Open
Abstract
Adrenocorticotropic hormone regulates adrenal steroidogenesis mainly via the intracellular signaling molecule cAMP. The effects of cAMP are principally relayed by activating protein kinase A (PKA) and the more recently discovered exchange proteins directly activated by cAMP 1 and 2 (EPAC1 and EPAC2). While the intracellular roles of PKA have been extensively studied in steroidogenic tissues, those of EPACs are only emerging. EPAC1 and EPAC2 are encoded by the genes RAPGEF3 and RAPGEF4, respectively. Whereas EPAC1 is ubiquitously expressed, the expression of EPAC2 is more restricted, and typically found in endocrine tissues. Alternative promoter usage of RAPGEF4 gives rise to three different isoforms of EPAC2 that vary in their N-termini (EPAC2A, EPAC2B, and EPAC2C) and that exhibit distinct expression patterns. EPAC2A is expressed in the brain and pancreas, EPAC2B in steroidogenic cells of the adrenal gland and testis, and EPAC2C has until now only been found in the liver. In this review, we discuss current knowledge on EPAC expression and function with focus on the known roles of EPAC in adrenal gland physiology.
Collapse
Affiliation(s)
- Aurélia E. Lewis
- Department of Molecular Biology, University of Bergen, Bergen, Norway
- *Correspondence: Aurélia E. Lewis,
| | - Reidun Aesoy
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Marit Bakke
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|