1
|
Honrath S, Heussi M, Beckert L, Scherer D, Lim RY, Burger M, Leroux JC. Closing the gap: Nonviral TFAMoplex transfection boosted by bZIP domains compared to AAV-mediated transduction. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102526. [PMID: 40276698 PMCID: PMC12018551 DOI: 10.1016/j.omtn.2025.102526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/24/2025] [Indexed: 04/26/2025]
Abstract
The TFAMoplex is a nanoparticulate gene delivery system based on the mitochondrial transcription factor A (TFAM) protein, which can be engineered with various functional domains to enhance plasmid DNA transfection. In this study, we aimed at improving the TFAMoplex system by incorporating basic leucine zipper (bZIP) domains, derived from the cyclic AMP (cAMP)-responsive element-binding protein (CREB), which are known to bind DNA upon dimerization. Additionally, we screened bZIP domains of other proteins (i.e., transcription regulator protein BACH1, cyclic AMP-dependent transcription factor ATF-3, and basic leucine zipper transcriptional factor ATF-like BATF) under challenging transfection conditions, identifying the bZIP domain of BACH1, bZIPBACH1, as particularly effective in enhancing the TFAMoplex performance, reducing the half-maximal effective concentration by more than 2-fold. We show that bZIP domains facilitate interactions with the cell membrane as single proteins and thus increase the cell association of TFAMoplexes. Finally, we compared the optimized bZIPBACH1-TFAMoplex to adeno-associated viruses (AAVs) regarding in vitro transfection efficiency and transgene expression levels. While AAVs achieved higher transfection efficiency based on the number of transfected cells, both the original and improved TFAMoplex constructs surpassed AAVs in transgene expression per cell.
Collapse
Affiliation(s)
- Steffen Honrath
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Miguel Heussi
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Lukas Beckert
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - David Scherer
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Roderick Y.H. Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Michael Burger
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| |
Collapse
|
2
|
Song ML, Sun YY, Yin HJ, Li Y, Yang H. p-Coumaric acid alleviates neuronal damage in ischemic stroke mice by promoting BACH1 nuclear export and degradation. Acta Pharmacol Sin 2025:10.1038/s41401-025-01510-0. [PMID: 40087473 DOI: 10.1038/s41401-025-01510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 03/17/2025]
Abstract
Oxidative damage induced by glutamate triggers neuronal death in cerebral ischemic/reperfusion injury. BTB and CNC homology 1 (BACH1) is a major link between the cellular heme level, the redox state and the transcriptional response. p-Coumaric acid (p-CA) is a natural antioxidant that has been shown to ameliorate ischemic/reperfusion injury. In this study, we investigated whether and how p-CA regulated BACH1 in ischemic/reperfusion injury from the perspective of BACH1 subcellular localization and function. Middle cerebral artery occlusion (MCAO) model was established in male mice. MCAO mice were treated with p-CA (50, 100 mg/kg, ip) twice 5 min after MCAO and 5 h after reperfusion operation, respectively. We showed that p-CA treatment exerted dramatic neuroprotective effects, which were associated with the inhibition of BACH1. In HT22 cells, treatment with p-CA (20 μM) ameliorated OGD/R or glutamate-induced oxidative damage and mitochondrial dysfunction through decreasing the protein level of BACH1, the beneficial effect of p-CA was blocked by BACH1 overexpression. We demonstrated that BACH1 level was markedly elevated in the nucleus of HT22 cells under glutamate stimulation, and transcriptionally regulated NADPH oxidase 4 (NOX4) expression, thus mediating ROS outbreak. p-CA treatment activated the activated Cdc42-associated kinase 1 (ACK1)/protein kinase B (AKT) cascade to facilitate the phosphorylation of BACH1, augmented its interaction with chromosome region maintenance 1 (CRM1), thereby leading to the export of BACH1 from the nucleus and degradation mediated by heme-oxidized IRP2 ubiquitin ligase-1 (HOIL-1). In accord with this, administration of ACK1 inhibitor AIM-100 (20 mg/kg, ip) 5 min after MCAO significantly attenuated the neuroprotective effects of p-CA in MCAO mice. We concluded that ACK1/AKT/BACH1 axis may serve as a promising therapeutic approach for the management of ischemic stroke, thereby broadening the clinical utility of p-CA.Keywords: ischemic/reperfusion injury; p-Coumaric acid; BACH1; NOX4; ACK1/AKT; AIM-100.
Collapse
Affiliation(s)
- Meng-Lu Song
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yun-Yun Sun
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hai-Jun Yin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
3
|
Wei X, He Y, Yu Y, Tang S, Liu R, Guo J, Jiang Q, Zhi X, Wang X, Meng D. The Multifaceted Roles of BACH1 in Disease: Implications for Biological Functions and Therapeutic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412850. [PMID: 39887888 PMCID: PMC11905017 DOI: 10.1002/advs.202412850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/22/2024] [Indexed: 02/01/2025]
Abstract
BTB domain and CNC homolog 1 (BACH1) belongs to the family of basic leucine zipper proteins and is expressed in most mammalian tissues. It can regulate its own expression and play a role in transcriptionally activating or inhibiting downstream target genes. It has a crucial role in various biological processes, such as oxidative stress, cell cycle, heme homeostasis, and immune regulation. Recent research highlights BACH1's significant regulatory roles in a series of conditions, including stem cell pluripotency maintenance and differentiation, growth, senescence, and apoptosis. BACH1 is closely associated with cardiovascular diseases and contributes to angiogenesis, atherosclerosis, restenosis, pathological cardiac hypertrophy, myocardial infarction, and ischemia/reperfusion (I/R) injury. BACH1 promotes tumor cell proliferation and metastasis by altering tumor metabolism and the epithelial-mesenchymal transition phenotype. Moreover, BACH1 appears to show an adverse role in diseases such as neurodegenerative diseases, gastrointestinal disorders, leukemia, pulmonary fibrosis, and skin diseases. Inhibiting BACH1 may be beneficial for treating these diseases. This review summarizes the role of BACH1 and its regulatory mechanism in different cell types and diseases, proposing that precise targeted intervention of BACH1 may provide new strategies for human disease prevention and treatment.
Collapse
Affiliation(s)
- Xiangxiang Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Yunquan He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Yueyang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Sichong Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Ruiwen Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Jieyu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Qingjun Jiang
- Department of Vascular & Endovascular Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Xinhong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| |
Collapse
|
4
|
Chen Y, Zeng Z, Chen J. Role of BACH1 in multiple myeloma. Hematology 2024; 29:2352687. [PMID: 38767507 DOI: 10.1080/16078454.2024.2352687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
OBJECTIVE Examine Bach1 protein expression in bone marrow biopsy specimens obtained from newly diagnosed multiple myeloma (NDMM) and iron deficiency anemia (IDA) patients. Conduct a thorough analysis to explore the potential connection between Bach1 and the onset as well as treatment response of NDMM. METHODS This study investigated Bach1 expression in bone marrow biopsy tissues from NDMM and IDA patients. Immunohistochemical staining and Image-pro Plus software were utilized for quantitatively obtaining the expression level of Bach1 protein. Arrange Bach1 expression levels from high to low, and use its median expression level as the threshold. Samples with Bach1 expression level above the median are categorized as the high-expression group, while those below the median are categorized as the low-expression group. Under this grouping, a detailed discussion was conducted to explore relationship of the Bach1 expression level with the patients' gender, ISS stage, and survival rate based on the Bortezomib (Btz) therapy. RESULTS Our experiment indicates that the expression level of Bach1 in NDMM patients is significantly higher than in IDA patients. Furthermore, we discovered that patients in the high-expression group exhibit better prognosis compared to those in the low-expression group after Btz-treatment. Bioinformatics analysis further confirms this conclusion. CONCLUSION By categorizing Bach1 expression level as high and low, our study offers a unique perspective on understanding the relationship between Bach1 and NDMM.
Collapse
Affiliation(s)
- Yan Chen
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Zhiyong Zeng
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Junmin Chen
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
5
|
Chen Z, Lu J, Zhao X, Yu H, Li C. Energy Landscape Reveals the Underlying Mechanism of Cancer-Adipose Conversion in Gene Network Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404854. [PMID: 39258786 PMCID: PMC11538663 DOI: 10.1002/advs.202404854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Indexed: 09/12/2024]
Abstract
Cancer is a systemic heterogeneous disease involving complex molecular networks. Tumor formation involves an epithelial-mesenchymal transition (EMT), which promotes both metastasis and plasticity of cancer cells. Recent experiments have proposed that cancer cells can be transformed into adipocytes via a combination of drugs. However, the underlying mechanisms for how these drugs work, from a molecular network perspective, remain elusive. To reveal the mechanism of cancer-adipose conversion (CAC), this study adopts a systems biology approach by combing mathematical modeling and molecular experiments, based on underlying molecular regulatory networks. Four types of attractors are identified, corresponding to epithelial (E), mesenchymal (M), adipose (A) and partial/intermediate EMT (P) cell states on the CAC landscape. Landscape and transition path results illustrate that intermediate states play critical roles in the cancer to adipose transition. Through a landscape control approach, two new therapeutic strategies for drug combinations are identified, that promote CAC. These predictions are verified by molecular experiments in different cell lines. The combined computational and experimental approach provides a powerful tool to explore molecular mechanisms for cell fate transitions in cancer networks. The results reveal underlying mechanisms of intermediate cell states that govern the CAC, and identified new potential drug combinations to induce cancer adipogenesis.
Collapse
Affiliation(s)
- Zihao Chen
- Shanghai Center for Mathematical SciencesFudan UniversityShanghai200433China
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
| | - Jia Lu
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Xing‐Ming Zhao
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
| | - Haiyang Yu
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjin301617China
- Haihe Laboratory of Traditional Chinese MedicineTianjin301617China
| | - Chunhe Li
- Shanghai Center for Mathematical SciencesFudan UniversityShanghai200433China
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
- School of Mathematical Sciences and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200433China
| |
Collapse
|
6
|
Awdeh A, Turcotte M, Perkins TJ. Identifying transcription factors with cell-type specific DNA binding signatures. BMC Genomics 2024; 25:957. [PMID: 39402535 PMCID: PMC11472444 DOI: 10.1186/s12864-024-10859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Transcription factors (TFs) bind to different parts of the genome in different types of cells, but it is usually assumed that the inherent DNA-binding preferences of a TF are invariant to cell type. Yet, there are several known examples of TFs that switch their DNA-binding preferences in different cell types, and yet more examples of other mechanisms, such as steric hindrance or cooperative binding, that may result in a "DNA signature" of differential binding. RESULTS To survey this phenomenon systematically, we developed a deep learning method we call SigTFB (Signatures of TF Binding) to detect and quantify cell-type specificity in a TF's known genomic binding sites. We used ENCODE ChIP-seq data to conduct a wide scale investigation of 169 distinct TFs in up to 14 distinct cell types. SigTFB detected statistically significant DNA binding signatures in approximately two-thirds of TFs, far more than might have been expected from the relatively sparse evidence in prior literature. We found that the presence or absence of a cell-type specific DNA binding signature is distinct from, and indeed largely uncorrelated to, the degree of overlap between ChIP-seq peaks in different cell types, and tended to arise by two mechanisms: using established motifs in different frequencies, and by selective inclusion of motifs for distint TFs. CONCLUSIONS While recent results have highlighted cell state features such as chromatin accessibility and gene expression in predicting TF binding, our results emphasize that, for some TFs, the DNA sequences of the binding sites contain substantial cell-type specific motifs.
Collapse
Affiliation(s)
- Aseel Awdeh
- School of Electrical Engineering and Compute Science, University of Ottawa, 800 King Edward Ave., Ottawa, K1N 6N5, Ontario, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Rd., Ottawa, K1H 8L6, Ontario, Canada
| | - Marcel Turcotte
- School of Electrical Engineering and Compute Science, University of Ottawa, 800 King Edward Ave., Ottawa, K1N 6N5, Ontario, Canada
| | - Theodore J Perkins
- School of Electrical Engineering and Compute Science, University of Ottawa, 800 King Edward Ave., Ottawa, K1N 6N5, Ontario, Canada.
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Rd., Ottawa, K1H 8L6, Ontario, Canada.
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Rd., Ottawa, K1H 8M5, Ontario, Canada.
| |
Collapse
|
7
|
Li P, Liu P, Zang D, Li C, Wang C, Zhu Y, Liu M, Lu L, Wu X, Nie H. Genome-Wide Identification and Expression Analysis of the BTB Gene Superfamily Provides Insight into Sex Determination and Early Gonadal Development of Alligator sinensis. Int J Mol Sci 2024; 25:10771. [PMID: 39409099 PMCID: PMC11477308 DOI: 10.3390/ijms251910771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
The BTB gene superfamily is widely distributed among higher eukaryotes and plays a significant role in numerous biological processes. However, there is limited knowledge about the structure and function of BTB genes in the critically endangered species Alligator sinensis, which is endemic to China. A total of 170 BTB genes were identified from the A. sinensis genome, classified into 13 families, and unevenly distributed across 16 chromosomes. Analysis of gene duplication events yielded eight pairs of tandem duplication genes and six pairs of segmental duplication genes. Phylogenetics shows that the AsBTB genes are evolutionarily conserved. The cis-regulatory elements in the AsBTB family promoter region reveal their involvement in multiple biological processes. Protein interaction network analysis indicates that the protein interactions of the AsBTB genes are centered around CLU-3, mainly participating in the regulation of biological processes through the ubiquitination pathway. The expression profile and protein interaction network analysis of AsBTB genes during sex differentiation and early gonadal development indicate that AsBTB genes are widely expressed in this process and involves numerous genes and pathways for regulation. This study provides a basis for further investigation of the role of the BTB gene in sex differentiation and gonadal development in A. sinensis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaobing Wu
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Science, Anhui Normal University, Wuhu 241000, China; (P.L.); (P.L.); (D.Z.); (C.L.); (C.W.); (Y.Z.); (M.L.); (L.L.)
| | - Haitao Nie
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Science, Anhui Normal University, Wuhu 241000, China; (P.L.); (P.L.); (D.Z.); (C.L.); (C.W.); (Y.Z.); (M.L.); (L.L.)
| |
Collapse
|
8
|
You Y, Chen S, Deng H, Xing X, Tang B, Wu Y, Lei E. Remifentanil represses oxidative stress to relieve hepatic ischemia/reperfusion injury via regulating BACH1/PRDX1 axis. Clin Res Hepatol Gastroenterol 2024; 48:102422. [PMID: 39025461 DOI: 10.1016/j.clinre.2024.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Hepatic ischemia-reperfusion injury (HIRI) is a major cause of liver dysfunction after clinical liver surgery, which seriously affects the prognosis of patients. Remifentanil (RE) has been verified to attenuate HIRI. However, its therapeutic mechanism is still unclear. This study aimed to explore the protective mechanism of RE against HIRI. METHODS A mouse HIRI model and an in vitro model of hypoxia/reoxygenation (H/R)-stimulated AML12 hepatocytes were established. Liver histopathological changes were evaluated by hematoxylin and eosin (HE) staining. Oxidative stress damage was assessed by malondialdehyde (MDA), superoxide dismutase (SOD), and reactive oxygen species (ROS) levels. Liver function was determined by serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH). and adenosine triphosphate (ATP) levels. Cell counting kit-8 (CCK-8) assessed cell viability. Apoptosis was measured by terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) and flow cytometry. The levels of inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA) kits. The differentially expressed genes were evaluated by mRNA microarray analysis. Western blotting and real-time quantitative polymerase chain reaction (RT-qPCR) were conducted to detect molecule expression. The binding of BTB and CNC homology 1 (BACH1) to peroxiredoxin 1 (PRDX1) was validated by chromatin immunoprecipitation (ChIP) and dual luciferase reporter assay. RESULTS RE treatment improved liver function, and repressed oxidative stress damage and apoptosis in HIRI mice. Nine differentially expressed genes in the liver tissues of HIRI mice were selected by microarray analysis, among which BACH1 was down-regulated and PRDX1 was up-regulated after RE treatment. In addition, BACH1 directly bound to the promoter region of PRDX1 to inhibit its transcription and expression, which led to oxidative stress injury. BACH1 overexpression or PRDX1 silencing could counteract the beneficial effects of RE against HIRI. CONCLUSION RE suppressed oxidative stress injury and inflammation via inactivation of the BACH1/PRDX1 axis, thereby ameliorating HIRI. Our findings enrich the understanding of the protective mechanisms of RE against HIRI, and provide novel evidence for its clinical application.
Collapse
Affiliation(s)
- Yujuan You
- Department of Anesthesiology, The 2(nd) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, PR China.
| | - Shoulin Chen
- Department of Anesthesiology, The 2(nd) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, PR China.
| | - Huanling Deng
- Department of Anesthesiology, The 2(nd) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, PR China.
| | - Xianliang Xing
- Department of Anesthesiology, The 2(nd) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, PR China.
| | - Binquan Tang
- Department of Anesthesiology, The 2(nd) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, PR China.
| | - Yiguo Wu
- Department of Blood Transfusion, The 2(nd) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, PR China.
| | - Enjun Lei
- Department of Anesthesiology, The 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
9
|
Su Z, Liu Y, Xia Z, Rustgi AK, Gu W. An unexpected role for the ketogenic diet in triggering tumor metastasis by modulating BACH1-mediated transcription. SCIENCE ADVANCES 2024; 10:eadm9481. [PMID: 38838145 PMCID: PMC11152127 DOI: 10.1126/sciadv.adm9481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/30/2024] [Indexed: 06/07/2024]
Abstract
We have found that the ketogenic (Keto) diet is able to, unexpectedly, promote the metastatic potential of cancer cells in complementary mouse models. Notably, the Keto diet-induced tumor metastasis is dependent on BTB domain and CNC homolog 1 (BACH1) and its up-regulation of pro-metastatic targets, including cell migration-inducing hyaluronidase 1, in response to the Keto diet. By contrast, upon genetic knockout or pharmacological inhibition of endogenous BACH1, the Keto diet-mediated activation of those targets is largely diminished, and the effects on tumor metastasis are completely abolished. Mechanistically, upon administration of the Keto diet, the levels of activating transcription factor 4 (ATF4) are markedly induced. Through direct interaction with BACH1, ATF4 is recruited to those pro-metastatic target promoters and enhances BACH1-mediated transcriptional activation. Together, these data implicate a distinct transcription regulatory program of BACH1 for tumor metastasis induced by the Keto diet. Our study also raises a potential health risk of the Keto diet in human patients with cancer.
Collapse
Affiliation(s)
- Zhenyi Su
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
| | - Yanqing Liu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
| | - Zhangchuan Xia
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
| | - Anil K. Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Wei Gu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
| |
Collapse
|
10
|
Yang F, Guo J, Kang N, Yu X, Ma Y. rESWT promoted angiogenesis via Bach1/Wnt/β-catenin signaling pathway. Sci Rep 2024; 14:11733. [PMID: 38777838 PMCID: PMC11111732 DOI: 10.1038/s41598-024-62582-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Previous reports have established that rESWT fosters angiogenesis, yet the mechanism by which rESWT promotes cerebral angiogenesis remains elusive. rESWT stimulated HUVECs proliferation as evidenced by the CCK-8 test, with an optimal dosage of 2.0 Bar, 200 impulses, and 2 Hz. The tube formation assay of HUVECs revealed that tube formation peaked at 36 h post-rESWT treatment, concurrent with the lowest expression level of Bach1, as detected by both Western blot and immunofluorescence. The expression level of Wnt3a, β-catenin, and VEGF also peaked at 36 h. A Bach1 overexpression plasmid was transfected into HUVECs, resulting in a decreased expression level of Wnt3a, β-catenin, and VEGF. Upon treatment with rESWT, the down-regulation of Wnt3a, β-catenin, and VEGF expression in the transfected cells was reversed. The Wnt/β-catenin inhibitor DKK-1 was utilized to suppress Wnt3a and β-catenin expression, which led to a concurrent decrease in VEGF expression. However, rESWT treatment could restore the expression of these three proteins, even in the presence of DKK-1. Moreover, in the established OGD model, it was observed that rESWT could inhibit the overexpression of Bach1 and enhance VEGF and VEGFR-2 expression under the OGD environment.
Collapse
Affiliation(s)
- Fan Yang
- Department of Rehabilitation Medicine, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Juan Guo
- Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Nan Kang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaotong Yu
- Institute of Meta-Synthesis Medicine, Beijing, 100097, China
| | - Yuewen Ma
- Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
11
|
Dennis M, Hurley A, Bray N, Cordero C, Ilagan J, Mertz TM, Roberts SA. Her2 amplification, Rel-A, and Bach1 can influence APOBEC3A expression in breast cancer cells. PLoS Genet 2024; 20:e1011293. [PMID: 38805570 PMCID: PMC11161071 DOI: 10.1371/journal.pgen.1011293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/07/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024] Open
Abstract
APOBEC-induced mutations occur in 50% of sequenced human tumors, with APOBEC3A (A3A) being a major contributor to mutagenesis in breast cancer cells. The mechanisms that cause A3A activation and mutagenesis in breast cancers are still unknown. Here, we describe factors that influence basal A3A mRNA transcript levels in breast cancer cells. We found that basal A3A mRNA correlates with A3A protein levels and predicts the amount of APOBEC signature mutations in a panel of breast cancer cell lines, indicating that increased basal transcription may be one mechanism leading to breast cancer mutagenesis. We also show that alteration of ERBB2 expression can drive A3A mRNA levels, suggesting the enrichment of the APOBEC mutation signature in Her2-enriched breast cancer could in part result from elevated A3A transcription. Hierarchical clustering of transcripts in primary breast cancers determined that A3A mRNA was co-expressed with other genes functioning in viral restriction and interferon responses. However, reduction of STAT signaling via inhibitors or shRNA in breast cancer cell lines had only minor impact on A3A abundance. Analysis of single cell RNA-seq from primary tumors indicated that A3A mRNA was highest in infiltrating immune cells within the tumor, indicating that correlations of A3A with STAT signaling in primary tumors may be result from higher immune infiltrates and are not reflective of STAT signaling controlling A3A expression in breast cancer cells. Analysis of ATAC-seq data in multiple breast cancer cell lines identified two transcription factor sites in the APOBEC3A promoter region that could promote A3A transcription. We determined that Rel-A, and Bach1, which have binding sites in these peaks, elevated basal A3A expression. Our findings highlight a complex and variable set of transcriptional activators for A3A in breast cancer cells.
Collapse
Affiliation(s)
- Madeline Dennis
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Alyssa Hurley
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont, United States of America
| | - Nicholas Bray
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Cameron Cordero
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont, United States of America
| | - Jose Ilagan
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Tony M. Mertz
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont, United States of America
| | - Steven A. Roberts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont, United States of America
| |
Collapse
|
12
|
Singhabahu R, Kodagoda Gamage SM, Gopalan V. Pathological significance of heme oxygenase-1 as a potential tumor promoter in heme-induced colorectal carcinogenesis. CANCER PATHOGENESIS AND THERAPY 2024; 2:65-73. [PMID: 38601482 PMCID: PMC11002664 DOI: 10.1016/j.cpt.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2024]
Abstract
The significance of the heme-metabolizing enzyme heme oxygenase-1 (HMOX1) in the pathogenesis of colorectal cancer (CRC) has not been fully explored. HMOX1 cytoprotection is imperative to limit oxidative stress. However, its roles in preventing carcinogenesis in response to high levels of heme are not thoroughly understood. This study reviews various mechanisms associated with the paradoxical role of HMOX1, which is advantageous for tumor growth, refractoriness, and survival of cancer cells amid oxidative stress in heme-induced CRC. The alternate role of HMOX1 promotes cell proliferation and metastasis through immune modulation and angiogenesis. Inhibiting HMOX1 has been found to reverse tumor promotion. Thus, HMOX1 acts as a conditional tumor promoter in CRC pathogenesis.
Collapse
Affiliation(s)
- Rachitha Singhabahu
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Sujani M. Kodagoda Gamage
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
- Faculty of Health Sciences and Medicine, Bond University, Robina 4226, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
13
|
Hushpulian DM, Kaidery NA, Dutta D, Sharma SM, Gazaryan I, Thomas B. Emerging small molecule inhibitors of Bach1 as therapeutic agents: Rationale, recent advances, and future perspectives. Bioessays 2024; 46:e2300176. [PMID: 37919861 PMCID: PMC11260292 DOI: 10.1002/bies.202300176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
The transcription factor Nrf2 is the master regulator of cellular stress response, facilitating the expression of cytoprotective genes, including those responsible for drug detoxification, immunomodulation, and iron metabolism. FDA-approved Nrf2 activators, Tecfidera and Skyclarys for patients with multiple sclerosis and Friedreich's ataxia, respectively, are non-specific alkylating agents exerting side effects. Nrf2 is under feedback regulation through its target gene, transcriptional repressor Bach1. Specifically, in Parkinson's disease and other neurodegenerative diseases with Bach1 dysregulation, excessive Bach1 accumulation interferes with Nrf2 activation. Bach1 is a heme sensor protein, which, upon heme binding, is targeted for proteasomal degradation, relieving the repression of Nrf2 target genes. Ideally, a combination of Nrf2 stabilization and Bach1 inhibition is necessary to achieve the full therapeutic benefits of Nrf2 activation. Here, we discuss recent advances and future perspectives in developing small molecule inhibitors of Bach1, highlighting the significance of the Bach1/Nrf2 signaling pathway as a promising neurotherapeutic strategy.
Collapse
Affiliation(s)
- Dmitry M. Hushpulian
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
- A.N.Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninski prospect 33, Moscow, Russia
| | - Navneet Ammal Kaidery
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, South Carolina, USA
- Departments of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Debashis Dutta
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, South Carolina, USA
- Departments of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sudarshana M. Sharma
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Irina Gazaryan
- Department of Chemical Enzymology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Chemistry and Physical Sciences, Dyson College of Arts and Sciences, Pace University, 861 Bedford Road, Pleasantville, NY, USA
| | - Bobby Thomas
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, South Carolina, USA
- Departments of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Drug Discovery, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
14
|
Wan Y, Cohen J, Szenk M, Farquhar KS, Coraci D, Krzysztoń R, Azukas J, Van Nest N, Smashnov A, Chern YJ, De Martino D, Nguyen LC, Bien H, Bravo-Cordero JJ, Chan CH, Rosner MR, Balázsi G. Nonmonotone invasion landscape by noise-aware control of metastasis activator levels. Nat Chem Biol 2023; 19:887-899. [PMID: 37231268 PMCID: PMC10299915 DOI: 10.1038/s41589-023-01344-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/18/2023] [Indexed: 05/27/2023]
Abstract
A major pharmacological assumption is that lowering disease-promoting protein levels is generally beneficial. For example, inhibiting metastasis activator BACH1 is proposed to decrease cancer metastases. Testing such assumptions requires approaches to measure disease phenotypes while precisely adjusting disease-promoting protein levels. Here we developed a two-step strategy to integrate protein-level tuning, noise-aware synthetic gene circuits into a well-defined human genomic safe harbor locus. Unexpectedly, engineered MDA-MB-231 metastatic human breast cancer cells become more, then less and then more invasive as we tune BACH1 levels up, irrespective of the native BACH1. BACH1 expression shifts in invading cells, and expression of BACH1's transcriptional targets confirm BACH1's nonmonotone phenotypic and regulatory effects. Thus, chemical inhibition of BACH1 could have unwanted effects on invasion. Additionally, BACH1's expression variability aids invasion at high BACH1 expression. Overall, precisely engineered, noise-aware protein-level control is necessary and important to unravel disease effects of genes to improve clinical drug efficacy.
Collapse
Affiliation(s)
- Yiming Wan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
- Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Joseph Cohen
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
- Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Mariola Szenk
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
- Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Kevin S Farquhar
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
- Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center, UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Damiano Coraci
- Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Rafał Krzysztoń
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
- Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Joshua Azukas
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Nicholas Van Nest
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
- Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Alex Smashnov
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
- Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Yi-Jye Chern
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Daniela De Martino
- Department of Medicine, Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Long Chi Nguyen
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Harold Bien
- Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chia-Hsin Chan
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Gábor Balázsi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
- Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA.
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
15
|
Su Z, Kon N, Yi J, Zhao H, Zhang W, Tang Q, Li H, Kobayashi H, Li Z, Duan S, Liu Y, Olive KP, Zhang Z, Honig B, Manfredi JJ, Rustgi AK, Gu W. Specific regulation of BACH1 by the hotspot mutant p53 R175H reveals a distinct gain-of-function mechanism. NATURE CANCER 2023; 4:564-581. [PMID: 36973430 PMCID: PMC10320414 DOI: 10.1038/s43018-023-00532-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023]
Abstract
Although the gain of function (GOF) of p53 mutants is well recognized, it remains unclear whether different p53 mutants share the same cofactors to induce GOFs. In a proteomic screen, we identified BACH1 as a cellular factor that recognizes the p53 DNA-binding domain depending on its mutation status. BACH1 strongly interacts with p53R175H but fails to effectively bind wild-type p53 or other hotspot mutants in vivo for functional regulation. Notably, p53R175H acts as a repressor for ferroptosis by abrogating BACH1-mediated downregulation of SLC7A11 to enhance tumor growth; conversely, p53R175H promotes BACH1-dependent tumor metastasis by upregulating expression of pro-metastatic targets. Mechanistically, p53R175H-mediated bidirectional regulation of BACH1 function is dependent on its ability to recruit the histone demethylase LSD2 to target promoters and differentially modulate transcription. These data demonstrate that BACH1 acts as a unique partner for p53R175H in executing its specific GOFs and suggest that different p53 mutants induce their GOFs through distinct mechanisms.
Collapse
Affiliation(s)
- Zhenyi Su
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Ning Kon
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Jingjie Yi
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Haiqing Zhao
- Departments of Biochemistry and Molecular Biophysics, Systems Biology, and Medical Sciences in Medicine, Zuckerman Institute Columbia University, New York, NY, USA
| | - Wanwei Zhang
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Qiaosi Tang
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Huan Li
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Hiroki Kobayashi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Zhiming Li
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Shoufu Duan
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Yanqing Liu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Kenneth P Olive
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Barry Honig
- Departments of Biochemistry and Molecular Biophysics, Systems Biology, and Medical Sciences in Medicine, Zuckerman Institute Columbia University, New York, NY, USA
| | - James J Manfredi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
16
|
Deng Y, Lu L, Zhang H, Fu Y, Liu T, Chen Y. The role and regulation of Maf proteins in cancer. Biomark Res 2023; 11:17. [PMID: 36750911 PMCID: PMC9903618 DOI: 10.1186/s40364-023-00457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/22/2023] [Indexed: 02/09/2023] Open
Abstract
The Maf proteins (Mafs) belong to basic leucine zipper transcription factors and are members of the activator protein-1 (AP-1) superfamily. There are two subgroups of Mafs: large Mafs and small Mafs, which are involved in a wide range of biological processes, such as the cell cycle, proliferation, oxidative stress, and inflammation. Therefore, dysregulation of Mafs can affect cell fate and is closely associated with diverse diseases. Accumulating evidence has established both large and small Mafs as mediators of tumor development. In this review, we first briefly describe the structure and physiological functions of Mafs. Then we summarize the upstream regulatory mechanisms that control the expression and activity of Mafs. Furthermore, we discuss recent studies on the critical role of Mafs in cancer progression, including cancer proliferation, apoptosis, metastasis, tumor/stroma interaction and angiogenesis. We also review the clinical implications of Mafs, namely their potential possibilities and limitations as biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Yalan Deng
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Liqing Lu
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Huajun Zhang
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Department of Ultrasonic Imaging, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Ying Fu
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Ting Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
17
|
Xu J, Zhu K, Wang Y, Chen J. The dual role and mutual dependence of heme/HO-1/Bach1 axis in the carcinogenic and anti-carcinogenic intersection. J Cancer Res Clin Oncol 2023; 149:483-501. [PMID: 36310300 DOI: 10.1007/s00432-022-04447-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION In physiological concentrations, heme is nontoxic to the cell and is essential for cell survival and proliferation. Increasing intracellular heme concentrations beyond normal levels, however, will lead to carcinogenesis and facilitate the survival of tumor cells. Simultaneously, heme in an abnormally high quantity is also a potent inducer of tumor cell death, contributing to its ability to generate oxidative stress on the cells by boosting oxidative phosphorylation and suppressing tumors through ferroptosis. During tumorigenesis and progression, therefore, heme works as a double-edged sword. Heme oxygenase 1 (HO-1) is the rate-limiting enzyme in heme catabolism, which converts heme into physiologically active catabolites of carbon monoxide (CO), biliverdin, and ferrous iron (Fe2+). HO-1 maintains redox equilibrium in healthy cells and functions as a carcinogenesis inhibitor. It is widely recognized that HO-1 is involved in the adaptive response to cellular stress and the anti-inflammation effect. Notably, its expression level in cancer cells corresponds with tumor growth, aggressiveness, metastasis, and angiogenesis. Besides, heme-binding transcription factor BTB and CNC homology 1 (Bach1) play a critical regulatory role in heme homeostasis, oxidative stress and senescence, cell cycle, angiogenesis, immune cell differentiation, and autoimmune disorders. Moreover, it was found that Bach1 influences cancer cells' metabolism and metastatic capacity. Bach1 controls heme level by adjusting HO-1 expression, establishing a negative feedback loop. MATERIALS AND METHODS Herein, the authors review recent studies on heme, HO-1, and Bach1 in cancer. Specifically, they cover the following areas: (1) the carcinogenic and anticarcinogenic aspects of heme; (2) the carcinogenic and anticarcinogenic aspects of HO-1; (3) the carcinogenic and anticarcinogenic aspects of Bach1; (4) the interactions of the heme/HO-1/Bach1 axis involved in tumor progression. CONCLUSION This review summarized the literature about the dual role of the heme/HO-1/Bach1 axis and their mutual dependence in the carcinogenesis and anti-carcinogenesis intersection.
Collapse
Affiliation(s)
- Jinjing Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China
| | | | - Yali Wang
- Jiangsu Huai'an Maternity and Children Hospital, Huai'an, 223001, China
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China. .,College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
18
|
Hormesis and Oxidative Distress: Pathophysiology of Reactive Oxygen Species and the Open Question of Antioxidant Modulation and Supplementation. Antioxidants (Basel) 2022; 11:antiox11081613. [PMID: 36009331 PMCID: PMC9405171 DOI: 10.3390/antiox11081613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Alterations of redox homeostasis leads to a condition of resilience known as hormesis that is due to the activation of redox-sensitive pathways stimulating cell proliferation, growth, differentiation, and angiogenesis. Instead, supraphysiological production of reactive oxygen species (ROS) exceeds antioxidant defence and leads to oxidative distress. This condition induces damage to biomolecules and is responsible or co-responsible for the onset of several chronic pathologies. Thus, a dietary antioxidant supplementation has been proposed in order to prevent aging, cardiovascular and degenerative diseases as well as carcinogenesis. However, this approach has failed to demonstrate efficacy, often leading to harmful side effects, in particular in patients affected by cancer. In this latter case, an approach based on endogenous antioxidant depletion, leading to ROS overproduction, has shown an interesting potential for enhancing susceptibility of patients to anticancer therapies. Therefore, a deep investigation of molecular pathways involved in redox balance is crucial in order to identify new molecular targets useful for the development of more effective therapeutic approaches. The review herein provides an overview of the pathophysiological role of ROS and focuses the attention on positive and negative aspects of antioxidant modulation with the intent to find new insights for a successful clinical application.
Collapse
|
19
|
Cai L, Arbab AS, Lee TJ, Sharma A, Thomas B, Igarashi K, Raju RP. BACH1-Hemoxygenase-1 axis regulates cellular energetics and survival following sepsis. Free Radic Biol Med 2022; 188:134-145. [PMID: 35691510 PMCID: PMC10507736 DOI: 10.1016/j.freeradbiomed.2022.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/26/2022] [Accepted: 06/05/2022] [Indexed: 12/24/2022]
Abstract
Sepsis is a complex disease due to dysregulated host response to infection. Oxidative stress and mitochondrial dysfunction leading to metabolic dysregulation are among the hallmarks of sepsis. The transcription factor NRF2 (Nuclear Factor E2-related factor2) is a master regulator of the oxidative stress response, and the NRF2 mediated antioxidant response is negatively regulated by BTB and CNC homology 1 (BACH1) protein. This study tested whether Bach1 deletion improves organ function and survival following polymicrobial sepsis induced by cecal ligation and puncture (CLP). We observed enhanced post-CLP survival in Bach1-/- mice with a concomitantly increased liver HO-1 expression, reduced liver injury and oxidative stress, and attenuated systemic and tissue inflammation. After sepsis induction, the liver mitochondrial function was better preserved in Bach1-/- mice. Furthermore, BACH1 deficiency improved liver and lung blood flow in septic mice, as measured by SPECT/CT. RNA-seq analysis identified 44 genes significantly altered in Bach1-/- mice after sepsis, including HMOX1 and several genes in lipid metabolism. Inhibiting HO-1 activity by Zinc Protoporphyrin-9 worsened organ function in Bach1-/- mice following sepsis. We demonstrate that mitochondrial bioenergetics, organ function, and survival following experimental sepsis were improved in Bach1-/- mice through the HO-1-dependent mechanism and conclude that BACH1 is a therapeutic target in sepsis.
Collapse
Affiliation(s)
- Lun Cai
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, 30912, USA
| | - Ali S Arbab
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Bobby Thomas
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Neuroscience and Drug Discovery, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
20
|
Heurtaux T, Bouvier DS, Benani A, Helgueta Romero S, Frauenknecht KBM, Mittelbronn M, Sinkkonen L. Normal and Pathological NRF2 Signalling in the Central Nervous System. Antioxidants (Basel) 2022; 11:1426. [PMID: 35892629 PMCID: PMC9394413 DOI: 10.3390/antiox11081426] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) was originally described as a master regulator of antioxidant cellular response, but in the time since, numerous important biological functions linked to cell survival, cellular detoxification, metabolism, autophagy, proteostasis, inflammation, immunity, and differentiation have been attributed to this pleiotropic transcription factor that regulates hundreds of genes. After 40 years of in-depth research and key discoveries, NRF2 is now at the center of a vast regulatory network, revealing NRF2 signalling as increasingly complex. It is widely recognized that reactive oxygen species (ROS) play a key role in human physiological and pathological processes such as ageing, obesity, diabetes, cancer, and neurodegenerative diseases. The high oxygen consumption associated with high levels of free iron and oxidizable unsaturated lipids make the brain particularly vulnerable to oxidative stress. A good stability of NRF2 activity is thus crucial to maintain the redox balance and therefore brain homeostasis. In this review, we have gathered recent data about the contribution of the NRF2 pathway in the healthy brain as well as during metabolic diseases, cancer, ageing, and ageing-related neurodegenerative diseases. We also discuss promising therapeutic strategies and the need for better understanding of cell-type-specific functions of NRF2 in these different fields.
Collapse
Affiliation(s)
- Tony Heurtaux
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
| | - David S. Bouvier
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
- Luxembourg Centre of Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
| | - Alexandre Benani
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Sergio Helgueta Romero
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
| | - Katrin B. M. Frauenknecht
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
| | - Michel Mittelbronn
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
- Luxembourg Centre of Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
- Luxembourg Institute of Health (LIH), 1526 Luxembourg, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
| |
Collapse
|
21
|
Inhibiting BTB domain and CNC homolog 1 (Bach1) as an alternative to increase Nrf2 activation in chronic diseases. Biochim Biophys Acta Gen Subj 2022; 1866:130129. [DOI: 10.1016/j.bbagen.2022.130129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 12/15/2022]
|
22
|
Ulasov AV, Rosenkranz AA, Georgiev GP, Sobolev AS. Nrf2/Keap1/ARE signaling: Towards specific regulation. Life Sci 2022; 291:120111. [PMID: 34732330 PMCID: PMC8557391 DOI: 10.1016/j.lfs.2021.120111] [Citation(s) in RCA: 258] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
The Nrf2 transcription factor governs the expression of hundreds genes involved in cell defense against oxidative stress, the hallmark of numerous diseases such as neurodegenerative, cardiovascular, some viral pathologies, diabetes and others. The main route for Nrf2 activity regulation is via interactions with the Keap1 protein. Under the normoxia the Keap1 binds the Nrf2 and targets it to the proteasomal degradation, while the Keap1 is regenerated. Upon oxidative stress the interactions between Nrf2 and Keap1 are interrupted and the Nrf2 activates the transcription of the protective genes. Currently, the Nrf2 system activation is considered as a powerful cytoprotective strategy for treatment of different pathologies, which pathogenesis relies on oxidative stress including viral diseases of pivotal importance such as COVID-19. The implementation of this strategy is accomplished mainly through the inactivation of the Keap1 "guardian" function. Two approaches are now developing: the Keap1 modification via electrophilic agents, which leads to the Nrf2 release, and direct interruption of the Nrf2:Keap1 protein-protein interactions (PPI). Because of theirs chemical structure, the Nrf2 electrophilic inducers could non-specifically interact with others cellular proteins leading to undesired effects. Whereas the non-electrophilic inhibitors of the Nrf2:Keap1 PPI could be more specific, thereby widening the therapeutic window.
Collapse
Affiliation(s)
- Alexey V Ulasov
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia.
| | - Andrey A Rosenkranz
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia
| | - Georgii P Georgiev
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Alexander S Sobolev
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia
| |
Collapse
|
23
|
Abstract
Urinary tract infection (UTI) is the most common type of urogenital disease. UTI affects the urethra, bladder, ureter, and kidney. A total of 13.3% of women, 2.3% of men, and 3.4% of children in the United States will require treatment for UTI. Traditionally, bladder (cystitis) and kidney (pyelonephritis) infections are considered independently. However, both infections induce host defenses that are either shared or coordinated across the urinary tract. Here, we review the chemical and biophysical mechanisms of bacteriostasis, which limit the duration and severity of the illness. Urinary bacteria attempt to overcome each of these defenses, complicating description of the natural history of UTI.
Collapse
Affiliation(s)
| | - Anne-Catrin Uhlemann
- Department of Medicine and Pathology and Urology, Columbia University, New York, NY, USA;
| | - Jonathan Barasch
- Department of Medicine and Pathology and Urology, Columbia University, New York, NY, USA;
| |
Collapse
|
24
|
Prognostic Implications of MALAT1 and BACH1 Expression and Their Correlation with CTCs and Mo-MDSCs in Triple Negative Breast Cancer and Surgical Management Options. Int J Breast Cancer 2022; 2022:8096764. [PMID: 35096427 PMCID: PMC8791720 DOI: 10.1155/2022/8096764] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
Background. Triple negative breast cancer (TNBC) is a biologically separate entity of breast cancer that cannot get benefits from targeted or endocrine therapy. Objective. To assess the expression of MALAT1 and BACH1, as well as monocyte-myeloid-derived suppressor cell (Mo-MDSC) levels and circulating tumor cell (CTC) count in TNBC to correlate these markers with the clinic-pathological criteria of TNCB patients and to evaluate their roles as predictive markers for selection of the patients that can be operated by oncoplastic conserving breast surgery. Methods. Eighty-eight TNBC were managed by modified doughnut breast oncoplastic surgery in early stages and by modified radical mastectomy for patients with late stages unsuitable for breast-conserving. All were examined for MALAT1 and BACH1 expression by immunohistochemistry and RT-PCR as well as Mo-MDSC levels and CTCs. Results. MALAT1 and BACH1 expressions are correlated with the larger size, lymph node, distance metastasis, and TNM staging (
).
and high MO-MDSCs were significantly more in TNBC with MALAT1 and BACH1 overexpression. The survival study proved that DFS for patients with both positive expression of MALAT1 and BACH1 was shorter than that of one positive expression, and both negative expression
,
, and high Mo-MDSCs are associated with poor outcomes. No significant difference between modified round block and modified radical mastectomy techniques as regards recurrence. However, all postoperative management outcomes were significantly better in patients operated by oncoplastic conserving breast surgery. Conclusion. BACH1 and MALAT1 expressions are significantly upregulated in TNBC. They are correlated with CTCs and Mo-MDCs, and all are associated with poor outcomes. Not all TNBC patients have a bad prognosis, patients negative for one of MALAT1 and BACH1 or both, have a slightly good prognosis, and so can be managed by breast oncoplastic conserving surgery.
Collapse
|
25
|
Jiang P, Li F, Liu Z, Hao S, Gao J, Li S. BTB and CNC homology 1 (Bach1) induces lung cancer stem cell phenotypes by stimulating CD44 expression. Respir Res 2021; 22:320. [PMID: 34949193 PMCID: PMC8697453 DOI: 10.1186/s12931-021-01918-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Growing evidence suggests that cancer stem cells (CSCs) are responsible for cancer initiation in tumors. Bach1 has been identified to contribute to several tumor progression, including lung cancer. The role of Bach1 in CSCs remains poorly known. Therefore, the function of Bach1 on lung CSCs was focused currently. METHODS The expression of Bach1, CD133, CD44, Sox2, Nanog and Oct4 mRNA was assessed using Real-Time Quantitative Reverse Transcription PCR (RT-qPCR). Protein expression of Bach1, CD133, CD44, Sox2, Nanog, Oct4, p53, BCL2, BAX, p-p38, p-AKT1, c-Fos and c-Jun protein was analyzed by western blotting. 5-ethynyl-29-deoxyuridine (EdU), colony formation, Flow cytometry analysis and transwell invasion assay were carried out to analyze lung cancer cell proliferation, apoptosis and invasion respectively. Tumor sphere formation assay was utilized to evaluate spheroid capacity. Flow cytometry analysis was carried out to isolate CD133 or CD44 positive lung cancer cells. The relationship between Bach1 and CD44 was verified using ChIP-qPCR and dual-luciferase reporter assay. Xenograft tumor tissues were collected for hematoxylin and eosin (HE) staining and IHC analysis to evaluate histology and Ki-67. RESULTS The ratio of CD44 + CSCs from A549 and SPC-A1 cells were significantly enriched. Tumor growth of CD44 + CSCs was obviously suppressed in vivo compared to CD44- CSCs. Bach1 expression was obviously increased in CD44 + CSCs. Then, via using the in vitro experiment, it was observed that CSCs proliferation and invasion were greatly reduced by the down-regulation of Bach1 while cell apoptosis was triggered by knockdown of Bach1. Loss of Bach1 was able to repress tumor-sphere formation and tumor-initiating CSC markers. A repression of CSCs growth and metastasis of shRNA-Bach1 was confirmed using xenograft models and caudal vein injection. The direct interaction between Bach1 and CD44 was confirmed by ChIP-qPCR and dual-luciferase reporter assay. Furthermore, mitogen-activated protein kinases (MAPK) signaling pathway was selected and we proved the effects of Bach1 on lung CSCs were associated with the activation of the MAPK pathway. As manifested, loss of Bach1 was able to repress p-p38, p-AKT1, c-Fos, c-Jun protein levels in lung CSCs. Inhibition of MAPK signaling remarkably restrained lung CSCs growth and CSCs properties induced by Bach1 overexpression. CONCLUSION In summary, we imply that Bach1 demonstrates great potential for the treatment of lung cancer metastasis and recurrence via activating CD44 and MPAK signaling.
Collapse
Affiliation(s)
- Pan Jiang
- Department of Nutrition, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Fan Li
- Department of Nutrition, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Zilong Liu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Shengyu Hao
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China.
| | - Jian Gao
- Department of Nutrition, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China.
| | - Shanqun Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China.
| |
Collapse
|
26
|
Li X, Zhang X, Liu Y, Pan R, Liang X, Huang L, Yang C. Exosomes derived from mesenchyml stem cells ameliorate oxygen-glucose deprivation/reoxygenation-induced neuronal injury via transferring MicroRNA-194 and targeting Bach1. Tissue Cell 2021; 73:101651. [PMID: 34600339 DOI: 10.1016/j.tice.2021.101651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 01/13/2023]
Abstract
The neuroprotective function of miR-194 on neurovascular endothelial cell injury is perceived as a novel method for clinical therapy. So are exosomes (EXs), being attractive in neurofunctional recovery. However, whether EXs derived from mesenchymal stromal cells (MSCs) perform the same efficacy by transferring miR-194 and the underlying mechanism remain vague. This study rooted in oxygen-glucose deprivation/reoxygenation (OGD/R) model. MSCs were isolated by gradient centrifugation and identified by flow cytometry. EXs were obtained through ultracentrifugation, whereas protein levels of specific markers (CD63, TGS101), together with Bach1, Nrf2 and HO-1 were measured by western blot. The relative mRNA expressions of Bach1, NOX1, AGSL4, GPX4 and miR-194 were measured by RT-qPCR assays. Cell viability was measured by cell counting kit-8, and cell migration was detected by wound healing assay. The interaction between miR-194 and Bach1 was predicted by starBase and confirmed by dual luciferase reporter assay. OGD/R dampened cell viability and miR-194 expression. Bach1 could bind with miR-194. miR-194 mimic attenuated the effect of OGD/R on cell viability and protein levels of Nrf2, HO-1 and Bach1, whereas Bach1 overexpression reversed the effect of miR-194 mimics. MSC-EXs could merge with HBMECs. Based on this, MSC-EXs loaded with miR-194 downregulated Bach1 protein level and iron content and the mRNA expressions of NOX1 and ACSL4, yet upregulated miR-194 and GPX4 expressions and Nrf2/HO-1 protein level in OGD/R-injured cells, whereas those carrying ShmiR-194 had the opposite effects. Our study suggested MSC-EXs loaded with miR-194 attenuated OGD/R-induced injury via targeting Bach1, providing a new therapeutic strategy for cerebral injuries.
Collapse
Affiliation(s)
- Xu Li
- Department of Neurosurgey, The First Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Xin Zhang
- Department of Neurosurgey, The First Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Yajun Liu
- Department of Neurosurgey, The First Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Ruihan Pan
- Department of Neurosurgey, The First Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Xiaolong Liang
- Department of Neurosurgey, The First Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Lifa Huang
- Department of Neurosurgey, The First Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Chao Yang
- Department of Neurosurgey, The First Affiliated Hospital of Zhejiang Chinese Medical University, China.
| |
Collapse
|
27
|
Ahuja M, Ammal Kaidery N, Attucks OC, McDade E, Hushpulian DM, Gaisin A, Gaisina I, Ahn YH, Nikulin S, Poloznikov A, Gazaryan I, Yamamoto M, Matsumoto M, Igarashi K, Sharma SM, Thomas B. Bach1 derepression is neuroprotective in a mouse model of Parkinson's disease. Proc Natl Acad Sci U S A 2021; 118:e2111643118. [PMID: 34737234 PMCID: PMC8694049 DOI: 10.1073/pnas.2111643118] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder characterized by the loss of nigrostriatal dopaminergic neurons. Mounting evidence suggests that Nrf2 is a promising target for neuroprotective interventions in PD. However, electrophilic chemical properties of the canonical Nrf2-based drugs cause irreversible alkylation of cysteine residues on cellular proteins resulting in side effects. Bach1 is a known transcriptional repressor of the Nrf2 pathway. We report that Bach1 levels are up-regulated in PD postmortem brains and preclinical models. Bach1 knockout (KO) mice were protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity and associated oxidative damage and neuroinflammation. Functional genomic analysis demonstrated that the neuroprotective effects in Bach1 KO mice was due to up-regulation of Bach1-targeted pathways that are associated with both Nrf2-dependent antioxidant response element (ARE) and Nrf2-independent non-ARE genes. Using a proprietary translational technology platform, a drug library screen identified a substituted benzimidazole as a Bach1 inhibitor that was validated as a nonelectrophile. Oral administration of the Bach1 inhibitor attenuated MPTP neurotoxicity in pre- and posttreatment paradigms. Bach1 inhibitor-induced neuroprotection was associated with the up-regulation of Bach1-targeted pathways in concurrence with the results from Bach1 KO mice. Our results suggest that genetic deletion as well as pharmacologic inhibition of Bach1 by a nonelectrophilic inhibitor is a promising therapeutic approach for PD.
Collapse
Affiliation(s)
- Manuj Ahuja
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425
| | - Navneet Ammal Kaidery
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425
| | | | | | - Dmitry M Hushpulian
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 109028, Russia
| | - Arsen Gaisin
- Integrated Molecular Structure Education and Research Center, Northwestern University, IL 60208
| | - Irina Gaisina
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60612
| | - Young Hoon Ahn
- Department of Chemistry, Wayne State University, Detroit, MI 48202
| | - Sergey Nikulin
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 109028, Russia
| | - Andrey Poloznikov
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 109028, Russia
| | - Irina Gazaryan
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 109028, Russia
- Department of Chemical Enzymology, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry and Physical Sciences, Pace University, Pleasantville, NY 10570
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Tohoku Medical Megabank Organization, Tohoku University Graduate School of Medicine, Sendai 980-8573, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Sudarshana M Sharma
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425
| | - Bobby Thomas
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425;
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425
- Department of Drug Discovery, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
28
|
Arunachalam A, Lakshmanan DK, Ravichandran G, Paul S, Manickam S, Kumar PV, Thilagar S. Regulatory mechanisms of heme regulatory protein BACH1: a potential therapeutic target for cancer. Med Oncol 2021; 38:122. [PMID: 34482423 DOI: 10.1007/s12032-021-01573-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023]
Abstract
A limited number of overexpressed transcription factors are associated with cancer progression in many types of cancer. BTB and CNC homology 1 (BACH1) is the first mammalian heme-binding transcription factor that belongs to the basic region leucine zipper (bZIP) family and a member of CNC (cap 'n' collar). It forms heterodimers with the small musculoaponeurotic fibrosarcoma (MAF) proteins and stimulates or suppresses the expression of target genes under a very low intracellular heme concentration. It possesses a significant regulatory role in heme homeostasis, oxidative stress, cell cycle, apoptosis, angiogenesis, and cancer metastasis progression. This review discusses the current knowledge about how BACH1 regulates cancer metastasis in various types of cancer and other carcinogenic associated factors such as oxidative stress, cell cycle regulation, apoptosis, and angiogenesis. Overall, from the reported studies and outcomes, it could be realized that BACH1 is a potential pharmacological target for discovering new therapeutic anticancer drugs.
Collapse
Affiliation(s)
- Abirami Arunachalam
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Dinesh Kumar Lakshmanan
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Guna Ravichandran
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Soumi Paul
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Palanirajan Vijayaraj Kumar
- Department (Pharmaceutical Technology), Faculty of Pharmacy, UCSI University, South Campus, Taman Connaught, 56000, Kuala Lumpur, Malaysia
| | - Sivasudha Thilagar
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| |
Collapse
|
29
|
Xie J, Zhao C, Sun J, Li J, Yang F, Wang J, Nie Q. Prediction of Essential Genes in Comparison States Using Machine Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1784-1792. [PMID: 32991286 DOI: 10.1109/tcbb.2020.3027392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Identifying essential genes in comparison states (EGS) is vital to understanding cell differentiation, performing drug discovery, and identifying disease causes. Here, we present a machine learning method termed Prediction of Essential Genes in Comparison States (PreEGS). To capture the alteration of the network in comparison states, PreEGS extracts topological and gene expression features of each gene in a five-dimensional vector. PreEGS also recruits a positive sample expansion method to address the problem of unbalanced positive and negative samples, which is often encountered in practical applications. Different classifiers are applied to the simulated datasets, and the PreEGS based on the random forests model (PreEGSRF) was chosen for optimal performance. PreEGSRF was then compared with six other methods, including three machine learning methods, to predict EGS in a specific state. On real datasets with four gene regulatory networks, PreEGSRF predicted five essential genes related to leukemia and five enriched KEGG pathways. Four of the predicted essential genes and all predicted pathways were consistent with previous studies and highly correlated with leukemia. With high prediction accuracy and generalization ability, PreEGSRF is broadly applicable for the discovery of disease-causing genes, driver genes for cell fate decisions, and complex biomarkers of biological systems.
Collapse
|
30
|
Kaur G, Sharma A, Bhatnagar A. Role of oxidative stress in pathophysiology of rheumatoid arthritis: insights into NRF2-KEAP1 signalling. Autoimmunity 2021; 54:385-397. [PMID: 34415206 DOI: 10.1080/08916934.2021.1963959] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rheumatoid arthritis is one of the most prevalent, chronic, inflammatory disorders involving multiple articular and extra-articular complications. Immune deregulation owing to a combinatorial network of cells, inflammatory components, degrading enzymes, angiogenetic factors, exhibiting pleiotropy, synergy, or redundancy, is a critical hallmark for synovial inflammatory milieu reasoning clinical heterogeneity and variability of the disease. As a prototype of autoimmune disease, the pathophysiology of rheumatoid arthritis has been linked to oxidative stress. However, the exact mechanism for these potential driving factors contributing to disease inception and perpetuation is yet elusive. Nuclear factor erythroid 2-related factor 2 - Kelch ECH associating protein 1 (Nrf2-Keap1) pathway, controlled via multifactorial regulation, functions as a ubiquitous, evolutionarily conserved intracellular defense mechanism. Nrf2-Keap1 signalling maintains homeostatic responses against a plethora of environmental or endogenous deviations in cellular growth, death, redox metabolism, inflammation, bone remodelling, detoxification, etc. Administration of antioxidants as an add-on pharmacotherapy along with conventional drugs has been elucidated as a better measure for disease management. Some of the most promising natural and synthetic redox-based therapeutic compounds function as either scavengers of reactive species, or inhibitors of their sources, or activators of an endogenous antioxidant system (Nrf2-Keap1). The present review focuses on the binomial "rheumatoid arthritis-oxidative stress", bringing insights into their pathophysiological interrelationships and Nrf2 signalling, as well as the implications of potential diagnostic oxidative stress biomarkers and therapeutic interventions directed for disease management in patients with rheumatoid arthritis.Highlights:RA has complex etiopathogenesis, evolving from multiple endogenous and exogenous factors with oxidative stress as a critical pathogenic signature.Oxidative damage and damaged compounds could serve as potent biomarkers for disease diagnosis, therapeutic response, and prognosis.One of the supreme cytoprotective signalling cascades, the Nrf2-Keap1 pathway has been known to elicit a protective effect against RA and various other autoimmune, inflammatory, degenerative disorders.Inclusion of natural and synthetic antioxidants has been encouraged by various studies for additional therapy to conventional drugs for better management of the disease.
Collapse
Affiliation(s)
- Gurjasmine Kaur
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Aman Sharma
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | |
Collapse
|
31
|
Huang B, Cui DJ, Yan F, Yang LC, Zhang MM, Zhao X. Circ_0087862 promotes the progression of colorectal cancer by sponging miR-142-3p and up-regulating BACH1 expression. Kaohsiung J Med Sci 2021; 37:1048-1057. [PMID: 34390174 DOI: 10.1002/kjm2.12437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/22/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) feature prominently in regulating the malignant biological behaviors of colorectal cancer (CRC), including cell viability, cell cycle progression, apoptosis, migration, invasion, and so on. This study is performed to probe into the biological function and molecular mechanism of circ_0087862 in CRC. The expression profile of GSE138589 was available from Gene Expression Omnibus (GEO), and the differentially expressed circRNAs were analyzed by GEO2R. The expression of circ_0087862, miR-142-3p, and BACH1 mRNA in CRC tissues and cells was measured by qRT-PCR. CCK-8 assay was employed to determine the proliferation of CRC cells. Scratch wound healing and transwell assays were used to examine the migration and invasion of CRC cells. The targeting relationships between circ_0087862 and miR-142-3p, and between miR-142-3p and BACH1 3'UTR were verified by dual-luciferase reporter gene assay and RIP assay. BACH1 protein expression was probed by western blot. Circ_0087862 was highly expressed in CRC tissues and cell lines. Knocking down circ_0087862 significantly restrained the multiplication, migration and invasion of CRC cells. miR-142-3p inhibition weakened the impact of circ_0087862 knockdown on CRC cells. Circ_0087862 regulated BACH1 expressions by targeting miR-142-3p. Circ_0087862 regulates BACH1 expressions through sponging miR-142-3p, and promotes the proliferation, migration, and invasion of CRC cells.
Collapse
Affiliation(s)
- Bo Huang
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| | - De-Jun Cui
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| | - Fang Yan
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| | - Liu-Chan Yang
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| | - Man-Man Zhang
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| | - Xun Zhao
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| |
Collapse
|
32
|
Tang SN, Jiang P, Kim S, Zhang J, Jiang C, Lü J. Interception Targets of Angelica Gigas Nakai Root Extract versus Pyranocoumarins in Prostate Early Lesions and Neuroendocrine Carcinomas in TRAMP Mice. Cancer Prev Res (Phila) 2021; 14:635-648. [PMID: 33648943 PMCID: PMC8225574 DOI: 10.1158/1940-6207.capr-20-0589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/19/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022]
Abstract
We reported efficacy of Angelica gigas Nakai (AGN) root ethanol extract and equimolar decursin (D)/decursinol angelate (DA) through daily gavage starting at 8 weeks of age (WOA) to male transgenic adenocarcinoma of mouse prostate (TRAMP) mice such that these modalities suppressed precancerous epithelial lesions in their dorsolateral prostate (DLP) to similar extent, but AGN extract was better than the D/DA mixture at promoting the survival of mice bearing prostate neuroendocrine carcinomas to 28 WOA. Here, we compared by microarray hybridization the mRNA levels in pooled DLP tissues and individual neuroendocrine carcinomas to characterize potential molecular targets of AGN extract and D/DA. Clustering and principal component analyses supported distinct gene expression profiles of TRAMP DLP versus neuroendocrine carcinomas. Pathway Enrichment, Gene Ontology, and Ingenuity Pathway Analyses of differential genes indicated that AGN and D/DA affected chiefly processes of lipid and mitochondrial energy metabolism and oxidation-reduction in TRAMP DLP, while AGN affected neuronal signaling, immune systems and cell cycling in neuroendocrine carcinomas. Protein-Protein Interaction Network analysis predicted and reverse transcription-PCR verified multiple hub genes common in the DLP of AGN- and D/DA-treated TRAMP mice at 28 WOA and select hub genes attributable to the non-D/DA AGN components. The vast majority of hub genes in the AGN-treated neuroendocrine carcinomas differed from those in TRAMP DLP. In summary, the transcriptomic approach illuminated vastly different signaling pathways and networks, cellular processes, and hub genes of two TRAMP prostate malignancy lineages and their associations with the interception efficacy of AGN and D/DA. PREVENTION RELEVANCE: This study explores potential molecular targets associated with in vivo activity of AGN root alcoholic extract and its major pyranocoumarins to intercept precancerous epithelial lesions and early malignancies of the prostate. Without an ethically-acceptable, clearly defined cancer initiation risk reduction strategy available for the prostate, using natural products like AGN to delay formation of malignant tumors could be a plausible approach for prostate cancer prevention.
Collapse
Affiliation(s)
- Su-Ni Tang
- School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Peixin Jiang
- School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Sangyub Kim
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Jinhui Zhang
- School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Cheng Jiang
- School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Junxuan Lü
- School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas.
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
- Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania
| |
Collapse
|
33
|
Nitti M, Ivaldo C, Traverso N, Furfaro AL. Clinical Significance of Heme Oxygenase 1 in Tumor Progression. Antioxidants (Basel) 2021; 10:antiox10050789. [PMID: 34067625 PMCID: PMC8155918 DOI: 10.3390/antiox10050789] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Heme oxygenase 1 (HO-1) plays a key role in cell adaptation to stressors through the antioxidant, antiapoptotic, and anti-inflammatory properties of its metabolic products. For these reasons, in cancer cells, HO-1 can favor aggressiveness and resistance to therapies, leading to poor prognosis/outcome. Genetic polymorphisms of HO-1 promoter have been associated with an increased risk of cancer progression and a high degree of therapy failure. Moreover, evidence from cancer biopsies highlights the possible correlation between HO-1 expression, pathological features, and clinical outcome. Indeed, high levels of HO-1 in tumor specimens often correlate with reduced survival rates. Furthermore, HO-1 modulation has been proposed in order to improve the efficacy of antitumor therapies. However, contrasting evidence on the role of HO-1 in tumor biology has been reported. This review focuses on the role of HO-1 as a promising biomarker of cancer progression; understanding the correlation between HO-1 and clinical data might guide the therapeutic choice and improve the outcome of patients in terms of prognosis and life quality.
Collapse
|
34
|
Zhao Y, Gao J, Xie X, Nan P, Liu F, Sun Y, Zhao X. BACH1 promotes the progression of esophageal squamous cell carcinoma by inducing the epithelial-mesenchymal transition and angiogenesis. Cancer Med 2021; 10:3413-3426. [PMID: 33932125 PMCID: PMC8124123 DOI: 10.1002/cam4.3884] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 02/06/2023] Open
Abstract
Metastasis to regional lymph nodes or distal organs predicts the progression of the disease and poor prognosis in esophageal squamous cell carcinoma (ESCC). Previous studies demonstrated that BTB and CNC homology 1 (BACH1) participates in various types of tumor metastasis. However, the function of BACH1 in ESCC was rarely reported. The present study demonstrated that BACH1 protein was overexpressed in ESCC tissues compared with paired esophageal epithelial tissues according to immunohistochemical staining (IHC). Higher levels of BACH1 mRNA were associated with decreased overall survival (OS) and shorter disease‐free survival (DFS) of ESCC patients based on an analysis of The Cancer Genome Atlas (TCGA) datasets. BACH1 significantly enhanced the migration and invasion of ESCC in vitro. Mechanistically, BACH1 promoted the epithelial–mesenchymal transition (EMT) by directly activating the transcription of CDH2, SNAI2, and VIM, as determined by chromatin immunoprecipitation‐quantitative polymerase chain reaction (ChIP‐qPCR). BACH1 overexpression significantly enhanced CDH2 promoter activity according to the results of a luciferase assay. The results of subsequent experiments indicated that BACH1 enhanced the growth of tumor xenografts. The density of CD31+ blood vessels and the expression of vascular endothelial growth factor C (VEGFC) in tumor xenografts were significantly associated with BACH1 levels according to the results of IHC and immunofluorescence (IF) analyses performed in vivo. Moreover, ChIP‐qPCR analysis demonstrated that the transcriptional activity of VEGFC was also upregulated by BACH1. Thus, BACH1 contributes to ESCC metastasis and tumorigenesis by partially facilitating the EMT and angiogenesis, and BACH1 may be a promising therapeutic target or molecular marker in ESCC.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiajia Gao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiufeng Xie
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yulin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohang Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Biswas C, Chu N, Burn TN, Kreiger PA, Behrens EM. Amelioration of Murine Macrophage Activation Syndrome by Monomethyl Fumarate in Both a Heme Oxygenase 1-Dependent and Heme Oxygenase 1-Independent Manner. Arthritis Rheumatol 2021; 73:885-895. [PMID: 33191652 DOI: 10.1002/art.41591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/10/2020] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Macrophage activation syndrome (MAS) is characterized by increased serum levels of ferritin and heme oxygenase 1 (HO-1), and yet no known function is ascribed to these molecules in MAS. Because HO-1 is antiinflammatory, we hypothesized that pharmacologic activation of HO-1 could ameliorate MAS disease activity. Dimethyl fumarate (DMF), a treatment approved by the US Food and Drug Administration for multiple sclerosis, activates HO-1. Monomethyl fumarate (MMF) is the active metabolite of DMF. We therefore evaluated whether MMF could elicit HO-1-dependent therapeutic improvements in a murine model of MAS. METHODS We induced MAS by repeated activation of Toll-like receptor 9 (TLR-9) in wild-type and myeloid-specific HO-1-deficient mice. MMF was administered twice daily to test its efficacy. We assessed organ weights, serum cytokine levels, histologic features of the spleen and liver tissue, and complete blood cell counts to evaluate disease activity. Statistical testing was performed using Student's t-test or by 2-way analysis of variance as appropriate. RESULTS The presence of HO-1 was required for the majority of TLR-9-induced interleukin-10 (IL-10). IL-10 production in TLR-9-induced MAS was found to correlate with the myeloid-HO-1 gene dose in myeloid cells (P < 0.001). MMF treatment increased the levels of HO-1 in splenic macrophages by ~2-fold (P < 0.01), increased serum levels of IL-10 in an HO-1-dependent manner in mice with TLR-9-induced MAS (P < 0.005), and improved multiple disease parameters in both an HO-1-dependent and HO-1-independent manner. CONCLUSION TLR-9-induced production of IL-10 is regulated by HO-1 activity both in vitro and in vivo. Therapeutic enhancement of the HO-1/IL-10 axis in a murine model was able to significantly ameliorate MAS disease activity. These results suggest that HO-1 may be viable as a MAS therapeutic target, and treatment with DMF and MMF should be considered in future investigations of MAS therapy.
Collapse
Affiliation(s)
- Chhanda Biswas
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Niansheng Chu
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Thomas N Burn
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
36
|
The Expression and Clinical Significance of miRNA-135a and Bach1 in Colorectal Cancer. Int Surg 2021. [DOI: 10.9738/intsurg-d-20-00026.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim
The objective of this study was to explore the correlation between the expression of miRNA-135a and Bach1 in colorectal cancer tissue and the patient's clinical information.
Methods
Sixty patients with colorectal carcinoma were treated as a control group. Real-time quantitative polymerase chain reaction assays and immunohistochemistry methods were performed to detect the expression of miRNA-135a and Bach1 in 60 colorectal carcinomas and adjacent normal tissues, and the clinical and pathologic classifications were also investigated. SPSS 19.00 software was used. All data are represented as mean ± SD of 3 independent experiments. P < 0.05 was considered statistically significant.
Results
miRNA-135a expression levels increased significantly in colon cancer tissues compared with the nontumor control tissues (P < 0.01). miRNA-135a expression levels were higher in stage III/IV than in stage I/II colon cancer patients. The expression level of Bach1 in colorectal cancer was significantly lower (P < 0.01). Bach1 and miRNA-135a were negatively correlated.
Conclusions
The levels of miRNA-135a and Bach1 were opposite: the overexpression of miRNA-135a might downregulate the expression of Bach1, which might be involved in the pathogenesis of colorectal cancer.
Collapse
|
37
|
Madeddu P. Cell therapy for the treatment of heart disease: Renovation work on the broken heart is still in progress. Free Radic Biol Med 2021; 164:206-222. [PMID: 33421587 DOI: 10.1016/j.freeradbiomed.2020.12.444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/26/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CVD) continues to be the number one killer in the aging population. Heart failure (HF) is also an important cause of morbidity and mortality in patients with congenital heart disease (CHD). Novel therapeutic approaches that could restore stable heart function are much needed in both paediatric and adult patients. Regenerative medicine holds promises to provide definitive solutions for correction of congenital and acquired cardiac defects. In this review article, we recap some important aspects of cardiovascular cell therapy. First, we report quantifiable data regarding the scientific advancements in the field and how this has been translated into tangible outcomes according clinical studies and related meta-analyses. We then comment on emerging trends and technologies, such as the use of second-generation cell products, including pericyte-like vascular progenitors, and reprogramming of cells by different approaches including modulation of oxidative stress. The more affordable and feasible strategy of repurposing clinically available drugs to awaken the intrinsic healing potential of the heart will be discussed in the light of current social, financial, and ethical context. Cell therapy remains a work in progress field. Uncertainty in the ability of the experts and policy makers to solve urgent medical problems is growing in a world that is significantly influenced by them. This is particularly true in the field of regenerative medicine, due to great public expectations, polarization of leadership and funding, and insufficient translational vision. Cardiovascular regenerative medicine should be contextualized in a holistic program with defined priorities to allow a complete realization. Reshaping the notion of medical expertise is fundamental to fill the current gap in translation.
Collapse
Affiliation(s)
- Paolo Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol Royal Infirmary, Upper Maudlin Street, BS28HW, Bristol, United Kingdom.
| |
Collapse
|
38
|
Tumor Cells and Cancer-Associated Fibroblasts: An Updated Metabolic Perspective. Cancers (Basel) 2021; 13:cancers13030399. [PMID: 33499022 PMCID: PMC7865797 DOI: 10.3390/cancers13030399] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Tumors are a complex ecosystem including not only cancer cells, but also many distinct cell types of the tumor micro-environment. While the Warburg effect assessing high glucose uptake in tumors was recognized a long time ago, metabolic heterogeneity within tumors has only recently been demonstrated. Indeed, several recent studies have highlighted other sources of carbon than glucose, including amino acids, fatty acids and lactate. These newly identified metabolic trajectories modulate key cancer cell features, such as invasion capacities. In addition, cancer metabolic heterogeneity is not restricted to cancer cells. Here, we also describe heterogeneity of Cancer-Associated Fibroblast (CAF) subpopulations and their complex metabolic crosstalk with cancer cells. Abstract During the past decades, metabolism and redox imbalance have gained considerable attention in the cancer field. In addition to the well-known Warburg effect occurring in tumor cells, numerous other metabolic deregulations have now been reported. Indeed, metabolic reprograming in cancer is much more heterogeneous than initially thought. In particular, a high diversity of carbon sources used by tumor cells has now been shown to contribute to this metabolic heterogeneity in cancer. Moreover, the molecular mechanisms newly highlighted are multiple and shed light on novel actors. Furthermore, the impact of this metabolic heterogeneity on tumor microenvironment has also been an intense subject of research recently. Here, we will describe the new metabolic pathways newly uncovered in tumor cells. We will also have a particular focus on Cancer-Associated Fibroblasts (CAF), whose identity, function and metabolism have been recently under profound investigation. In that sense, we will discuss about the metabolic crosstalk between tumor cells and CAF.
Collapse
|
39
|
Rezaei T, Hejazi M, Mansoori B, Mohammadi A, Amini M, Mosafer J, Rezaei S, Mokhtarzadeh A, Baradaran B. microRNA-181a mediates the chemo-sensitivity of glioblastoma to carmustine and regulates cell proliferation, migration, and apoptosis. Eur J Pharmacol 2020; 888:173483. [DOI: 10.1016/j.ejphar.2020.173483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/24/2022]
|
40
|
Cui D, Ni C. LncRNA Lnc712 Promotes Tumorigenesis in Hepatocellular Carcinoma by Targeting miR-142-3p/Bach-1 Axis. Cancer Manag Res 2020; 12:11285-11294. [PMID: 33177878 PMCID: PMC7652235 DOI: 10.2147/cmar.s254950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 09/04/2020] [Indexed: 01/20/2023] Open
Abstract
Background It is known that Lnc712 plays an important role in the pathogenesis of breast cancer. However, whether it is involved in hepatocellular carcinoma (HCC) remains unknown. In this study, we aimed to investigate the role and underlying mechanism of Lnc712 in HCC. Methods Sixty-four HCC patients were enrolled and followed up for 5 years to analyze the prognostic value of Lnc712 for HCC. HCC cells were transfected with Lnc712 expression vector, Bach-1 expression vector (or siRNA) and miR-142-3p mimic (or inhibitor) to explore the interactions among Lnc712, miR-142-3p and Bach-1. Cell proliferation, migration, invasion and cell cycle were analyzed by CCK-8 assay, transwell assay, wound healing assay and flow cytometry assay, respectively. Results The expression of Lnc712 was upregulated in HCC, and the upregulated Lnc712 expression was significantly related to poor overall survival in HCC patients. In HCC cells, Lnc712 interacted with miR-142-3p and upregulated Bach-1, a target of miR-142-3p. In addition, Lnc712 promoted HCC cell proliferation, migration, invasion and cell cycle, while its effects were abolished by miR-142-3p mimic. Moreover, miR-142-3p mimic enhanced HCC cell proliferation, migration, invasion and cell cycle, while its effects were abolished by Bach-1 overexpression. miR-142-3p inhibitor repressed cell proliferation, migration, invasion and cell cycle in HCC cells, while its effects were abolished by Bach-1 knockdown. Furthermore, Lnc712 knockdown remarkably inhibited HCC tumor growth in nude mice. Conclusion Lnc712 may promote the development of HCC by targeting the miR-142-3p/Bach-1 axis.
Collapse
Affiliation(s)
- Dan Cui
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215006, People's Republic of China
| | - Caifang Ni
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215006, People's Republic of China
| |
Collapse
|
41
|
Duică F, Condrat CE, Dănila CA, Boboc AE, Radu MR, Xiao J, Li X, Creţoiu SM, Suciu N, Creţoiu D, Predescu DV. MiRNAs: A Powerful Tool in Deciphering Gynecological Malignancies. Front Oncol 2020; 10:591181. [PMID: 33194751 PMCID: PMC7646292 DOI: 10.3389/fonc.2020.591181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
Accumulated evidence on the clinical roles of microRNAs (miRNAs) in cancer prevention and control has revealed the emergence of new genetic techniques that have improved the understanding of the mechanisms essential for pathology induction and progression. Comprehension of the modifications and individual differences of miRNAs and their interactions in the pathogenesis of gynecological malignancies, together with an understanding of the phenotypic variations have considerably improved the management of the diagnosis and personalized treatment for different forms of cancer. In recent years, miRNAs have emerged as signaling molecules in biological pathways involved in different categories of cancer and it has been demonstrated that these molecules could regulate cancer-relevant processes, our focus being on malignancies of the gynecologic tract. The aim of this paper is to summarize novel research findings in the literature regarding the parts that miRNAs play in cancer-relevant processes, specifically regarding gynecological malignancy, while emphasizing their pivotal role in the disruption of cancer-related signaling pathways.
Collapse
Affiliation(s)
- Florentina Duică
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Carmen Elena Condrat
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Cezara Alina Dănila
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Andreea Elena Boboc
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Mihaela Raluca Radu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Junjie Xiao
- Institute of Cardiovascular Sciences, Shanghai University, Shanghai, China
| | - Xinli Li
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Sanda Maria Creţoiu
- Cellular and Molecular Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Nicolae Suciu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania.,Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania.,Obstetrics, Gynecology and Neonatology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Dragoş Creţoiu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania.,Cellular and Molecular Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Dragoş-Valentin Predescu
- Department of General Surgery, Sf. Maria Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
42
|
Zhang D, Iwabuchi S, Baba T, Hashimoto SI, Mukaida N, Sasaki SI. Involvement of a Transcription factor, Nfe2, in Breast Cancer Metastasis to Bone. Cancers (Basel) 2020; 12:3003. [PMID: 33081224 PMCID: PMC7602858 DOI: 10.3390/cancers12103003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Patients with triple negative breast cancer (TNBC) is frequently complicated by bone metastasis, which deteriorates the life expectancy of this patient cohort. In order to develop a novel type of therapy for bone metastasis, we established 4T1.3 clone with a high capacity to metastasize to bone after orthotopic injection, from a murine TNBC cell line, 4T1.0. To elucidate the molecular mechanism underlying a high growth ability of 4T1.3 in a bone cavity, we searched for a novel candidate molecule with a focus on a transcription factor whose expression was selectively enhanced in a bone cavity. Comprehensive gene expression analysis detected enhanced Nfe2 mRNA expression in 4T1.3 grown in a bone cavity, compared with in vitro culture conditions. Moreover, Nfe2 gene transduction into 4T1.0 cells enhanced their capability to form intraosseous tumors. Moreover, Nfe2 shRNA treatment reduced tumor formation arising from intraosseous injection of 4T1.3 clone as well as another mouse TNBC-derived TS/A.3 clone with an augmented intraosseous tumor formation ability. Furthermore, NFE2 expression was associated with in vitro growth advantages of these TNBC cell lines under hypoxic condition, which mimics the bone microenvironment, as well as Wnt pathway activation. These observations suggest that NFE2 can potentially contribute to breast cancer cell survival in the bone microenvironment.
Collapse
Affiliation(s)
- Di Zhang
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa 920-1192, Japan; (D.Z.); (T.B.); (N.M.)
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan; (S.I.); (S.-i.H.)
| | - Tomohisa Baba
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa 920-1192, Japan; (D.Z.); (T.B.); (N.M.)
| | - Shin-ichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan; (S.I.); (S.-i.H.)
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa 920-1192, Japan; (D.Z.); (T.B.); (N.M.)
| | - So-ichiro Sasaki
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa 920-1192, Japan; (D.Z.); (T.B.); (N.M.)
| |
Collapse
|
43
|
Si Z, Wang X. The Neuroprotective and Neurodegeneration Effects of Heme Oxygenase-1 in Alzheimer's Disease. J Alzheimers Dis 2020; 78:1259-1272. [PMID: 33016915 DOI: 10.3233/jad-200720] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by complex pathological and biological features. Notably, extracellular amyloid-β deposits as senile plaques and intracellular aggregation of hyperphosphorylated tau as neurofibrillary tangles remain the primary premortem criterion for the diagnosis of AD. Currently, there exist no disease-modifying therapies for AD, and many clinical trials have failed to show its benefits for patients. Heme oxygenase 1 (HO-1) is a 32 kDa enzyme, which catalyzes the degradation of cellular heme to free ferrous iron, biliverdin, and carbon monoxide under stressful conditions. Several studies highlight the crucial pathological roles of HO-1 in the molecular processes of AD. The beneficial roles of HO-1 overexpression in AD brains are widely accepted due to its ability to convert pro-oxidant heme to biliverdin and bilirubin (antioxidants), which promote restoration of a suitable tissue redox microenvironment. However, the intracellular oxidative stress might be amplified by metabolites of HO-1 and exacerbate the progression of AD under certain circumstances. Several lines of evidence have demonstrated that upregulated HO-1 is linked to tauopathies, neuronal damage, and synapse aberrations in AD. Here, we review the aspects of the molecular mechanisms by which HO-1 regulates AD and the latest information on the pathobiology of AD. We further highlight the neuroprotective and neurodystrophic actions of HO-1 and the feasibility of HO-1 as a therapeutic target for AD.
Collapse
Affiliation(s)
- Zizhen Si
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Xidi Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| |
Collapse
|
44
|
Lytrivi M, Ghaddar K, Lopes M, Rosengren V, Piron A, Yi X, Johansson H, Lehtiö J, Igoillo-Esteve M, Cunha DA, Marselli L, Marchetti P, Ortsäter H, Eizirik DL, Cnop M. Combined transcriptome and proteome profiling of the pancreatic β-cell response to palmitate unveils key pathways of β-cell lipotoxicity. BMC Genomics 2020; 21:590. [PMID: 32847508 PMCID: PMC7448506 DOI: 10.1186/s12864-020-07003-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Prolonged exposure to elevated free fatty acids induces β-cell failure (lipotoxicity) and contributes to the pathogenesis of type 2 diabetes. In vitro exposure of β-cells to the saturated free fatty acid palmitate is a valuable model of lipotoxicity, reproducing features of β-cell failure observed in type 2 diabetes. In order to map the β-cell response to lipotoxicity, we combined RNA-sequencing of palmitate-treated human islets with iTRAQ proteomics of insulin-secreting INS-1E cells following a time course exposure to palmitate. RESULTS Crossing transcriptome and proteome of palmitate-treated β-cells revealed 85 upregulated and 122 downregulated genes at both transcript and protein level. Pathway analysis identified lipid metabolism, oxidative stress, amino-acid metabolism and cell cycle pathways among the most enriched palmitate-modified pathways. Palmitate induced gene expression changes compatible with increased free fatty acid mitochondrial import and β-oxidation, decreased lipogenesis and modified cholesterol transport. Palmitate modified genes regulating endoplasmic reticulum (ER) function, ER-to-Golgi transport and ER stress pathways. Furthermore, palmitate modulated cAMP/protein kinase A (PKA) signaling, inhibiting expression of PKA anchoring proteins and downregulating the GLP-1 receptor. SLC7 family amino-acid transporters were upregulated in response to palmitate but this induction did not contribute to β-cell demise. To unravel critical mediators of lipotoxicity upstream of the palmitate-modified genes, we identified overrepresented transcription factor binding sites and performed network inference analysis. These identified LXR, PPARα, FOXO1 and BACH1 as key transcription factors orchestrating the metabolic and oxidative stress responses to palmitate. CONCLUSIONS This is the first study to combine transcriptomic and sensitive time course proteomic profiling of palmitate-exposed β-cells. Our results provide comprehensive insight into gene and protein expression changes, corroborating and expanding beyond previous findings. The identification of critical drivers and pathways of the β-cell lipotoxic response points to novel therapeutic targets for type 2 diabetes.
Collapse
Affiliation(s)
- Maria Lytrivi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium.,Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Kassem Ghaddar
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Miguel Lopes
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Victoria Rosengren
- Diabetes Research Unit, Department of Clinical Science and Education, Sodersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Anthony Piron
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Xiaoyan Yi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Henrik Johansson
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, 171 21, Solna, Sweden
| | - Janne Lehtiö
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, 171 21, Solna, Sweden
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Daniel A Cunha
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Henrik Ortsäter
- Diabetes Research Unit, Department of Clinical Science and Education, Sodersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium. .,Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
45
|
Sun X, Qian Y, Wang X, Cao R, Zhang J, Chen W, Fang M. LncRNA TRG-AS1 stimulates hepatocellular carcinoma progression by sponging miR-4500 to modulate BACH1. Cancer Cell Int 2020; 20:367. [PMID: 32774161 PMCID: PMC7401190 DOI: 10.1186/s12935-020-01440-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Background T cell receptor gamma locus antisense RNA 1 (TRG-AS1) has been reported to involve in the progression of glioblastoma, however the role and its underlying molecular mechanism in hepatocellular carcinoma (HCC) remain unknown. Methods Quantitative real-time polymerase chain reaction (RT-qPCR) was applied to detect TRG-AS1 expression in HCC cells. Besides, the proliferation abilities of HCC cells were assessed by colony formation and EdU assays. The migratory and invasive abilities of HCC cells were examined by transwell assays. Imunofluorescence staining (IF) was used to analyze the epithelial–mesenchymal transitions (EMT). The interaction among TRG-AS1, miR-4500 and BTB domain and CNC homolog 1 (BACH1) were proofed by means of RIP and RNA pull down and luciferase reporter assays. Results TRG-AS1 was conspicuously overexpressed in HCC cells. TRG-AS1 silencing apparently suppressed HCC cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT). Mechanism exploration revealed that TRG-AS1 acted as a molecular sponge of miR-4500 to regulate BACH1. MiR-4500 silencing or BACH1 overexpression in BACH1-downregulated cells fully rescued cell proliferation migration, invasion and EMT progress. Conclusion TRG-AS1 regulates HCC progression by targeting miR-4500/BACH1 axis.
Collapse
Affiliation(s)
- Xuehu Sun
- Department of Emergency Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230000 Anhui China
| | - Yeben Qian
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230000 Anhui China
| | - Xingyu Wang
- Department of Emergency Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230000 Anhui China
| | - Rongge Cao
- Department of Emergency, the First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001 Anhui China
| | - Jianlin Zhang
- Department of Emergency Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230000 Anhui China
| | - Weidong Chen
- Department of Emergency Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230000 Anhui China
| | - Maoyong Fang
- Department of Emergency Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230000 Anhui China
| |
Collapse
|
46
|
Chang LC, Fan CW, Tseng WK, Hua CC. Associations between the Nrf2/Keap1 pathway and mitochondrial functions in colorectal cancer are affected by metastasis. Cancer Biomark 2020; 27:163-171. [PMID: 31796664 DOI: 10.3233/cbm-190828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Both mitochondria and the Nrf2/Keap1 pathway are targets of cancer therapy. Reactive oxygen species released from mitochondria can activate Nrf2, and the Nrf2/Keap1 pathway affects glycolysis, oxidative phosphorylation, mitochondrial biogenesis and mitophagy. OBJECTIVE This study investigates the associations between the expressions of proteins in the Nrf2/Keap1 pathway and those related to mitochondrial function and glycolysis in colorectal cancer (CRC) with or without metastasis. METHODS The protein levels of HO1, Nrf2, Keap1, Bach1, p21, p62, NRF1, LC3, ATP5B, HSP60 and GAPDH in the normal and tumor tissues of 60 CRC subjects were determined by Western blot. RESULTS The Keap1 protein levels, the ATP5B/HSP60 ratio and the BEC index were higher in the tumor than in the normal tissues of CRC with or without metastasis. The following clusters were found in the dendrogram: Nrf2 and p21 with ATP5B and GADPH in all the tissues and with NRF1 in all except the tumor tissues with metastasis; Bach1 with ATP5B and GAPDH in the tumor tissues; Keap1 with p62 in all the tissues, with LC3 in the tumor tissues and with NRF1 and HO1 in the tumor tissues with metastasis. CONCLUSIONS Nrf2, Keap1, Bach1 and p21 have the association with the proteins related to mitochondrial functions different among the tissues of CRC with or without metastasis.
Collapse
Affiliation(s)
- Liang-Che Chang
- Department of Pathology, Chang Gung Memorial Hospital, Keelung and Chang Gung University, Keelung, Taiwan
| | - Chung-Wei Fan
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Keelung and Chang Gung University, Keelung, Taiwan
| | - Wen-Ko Tseng
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Keelung and Chang Gung University, Keelung, Taiwan
| | - Chung-Ching Hua
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung and Chang Gung University, Keelung, Taiwan
| |
Collapse
|
47
|
Ou X, Gao G, Bazhabayi M, Zhang K, Liu F, Xiao X. MALAT1 and BACH1 are prognostic biomarkers for triple-negative breast cancer. J Cancer Res Ther 2020; 15:1597-1602. [PMID: 31939443 DOI: 10.4103/jcrt.jcrt_282_19] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aims The purpose of this study was to investigate the potential correlation between metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and the transcription factor BTB and CNC homology 1 (BACH1) and their clinicopathological significance in triple-negative breast cancer (TNBC). Subjects and Methods MALAT1 and BACH1 were detected by immunohistochemistry using TNBC tissue microarrays of 240 patients. The association between MALAT1 and BACH1 expression levels was statistically analyzed. Moreover, the prognostic roles as well as clinical and pathological significance of MALAT1 and BACH1 expression in TNBC were determined. Statistical Analysis Used Two-tailed Pearson correlation was used to examine the correlation of BACH1 and MALA1 expression. Comparisons of clinicopathological variables between different BACH1 and MALA1 expression groups were performed using χ2 tests. Overall survival (OS) and disease-free survival (DFS) curves were plotted with the Kaplan-Meier method and the differences in OS and DFS between three groups were compared by the log-rank test. Multiple comparisons were performed using χ2 tests for subsequent individual group comparisons. Results MALAT1 and BACH1 expression was significantly correlated with tumor-node-metastasis stage, distant metastasis, pathological stage, and survival outcomes of patients. Patients with high MALAT1 and BACH1 expression exhibited shorter overall survival and disease-free survival. Conclusions These findings provide further insight into the expression pattern of MALAT1 and BACH1 in TNBC and suggest them as prognostic biomarkers for TNBC.
Collapse
Affiliation(s)
- Xueqi Ou
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Guanfeng Gao
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Meiheban Bazhabayi
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Kaiming Zhang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Feng Liu
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xiangsheng Xiao
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
48
|
Chillappagari S, Garapati V, Mahavadi P, Naehrlich L, Schmeck BT, Schmitz ML, Guenther A. Defective BACH1/HO-1 regulatory circuits in cystic fibrosis bronchial epithelial cells. J Cyst Fibros 2020; 20:140-148. [PMID: 32534959 DOI: 10.1016/j.jcf.2020.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/01/2020] [Accepted: 05/23/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The stress-regulated enzyme hemeoxygenase-1 (HO-1) contributes to the cell response towards inflammation and oxidative stress. We previously reported on curtailed HO-1 expression in cystic fibrosis (CF) bronchial epithelial (CFBE41o-) cells and CF-mice, but the molecular mechanisms for this are not known. Here, we compared healthy and CF bronchial epithelial cells for regulatory circuits controlling HO-1 protein levels. METHODS In this study, we employed immunohistochemistry on CF and healthy lung sections to examine the BACH1 protein expression. Alteration of BACH1 protein levels in 16HBE14o- and CFBE41o- cells was achieved by using either siRNA-mediated knockdown of BACH1 or by increasing miRNA-155 levels. HO-1 luciferase reporter assay was chosen to examine the downstream affects after BACH1 modulation. RESULTS Human CF lungs and cells showed increased levels of the HO-1 transcriptional repressor, BACH1, and increased miR-155 expression. Knockdown studies using BACH1 siRNA and overexpression of miR-155 did not significantly rescue HO-1 expression in CFBE41o- cells. Elevated BACH1 expression detected in CF cells was refractory to the inhibitory function of miR-155 and was instead due to increased protein stability. CONCLUSION We observed defects in the inhibitory activities of miR-155 and BACH1 on HO-1 expression in CF cells. Thus various defective regulatory loops account for dysregulated BACH1 expression in CF, which in turn may contribute to low HO-1 levels.
Collapse
Affiliation(s)
- Shashipavan Chillappagari
- Institute of Biochemistry, Justus-Liebig-University, D-35392, Giessen, Germany; Department of Internal Medicine, Justus-Liebig University, Giessen, Germany; University of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany.
| | - Virajith Garapati
- Department of Internal Medicine, Justus-Liebig University, Giessen, Germany; University of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Poornima Mahavadi
- Department of Internal Medicine, Justus-Liebig University, Giessen, Germany; University of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Lutz Naehrlich
- University of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany; Department of Pediatrics, Justus Liebig University, Giessen, Feulgenstrasse 12, 35392 Giessen, Germany
| | - Bernd T Schmeck
- University of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany; Institute for Lung Research, Department of Respiratory and Critical Care Medicine, University Medical Center Marburg, Center for Synthetic Microbiology (SYNMIKRO), Philipps-University, Marburg, Germany, Member of the German Center for Lung Research (DZL), and the German Center of Infection Research (DZIF), Marburg, Germany
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus-Liebig-University, D-35392, Giessen, Germany
| | - Andreas Guenther
- Department of Internal Medicine, Justus-Liebig University, Giessen, Germany; University of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany; Lung Clinic Waldhof-Elgershausen, Greifenstein, Germany
| |
Collapse
|
49
|
Yu S, Zhai J, Yu J, Yang Q, Yang J. Downregulation of BACH1 Protects AGAINST Cerebral Ischemia/Reperfusion Injury through the Functions of HO-1 and NQO1. Neuroscience 2020; 436:154-166. [DOI: 10.1016/j.neuroscience.2020.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/04/2023]
|
50
|
Shirjang S, Mansoori B, Mohammadi A, Shajari N, H G Duijf P, Najafi S, Abedi Gaballu F, Nofouzi K, Baradaran B. miR-330 Regulates Colorectal Cancer Oncogenesis by Targeting BACH1. Adv Pharm Bull 2020; 10:444-451. [PMID: 32665904 PMCID: PMC7335988 DOI: 10.34172/apb.2020.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/28/2019] [Accepted: 12/08/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose: Based on WHO report, colorectal cancer (CRC) is the second cause of death among patients with cancer worldwide. Dysregulation of miRNAs expressions has been demonstrated in different human cancers, especially CRC. Studies have shown that miR-330 could act as both TS-miR and/or oncomiR in different types of cancers. BACH1 is also identified as a transcription factor, which is involved in ontogenesis. In this study, we evaluated the CRC suppression via silencing of BACH1 by small silencer molecule called miR-330. Methods: Firstly, we analyzed the BACH1, miR-330-3p and miR-330-5p expressions according to the colon adenocarcinoma (COAD) and rectal adenocarcinoma (READ) project established from a patient of the colon and rectal cancer patients in The Cancer Genome Atlas (TCGA) database. The targeting of BACH1 via miR-330 in human CRC cells was evaluated by Vejnar bioinformatics methods, and confirmed by qRT-PCR and western blot analysis. Proliferation was performed by MTT assay. The MMP9, CXCR4, and VEGFR proteins were measured by western blotting. Results: The analysis of BACH1, miR-330-3p, and miR-330-5p expressions according to the COAD and READ projects showed that BACH1 was overexpressed, but miR-330-3p and miR330-5p were reduced in CRC tumors compared to normal controls. The miR-330 induction prevented proliferation of CRC cell by targeting BACH1 mRNA, which represses MMP9, C-X-C chemokine receptor type 4 (CXCR4), and vascular endothelial growth factor receptor (VEGFR) proteins expressions. Conclusion: Our results suggested that BACH1 is a potential target for miR-330 in CRC cells. The miR-330 induction inhibits CRC cells proliferation by suppressing BACH1 expression in posttranscriptional level. It was suggested that targeting of BACH1 via miRNA such as miR-330 could be a valid strategy in the field of CRC targeted therapy via modulating the oncogenic signaling pathway.
Collapse
Affiliation(s)
- Solmaz Shirjang
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Shajari
- Department of Immunology, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Pascal H G Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Katayoon Nofouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|