1
|
Soluyanova P, Quintás G, Pérez-Rubio Á, Rienda I, Moro E, van Herwijnen M, Verheijen M, Caiment F, Pérez-Rojas J, Trullenque-Juan R, Pareja E, Jover R. The Development of a Non-Invasive Screening Method Based on Serum microRNAs to Quantify the Percentage of Liver Steatosis. Biomolecules 2024; 14:1423. [PMID: 39595599 PMCID: PMC11592063 DOI: 10.3390/biom14111423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is often asymptomatic and underdiagnosed; consequently, there is a demand for simple, non-invasive diagnostic tools. In this study, we developed a method to quantify liver steatosis based on miRNAs, present in liver and serum, that correlate with liver fat. The miRNAs were analyzed by miRNAseq in liver samples from two cohorts of patients with a precise quantification of liver steatosis. Common miRNAs showing correlation with liver steatosis were validated by RT-qPCR in paired liver and serum samples. Multivariate models were built using partial least squares (PLS) regression to predict the percentage of liver steatosis from serum miRNA levels. Leave-one-out cross validation and external validation were used for model selection and to estimate predictive performance. The miRNAseq results disclosed (a) 144 miRNAs correlating with triglycerides in a set of liver biobank samples (n = 20); and (b) 124 and 102 miRNAs correlating with steatosis by biopsy digital image and MRI analyses, respectively, in liver samples from morbidly obese patients (n = 24). However, only 35 miRNAs were common in both sets of samples. RT-qPCR allowed to validate the correlation of 10 miRNAs in paired liver and serum samples. The development of PLS models to quantitatively predict steatosis demonstrated that the combination of serum miR-145-3p, 122-5p, 143-3p, 500a-5p, and 182-5p provided the lowest root mean square error of cross validation (RMSECV = 1.1, p-value = 0.005). External validation of this model with a cohort of mixed MASLD patients (n = 25) showed a root mean squared error of prediction (RMSEP) of 5.3. In conclusion, it is possible to predict the percentage of hepatic steatosis with a low error rate by quantifying the serum level of five miRNAs using a cost-effective and easy-to-implement RT-qPCR method.
Collapse
Affiliation(s)
- Polina Soluyanova
- Unidad Mixta de Investigación en Hepatología Experimental, IIS Hospital La Fe, 46026 Valencia, Spain; (P.S.); (E.M.)
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, 46010 Valencia, Spain
| | - Guillermo Quintás
- Health and Biomedicine, LEITAT Technological Center, 08225 Terrassa, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), ISCIII, 28029 Madrid, Spain
| | - Álvaro Pérez-Rubio
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Dr. Peset, 46017 Valencia, Spain; (Á.P.-R.); (E.P.)
| | - Iván Rienda
- Pathology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (I.R.); (J.P.-R.)
| | - Erika Moro
- Unidad Mixta de Investigación en Hepatología Experimental, IIS Hospital La Fe, 46026 Valencia, Spain; (P.S.); (E.M.)
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, 46010 Valencia, Spain
| | - Marcel van Herwijnen
- Department of Translational Genomics, Research Institute of Oncology and Developmental Biology (GROW), Maastricht University, 6229-ER Maastricht, The Netherlands; (M.v.H.); (M.V.); (F.C.)
| | - Marcha Verheijen
- Department of Translational Genomics, Research Institute of Oncology and Developmental Biology (GROW), Maastricht University, 6229-ER Maastricht, The Netherlands; (M.v.H.); (M.V.); (F.C.)
| | - Florian Caiment
- Department of Translational Genomics, Research Institute of Oncology and Developmental Biology (GROW), Maastricht University, 6229-ER Maastricht, The Netherlands; (M.v.H.); (M.V.); (F.C.)
| | - Judith Pérez-Rojas
- Pathology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (I.R.); (J.P.-R.)
| | - Ramón Trullenque-Juan
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Dr. Peset, 46017 Valencia, Spain; (Á.P.-R.); (E.P.)
| | - Eugenia Pareja
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Dr. Peset, 46017 Valencia, Spain; (Á.P.-R.); (E.P.)
| | - Ramiro Jover
- Unidad Mixta de Investigación en Hepatología Experimental, IIS Hospital La Fe, 46026 Valencia, Spain; (P.S.); (E.M.)
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), ISCIII, 28029 Madrid, Spain
| |
Collapse
|
2
|
Ye H, Zong Q, Zou H, Zhang R. Emerging insights into the roles of ANGPTL8 beyond glucose and lipid metabolism. Front Physiol 2023; 14:1275485. [PMID: 38107478 PMCID: PMC10722441 DOI: 10.3389/fphys.2023.1275485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
Angiopoietin-like protein 8 (ANGPTL8) is a secreted protein predominantly expressed in liver and adipose tissue. ANGPTL8 modulates the clearance of triglycerides (TGs) by suppressing the activity of lipoprotein lipase (LPL) within the plasma. Previous studies found that circulating ANGPTL8 levels were significantly increased in metabolic disorder-related diseases, such as type 2 diabetes mellitus (T2DM), obesity, metabolic syndrome and nonalcoholic fatty liver disease (NAFLD). Whether ANGPTL8 has a direct pathogenic role in these diseases remains to be determined. In this review, we summarize the emerging roles of ANGPTL8 in the regulation of inflammation, tumours, circulatory system-related diseases, and ectopic lipid deposition, which may provide new insights into the diverse functions of ANGPTL8 in various diseases beyond its well-established functions in glucose and lipid metabolism.
Collapse
Affiliation(s)
- Huimin Ye
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qinghai University, Xining, China
| | - Qunchuan Zong
- Department of Traumatology and Orthopaedics, The Affiliated Hospital of Qinghai University, Xining, China
| | - Huajie Zou
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qinghai University, Xining, China
| | - Ruixia Zhang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qinghai University, Xining, China
| |
Collapse
|
3
|
Arikan FB, Ulas M, Ustundag Y, Boyunaga H, Badem ND. Investigation of the relationship between betatrophin and certain key enzymes involved in carbohydrate and lipid metabolism in insulin-resistant mice. Horm Mol Biol Clin Investig 2023; 44:311-320. [PMID: 36869875 DOI: 10.1515/hmbci-2022-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/08/2023] [Indexed: 03/05/2023]
Abstract
OBJECTIVES The present study sought to examine the relationship of betatrophin with certain key enzymes, namely lactate dehydrogenase-5 (LDH5), citrate synthase (CS), and acetyl-CoA carboxylase-1 (ACC1), in insulin-resistant mice. METHODS Eight-week-old male C57BL6/J mice were used in this study (experimental group n=10 and control group n=10). S961 was administered using an osmotic pump to induce insulin resistance in the mice. The betatrophin, LDH5, CS, and ACC1 expression levels were determined from the livers of the mice using the real-time polymerase chain reaction (RT-PCR) method. Moreover, biochemical parameters such as the serum betatrophin, fasting glucose, insulin, triglyceride, total cholesterol, and high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol levels were analyzed. RESULTS The betatrophin expression and serum betatrophin (p=0.000), fasting glucose, insulin, triglyceride (p≤0.001), and total cholesterol (p=0.013) levels were increased in the experimental group. In addition, the CS gene expression level was statistically significantly decreased in the experimental group (p=0.01). Although strong correlation was found between the expression and serum betatrophin and triglyceride levels, no correlation was found between the betatrophin gene expression and the LDH5, ACC1, and CS gene expression levels. CONCLUSIONS The betatrophin level appears to play an important role in the regulation of triglyceride metabolism, while insulin resistance increases both the betatrophin gene expression and serum levels and decreases the CS expression level. The findings suggest that betatrophin may not regulate carbohydrate metabolism through CS and LDH5 or lipid metabolism directly through the ACC1 enzyme.
Collapse
Affiliation(s)
- Funda Bulut Arikan
- Faculty of Medicine, Department of Physiology, Kırıkkale University, Kırıkkale, Türkiye
| | - Mustafa Ulas
- Faculty of Medicine, Department of Physiology, Fırat University, Elazığ, Türkiye
| | - Yasemin Ustundag
- Faculty of Veterinary, Department of Anatomy, Dokuz Eylul University, Izmir, Türkiye
| | - Hakan Boyunaga
- Faculty of Medicine, Medical Biochemistry Department, Medipol University, Ankara, Türkiye
| | - Nermin Dindar Badem
- Department of Medical Biochemistry, Health Sciences University, Gülhane Training and Research Hospital, Ankara, Türkiye
| |
Collapse
|
4
|
Dong R, Wang Z, Zhao Q, Yan Y, Jiang Q. Molecular characterization and immune functions of lipasin in Nile tilapia (Oreochromis niloticus): Involvement in the regulation of tumor necrosis factor-α secretion. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108549. [PMID: 36646336 DOI: 10.1016/j.fsi.2023.108549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Lipasin, the product of the angiopoietin-like 8 (angptl8) gene, is known as a critical regulator of plasma lipid metabolism. However, its immune function in vertebrates is currently poorly understood. By 5'/3'-rapid amplification of cDNA ends (RACE), we established the structural identity of Nile tilapia (Oreochromis niloticus) angptl8. The transcripts of tilapia angptl8 were widely expressed in various tissues, with the highest levels in the liver. Following lipopolysaccharide in vivo challenges, time-dependent angptl8 gene expression was observed in the head kidney and liver. On the basis of the sequence obtained, we produced recombinant lipasin that inhibited lipoprotein lipase activity. Treatment of head kidney leukocytes with lipasin stimulated tumor necrosis factor-α (TNF-α) secretion and gene expression. In addition, lipasin-induced TNF-α secretion could be prevented by inhibiting the nuclear factor-kappa B (NF-κB) signaling pathway. Furthermore, lipasin enhanced the phosphorylation and degradation of IκBα and promoted translocation of the p65 subunit of NF-κB to the nucleus. Collectively, the current findings suggested that lipasin was involved in the immune response of Nile tilapia and stimulated TNF-α secretion by activating the NF-κB pathway in tilapia head kidney leukocytes.
Collapse
Affiliation(s)
- Rui Dong
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Zixi Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Qianqian Zhao
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Yisha Yan
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Quan Jiang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.
| |
Collapse
|
5
|
Li B, Yang J, Gong Y, Xiao Y, Zeng Q, Xu K, Duan Y, He J, He J, Ma H. Integrated Analysis of Liver Transcriptome, miRNA, and Proteome of Chinese Indigenous Breed Ningxiang Pig in Three Developmental Stages Uncovers Significant miRNA-mRNA-Protein Networks in Lipid Metabolism. Front Genet 2021; 12:709521. [PMID: 34603377 PMCID: PMC8481880 DOI: 10.3389/fgene.2021.709521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Abstract
Liver is an important metabolic organ of mammals. During each transitional period of life, liver metabolism is programmed by a complex molecular regulatory system for multiple physiological functions, many pathways of which are regulated by hormones and cytokines, nuclear receptors, and transcription factors. To gain a comprehensive and unbiased molecular understanding of liver growth and development in Ningxiang pigs, we analyzed the mRNA, microRNA (miRNA), and proteomes of the livers of Ningxiang pigs during lactation, nursery, and fattening periods. A total of 22,411 genes (19,653 known mRNAs and 2758 novel mRNAs), 1122 miRNAs (384 known miRNAs and 738 novel miRNAs), and 1123 unique proteins with medium and high abundance were identified by high-throughput sequencing and mass spectrometry. We show that the differences in transcriptional, post-transcriptional, or protein levels were readily identified by comparing different time periods, providing evidence that functional changes that may occur during liver development are widespread. In addition, we found many overlapping differentially expressed genes (DEGs)/differentially expressed miRNAs (DEMs)/differentially expressed proteins (DEPs) related to glycolipid metabolism in any group comparison. These overlapping DEGs/DEMs/DGPs may play an important role in functional transformation during liver development. Short Time-series Expression Miner (STEM) analysis revealed multiple expression patterns of mRNA, miRNA, and protein in the liver. Furthermore, several diverse key Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including immune defense, glycolipid metabolism, protein transport and uptake, and cell proliferation and development, were identified by combined analysis of DEGs and DGPs. A number of predicted miRNA-mRNA-protein pairs were found and validated by qRT-PCR and parallel reaction monitoring (PRM) assays. The results provide new and important information about the genetic breeding of Ningxiang pigs, which represents a foundation for further understanding the molecular regulatory mechanisms of dynamic development of liver tissue, functional transformation, and lipid metabolism.
Collapse
Affiliation(s)
- Biao Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Yan Gong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qinghua Zeng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ningxiang Pig Farm of Dalong Livestock Technology Co., Ltd., Ningxiang, China
| | - Kang Xu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences (CAS), Changsha, China
| | - Yehui Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences (CAS), Changsha, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jun He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
6
|
Hao Q, Zheng A, Zhang H, Cao H. Down-regulation of betatrophin enhances insulin sensitivity in type 2 diabetes mellitus through activation of the GSK-3β/PGC-1α signaling pathway. J Endocrinol Invest 2021; 44:1857-1868. [PMID: 33464548 DOI: 10.1007/s40618-020-01493-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/23/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The incidence of type 2 diabetes mellitus (T2DM) among children and adolescents has been rising. Accumulating evidences have noted the significant role of betatrophin in the regulation of lipid metabolism and glucose homeostasis. In our study, we tried to figure out the underlying mechanism of betatrophin in insulin resistance (IR) in type 2 diabetes mellitus (T2DM). METHODS First, fasting serum betatrophin, fasting blood glucose (FBG), insulin, total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) were detected in T2DM children. The homeostasis model assessment of insulin resistance (HOMA-IR), Gutt insulin sensitivity index (ISIG) and Matsuda insulin sensitivity index (ISIM) were calculated. A T2DM-IR mouse model was induced by high-fat diet, with the expression of GSK-3β and PGC-1α detected. Besides, HepG2 cells were induced by a high concentration of insulin to establish an IR cell model (HepG2-IR). The cell viability, glucose consumption, liver glycogen content, inflammation, and fluorescence level of GSK-3β and PGC-1α were analyzed. RESULTS Betatrophin was highly expressed in serum of T2DM children and was positively correlated with FBG, insulin, TC, TG, LDL-C and HOMA-IR, while negatively correlated with ISIG and ISIM. Betatrophin and GSK-3β in the liver tissues of T2DM-IR mice were increased, while the PGC-1α expression was decreased. Betatrophin expression was negatively correlated with PGC-1α and positively correlated with GSK-3β. Silencing of betatrophin enhanced insulin sensitivity through the activation of GSK-3β/PGC-1α signaling pathway. In vitro experiments also found that silencing of betatrophin promoted glucose consumption and glycogen synthesis while inhibited inflammation. CONCLUSION Our findings concluded that silencing of betatrophin could enhance insulin sensitivity and improve histopathological morphology through the activation of GSK-3β/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Q Hao
- Department of Endocrinology, The First People's Hospital of Shangqiu, No.292 Kaixuan South Road, Shangqiu, 476100, Henan, People's Republic of China
| | - A Zheng
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, Henan, People's Republic of China
| | - H Zhang
- Department of Endocrinology, The First People's Hospital of Shangqiu, No.292 Kaixuan South Road, Shangqiu, 476100, Henan, People's Republic of China
| | - H Cao
- Department of Endocrinology, The First People's Hospital of Shangqiu, No.292 Kaixuan South Road, Shangqiu, 476100, Henan, People's Republic of China.
| |
Collapse
|
7
|
Cerda A, Bortolin RH, Manriquez V, Salazar L, Zambrano T, Fajardo CM, Hirata MH, Hirata RDC. Effect of statins on lipid metabolism-related microRNA expression in HepG2 cells. Pharmacol Rep 2021; 73:868-880. [PMID: 33721286 DOI: 10.1007/s43440-021-00241-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Statins are potent cholesterol-lowering drugs that prevent cardiovascular events. microRNAs (miRNAs) modulate the expression of genes involved in metabolic pathways and cardiovascular functions post-transcriptionally. This study explored the effects of statins on the expression of miRNAs and their target genes involved in lipid metabolism in HepG2 cells. METHODS HepG2 cells were treated with atorvastatin or simvastatin (0.1-10 µM) for 24 h. The expression of 84 miRNAs and nine target genes, selected by in silico studies, was measured by qPCR Array and TaqMan-qPCR, respectively. RESULTS Five miRNAs were upregulated (miR-129, miR-143, miR-205, miR-381 and miR-495) and two downregulated (miR-29b and miR-33a) in atorvastatin-treated HepG2 cells. Simvastatin also downregulated miR-33a expression. Both statins upregulated LDLR, HMGCR, LRP1, and ABCG1, and downregulated FDFT1 and ABCB1, whereas only atorvastatin increased SCAP mRNA levels. In silico analysis of miRNA-mRNA interactions revealed a single network with six miRNAs modulating genes involved in lipogenesis and lipid metabolism. The statin-dysregulated miRNAs were predicted to target genes involved in cellular development and differentiation, regulation of metabolic process and expression of genes involved in inflammation, and lipid metabolism disorders contributing to metabolic and liver diseases. CONCLUSIONS Atorvastatin-mediated miR-129, miR-143, miR-205, miR-381, and miR-495 upregulation, and miR-29b, and miR-33a downregulation, modulate the expression of target genes involved in lipogenesis and lipid metabolism. Thus, statins may prevent hepatic lipid accumulation and ameliorate dyslipidemia.
Collapse
Affiliation(s)
- Alvaro Cerda
- Department of Basic Sciences, Center of Excellence in Translational Medicine, BIOREN, Universidad de La Frontera, Av. Alemania 0458, 4810296, Temuco, Chile.
| | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Victor Manriquez
- Department of Basic Sciences, Center of Excellence in Translational Medicine, BIOREN, Universidad de La Frontera, Av. Alemania 0458, 4810296, Temuco, Chile
| | - Luis Salazar
- Department of Basic Sciences, Center of Molecular Biology and Pharmacogenetics, BIOREN, Universidad de La Frontera, 4810296, Temuco, Chile
| | - Tomas Zambrano
- Department of Medical Technology, School of Medicine, Universidad de Chile, 8380456, Santiago, Chile
| | - Cristina Moreno Fajardo
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| |
Collapse
|
8
|
Therapeutic Value of miRNAs in Coronary Artery Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8853748. [PMID: 33953838 PMCID: PMC8057887 DOI: 10.1155/2021/8853748] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/25/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
Atherosclerotic ischemic coronary artery disease (CAD) is a significant community health challenge and the principal cause of morbidity and mortality in both developed and developing countries for all ethnic groups. The progressive chronic coronary atherosclerosis is the main underlying cause of CAD. Although enormous progress occurred in the last three decades in the management of cardiovascular diseases, the prevalence of CAD continues to increase worldwide, indicating the need for discovery of deeper molecular insights of CAD mechanisms, biomarkers, and innovative therapeutic targets. Recently, several research groups established that microRNAs essentially regulate various cardiovascular development and functions, and a deregulated cardiac enriched microRNA profile plays a vital role in the pathogenesis of CAD and its biological aging. Numerous studies established that over- or downregulation of a single miRNA gene by ago-miRNA or anti-miRNA is enough to modify the CAD disease process, significantly prevent age-dependent cardiac cell death, and markedly improve cardiac function. In the light of more recent experimental and clinical evidences, we briefly reviewed and discussed the involvement of miRNAs in CAD and their possible diagnostic/therapeutic values. Moreover, we also focused on the role of miRNAs in the initiation and progression of the atherosclerosis plaque as the strongest risk factor for CAD.
Collapse
|
9
|
Abu-Farha M, Ghosh A, Al-Khairi I, Madiraju SRM, Abubaker J, Prentki M. The multi-faces of Angptl8 in health and disease: Novel functions beyond lipoprotein lipase modulation. Prog Lipid Res 2020; 80:101067. [PMID: 33011191 DOI: 10.1016/j.plipres.2020.101067] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Angiopoietin-like protein (ANGPTL) family members, mainly ANGPTL3, ANGPTL4 and ANGPTL8, are physiological inhibitors of lipoprotein lipase (LPL), and play a critical role in lipoprotein and triglyceride metabolism in response to nutritional cues. ANGPTL8 has been described by different names in various studies and has been ascribed various functions at the systemic and cellular levels. Circulating ANGPTL8 originates mainly from the liver and to a smaller extent from adipose tissues. In the blood, ANGPTL8 forms a complex with ANGPTL3 or ANGPTL4 to inhibit LPL in fed or fasted conditions, respectively. Evidence is emerging for additional intracellular and receptor-mediated functions of ANGPTL8, with implications in NFκB mediated inflammation, autophagy, adipogenesis, intra-cellular lipolysis and regulation of circadian clock. Elevated levels of plasma ANGPTL8 are associated with metabolic syndrome, type 2 diabetes, atherosclerosis, hypertension and NAFLD/NASH, even though the precise relationship is not known. Whether ANGPTL8 has direct pathogenic role in these diseases, remains to be explored. In this review, we develop a balanced view on the proposed association of this protein in the regulation of several pathophysiological processes. We also discuss the well-established functions of ANGPTL8 in lipoprotein metabolism in conjunction with the emerging novel extracellular and intracellular roles of ANGPTL8 and the implicated metabolic and signalling pathways. Understanding the diverse functions of ANGPTL8 in various tissues and metabolic states should unveil new opportunities of therapeutic intervention for cardiometabolic disorders.
Collapse
Affiliation(s)
- Mohamed Abu-Farha
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Anindya Ghosh
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Irina Al-Khairi
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - S R Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Kuwait City, Kuwait..
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| |
Collapse
|
10
|
Zou H, Xu Y, Chen X, Yin P, Li D, Li W, Xie J, Shao S, Liu L, Yu X. Predictive values of ANGPTL8 on risk of all-cause mortality in diabetic patients: results from the REACTION Study. Cardiovasc Diabetol 2020; 19:121. [PMID: 32746907 PMCID: PMC7398345 DOI: 10.1186/s12933-020-01103-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background Angiopoietin-like protein 8 (ANGPTL8), an important regulator of lipid metabolism, is increased in diabetes and is associated with insulin resistance. However, the role of ANGPTL8 in the outcomes of diabetic patients remains unclear. This study aimed to investigate circulating levels of ANGPTL8 in participants with and without diabetes and its potential associations with clinical outcomes in a 5 year cohort study. Methods Propensity-matched cohorts of subjects with and without diabetes from the Risk Evaluation of Cancers in Chinese Diabetic Individuals: A longitudinal (REACTION) study were generated on the basis of age, sex and body mass index at baseline. The primary outcome was all-cause mortality. The secondary outcomes were a composite of new-onset major adverse cardiovascular events, hospitalization for heart failure, and renal dysfunction (eGFR < 60/min/1.73 m2). Results We identified 769 matched pairs of diabetic patients and control subjects. Serum ANGPTL8 levels were elevated in patients with diabetes compared to control subjects (618.82 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pm$$\end{document}± 318.08 vs 581.20 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pm$$\end{document}± 299.54 pg/mL, p = 0.03). Binary logistic regression analysis showed that elevated ANGPTL8 levels were associated with greater risk ratios (RRs) of death (RR in quartile 4 vs. quartile 1, 3.54; 95% CI 1.32–9.50) and renal dysfunction (RR in quartile 4 vs. quartile 1, 12.43; 95% CI 1.48–104.81) only in diabetic patients. Multivariable-adjusted restricted cubic spline analyses revealed a significant, linear relationship between ANGPTL8 and all-cause mortality in diabetic patients (p for nonlinear trend = 0.99, p for linear trend = 0.01) but not in control subjects (p for nonlinear trend = 0.26, p for linear trend = 0.80). According to ROC curve analysis, the inclusion of ANGPTL8 in QFrailty score significantly improved its predictive performance for mortality in patients with diabetes. Conclusion Serum ANGPTL8 levels were associated with an increased risk of all-cause mortality and could be used as a potential biomarker for the prediction of death in patients with diabetes.
Collapse
Affiliation(s)
- Huajie Zou
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yongping Xu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Xi Chen
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Ping Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danpei Li
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Wenjun Li
- Computer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhui Xie
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Shiying Shao
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Liegang Liu
- Hubei Key Laboratory of Food Nutrition and Safety, Department of Nutrition and Food Hygiene, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Wuhan, China
| | - Xuefeng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
11
|
Zou H, Duan W, Zhang Z, Chen X, Lu P, Yu X. The circulating ANGPTL8 levels show differences among novel subgroups of adult patients with diabetes and are associated with mortality in the subsequent 5 years. Sci Rep 2020; 10:12859. [PMID: 32732946 PMCID: PMC7393150 DOI: 10.1038/s41598-020-69091-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
ANGPTL8, an important regulator of glucose and lipid metabolism, is associated with diabetes, but the role of ANGPTL8 in the outcomes of novel subgroups of diabetes remains unclear. To assess the circulating ANGPTL8 levels in novel subgroups of diabetes and their association with health outcomes, we performed a data-driven cluster analysis (k-means) of patients with newly diagnosed diabetes (741 patients enrolled from 2011 through 2016) from the Risk Evaluation of Cancers in Chinese Diabetic Individuals: a longitudinal (REACTION) study. The primary outcomes were mortality from all causes and cardiovascular diseases (CVD), and the secondary outcome was any cardiovascular event. Comparisons among groups were performed using the Kruskal-Wallis test, and the correlations between variables were assessed using the Pearson correlation test. Logistic regression was used to detect associations between the risk of outcomes and the ANGPTL8 levels. We identified four replicable clusters of patients with diabetes that exhibited significantly different patient characteristics and risks of all-cause mortality. The serum ANGPTL8 levels in the cluster of mild age-related diabetes (MARD), severe insulin-resistant diabetes (SIRD), and severe insulin-deficient diabetes (SIDD) were significantly higher than those in the mild obesity-related diabetes (MOD) cluster (685.01 ± 24.50 vs. 533.5 ± 18.39, p < 0.001; 649.69 ± 55.83 vs. 533.5 ± 18.39, = 0.040; 643.29 ± 30.89 vs. 533.5 ± 18.39, p = 0.001). High circulating ANGPTL8 levels were more highly associated with a greater hazard of all-cause mortality (quartile 4 vs 1: risk ratio [RR] 3.23, 95% CI 1.13-9.22; per unit increase in the Z score: RR 1.53, 95% CI 1.17-2.01) than low circulating ANGPTL8 levels. In conclusion, this 5-year follow-up REACTION study revealed that the circulating ANGPTL8 levels show differences among novel subgroups of adult patients with diabetes and are associated with all-cause mortality in the subsequent 5 years.
Collapse
Affiliation(s)
- Huajie Zou
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Wu Duan
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Zeqing Zhang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Xi Chen
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Puhan Lu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Xuefeng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
12
|
Abdeltawab A, Zaki ME, Abdeldayem Y, Mohamed AA, Zaied SM. Circulating micro RNA-223 and angiopoietin-like protein 8 as biomarkers of gestational diabetes mellitus. Br J Biomed Sci 2020; 78:12-17. [PMID: 32421465 DOI: 10.1080/09674845.2020.1764211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a serious health problem associated with both foetal and maternal complications. New biomarkers that can predict or help in the early diagnosis of GDM are needed to minimize the hazards of hyperglycaemia in pregnant women and their offspring. We hypothesised a link between levels of microRNA-223 (miRNA-223) and Angiopoietin-Like Protein 8 (ANGPTL8) and GDM. MATERIALS AND METHODS The study included 109 patients with confirmed early diagnosed GDM and 103 healthy control pregnant women in their second or third trimester. miRNA-223 and ANGPTL8 blood levels were assessed by real-time RT-PCR and sandwich ELISA, respectively, laboratory markers by standard methods. RESULTS There was a significant increase in mean [SD] miRNA-223 and ANGPTL8 in GDM (0.31 [0.06] relative units) and (692 [199] pg/ml), respectively, in the GDM women compared to healthy pregnant women (0.17[0.05] relative units) and (261 [127] pg/ml), respectively, P < 0.001. miRNA-223 and ANGPTL8 correlated significantly with each other (r = 0.38, P < 0.001) and with fasting, 1-h and 2-h postprandial blood glucose levels (all P ≤ 0.002) HbA1 c (P < 0.025), total cholesterol (P < 0.01), LDL-C and triglycerides (both P ≤ 0.005). The ROC area under curve (AUC) (95%CI) was 0.94 (0.91-0.97) for ANGPTL8, 0.92 (0.88-0.96) for miRNA-223 and 0.97 (0.95 - 0.99) for their combination. CONCLUSIONS These findings support the hypothesis of involvement of both miRNA-223 and ANGPTL8 in the pathogenesis of GDM. The difference between levels in GDM patients and in control pregnant women indicates potential use for early diagnosis or prediction of GDM.
Collapse
Affiliation(s)
- A Abdeltawab
- Physiology Department, College of Medicine, Jouf University , Sakaka, Saudi Arabia.,Physiology Department, Faculty of Medicine, Beni-Suef University , Beni-Suef, Egypt
| | - M E Zaki
- Clinical Pathology Department, Faculty of Medicine, Mansoura University , Mansoura, Egypt
| | - Y Abdeldayem
- Obstetric and Gynecology Department, Mansoura University , Mansoura, Egypt
| | - A A Mohamed
- Medical Biochemistry Division, Pathology Department, Jouf University , Sakaka, Saudi Arabia.,Medical Biochemistry Department, Faculty of Medicine, Beni-Suef University , Beni-Suef, Egypt
| | - S M Zaied
- Clinical and Chemical Pathology Department, Faculty of Medicine, Beni-Suef University , Beni-Suef, Egypt
| |
Collapse
|
13
|
Holmannova D, Borska L, Andrys C, Borsky P, Kremlacek J, Hamakova K, Rehacek V, Malkova A, Svadlakova T, Palicka V, Krejsek J, Fiala Z. The Impact of Psoriasis and Metabolic Syndrome on the Systemic Inflammation and Oxidative Damage to Nucleic Acids. J Immunol Res 2020; 2020:7352637. [PMID: 32537470 PMCID: PMC7256681 DOI: 10.1155/2020/7352637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/14/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Psoriasis is a chronic systemic inflammatory disease associated with a wide range of comorbidities, including metabolic syndrome (MetS). Serum calprotectin, ANGPTL8, and oxidative damage to nucleic acids might be associated with both diseases. The presented study describes the influence of psoriasis and MetS on the serum levels of markers of systemic inflammation (calprotectin and ANGPTL8) and markers of oxidative damage to nucleic acids. The applicability of serum levels of calprotectin and ANGPTL8 for monitoring of the activity of psoriasis (diagnostic markers) is also evaluated. METHODS Clinical examination (PASI score, MetS), enzyme-linked immunosorbent assay (ELISA), and Enzyme Immunoassay (EIA). Serum calprotectin, ANGPTL8, 8-hydroxy-2'-deoxyguanosine, 8-hydroxyguanosine, and 8-hydroxyguanine. Results and Conclusions. The psoriasis significantly increased the serum level of calprotectin and the serum level of oxidative damage to nucleic acids, however not the serum level of ANGPTL8. The presence of MetS did not significantly affect the serum levels of calprotectin, ANGPTL8, and oxidative damage to nucleic acids in either psoriasis patients or controls. It seems that the serum level of calprotectin (but not the serum level of ANGPTL8) could be used as a biomarker for monitoring the activity of psoriasis.
Collapse
Affiliation(s)
- Drahomira Holmannova
- Institute of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | - Lenka Borska
- Institute of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | - Ctirad Andrys
- Institute of Clinical Immunology and Allergology, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | - Pavel Borsky
- Institute of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
- Institute of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | - Jan Kremlacek
- Institute of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | - Kvetoslava Hamakova
- Clinic of Dermatology and Venereology, University Hospital Hradec Kralove, Czech Republic
| | - Vit Rehacek
- Transfusion Center, University Hospital, Hradec Kralove 500 03, Czech Republic
| | - Andrea Malkova
- Institute of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | - Tereza Svadlakova
- Institute of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
- Institute of Clinical Immunology and Allergology, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | - Vladimir Palicka
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | - Jan Krejsek
- Institute of Clinical Immunology and Allergology, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | - Zdenek Fiala
- Institute of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| |
Collapse
|
14
|
Zheng J, Liu J, Hong BS, Ke W, Huang M, Li Y. Circulating betatrophin/ANGPTL8 levels correlate with body fat distribution in individuals with normal glucose tolerance but not those with glucose disorders. BMC Endocr Disord 2020; 20:51. [PMID: 32299395 PMCID: PMC7161171 DOI: 10.1186/s12902-020-0531-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The relationship between betatrophin/ANGPTL8 and obesity has been investigated using body mass index (BMI); however, since BMI reflects overall adiposity rather than body fat distribution, it remains unclear whether fat deposition in different areas of the body affects betatrophin expression. Here, we investigated the correlation between circulating betatrophin levels and body fat distribution in patients with different glucose tolerance. METHODS We performed a cross-sectional study in 128 participants with impaired glucose tolerance (IGT; n = 64) or normal glucose tolerance (NGT; n = 64). Circulating betatrophin levels were detected by enzyme-linked immunosorbent assay (ELISA). Body fat distribution (subcutaneous, visceral, and limb fat) was measured by magnetic resonance imaging (MRI) and a body fat meter. RESULTS After controlling for age, sex, and BMI, betatrophin was correlated positively with visceral adipose tissue-to-subcutaneous adipose tissue ratio (VAT/SAT ratio; r = 0.339, p = 0.009) and negatively with body fat ratio (BFR; r = - 0.275, p = 0.035), left lower limb fat ratio (LLR; r = - 0.330, p = 0.011), and right lower limb fat ratio (RLR; r = - 0.288, p = 0.027) in the NGT group, with these correlations remaining after controlling for triglycerides. VAT/SAT ratio (standardized β = 0.419, p = 0.001) was independently associated with serum betatrophin levels; however, betatrophin was not associated with body fat distribution variables in the IGT group. CONCLUSIONS Circulating betatrophin levels correlated positively with VAT/SAT ratio and negatively with lower limb fat, but not with subcutaneous or upper limb fat, in individuals with normal glucose tolerance. Thus, betatrophin may be a potential biomarker for body fat distribution in individuals without glucose disorders.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Endocrinology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Juan Liu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Beverly S Hong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weijian Ke
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minmin Huang
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
15
|
Morelli MB, Chavez C, Santulli G. Angiopoietin-like proteins as therapeutic targets for cardiovascular disease: focus on lipid disorders. Expert Opin Ther Targets 2020; 24:79-88. [PMID: 31856617 DOI: 10.1080/14728222.2020.1707806] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Angiopoietin-like (ANGPTL) proteins belong to a family of eight secreted factors that are structurally related to proteins that modulate angiogenesi, commonly known as angiopoietins. Specifically, ANGPTL3, ANGPTL4, and ANGPTL8 (the 'ANGPT L3-4-8 triad'), have surfaced as principal regulators of plasma lipid metabolism by functioning as potent inhibitors of lipoprotein lipase. The targeting of these proteins may open up future therapeutic avenues for metabolic and cardiovascular disease.Areas covered: This article systematically summarizes the compelling literature describing the mechanistic roles of ANGPTL3, 4, and 8 in lipid metabolism, emphasizing their importance in determining the risk of cardiovascular disease. We shed light on population-based studies linking loss-of-function variations in ANGPTL3, 4, and 8 with decreased risk of metabolic conditions and cardiovascular disorders. We also discuss how the strategies aiming at targeting the ANGPT L3-4-8 triad could offer therapeutic benefit in the clinical scenario.Expert opinion: Monoclonal antibodies and antisense oligonucleotides that target ANGPTL3, 4, and 8 are potentially an efficient therapeutic strategy for hypertriglyceridemia and cardiovascular risk reduction, especially in patients with limited treatment options. These innovative therapeutical approaches are at an embryonic stage in development and hence further investigations are necessary for eventual use in humans.
Collapse
Affiliation(s)
- Marco Bruno Morelli
- Department of Medicine; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA.,Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The "Norman Fleischer" Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, NY, New York, USA
| | - Christopher Chavez
- Department of Medicine; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Gaetano Santulli
- Department of Medicine; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA.,Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The "Norman Fleischer" Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, NY, New York, USA.,Department of Advanced Biomedical Sciences and International Translational Research and Medical Education Consortium (ITME), "Federico II" University, Naples, Italy
| |
Collapse
|
16
|
Guo C, Zhao Z, Deng X, Chen Z, Tu Z, Yuan G. Regulation of angiopoietin-like protein 8 expression under different nutritional and metabolic status. Endocr J 2019; 66:1039-1046. [PMID: 31631098 DOI: 10.1507/endocrj.ej19-0263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with increasing prevalence worldwide. Angiopoietin-like protein 8 (ANGPTL8), a member of the angiopoietin-like protein family, is involved in glucose metabolism, lipid metabolism, and energy homeostasis and believed to be associated with T2DM. Expression levels of ANGPTL8 are often significantly altered in metabolic diseases, such as non-alcoholic fatty liver disease (NAFLD) and diabetes mellitus. Studies have shown that ANGPTL8, together with other members of this protein family, such as angiopoietin-like protein 3 (ANGPTL3) and angiopoietin-like protein 4 (ANGPTL4), regulates the activity of lipoprotein lipase (LPL), thereby participating in the regulation of triglyceride related lipoproteins (TRLs). In addition, members of the angiopoietin-like protein family are varyingly expressed among different tissues and respond differently under diverse nutritional and metabolic status. These findings may provide new options for the diagnosis and treatment of diabetes, metabolic syndromes and other diseases. In this review, the interaction between ANGPTL8 and ANGPTL3 or ANGPTL4, and the differential expression of ANGPTL8 responding to different nutritional and metabolic status during the regulation of LPL activity were reviewed.
Collapse
Affiliation(s)
- Chang Guo
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Zhicong Zhao
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Zian Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhigang Tu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| |
Collapse
|
17
|
Huang JW, Chen CJ, Yen CH, Chen YMA, Liu YP. Loss of Glycine N-Methyltransferase Associates with Angiopoietin-Like Protein 8 Expression in High Fat-Diet-Fed Mice. Int J Mol Sci 2019; 20:ijms20174223. [PMID: 31470507 PMCID: PMC6747252 DOI: 10.3390/ijms20174223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/16/2022] Open
Abstract
Imbalance of lipid metabolism is a main cause of metabolic syndrome leading to life-threatening metabolic diseases. Angiopoietin-like protein 8 (Angptl8) was recently identified as a liver and adipose tissue-released hormone that is one of the molecules involved in triglyceride metabolism. However, the regulatory mechanism of Angptl8 is largely unknown. A high fat diet (HFD)-fed mouse model, which showed high cholesterol, high triglyceride, and high insulin in the blood, revealed the upregulation of hepatic and plasma Angptl8 and the downregulation of hepatic glycine N-methyltransferase (GNMT). The inverse correlation of hepatic Angptl8 and GNMT expression in the livers of HFD-fed mice was also confirmed in a publicly available microarray dataset. The mechanistic study using primary hepatocytes showed that the Angptl8 expression could be induced by insulin treatment in a dose- and time-dependent manner. Inhibition of PI3K/Akt pathway by the specific inhibitors or the dominant-negative Akt blocked the insulin-induced Angptl8 expression. Moreover, knockout of GNMT promoted the Akt activation as well as the Angptl8 expression. These results suggested that GNMT might be involved in insulin-induced Angptl8 expression in HFD-mediated metabolic syndrome.
Collapse
Affiliation(s)
- Jian-Wei Huang
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chao-Ju Chen
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Ming Arthur Chen
- Master Program of Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Peng Liu
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|