1
|
Romsos EL, Kiesler KM, Steffen CR, Borsuk LA, Riman S, Mullen LE, Irwin JA, Vallone PM, Gettings KB. Development of Publicly Available Forensic DNA Sequence Mixture Data. Genes (Basel) 2025; 16:333. [PMID: 40149484 PMCID: PMC11941798 DOI: 10.3390/genes16030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Background: In 2018, the Next-Generation Sequencing Committee of SWGDAM queried bioinformatic and statistical interpretation method developers regarding data needs for the development of sequence-based probabilistic genotyping software. Methods: Based on this engagement, a set of 74 mixture samples was conceived and created using 11 single-source samples. The allelic overlap among these samples was evaluated and sample combinations of varying complexity were selected, aiming to represent the variability observed in forensic casework. Results: The samples were distributed into a 96-well plate design containing several features: (1) three-person mixtures of 1% to 5% minor components in triplicate with varying levels of input DNA to provide information on sensitivity and reproducibility, (2) three-person mixtures containing degraded DNA of either only the major contributor or all three contributors, (3) four- and five-person mixtures with varying ratios and donors, (4) a single-source dilution series. Conclusions: Mixture samples were prepared and have been sequenced thus far with three commercially available kits targeting forensic short tandem repeat (STR) and single nucleotide polymorphism (SNP) markers, with FASTQ data files and metadata publicly available at doi.org/10.18434/M32157.
Collapse
Affiliation(s)
- Erica L. Romsos
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA; (E.L.R.); (K.M.K.); (C.R.S.); (L.A.B.); (S.R.); (L.E.M.); (P.M.V.)
| | - Kevin M. Kiesler
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA; (E.L.R.); (K.M.K.); (C.R.S.); (L.A.B.); (S.R.); (L.E.M.); (P.M.V.)
| | - Carolyn R. Steffen
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA; (E.L.R.); (K.M.K.); (C.R.S.); (L.A.B.); (S.R.); (L.E.M.); (P.M.V.)
| | - Lisa A. Borsuk
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA; (E.L.R.); (K.M.K.); (C.R.S.); (L.A.B.); (S.R.); (L.E.M.); (P.M.V.)
| | - Sarah Riman
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA; (E.L.R.); (K.M.K.); (C.R.S.); (L.A.B.); (S.R.); (L.E.M.); (P.M.V.)
| | - Lauren E. Mullen
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA; (E.L.R.); (K.M.K.); (C.R.S.); (L.A.B.); (S.R.); (L.E.M.); (P.M.V.)
| | - Jodi A. Irwin
- Federal Bureau of Investigation Laboratory, 2501 Investigation Parkway, Quantico, VA 22135, USA;
| | - Peter M. Vallone
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA; (E.L.R.); (K.M.K.); (C.R.S.); (L.A.B.); (S.R.); (L.E.M.); (P.M.V.)
| | - Katherine B. Gettings
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA; (E.L.R.); (K.M.K.); (C.R.S.); (L.A.B.); (S.R.); (L.E.M.); (P.M.V.)
| |
Collapse
|
2
|
Terrado-Ortuño N, May P. Forensic DNA phenotyping: a review on SNP panels, genotyping techniques, and prediction models. Forensic Sci Res 2025; 10:owae013. [PMID: 39990695 PMCID: PMC11843099 DOI: 10.1093/fsr/owae013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/16/2023] [Indexed: 02/25/2025] Open
Abstract
In the past few years, forensic DNA phenotyping has attracted a strong interest in the forensic research. Among the increasing publications, many have focused on testing the available panels to infer biogeographical ancestry on less represented populations and understanding the genetic mechanisms underlying externally visible characteristics. However, there are currently no publications that gather all the existing panels limited to forensic DNA phenotyping and discuss the main technical limitations of the technique. In this review, we performed a bibliographic search in Scopus database of phenotyping-related literature, which resulted in a total of 48, 43, and 15 panels for biogeographical ancestry, externally visible characteristics, and both traits inference, respectively. Here we provide a list of commercial and non-commercial panels and the limitations regarding the lack of harmonization in terms of terminology (i.e., categorization and measurement of traits) and reporting, the lack of genetic knowledge and environment influence to select markers and develop panels, and the debate surrounding the selection of genotyping technologies and prediction models and algorithms. In conclusion, this review aims to be an updated guide and to present an overview of the current related literature.
Collapse
Affiliation(s)
- Nuria Terrado-Ortuño
- Luxembourg Centre for Systems Biomedicine, Genome Analysis, Bioinformatics Core, Esch-sur-Alzette, Luxembourg
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, Genome Analysis, Bioinformatics Core, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
3
|
Tripathi P, Render R, Nidhi S, Tripathi V. Microbial genomics: a potential toolkit for forensic investigations. Forensic Sci Med Pathol 2025; 21:417-429. [PMID: 38878110 DOI: 10.1007/s12024-024-00830-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 03/29/2025]
Abstract
Microbial forensics is a new discipline of science that analyzes evidence related to biological crime through the uniqueness and abundance of microorganisms and their toxins. Microorganisms remain alive longer than any other trace of biological evidence, such as DNA, fingerprints, and fibers, because of the protective cell membrane or capsules. Microbiological research has opened up various possibilities for forensic investigations of microbial flora. Current molecular technologies, including DNA sequencing, whole-genome sequencing, metagenomics, DNA fingerprinting, and molecular phylogeny, provide valid results for forensic investigations. Recent advancements in genome sequencing technologies, genetic data generation, and bioinformatic tools have significantly improved microbial sampling methods and forensic analyses. In this review, we discuss the applications of microbial genomic tools and technologies in forensic investigations, including human identification, geolocation, and causes of death.
Collapse
Affiliation(s)
- Pooja Tripathi
- Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, 211007, India
| | - Riya Render
- Department of Forensic Sciences, National Forensic Sciences University, Ponda, Goa, 430401, India
| | - Sweta Nidhi
- Department of Forensic Sciences, National Forensic Sciences University, Ponda, Goa, 430401, India
| | - Vijay Tripathi
- Department of Microbiology, Graphic Era Deemed to be University, Clement Town, Dehradun, 248002, India.
| |
Collapse
|
4
|
Snedeker JL, Peck MA, Russell DA, Holmes AS, Neal CM, Reedy CR, Hughes SR, Houston RM. An investigation of downstream processing methods for challenging skeletal samples. Forensic Sci Int Genet 2025; 76:103209. [PMID: 39721344 DOI: 10.1016/j.fsigen.2024.103209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
While skeletal remains are known for their resilience and often serve as the final source of information for unidentified human remains (UHRs), the traditional downstream processing of these samples is challenging due to their low template nature, DNA degradation, and the presence of PCR inhibitors, typically resulting in limited probative information. To address this issue, advanced genotyping methods can be explored to retrieve additional genetic information from these challenging samples to maximize investigative leads. Therefore, this study investigated the effectiveness of three advanced genotyping methods and assessed their suitability with compromised skeletal samples: 1) targeted next generation sequencing (NGS) of both STRs and SNPs using the ForenSeq® DNA Signature Prep chemistry, 2) targeted NGS of SNPs using the ForenSeq® Kintelligence kit, and 3) SNP genotyping using a microarray via the Infinium Global Screening Array. The genotype recovery and added investigative leads were compared across all methods. All three approaches demonstrated success with the challenging skeletal samples used in this study. Specifically, the ForenSeq® DNA Signature Prep chemistry outperformed traditional STR typing by improving the recovery of CODIS core loci. Additionally, the ForenSeq® Kintelligence kit and Infinium Global Screening Array provided eligible results for forensic investigative genetic genealogy (FIGG) searching. Based on these successes, we have developed a proposed workflow for downstream processing of challenging skeletal samples. Following the guidelines of the US Department of Justice, the recovery of the CODIS core loci should be attempted through traditional CE-based methods or a NDIS-approved NGS chemistry, such as ForenSeq® DNA Signature Prep. Alternatively, a mitochondrial DNA profile may be uploaded to CODIS for comparisons in UHR cases. However, if no probative information is developed from the forensic profile uploaded to CODIS, then FIGG methods can be implemented using the Infinium Global Screening Array for high-quality skeletal samples (DNA concentrations ≥ 0.5 ng/µL) or the ForenSeq® Kintelligence chemistry for low-template skeletal remains (DNA concentration ≤ 0.5 ng/µL). These findings provide valuable insight into the suitability and efficacy of advanced genotyping methods, offering promising opportunities for enhancing the investigation of cases involving UHRs.
Collapse
Affiliation(s)
- Jennifer L Snedeker
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, Huntsville, TX, USA.
| | | | | | - Amy S Holmes
- Signature Science, LLC, Charlottesville, VA, USA
| | | | | | - Sheree R Hughes
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, Huntsville, TX, USA
| | - Rachel M Houston
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, Huntsville, TX, USA
| |
Collapse
|
5
|
Sapan V, Simsek SZ, Filoğlu G, Bulbul O. Forensic DNA phenotyping using Oxford Nanopore Sequencing system. Electrophoresis 2025; 46:198-211. [PMID: 38794987 PMCID: PMC11865696 DOI: 10.1002/elps.202300252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 05/27/2024]
Abstract
In forensic science, the demand for precision, consistency, and cost-effectiveness has driven the exploration of next-generation sequencing technologies. This study investigates the potential of Oxford Nanopore Sequencing (ONT) Technology for analyzing the HIrisPlex-S panel, a set of 41 single nucleotide polymorphism (SNP) markers used to predict eye, hair, and skin color. Using ONT sequencing, we assessed the accuracy and reliability of ONT-generated data by comparing it with conventional capillary electrophoresis (CE) in 18 samples. The Guppy v6.1 was used as a basecaller, and sample profiles were obtained using Burrows-Wheeler Aligner, Samtools, BCFtools, and Python. Comparing accuracy with CE, we found that 62% of SNPs in ONT-unligated samples were correctly genotyped, with 36% showing allele dropout, and 2% being incorrectly genotyped. In the ONT-ligated samples, 85% of SNPs were correctly genotyped, with 10% showing allele dropout, and 5% being incorrectly genotyped. Our findings indicate that ONT, particularly when combined with ligation, enhances genotyping accuracy and coverage, thereby reducing allele dropouts. However, challenges associated with the technology's error rates and the impact on genotyping accuracy are recognized. Phenotype predictions based on ONT data demonstrate varying degrees of success, with the technology showing high accuracy in several cases. Although ONT technology holds promise in forensic genetics, further optimization and quality control measures are essential to harness its full potential. This study contributes to the ongoing efforts to refine sequence read tuning and improve correction tools in the context of ONT technology's application in forensic genetics.
Collapse
Affiliation(s)
- Veysel Sapan
- Institute of Forensic Sciences and Legal MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| | - Sumeyye Zulal Simsek
- Institute of Forensic Sciences and Legal MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| | - Gonul Filoğlu
- Institute of Forensic Sciences and Legal MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| | - Ozlem Bulbul
- Institute of Forensic Sciences and Legal MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| |
Collapse
|
6
|
Bhattacherjee S, Mukherjee S, Podder A, Paul S. Culmination of molecular genomic techniques in forensic crime investigation. Forensic Sci Int 2025; 366:112302. [PMID: 39579413 DOI: 10.1016/j.forsciint.2024.112302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
The advancements in the sectors of forensic science along with biological sciences has proved to be a cornerstone in serving justice to people across the world. Genes are the coding languages that the body uses to define the definite characteristics of a human being that differentiates that being amongst million others. Now, to distinguish and get hands on the criminals, unique techniques are developed and introduced in the market to be implemented in the real world in order to handout proper verdict by the judicial system. This paper deals with few of those molecular biology techniques that are implemented in forensics to unfold the reality of the cases. The paper discusses the basics, principles, pros, and cons along with the future aspects of the techniques with the reader and aims at clarifying the concept of analysis of the DNA. Techniques such as PCR, STR, mtDNA, NGS along with forensic DNA database CODIS are analysed in the paper which showcase the importance of the presence of a technique with a database for an optimal inference of the results.
Collapse
Affiliation(s)
| | - Susmita Mukherjee
- Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, India
| | - Asmita Podder
- School of Forensic Sciences, The West Bengal National University of Juridical Sciences Salt Lake, Kolkata, India
| | - Sonali Paul
- Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, India.
| |
Collapse
|
7
|
Sobral AF, Dinis-Oliveira RJ, Barbosa DJ. CRISPR-Cas technology in forensic investigations: Principles, applications, and ethical considerations. Forensic Sci Int Genet 2025; 74:103163. [PMID: 39437497 DOI: 10.1016/j.fsigen.2024.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins) systems are adaptive immune systems originally present in bacteria, where they are essential to protect against external genetic elements, including viruses and plasmids. Taking advantage of this system, CRISPR-Cas-based technologies have emerged as incredible tools for precise genome editing, thus significantly advancing several research fields. Forensic sciences represent a multidisciplinary field that explores scientific methods to investigate and resolve legal issues, particularly criminal investigations and subject identification. Consequently, it plays a critical role in the justice system, providing scientific evidence to support judicial investigations. Although less explored, CRISPR-Cas-based methodologies demonstrate strong potential in the field of forensic sciences due to their high accuracy and sensitivity, including DNA profiling and identification, interpretation of crime scene investigations, detection of food contamination or fraud, and other aspects related to environmental forensics. However, using CRISPR-Cas-based methodologies in human samples raises several ethical issues and concerns regarding the potential misuse of individual genetic information. In this manuscript, we provide an overview of potential applications of CRISPR-Cas-based methodologies in several areas of forensic sciences and discuss the legal implications that challenge their routine implementation in this research field.
Collapse
Affiliation(s)
- Ana Filipa Sobral
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal.
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal; Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Porto 4200-319, Portugal; FOREN - Forensic Science Experts, Dr. Mário Moutinho Avenue, No. 33-A, Lisbon 1400-136, Portugal.
| | - Daniel José Barbosa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal.
| |
Collapse
|
8
|
Ramos LC, Kobachuk LDG, Nadur DM, Sabbag LR, Rosário MMTD, Naslavsky MS, Mendes-Junior CT, Castelli EC. Assessing the performance of multi-InDel panels for human identification among admixed Brazilians. Forensic Sci Int Genet 2025; 74:103161. [PMID: 39418769 DOI: 10.1016/j.fsigen.2024.103161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Insertion/deletion polymorphisms, or InDels, are widely present in the human genome. They have been considered as potential markers for forensic analysis because they can be genotyped using the CE platform and compatible typing techniques used in forensic laboratories. Additionally, InDels have lower mutation rates and often short amplicon sizes, making them ideal for detecting degraded samples. However, most InDels are bi-allelic; therefore, their discrimination power is relatively low. A new set of genetic marker called multi-InDels was reported to improve InDel's informativeness. Multi-InDel markers are generally designated as microhaplotypes encompassing two or more InDels within a short distance, usually less than 200 bp. In this study, we evaluated the applicability of three previously proposed panels of multi-InDel markers, designed for Asian populations, for human identification in Brazil. We assessed all the multi-InDel markers using high-coverage whole-genome sequencing data from a census-based cohort of 1171 Brazilians residing in São Paulo, the largest Brazilian capital. The results showed that most markers are informative for Brazilian individuals since they present more than three frequent haplotypes with different sizes. However, most markers are prone to amplification/sequencing errors due to repetitive or low-complexity regions. Among the tested panels, the one from Huang et al. (2014) is the most promising for forensic use in Brazil, with a combined match probability and cumulative power of exclusion of 4.92 ×10-14 and 0.9991, respectively. Nevertheless, these values are low compared to the ones obtained with CODIS STRs (short tandem repeats) and larger SNP (single nucleotide polymorphisms) panels. Therefore, new attempts to scan the human genome for highly polymorphic multi-InDel markers are still necessary to obtain a suitable panel of multi-InDels for worldwide populations.
Collapse
Affiliation(s)
- Livia Carla Ramos
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, São Paulo, Brazil; Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit - Unipex, School of Medicine, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil; Superintendência da Polícia Técnico-Científica, Núcleo de Perícias Criminalísticas de Bauru, São Paulo, Brazil.
| | - Luciellen D G Kobachuk
- Polícia Científica do Paraná, Seção de Genética Molecular Forense, Curitiba, Paraná, Brazil; Department of Genetics, School of Medicine, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Douglas Mendes Nadur
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, São Paulo, Brazil
| | - Luiza Rauen Sabbag
- Department of Genetics, School of Medicine, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | | | - Michel S Naslavsky
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, São Paulo, Brazil; Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| | - Celso Teixeira Mendes-Junior
- Department of Chemistry, Forensic and Genomics Research Laboratory, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil.
| | - Erick C Castelli
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit - Unipex, School of Medicine, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil; São Paulo State University (UNESP), Department of Pathology, School of Medicine, Botucatu, São Paulo, Brazil.
| |
Collapse
|
9
|
Zhang X, Ji X, Wang L, Chi L, Li C, Wen S, Chen H. STRsensor: a computationally efficient method for STR allele-typing from massively parallel sequencing data. Brief Bioinform 2024; 26:bbae637. [PMID: 39665493 PMCID: PMC11635639 DOI: 10.1093/bib/bbae637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/16/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024] Open
Abstract
Short tandem repeats (STRs) represent one of the most polymorphic variations in the human genome, finding extensive applications in forensics, population genetics and medical genetics. In contrast to the traditional capillary electrophoresis (CE) method, genotyping STRs using massive parallel sequencing technology offers enhanced sensitivity and accuracy. However, current methods are mainly designed for target sequencing with higher coverage for a specific STR locus, thereby constraining the utility of STRs in low- and medium-coverage whole genome sequencing (WGS) data. Here, we introduce STRsensor, a method designed to type STR alleles in low-coverage WGS data and target sequencing data, achieving a significant high detection ratio and accuracy. STRsensor employs two methods for STR allele-typing: the Kmers-based method and the CIGAR-based method. Furthermore, by incorporating a model for PCR stutters, STRsensor greatly enhances the accuracy of STR allele typing. With simulation data, we demonstrate that STRsensor achieves a detection ratio of 100$\%$ and an accuracy of 99.37$\%$ for a 30$\times $ WGS data, outperforming the existing methods, such as STRait Razor, STRinNGS, and HipSTR. When applied to real target sequencing data from 687 individuals, STRsensor achieves a detection ratio of 99.64$\%$ and an accuracy of 99.99$\%$. Moreover, STRsensor is a computationally efficient method that runs 79 times faster than HipSTR and 10 000 times faster than STRinNGS. STRsensor is freely available on GitHub: https://github.com/ChenHuaLab/STRsensor.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianchao Ji
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingxiang Wang
- Institute of Archaeological Science, Fudan University, Shanghai 200032, China
| | - Lianjiang Chi
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Chengtao Li
- Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shaoqing Wen
- Institute of Archaeological Science, Fudan University, Shanghai 200032, China
| | - Hua Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650023, China
| |
Collapse
|
10
|
Cuesta-Aguirre DR, Malgosa A, Santos C. An easy-to-use pipeline to analyze amplicon-based Next Generation Sequencing results of human mitochondrial DNA from degraded samples. PLoS One 2024; 19:e0311115. [PMID: 39570888 PMCID: PMC11581256 DOI: 10.1371/journal.pone.0311115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/12/2024] [Indexed: 11/24/2024] Open
Abstract
Genome and transcriptome examinations have become more common due to Next-Generation Sequencing (NGS), which significantly increases throughput and depth coverage while reducing costs and time. Mitochondrial DNA (mtDNA) is often the marker of choice in degraded samples from archaeological and forensic contexts, as its higher number of copies can improve the success of the experiment. Among other sequencing strategies, amplicon-based NGS techniques are currently being used to obtain enough data to be analyzed. There are some pipelines designed for the analysis of ancient mtDNA samples and others for the analysis of amplicon data. However, these pipelines pose a challenge for non-expert users and cannot often address both ancient and forensic DNA particularities and amplicon-based sequencing simultaneously. To overcome these challenges, a user-friendly bioinformatic tool was developed to analyze the non-coding region of human mtDNA from degraded samples recovered in archaeological and forensic contexts. The tool can be easily modified to fit the specifications of other amplicon-based NGS experiments. A comparative analysis between two tools, MarkDuplicates from Picard and dedup parameter from fastp, both designed for duplicate removal was conducted. Additionally, various thresholds of PMDtools, a specialized tool designed for extracting reads affected by post-mortem damage, were used. Finally, the depth coverage of each amplicon was correlated with its level of damage. The results obtained indicated that, for removing duplicates, dedup is a better tool since retains more non-repeated reads, that are removed by MarkDuplicates. On the other hand, a PMDS = 1 in PMDtools was the threshold that allowed better differentiation between present-day and ancient samples, in terms of damage, without losing too many reads in the process. These two bioinformatic tools were added to a pipeline designed to obtain both haplotype and haplogroup of mtDNA. Furthermore, the pipeline presented in the present study generates information about the quality and possible contamination of the sample. This pipeline is designed to automatize mtDNA analysis, however, particularly for ancient samples, some manual analyses may be required to fully validate results since the amplicons that used to be more easily recovered were the ones that had fewer reads with damage, indicating that special care must be taken for poor recovered samples.
Collapse
Affiliation(s)
- Daniel R. Cuesta-Aguirre
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Assumpció Malgosa
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Cristina Santos
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
11
|
Emery MV, Bolhofner K, Spake L, Ghafoor S, Versoza CJ, Rawls EM, Winingear S, Buikstra JE, Loreille O, Fulginiti LC, Stone AC. Targeted enrichment of whole-genome SNPs from highly burned skeletal remains. J Forensic Sci 2024; 69:1558-1577. [PMID: 38415845 DOI: 10.1111/1556-4029.15482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/29/2024]
Abstract
Genetic assessment of highly incinerated and/or degraded human skeletal material is a persistent challenge in forensic DNA analysis, including identifying victims of mass disasters. Few studies have investigated the impact of thermal degradation on whole-genome single-nucleotide polymorphism (SNP) quality and quantity using next-generation sequencing (NGS). We present whole-genome SNP data obtained from the bones and teeth of 27 fire victims using two DNA extraction techniques. Extracts were converted to double-stranded DNA libraries then enriched for whole-genome SNPs using unpublished biotinylated RNA baits and sequenced on an Illumina NextSeq 550 platform. Raw reads were processed using the EAGER (Efficient Ancient Genome Reconstruction) pipeline, and the SNPs filtered and called using FreeBayes and GATK (v. 3.8). Mixed-effects modeling of the data suggest that SNP variability and preservation is predominantly determined by skeletal element and burn category, and not by extraction type. Whole-genome SNP data suggest that selecting long bones, hand and foot bones, and teeth subjected to temperatures <350°C are the most likely sources for higher genomic DNA yields. Furthermore, we observed an inverse correlation between the number of captured SNPs and the extent to which samples were burned, as well as a significant decrease in the total number of SNPs measured for samples subjected to temperatures >350°C. Our data complement previous analyses of burned human remains that compare extraction methods for downstream forensic applications and support the idea of adopting a modified Dabney extraction technique when traditional forensic methods fail to produce DNA yields sufficient for genetic identification.
Collapse
Affiliation(s)
- Matthew V Emery
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
- Center for Evolution and Medicine, Arizona State University, Life Sciences C, Tempe, Arizona, USA
| | - Katelyn Bolhofner
- Center for Bioarchaeology, Arizona State University, Tempe, Arizona, USA
- School of Interdisciplinary Forensics, Arizona State University, Glendale, Arizona, USA
| | - Laure Spake
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
| | - Suhail Ghafoor
- Center for Evolution and Medicine, Arizona State University, Life Sciences C, Tempe, Arizona, USA
| | - Cyril J Versoza
- Center for Evolution and Medicine, Arizona State University, Life Sciences C, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Life Sciences C, Tempe, Arizona, USA
| | - Erin M Rawls
- School of Life Sciences, Arizona State University, Life Sciences C, Tempe, Arizona, USA
| | - Stevie Winingear
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Jane E Buikstra
- Center for Evolution and Medicine, Arizona State University, Life Sciences C, Tempe, Arizona, USA
- Center for Bioarchaeology, Arizona State University, Tempe, Arizona, USA
| | - Odile Loreille
- FBI Laboratory, DNA Support Unit, Quantico, Virginia, USA
| | - Laura C Fulginiti
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
- Maricopa County Office of the Medical Examiner, Phoenix, Arizona, USA
| | - Anne C Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
- Center for Evolution and Medicine, Arizona State University, Life Sciences C, Tempe, Arizona, USA
- Center for Bioarchaeology, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
12
|
Pedroza Matute S, Iyavoo S. Applications and Performance of Precision ID GlobalFiler NGS STR, Identity, and Ancestry Panels in Forensic Genetics. Genes (Basel) 2024; 15:1133. [PMID: 39336724 PMCID: PMC11431077 DOI: 10.3390/genes15091133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Short Tandem Repeat (STR) testing via capillary electrophoresis is undoubtedly the most popular forensic genetic testing method. However, its low multiplexing capabilities and limited performance with challenging samples are among the factors pushing scientists towards new technologies. Next-generation sequencing (NGS) methods overcome some of these limitations while also enabling the testing of Single-Nucleotide Polymorphisms (SNPs). Nonetheless, these methods are still under optimization, and their adoption into practice is limited. Among the available kits, Thermo Fisher Scientific (Waltham, MA, USA) produces three Precision ID Panels: GlobalFiler NGS STR, Identity, and Ancestry. A clear review of these kits, providing information useful for the promotion of their use, is, however, lacking. To close the gap, a literature review was performed to investigate the popularity, applications, and performance of these kits. Following the PRISMA guidelines, 89 publications produced since 2015 were identified. China was the most active country in the field, and the Identity Panel was the most researched. All kits appeared robust and useful for low-quality and low-quantity samples, while performance with mixtures varied. The need for more population data was highlighted, as well as further research surrounding variables affecting the quality of the sequencing results.
Collapse
Affiliation(s)
- Sharlize Pedroza Matute
- School of Natural Sciences, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
- AttoGroup Limited, Scottow Enterprise Park, Badersfield, Norwich NR10 5FB, UK
| | - Sasitaran Iyavoo
- School of Natural Sciences, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
- AttoGroup Limited, Scottow Enterprise Park, Badersfield, Norwich NR10 5FB, UK
| |
Collapse
|
13
|
Liu X, Peng T, Xu M, Lin S, Hu B, Chu T, Liu B, Xu Y, Ding W, Li L, Cao C, Wu P. Spatial multi-omics: deciphering technological landscape of integration of multi-omics and its applications. J Hematol Oncol 2024; 17:72. [PMID: 39182134 PMCID: PMC11344930 DOI: 10.1186/s13045-024-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
The emergence of spatial multi-omics has helped address the limitations of single-cell sequencing, which often leads to the loss of spatial context among cell populations. Integrated analysis of the genome, transcriptome, proteome, metabolome, and epigenome has enhanced our understanding of cell biology and the molecular basis of human diseases. Moreover, this approach offers profound insights into the interactions between intracellular and intercellular molecular mechanisms involved in the development, physiology, and pathogenesis of human diseases. In this comprehensive review, we examine current advancements in multi-omics technologies, focusing on their evolution and refinement over the past decade, including improvements in throughput and resolution, modality integration, and accuracy. We also discuss the pivotal contributions of spatial multi-omics in revealing spatial heterogeneity, constructing detailed spatial atlases, deciphering spatial crosstalk in tumor immunology, and advancing translational research and cancer therapy through precise spatial mapping.
Collapse
Affiliation(s)
- Xiaojie Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Peng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Miaochun Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shitong Lin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bai Hu
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tian Chu
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Binghan Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yashi Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wencheng Ding
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Li
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Canhui Cao
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Peng Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Sidstedt M, Gynnå AH, Kiesler KM, Jansson L, Steffen CR, Håkansson J, Johansson G, Österlund T, Bogestål Y, Tillmar A, Rådström P, Ståhlberg A, Vallone PM, Hedman J. Ultrasensitive sequencing of STR markers utilizing unique molecular identifiers and the SiMSen-Seq method. Forensic Sci Int Genet 2024; 71:103047. [PMID: 38598919 DOI: 10.1016/j.fsigen.2024.103047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Massively parallel sequencing (MPS) is increasingly applied in forensic short tandem repeat (STR) analysis. The presence of stutter artefacts and other PCR or sequencing errors in the MPS-STR data partly limits the detection of low DNA amounts, e.g., in complex mixtures. Unique molecular identifiers (UMIs) have been applied in several scientific fields to reduce noise in sequencing. UMIs consist of a stretch of random nucleotides, a unique barcode for each starting DNA molecule, that is incorporated in the DNA template using either ligation or PCR. The barcode is used to generate consensus reads, thus removing errors. The SiMSen-Seq (Simple, multiplexed, PCR-based barcoding of DNA for sensitive mutation detection using sequencing) method relies on PCR-based introduction of UMIs and includes a sophisticated hairpin design to reduce unspecific primer binding as well as PCR protocol adjustments to further optimize the reaction. In this study, SiMSen-Seq is applied to develop a proof-of-concept seven STR multiplex for MPS library preparation and an associated bioinformatics pipeline. Additionally, machine learning (ML) models were evaluated to further improve UMI allele calling. Overall, the seven STR multiplex resulted in complete detection and concordant alleles for 47 single-source samples at 1 ng input DNA as well as for low-template samples at 62.5 pg input DNA. For twelve challenging mixtures with minor contributions of 10 pg to 150 pg and ratios of 1-15% relative to the major donor, 99.2% of the expected alleles were detected by applying the UMIs in combination with an ML filter. The main impact of UMIs was a substantially lowered number of artefacts as well as reduced stutter ratios, which were generally below 5% of the parental allele. In conclusion, UMI-based STR sequencing opens new means for improved analysis of challenging crime scene samples including complex mixtures.
Collapse
Affiliation(s)
- Maja Sidstedt
- National Forensic Centre, Swedish Police Authority, Linköping SE-581 94, Sweden
| | - Arvid H Gynnå
- National Forensic Centre, Swedish Police Authority, Linköping SE-581 94, Sweden
| | - Kevin M Kiesler
- National Institute of Standards and Technology, 100 Bureau Drive, M/S 8314, Gaithersburg, MD 20899, USA
| | - Linda Jansson
- National Forensic Centre, Swedish Police Authority, Linköping SE-581 94, Sweden; Applied Microbiology, Department of Chemistry, Lund University, Lund SE-221 00, Sweden
| | - Carolyn R Steffen
- National Institute of Standards and Technology, 100 Bureau Drive, M/S 8314, Gaithersburg, MD 20899, USA
| | - Joakim Håkansson
- RISE Unit of Biological Function, Division Materials and Production, Box 857, Borås SE-501 15, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg SE-405 30, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Gustav Johansson
- SIMSEN Diagnostics, Sahlgrenska Science Park, Gothenburg, Sweden
| | - Tobias Österlund
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, Gothenburg 41390, Sweden; Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Gothenburg 41390, Sweden; Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Region Västra Götaland 41390, Sweden
| | - Yalda Bogestål
- RISE Unit of Biological Function, Division Materials and Production, Box 857, Borås SE-501 15, Sweden
| | - Andreas Tillmar
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping SE-587 58, Sweden
| | - Peter Rådström
- Applied Microbiology, Department of Chemistry, Lund University, Lund SE-221 00, Sweden
| | - Anders Ståhlberg
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, Gothenburg 41390, Sweden; Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Gothenburg 41390, Sweden; Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Region Västra Götaland 41390, Sweden
| | - Peter M Vallone
- National Institute of Standards and Technology, 100 Bureau Drive, M/S 8314, Gaithersburg, MD 20899, USA
| | - Johannes Hedman
- National Forensic Centre, Swedish Police Authority, Linköping SE-581 94, Sweden; Applied Microbiology, Department of Chemistry, Lund University, Lund SE-221 00, Sweden.
| |
Collapse
|
15
|
Liu Y, Sun C, Si H, Peng Z, Gu L, Guo X, Song F. Bibliometric analysis of kinship analysis from 1960 to 2023: global trends and development. Front Genet 2024; 15:1401898. [PMID: 38903754 PMCID: PMC11187311 DOI: 10.3389/fgene.2024.1401898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Kinship analysis is a crucial aspect of forensic genetics. This study analyzed 1,222 publications on kinship analysis from 1960 to 2023 using bibliometric analysis techniques, investigating the annual publication and citation patterns, most productive countries, organizations, authors and journals, most cited documents and co-occurrence of keywords. The initial publication in this field occurred in 1960. Since 2007, there has been a significant increase in publications, with over 30 published annually except for 2010. China had the most publications (n = 213, 17.43%), followed by the United States (n = 175, 14.32%) and Germany (n = 89, 7.28%). The United States also had the highest citation count. Sichuan University in China has the largest number of published articles. The University of Leipzig and the University of Cologne in Germany exhibit the highest total citation count and average citation, respectively. Budowle B was the most prolific author and Kayser M was the most cited author. In terms of publications, Forensic Science International- Genetics, Forensic Science International, and International Journal of Legal Medicine were the most prolific journals. Among them, Forensic Science International-Genetics boasted the highest h-index, citation count, and average citation rate. The most frequently cited publication was "Van Oven M, 2009, Hum Mutat", with a total of 1,361 citations. The most frequent co-occurrence keyword included "DNA", "Loci", "Paternity testing", "Population", "Markers", and "Identification", with recent interest focusing on "Kinship analysis", "SNP" and "Inference". The current research is centered around microhaplotypes, forensic genetic genealogy, and massively parallel sequencing. The field advanced with new DNA analysis methods, tools, and genetic markers. Collaborative research among nations, organizations, and authors benefits idea exchange, problem-solving efficiency, and high-quality results.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Feng Song
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Nodari R, Arghittu M, Bailo P, Cattaneo C, Creti R, D’Aleo F, Saegeman V, Franceschetti L, Novati S, Fernández-Rodríguez A, Verzeletti A, Farina C, Bandi C. Forensic Microbiology: When, Where and How. Microorganisms 2024; 12:988. [PMID: 38792818 PMCID: PMC11123702 DOI: 10.3390/microorganisms12050988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Forensic microbiology is a relatively new discipline, born in part thanks to the development of advanced methodologies for the detection, identification and characterization of microorganisms, and also in relation to the growing impact of infectious diseases of iatrogenic origin. Indeed, the increased application of medical practices, such as transplants, which require immunosuppressive treatments, and the growing demand for prosthetic installations, associated with an increasing threat of antimicrobial resistance, have led to a rise in the number of infections of iatrogenic origin, which entails important medico-legal issues. On the other hand, the possibility of detecting minimal amounts of microorganisms, even in the form of residual traces (e.g., their nucleic acids), and of obtaining gene and genomic sequences at contained costs, has made it possible to ask new questions of whether cases of death or illness might have a microbiological origin, with the possibility of also tracing the origin of the microorganisms involved and reconstructing the chain of contagion. In addition to the more obvious applications, such as those mentioned above related to the origin of iatrogenic infections, or to possible cases of infections not properly diagnosed and treated, a less obvious application of forensic microbiology concerns its use in cases of violence or violent death, where the characterization of the microorganisms can contribute to the reconstruction of the case. Finally, paleomicrobiology, e.g., the reconstruction and characterization of microorganisms in historical or even archaeological remnants, can be considered as a sister discipline of forensic microbiology. In this article, we will review these different aspects and applications of forensic microbiology.
Collapse
Affiliation(s)
- Riccardo Nodari
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy
| | - Milena Arghittu
- Analysis Laboratory, ASST Melegnano e Martesana, 20077 Vizzolo Predabissi, Italy
| | - Paolo Bailo
- Section of Legal Medicine, School of Law, University of Camerino, 62032 Camerino, Italy
| | - Cristina Cattaneo
- LABANOF, Laboratory of Forensic Anthropology and Odontology, Section of Forensic Medicine, Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Roberta Creti
- Antibiotic Resistance and Special Pathogens Unit, Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Francesco D’Aleo
- Microbiology and Virology Laboratory, GOM—Grande Ospedale Metropolitano, 89124 Reggio Calabria, Italy
| | - Veroniek Saegeman
- Microbiology and Infection Control, Vitaz Hospital, 9100 Sint-Niklaas, Belgium
| | - Lorenzo Franceschetti
- LABANOF, Laboratory of Forensic Anthropology and Odontology, Section of Forensic Medicine, Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Stefano Novati
- Department of Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Amparo Fernández-Rodríguez
- Microbiology Department, Biology Service, Instituto Nacional de Toxicología y Ciencias Forenses, 41009 Madrid, Spain
| | - Andrea Verzeletti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health University of Brescia, 25123 Brescia, Italy
| | - Claudio Farina
- Microbiology and Virology Laboratory, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Claudio Bandi
- Romeo ed Enrica Invernizzi Paediatric Research Centre, Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
17
|
Lee HE, Cho AH, Hwang JH, Kim JW, Yang HR, Ryu T, Jung Y, Lee S. Development, High-Throughput Profiling, and Biopanning of a Large Phage Display Single-Domain Antibody Library. Int J Mol Sci 2024; 25:4791. [PMID: 38732011 PMCID: PMC11083953 DOI: 10.3390/ijms25094791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Immunoglobulin G-based monoclonal antibodies (mAbs) have been effective in treating various diseases, but their large molecular size can limit their penetration of tissue and efficacy in multifactorial diseases, necessitating the exploration of alternative forms. In this study, we constructed a phage display library comprising single-domain antibodies (sdAbs; or "VHHs"), known for their small size and remarkable stability, using a total of 1.6 × 109 lymphocytes collected from 20 different alpacas, resulting in approximately 7.16 × 1010 colonies. To assess the quality of the constructed library, next-generation sequencing-based high-throughput profiling was performed, analyzing approximately 5.65 × 106 full-length VHH sequences, revealing 92% uniqueness and confirming the library's diverse composition. Systematic characterization of the library revealed multiple sdAbs with high affinity for three therapeutically relevant antigens. In conclusion, our alpaca sdAb phage display library provides a versatile resource for diagnostics and therapeutics. Furthermore, the library's vast natural VHH antibody repertoire offers insights for generating humanized synthetic sdAb libraries, further advancing sdAb-based therapeutics.
Collapse
Affiliation(s)
- Hee Eon Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
| | - Ah Hyun Cho
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
| | - Jae Hyeon Hwang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
| | - Ji Woong Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
| | - Taehoon Ryu
- ATG Lifetech Inc., Seoul 08507, Republic of Korea; (T.R.); (Y.J.)
| | - Yushin Jung
- ATG Lifetech Inc., Seoul 08507, Republic of Korea; (T.R.); (Y.J.)
| | - Sukmook Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
- Department of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
18
|
Gürsoy N, Karadayı S, Akmayan İ, Karadayı B, Özbek T. Time-dependent change in the microbiota structure of seminal stains exposed to indoor environmental. Int J Legal Med 2024; 138:591-602. [PMID: 37814017 DOI: 10.1007/s00414-023-03108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
Seminal stains acquired from fabric surfaces stand as pivotal biological evidence of utmost significance for elucidating sexual assault cases. The ability to determine the temporal aspect of a forensic incident via the analysis of a biological specimen found at the crime scene is crucial in resolving most cases. This study aimed to investigate the time-dependent change in the microbiota structure of human seminal stains exposed to indoor environmental conditions. Stains on polyester fabric generated using semen samples from five male volunteers were kept indoors for varying durations of up to 20 days, followed by sequencing of the V1-V9 regions of the 16S rRNA gene of the microbial DNA extracted from the stains. The acquired data provided the taxonomic composition, and microbial alterations across different days were examined. The most abundantly detected phyla in all samples were Firmicutes, Proteobacteria, and Bacteroidetes, and the relative abundances of bacteria were observed to change over time. Statistically significant changes at the species level were found for Treponema medium, Corynebacterium tuberculostearicum, Faecalibacterium prausnitzii, and Anaerostipes hadrus. Alterations observed in the samples between the analyzed time periods were investigated. The changes during the specified time periods were examined, identifying rare bacterial species that were initially present on certain days but later ceased to exist in the environment. Conversely, bacterial species that were absent before exposure but emerged at a later stage were also identified. The findings of this study demonstrate that species-level evaluations, in particular, can provide crucial insights into semen stain age.
Collapse
Affiliation(s)
- Nursena Gürsoy
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yıldız Technical University, Istanbul, Turkey
| | - Sukriye Karadayı
- Department of Medical Laboratory Techniques, Altınbaş University, Istanbul, Turkey.
| | - İlkgül Akmayan
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yıldız Technical University, Istanbul, Turkey
| | - Beytullah Karadayı
- Department of Forensic Medicine, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Tülin Özbek
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
19
|
Vinueza-Espinosa DC, Cuesta-Aguirre DR, Malgosa A, Santos C. Mitochondrial DNA control region typing from highly degraded skeletal remains by single-multiplex next-generation sequencing. Electrophoresis 2023; 44:1423-1434. [PMID: 37379235 DOI: 10.1002/elps.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
Poor nuclear DNA preservation from highly degraded skeletal remains is the most limiting factor for the genetic identification of individuals. Mitochondrial DNA (mtDNA) typing, and especially of the control region (CR), using next-generation sequencing (NGS), enables retrieval of valuable genetic information in forensic contexts where highly degraded human skeletal remains are the only source of genetic material. Currently, NGS commercial kits can type all mtDNA-CR in fewer steps than the conventional Sanger technique. The PowerSeq CRM Nested System kit (Promega Corporation) employs a nested multiplex-polymerase chain reaction (PCR) strategy to amplify and index all mtDNA-CR in a single reaction. Our study analyzes the success of mtDNA-CR typing of highly degraded human skeletons using the PowerSeq CRM Nested System kit. We used samples from 41 individuals from different time periods to test three protocols (M1, M2, and M3) based on modifications of PCR conditions. To analyze the detected variants, two bioinformatic procedures were compared: an in-house pipeline and the GeneMarker HTS software. The results showed that many samples were not analyzed when the standard protocol (M1) was used. In contrast, the M3 protocol, which includes 35 PCR cycles and longer denaturation and extension steps, successfully recovered the mtDNA-CR from highly degraded skeletal samples. Mixed base profiles and the percentage of damaged reads were both indicators of possible contamination and can provide better results if used together. Furthermore, our freely available in-house pipeline can provide variants concordant with the forensic software.
Collapse
Affiliation(s)
- Diana C Vinueza-Espinosa
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Daniel R Cuesta-Aguirre
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Assumpció Malgosa
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Cristina Santos
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
20
|
Hoidy WH, Nubgan A, Al-Saadi MH. Development of a T-ARMS-PCR Assay for Detecting Genetic Polymorphism in the Catalase (rs7943316) Gene in the Iraqi Population with Breast Cancer. Asian Pac J Cancer Prev 2023; 24:3283-3289. [PMID: 37774083 PMCID: PMC10762760 DOI: 10.31557/apjcp.2023.24.9.3283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/10/2023] [Indexed: 10/01/2023] Open
Abstract
Numerous investigations have demonstrated that oxidative stress is markedly increased in breast cancer patients compared to their healthy counterparts. Catalase (CAT), a crucial antioxidant enzyme, plays a pivotal role in safeguarding cells against oxidative damage initiated by reactive oxygen species (ROS). The CAT (rs7943316) gene encodes catalase, and certain genetic variations in this gene have been observed to modify catalase activity and levels. Such changes can lead to an altered response to oxidative stress, potentially increasing the risk of breast cancer. In light of this, a novel tetra-primer amplification-refractory mutation system (T-ARMS)-PCR assay was developed to investigate the possible correlation between the CAT (rs7943316) gene polymorphism and the development of breast cancer in patients. This method employs a one-step PCR, which is faster, more cost-effective, and more precise than existing techniques. Sanger sequencing was performed to validate the accuracy of our findings. The T-ARMS-PCR assay revealed a significant association between the A/T allele of the CAT (rs7943316) gene and breast cancer. Specifically, individuals with the TT genotype had a higher risk of developing breast cancer than those with the AA genotype. The T allele frequency was greater among breast cancer patients than in the control group, and genotype frequencies were consistent with the principles of the Hardy-Weinberg Equilibrium. This study is the first to showcase a rapid, cost-effective, and high-throughput method for detecting the SNP in the CAT (rs7943316) gene. This method has the potential to be employed in large-scale clinical trials.
Collapse
Affiliation(s)
- Wisam Hindawi Hoidy
- Department of Chemistry, College of Education, University of Al-Qadisiyah, Al-Qadisiyah City, Iraq.
| | - Amer Nubgan
- Department of biology, College of science, University of Baghdad, Baghdad City, Iraq.
| | - Mohammed Hamza Al-Saadi
- Department of Internal and Preventive Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Qadisiyah City, Iraq.
| |
Collapse
|
21
|
Liacini A, Tripathi G, McCollick A, Gravante C, Abdelmessieh P, Shestovska Y, Mathew L, Geier S. Chimerism Testing by Next Generation Sequencing for Detection of Engraftment and Early Disease Relapse in Allogeneic Hematopoietic Cell Transplantation and an Overview of NGS Chimerism Studies. Int J Mol Sci 2023; 24:11814. [PMID: 37511573 PMCID: PMC10380370 DOI: 10.3390/ijms241411814] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Chimerism monitoring after allogenic Hematopoietic Cell Transplantation (allo-HCT) is critical to determine how well donor cells have engrafted and to detect relapse for early therapeutic intervention. The aim of this study was to establish and detect mixed chimerism and minimal residual disease using Next Generation Sequencing (NGS) testing for the evaluation of engraftment and the detection of early relapse after allo-HCT. Our secondary aim was to compare the data with the existing laboratory method based on Short Tandem Repeat (STR) analysis. One hundred and seventy-four DNA specimens from 46 individuals were assessed using a commercially available kit for NGS, AlloSeq HCT NGS (CareDx), and the STR-PCR assay. The sensitivity, precision, and quantitative accuracy of the assay were determined using artificially created chimeric constructs. The accuracy and linearity of the assays were evaluated in 46 post-transplant HCT samples consisting of 28 levels of mixed chimerism, which ranged from 0.3-99.7%. There was a 100% correlation between NGS and STR-PCR chimerism methods. In addition, 100% accuracy was attained for the two external proficiency testing surveys (ASHI EMO). The limit of detection or sensitivity of the NGS assay in artificially made chimerism mixtures was 0.3%. We conducted a review of all NGS chimerism studies published online, including ours, and concluded that NGS-based chimerism analysis using the AlloSeq HCT assay is a sensitive and accurate method for donor-recipient chimerism quantification and minimal residual disease relapse detection in patients after allo-HCT compared to STR-PCR assay.
Collapse
Affiliation(s)
- Abdelhamid Liacini
- Immunogenetics Laboratory, Pathology and Laboratory Medicine, Temple University and Hospital, Lewis Katz School of Medicine, 3401 N. Broad St., Office B242, Philadelphia, PA 19140, USA
| | - Gaurav Tripathi
- Immunogenetics Laboratory, Pathology and Laboratory Medicine, Temple University and Hospital, Lewis Katz School of Medicine, 3401 N. Broad St., Office B242, Philadelphia, PA 19140, USA
| | - Amanda McCollick
- Immunogenetics Laboratory, Pathology and Laboratory Medicine, Temple University and Hospital, Lewis Katz School of Medicine, 3401 N. Broad St., Office B242, Philadelphia, PA 19140, USA
| | - Christopher Gravante
- Immunogenetics Laboratory, Pathology and Laboratory Medicine, Temple University and Hospital, Lewis Katz School of Medicine, 3401 N. Broad St., Office B242, Philadelphia, PA 19140, USA
| | - Peter Abdelmessieh
- Fox Chase Cancer Center Medical Group, Temple Health, Philadelphia, PA 19140, USA
| | - Yuliya Shestovska
- Fox Chase Cancer Center Medical Group, Temple Health, Philadelphia, PA 19140, USA
| | - Leena Mathew
- Immunogenetics Laboratory, Pathology and Laboratory Medicine, Temple University and Hospital, Lewis Katz School of Medicine, 3401 N. Broad St., Office B242, Philadelphia, PA 19140, USA
| | - Steven Geier
- Immunogenetics Laboratory, Pathology and Laboratory Medicine, Temple University and Hospital, Lewis Katz School of Medicine, 3401 N. Broad St., Office B242, Philadelphia, PA 19140, USA
| |
Collapse
|
22
|
Satam H, Joshi K, Mangrolia U, Waghoo S, Zaidi G, Rawool S, Thakare RP, Banday S, Mishra AK, Das G, Malonia SK. Next-Generation Sequencing Technology: Current Trends and Advancements. BIOLOGY 2023; 12:997. [PMID: 37508427 PMCID: PMC10376292 DOI: 10.3390/biology12070997] [Citation(s) in RCA: 261] [Impact Index Per Article: 130.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
The advent of next-generation sequencing (NGS) has brought about a paradigm shift in genomics research, offering unparalleled capabilities for analyzing DNA and RNA molecules in a high-throughput and cost-effective manner. This transformative technology has swiftly propelled genomics advancements across diverse domains. NGS allows for the rapid sequencing of millions of DNA fragments simultaneously, providing comprehensive insights into genome structure, genetic variations, gene expression profiles, and epigenetic modifications. The versatility of NGS platforms has expanded the scope of genomics research, facilitating studies on rare genetic diseases, cancer genomics, microbiome analysis, infectious diseases, and population genetics. Moreover, NGS has enabled the development of targeted therapies, precision medicine approaches, and improved diagnostic methods. This review provides an insightful overview of the current trends and recent advancements in NGS technology, highlighting its potential impact on diverse areas of genomic research. Moreover, the review delves into the challenges encountered and future directions of NGS technology, including endeavors to enhance the accuracy and sensitivity of sequencing data, the development of novel algorithms for data analysis, and the pursuit of more efficient, scalable, and cost-effective solutions that lie ahead.
Collapse
Affiliation(s)
- Heena Satam
- miBiome Therapeutics, Mumbai 400102, India; (H.S.); (K.J.); (U.M.); (S.W.); (G.Z.); (S.R.)
| | - Kandarp Joshi
- miBiome Therapeutics, Mumbai 400102, India; (H.S.); (K.J.); (U.M.); (S.W.); (G.Z.); (S.R.)
| | - Upasana Mangrolia
- miBiome Therapeutics, Mumbai 400102, India; (H.S.); (K.J.); (U.M.); (S.W.); (G.Z.); (S.R.)
| | - Sanober Waghoo
- miBiome Therapeutics, Mumbai 400102, India; (H.S.); (K.J.); (U.M.); (S.W.); (G.Z.); (S.R.)
| | - Gulnaz Zaidi
- miBiome Therapeutics, Mumbai 400102, India; (H.S.); (K.J.); (U.M.); (S.W.); (G.Z.); (S.R.)
| | - Shravani Rawool
- miBiome Therapeutics, Mumbai 400102, India; (H.S.); (K.J.); (U.M.); (S.W.); (G.Z.); (S.R.)
| | - Ritesh P. Thakare
- Department of Molecular Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA; (R.P.T.); (S.B.); (A.K.M.)
| | - Shahid Banday
- Department of Molecular Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA; (R.P.T.); (S.B.); (A.K.M.)
| | - Alok K. Mishra
- Department of Molecular Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA; (R.P.T.); (S.B.); (A.K.M.)
| | - Gautam Das
- miBiome Therapeutics, Mumbai 400102, India; (H.S.); (K.J.); (U.M.); (S.W.); (G.Z.); (S.R.)
| | - Sunil K. Malonia
- Department of Molecular Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA; (R.P.T.); (S.B.); (A.K.M.)
| |
Collapse
|
23
|
Choi HL, Yang HR, Shin HG, Hwang K, Kim JW, Lee JH, Ryu T, Jung Y, Lee S. Generation and Next-Generation Sequencing-Based Characterization of a Large Human Combinatorial Antibody Library. Int J Mol Sci 2023; 24:ijms24066011. [PMID: 36983085 PMCID: PMC10057307 DOI: 10.3390/ijms24066011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Antibody phage display is a key technology for the discovery and development of target-specific monoclonal antibodies (mAbs) for use in research, diagnostics, and therapy. The construction of a high-quality antibody library, with larger and more diverse antibody repertoires, is essential for the successful development of phage display-derived mAbs. In this study, a large human combinatorial single-chain variable fragment library (1.5 × 1011 colonies) was constructed from Epstein-Barr virus-infected human peripheral blood mononuclear cells stimulated with a combination of two of the activators of human B cells, the Toll-like receptor 7/8 agonist R848 and interleukin-2. Next-generation sequencing analysis with approximately 1.9 × 106 and 2.7 × 106 full-length sequences of heavy chain variable (VH) and κ light chain variable (Vκ) domains, respectively, revealed that the library consists of unique VH (approximately 94%) and Vκ (approximately 91%) sequences with greater diversity than germline sequences. Lastly, multiple unique mAbs with high affinity and broad cross-species reactivity could be isolated from the library against two therapeutically relevant target antigens, validating the library quality. These findings suggest that the novel antibody library we have developed may be useful for the rapid development of target-specific phage display-derived recombinant human mAbs for use in therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Hye Lim Choi
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ha Gyeong Shin
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Kyusang Hwang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ji Woong Kim
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ji Hyun Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Taehoon Ryu
- ATG Lifetech Inc., Seoul 08507, Republic of Korea
| | - Yushin Jung
- ATG Lifetech Inc., Seoul 08507, Republic of Korea
| | - Sukmook Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Department of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
24
|
Zhang J, Yu D, Wang Y, Shi L, Wang T, Simayijiang H, Yan J. Tracing recent outdoor geolocation by analyzing microbiota from shoe soles and shoeprints even after indoor walking. Forensic Sci Int Genet 2023; 65:102869. [PMID: 37054666 DOI: 10.1016/j.fsigen.2023.102869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
The microbial communities on shoe soles and shoeprints could carry microbial information about where someone walked. This is possible evidence to link a suspect in a crime case to a geographic location. A previous study had shown that the microbiota found on shoe soles depend on the microbiota of the soil on which people walk. However, there is a turnover of microbial communities on shoe soles during walking. The impact of microbial community turnover on tracing recent geolocation from shoe soles has not been adequately studied. In addition, it is still unclear whether the microbiota of shoeprints can be used to determine recent geolocation. In this preliminary study, we investigated whether the microbial characteristics of shoe soles and shoeprints can be used to trace geolocation and whether this information can be destroyed by walking on indoor floors. In this study, participants were asked to walk outdoors on exposed soil, then walk indoors on a hard wood floor. High-throughput sequencing of the 16S rRNA gene was performed to characterize the microbial communities of shoe soles, shoeprints, indoor dust, and outdoor soil. Samples of shoe soles and shoeprints were collected at steps 5, 20, and 50 while walking indoors. The PCoA result showed that the samples were clustered by geographic origin. The shoeprint showed a more rapid turnover of microbial community than the shoe sole during indoor walking. The result of FEAST showed that the microbial communities of shoe sole and shoeprint were mainly (shoe sole, 86.21∼92.34 %; shoeprint, 61.66∼90.41 %) from the soil of the outdoor ground where the individual recently walked, and a small portion (shoe sole, 0.68∼3.33 %; shoeprint, 1.43∼27.14 %) from the indoor dust. Based on the matching of microbial communities between geolocation and shoe sole or shoeprint, we were able to infer the recent geolocation of the individual with relatively high accuracy using the random forest prediction model (shoe sole: 100.00 %, shoeprint: 93.33∼100.00 %). Overall, we are able to accurately infer the geolocation of an individual's most recent outdoor walk based on the microbiota of shoe sole and shoeprint, even though these microbiotas show a turnover when walking indoor floor. The pilot study was expected to provide a potential method for tracing recent geolocation of suspects.
Collapse
|
25
|
Rose Virome Analysis and Identification of a Novel Ilarvirus in Taiwan. Viruses 2022; 14:v14112537. [PMID: 36423147 PMCID: PMC9693529 DOI: 10.3390/v14112537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Rose (Rosa spp.), especially R. hybrida, is one of the most popular ornamental plants in the world and the third largest cut flower crop in Taiwan. Rose mosaic disease (RMD), showing mosaic, line patterns and ringspots on leaves, is a common rose disease caused by the complex infection of various viruses. Due to pests and diseases, the rose planting area in Taiwan has been decreasing since 2008; however, no rose virus disease has been reported in the past five decades. In the spring of 2020, rose samples showing RMD-like symptoms were observed at an organic farm in Chiayi, central Taiwan. The virome in the farm was analyzed by RNA-seq. Rose genomic sequences were filtered from the obtained reads. The remaining reads were de novo assembled to generate 294 contigs, 50 of which were annotated as viral sequences corresponding to 10 viruses. Through reverse transcription-polymerase chain reaction validation, a total of seven viruses were detected, including six known rose viruses, namely apple mosaic virus, prunus necrotic ringspot virus, rose partitivirus, apple stem grooving virus, rose spring dwarf-associated virus and rose cryptic virus 1, and a novel ilarvirus. After completing the whole genome sequencing and sequence analysis, the unknown ilarvirus was demonstrated as a putative new species, tentatively named rose ilarvirus 2. This is the first report of the rose virus disease in Taiwan.
Collapse
|
26
|
Kumari P, Prakash P, Yadav S, Saran V. Microbiome analysis: An emerging forensic investigative tool. Forensic Sci Int 2022; 340:111462. [PMID: 36155349 DOI: 10.1016/j.forsciint.2022.111462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/15/2022] [Accepted: 09/08/2022] [Indexed: 12/30/2022]
Abstract
Microbial diversity's potential has been investigated in medical and therapeutic studies throughout the last few decades. However, its usage in forensics is increasing due to its effectiveness in circumstances when traditional approaches fail to provide a decisive opinion or are insufficient in forming a concrete opinion. The application of human microbiome may serve in detecting the type of stains of saliva and vaginal fluid, as well as in attributing the stains to the individual. Similarly, the microbiome makeup of a soil sample may be utilised to establish geographic origin or to associate humans, animals, or things with a specific area, additionally microorganisms influence the decay process which may be used in depicting the Time Since death. Further in detecting the traces of the amount and concentration of alcohol, narcotics, and other forensically relevant compounds in human body or visceral tissues as they also affect the microbial community within human body. Beside these, there is much more scope of microbiomes to be explored in terms of forensic investigation, this review focuses on multidimensional approaches to human microbiomes from a forensic standpoint, implying the potential of microbiomes as an emerging tool for forensic investigations such as individual variability via skin microbiomes, reconstructing crime scene, and linking evidence to individual.
Collapse
Affiliation(s)
- Pallavi Kumari
- Department of Forensic Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India.
| | - Poonam Prakash
- Department of Forensic Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Shubham Yadav
- Department of Forensic Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Vaibhav Saran
- Department of Forensic Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
27
|
Sanyal T, Das A, Bhowmick P, Bhattacharjee P. Interplay between environmental exposure and mitochondrial DNA methylation in disease susceptibility and cancer: a comprehensive review. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
28
|
Ngashangva L, Hemdan BA, El-Liethy MA, Bachu V, Minteer SD, Goswami P. Emerging Bioanalytical Devices and Platforms for Rapid Detection of Pathogens in Environmental Samples. MICROMACHINES 2022; 13:1083. [PMID: 35888900 PMCID: PMC9321031 DOI: 10.3390/mi13071083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023]
Abstract
The development of robust bioanalytical devices and biosensors for infectious pathogens is progressing well with the advent of new materials, concepts, and technology. The progress is also stepping towards developing high throughput screening technologies that can quickly identify, differentiate, and determine the concentration of harmful pathogens, facilitating the decision-making process for their elimination and therapeutic interventions in large-scale operations. Recently, much effort has been focused on upgrading these analytical devices to an intelligent technological platform by integrating them with modern communication systems, such as the internet of things (IoT) and machine learning (ML), to expand their application horizon. This review outlines the recent development and applications of bioanalytical devices and biosensors to detect pathogenic microbes in environmental samples. First, the nature of the recent outbreaks of pathogenic microbes such as foodborne, waterborne, and airborne pathogens and microbial toxins are discussed to understand the severity of the problems. Next, the discussion focuses on the detection systems chronologically, starting with the conventional methods, advanced techniques, and emerging technologies, such as biosensors and other portable devices and detection platforms for pathogens. Finally, the progress on multiplex assays, wearable devices, and integration of smartphone technologies to facilitate pathogen detection systems for wider applications are highlighted.
Collapse
Affiliation(s)
- Lightson Ngashangva
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvanthapuram, Kerala 695014, India;
| | - Bahaa A. Hemdan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (B.A.H.); (V.B.)
- Water Pollution Research Department, Environmental and Climate Change Research Institute, National Research Centre, 33 El Buhouth Street, Cairo P.O. Box 12622, Egypt;
| | - Mohamed Azab El-Liethy
- Water Pollution Research Department, Environmental and Climate Change Research Institute, National Research Centre, 33 El Buhouth Street, Cairo P.O. Box 12622, Egypt;
| | - Vinay Bachu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (B.A.H.); (V.B.)
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, UT 84112, USA
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (B.A.H.); (V.B.)
| |
Collapse
|
29
|
Dash HR, Vajpayee K, Shukla R, Srivastava A, Shrivastava P, Das S. Sequence-based assessment of expediency of tri-, tetra-, and penta-nucleotides repeat autosomal STR markers in the central Indian population using Next Generation Sequencing (NGS). Meta Gene 2022. [DOI: 10.1016/j.mgene.2021.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
30
|
Mugerwa H, Wang H, Sseruwagi P, Seal S, Colvin J. Whole-genome single nucleotide polymorphism and mating compatibility studies reveal the presence of distinct species in sub-Saharan Africa Bemisia tabaci whiteflies. INSECT SCIENCE 2021; 28:1553-1566. [PMID: 33146464 PMCID: PMC9292209 DOI: 10.1111/1744-7917.12881] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/06/2020] [Accepted: 10/26/2020] [Indexed: 05/21/2023]
Abstract
In sub-Saharan Africa cassava growing areas, two members of the Bemisia tabaci species complex termed sub-Saharan Africa 1 (SSA1) and SSA2 have been reported as the prevalent whiteflies associated with the spread of viruses that cause cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) pandemics. At the peak of CMD pandemic in the late 1990s, SSA2 was the prevalent whitefly, although its numbers have diminished over the last two decades with the resurgence of SSA1 whiteflies. Three SSA1 subgroups (SG1 to SG3) are the predominant whiteflies in East Africa and vary in distribution and biological properties. Mating compatibility between SSA1 subgroups and SSA2 whiteflies was reported as the possible driver for the resurgence of SSA1 whiteflies. In this study, a combination of both phylogenomic methods and reciprocal crossing experiments were applied to determine species status of SSA1 subgroups and SSA2 whitefly populations. Phylogenomic analyses conducted with 26 548 205 bp whole genome single nucleotide polymorphisms (SNPs) and the full mitogenomes clustered SSA1 subgroups together and separate from SSA2 species. Mating incompatibility between SSA1 subgroups and SSA2 further demonstrated their distinctiveness from each other. Phylogenomic analyses conducted with SNPs and mitogenomes also revealed different genetic relationships among SSA1 subgroups. The former clustered SSA1-SG1 and SSA1-SG2 together but separate from SSA1-SG3, while the latter clustered SSA1-SG2 and SSA1-SG3 together but separate from SSA1-SG1. Mating compatibility was observed between SSA1-SG1 and SSA1-SG2, while incompatibility occurred between SSA1-SG1 and SSA1-SG3, and SSA1-SG2 and SSA1-SG3. Mating results among SSA1 subgroups were coherent with phylogenomics results based on SNPs but not the full mitogenomes. Furthermore, this study revealed that the secondary endosymbiont-Wolbachia-did not mediate reproductive success in the crossing assays carried out. Overall, using genome wide SNPs together with reciprocal crossings assays, this study established accurate genetic relationships among cassava-colonizing populations, illustrating that SSA1 and SSA2 are distinct species while at least two species occur within SSA1 species.
Collapse
Affiliation(s)
- Habibu Mugerwa
- Natural Resources InstituteUniversity of GreenwichCentral AvenueChatham MaritimeKentUK
- Department of EntomologyUniversity of GeorgiaGriffinGeorgiaUSA
| | - Hua‐Ling Wang
- Natural Resources InstituteUniversity of GreenwichCentral AvenueChatham MaritimeKentUK
- Institute of Insect SciencesZhejiang UniversityHangzhouChina
| | - Peter Sseruwagi
- Biotechnology DepartmentMikocheni Agricultural Research InstituteDar es SalaamTanzania
| | - Susan Seal
- Natural Resources InstituteUniversity of GreenwichCentral AvenueChatham MaritimeKentUK
| | - John Colvin
- Natural Resources InstituteUniversity of GreenwichCentral AvenueChatham MaritimeKentUK
| |
Collapse
|
31
|
Dash HR, Kaitholia K, Kumawat RK, Singh AK, Shrivastava P, Chaubey G, Das S. Sequence variations, flanking region mutations, and allele frequency at 31 autosomal STRs in the central Indian population by next generation sequencing (NGS). Sci Rep 2021; 11:23238. [PMID: 34853383 PMCID: PMC8636586 DOI: 10.1038/s41598-021-02690-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/18/2021] [Indexed: 02/05/2023] Open
Abstract
Capillary electrophoresis-based analysis does not reflect the exact allele number variation at the STR loci due to the non-availability of the data on sequence variation in the repeat region and the SNPs in flanking regions. Herein, this study reports the length-based and sequence-based allelic data of 138 central Indian individuals at 31 autosomal STR loci by NGS. The sequence data at each allele was compared to the reference hg19 sequence. The length-based allelic results were found in concordance with the CE-based results. 20 out of 31 autosomal STR loci showed an increase in the number of alleles by the presence of sequence variation and/or SNPs in the flanking regions. The highest gain in the heterozygosity and allele numbers was observed in D5S2800, D1S1656, D16S539, D5S818, and vWA. rs25768 (A/G) at D5S818 was found to be the most frequent SNP in the studied population. Allele no. 15 of D3S1358, allele no. 19 of D2S1338, and allele no. 22 of D12S391 showed 5 isoalleles each with the same size and with different intervening sequences. Length-based determination of the alleles showed Penta E to be the most useful marker in the central Indian population among 31 STRs studied; however, sequence-based analysis advocated D2S1338 to be the most useful marker in terms of various forensic parameters. Population genetics analysis showed a shared genetic ancestry of the studied population with other Indian populations. This first-ever study to the best of our knowledge on sequence-based STR analysis in the central Indian population is expected to prove the use of NGS in forensic case-work and in forensic DNA laboratories.
Collapse
Affiliation(s)
- Hirak Ranjan Dash
- DNA Fingerprinting Unit, Integrated High-Tech Complex, Forensic Science Laboratory, Bhopal, Madhya Pradesh, 462003, India.
| | - Kamlesh Kaitholia
- DNA Fingerprinting Unit, Integrated High-Tech Complex, Forensic Science Laboratory, Bhopal, Madhya Pradesh, 462003, India
| | - R K Kumawat
- DNA Division, State Forensic Science Laboratory, Jaipur, Rajasthan, 302016, India
| | - Anil Kumar Singh
- DNA Fingerprinting Unit, Integrated High-Tech Complex, Forensic Science Laboratory, Bhopal, Madhya Pradesh, 462003, India
| | - Pankaj Shrivastava
- DNA Fingerprinting Unit, State Forensic Science Laboratory, Sagar, Madhya Pradesh, 769001, India
| | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Surajit Das
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 470001, India
| |
Collapse
|
32
|
Thornton R, Hutchinson E, Edkins A. PCR based method for sex estimation from bone samples of unidentified South African fetal remains. FORENSIC SCIENCE INTERNATIONAL: REPORTS 2021. [DOI: 10.1016/j.fsir.2021.100248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
33
|
Blouin AG, Ye F, Williams J, Askar M. A practical guide to chimerism analysis: Review of the literature and testing practices worldwide. Hum Immunol 2021; 82:838-849. [PMID: 34404545 DOI: 10.1016/j.humimm.2021.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Currently there are no widely accepted guidelines for chimerism analysis testing in hematopoietic cell transplantation (HCT) patients. The objective of this review is to provide a practical guide to address key aspects of performing and utilizing chimerism testing results. In developing this guide, we conducted a survey of testing practices among laboratories that are accredited for performing engraftment monitoring/chimerism analysis by either the American Society for Histocompatibility & Immunogenetics (ASHI) and/or the European Federation of Immunogenetics (EFI). We interpreted the survey results in the light of pertinent literature as well as the experience in the laboratories of the authors. RECENT DEVELOPMENTS In recent years there has been significant advances in high throughput molecular methods such as next generation sequencing (NGS) as well as growing access to these technologies in histocompatibility and immunogenetics laboratories. These methods have the potential to improve the performance of chimerism testing in terms of sensitivity, availability of informative genetic markers that distinguish donors from recipients as well as cost. SUMMARY The results of the survey revealed a great deal of heterogeneity in chimerism testing practices among participating laboratories. The most consistent response indicated monitoring of engraftment within the first 30 days. These responses are reflective of published literature. Additional clinical indications included early detection of impending relapse as well as identification of cases of HLA-loss relapse.
Collapse
Affiliation(s)
- Amanda G Blouin
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Fei Ye
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jenifer Williams
- Department of Pathology & Laboratory Medicine, Baylor University Medical Center, Dallas, TX, United States
| | - Medhat Askar
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Pathology & Laboratory Medicine, Baylor University Medical Center, Dallas, TX, United States; Department of Pathology and Laboratory Medicine, Texas A&M Health Science Center College of Medicine, United States.
| |
Collapse
|
34
|
Griffin A, Kirkbride KP, Henry J, Painter B, Linacre A. DNA on drugs! A preliminary investigation of DNA deposition during the handling of illicit drug capsules. Forensic Sci Int Genet 2021; 54:102559. [PMID: 34225041 DOI: 10.1016/j.fsigen.2021.102559] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 10/21/2022]
Abstract
DNA profiling from capsules and tablets offers a complementary tool to that of chemical profiling when investigating the manufacture and trade in illicit drugs. By sampling the outside of capsules, individuals who may have handled them during production, assembly or distribution may have deposited their DNA and can be identified if matched to a nominated profile or one on a relevant DNA database. The profiles can also be compared to those found on other capsules to potentially link various drug seizures. This study sampled the exterior of capsules after they had been handled in a controlled scenario to determine if informative DNA profiles could be generated from this brief contact. Two individuals of intermediate shedder status washed their hands and waited for 30 min before handling ten gelatine, vegetable, and enteric vegetable capsules each (n = 60). Contact was made for 15 s. Each capsule was swabbed and DNA isolated. The amount of recovered human DNA was quantified and profiled using the Verifiler Plus DNA profiling kit. Profiles were generated from 82% (49/60) of capsules tested with LR values above 1 × 103 for the inclusion of the volunteer as a contributor. Inhibition of the PCR was detected in 24 of the 60 samples, however 16 of these still produced informative profiles when sufficient template DNA was available and only mild inhibition was detected, or by overcoming inhibition by dilution of the DNA extract. This pilot study demonstrates the potential for forensic science laboratories to recover human DNA from the exterior surface of capsules which are commonly used to encase illicit drugs such as MDMA, thus enabling both biological and chemical profiling methods to contribute to the investigation of clandestine drug production and distribution.
Collapse
Affiliation(s)
- Amy Griffin
- College of Science & Engineering, Flinders University, Adelaide 5042, Australia.
| | - K Paul Kirkbride
- College of Science & Engineering, Flinders University, Adelaide 5042, Australia
| | - Julianne Henry
- College of Science & Engineering, Flinders University, Adelaide 5042, Australia; Forensic Science SA, GPO Box 2790, Adelaide, Australia
| | - Ben Painter
- College of Science & Engineering, Flinders University, Adelaide 5042, Australia; Forensic Science SA, GPO Box 2790, Adelaide, Australia
| | - Adrian Linacre
- College of Science & Engineering, Flinders University, Adelaide 5042, Australia
| |
Collapse
|
35
|
Gao H, Yu J, Feng X, Wu X, Luo L, Li X, Liu C, Chen P. Genetic polymorphism of 23 autosomal STR loci in Han population from Yuncheng, Shanxi Province. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:351-360. [PMID: 33967080 PMCID: PMC10930311 DOI: 10.11817/j.issn.1672-7347.2021.190357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Due to the genetic feature of high diversity than other DNA markers, short tandem repeat (STR) plays key roles in forensic, anthropology, and population genetics. Newly introduced multiple STR kit is more valuable because of the greatly improved discriminatory power with the increase in the number of STR loci. The genetic polymorphic data are essential for the application and research in specific population. This study aims to investigate the genetic polymorphism of Han population residing in Yuncheng district, Shanxi Province, to evaluate the application of 23 STR loci in forensic personal identification and paternity test, and to explore the genetic relationship of Han population between Yuncheng and other populations. METHODS A total of 23 STR loci were amplified from 525 healthy unrelated individuals from the Han nationality in Yuncheng, Shanxi Province using the AGCU EX25 amplification kit. The products were detected and separated by ABI 3500 Genetic Analyzer. Alleles were genotyped by GeneMapper ID (Version 3.2) software, and corresponding frequencies and forensic parameters were calculated. We calculated the genetic distance and plotted the neighboring-joining tree with other 13 population. RESULTS The allele frequency of the 23 STRs ranged from 0.0010 to 0.5090. No deviation from Hardy-Weinberg equilibrium (P>0.05) and linkage disequilibrium was observed. The cumulative discriminatory power (CPD), cumulative power of exclusion for trios (CPEtrio)and cumulative Power of exclusion for duos (CPEduo) with total 23 STRs were 1-1.305 263 374 8×10-27, 1-2.583 152 052 2×10-10 and 1-1.193 637 500 4×10-6, respectively. Comprehensive population comparison showed that Shanxi Yuncheng Han nationality was genetically closer to populations of the same linguistic family or geographically close proximity, such as Shaanxi Weinan Han, Liaoning Han, and Ningbo Han nationality while relatively far away from different linguistic ethnic groups and geographically distant populations like Xinjiang Uygur and Guangdong Han nationality. CONCLUSIONS These 23 STRs are highly genetic polymorphic and informative in the Han population of Yuncheng, Shanxi Province, which can provide basic data for forensic personal identification, paternity testing, and population genetic research.
Collapse
Affiliation(s)
- Hongyan Gao
- Key Laboratory of Cell Engineering in Guizhou Province; Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563099.
- Medical School, Pingdingshan University, Pingdingshan Henan 467000.
- Center of Forensic Expertise, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563099.
| | - Jian Yu
- Center of Forensic Expertise, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563099
| | - Xiaodan Feng
- Wuhou Subbureau, Chengdu Public Security Bureau, Chengdu 610041
| | - Xiaohong Wu
- Meitan Public Security Bureau, Zunyi Guizhou 563003
| | - Li Luo
- Key Laboratory of Cell Engineering in Guizhou Province; Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563099
- Center of Forensic Expertise, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563099
| | - Xianfeng Li
- Department of Medical Genetics, Zunyi Medical University, Zunyi Guizhou 563099, China
| | - Chao Liu
- Department of Medical Genetics, Zunyi Medical University, Zunyi Guizhou 563099, China
| | - Pengyu Chen
- Key Laboratory of Cell Engineering in Guizhou Province; Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563099.
- Center of Forensic Expertise, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563099.
| |
Collapse
|
36
|
The forensic landscape and the population genetic analyses of Hainan Li based on massively parallel sequencing DNA profiling. Int J Legal Med 2021; 135:1295-1317. [PMID: 33847803 DOI: 10.1007/s00414-021-02590-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/26/2021] [Indexed: 12/30/2022]
Abstract
Due to the formation of the Qiongzhou Strait by climate change and marine transition, Hainan island was isolated from the mainland southern China during the Last Glacial Maximum. Hainan island, located at the southernmost part of China and separated from the Leizhou Peninsula by the Qiongzhou Strait, laid on one of the modern human northward migration routes from Southeast Asia to East Asia. The Hlai language-speaking Li minority, the second largest population after Han Chinese in Hainan island, is the direct descendants of the initial migrants in Hainan island and has unique ethnic properties and derived characteristics; however, the forensic-associated studies on Hainan Li population are still insufficient. Hence, 136 Hainan Li individuals were genotyped in this study using the MPS-based ForenSeq™ DNA Signature Prep Kit (DNA Primer Set A, DPMA) to characterize the forensic genetic polymorphism landscape, and DNA profiles were obtained from 152 different molecular genetic markers (27 autosomal STRs, 24 Y-STRs, 7 X-STRs, and 94 iiSNPs). A total of 419 distinct length variants and 586 repeat sequence sub-variants, with 31 novel alleles (at 17 loci), were identified across the 58 STR loci from the DNA profiles of Hainan Li population. We evaluated the forensic characteristics and efficiencies of DPMA, demonstrating that the STRs and iiSNPs in DPMA were highly polymorphic in Hainan Li population and could be employed in forensic applications. In addition, we set up three datasets, which included the genetic data of (i) iiSNPs (27 populations, 2640 individuals), (ii) Y-STRs (42 populations, 8281 individuals), and (iii) Y haplogroups (123 populations, 4837 individuals) along with the population ancestries and language families, to perform population genetic analyses separately from different perspectives. In conclusion, the phylogenetic analyses indicated that Hainan Li, with a southern East Asia origin and Tai-Kadai language-speaking language, is an isolated population relatively. But the genetic pool of Hainan Li influenced by the limited gene flows from other Tai-Kadai populations and Hainan populations. Furthermore, the establishment of isolated population models will be beneficial to clarify the exquisite population structures and develop specific genetic markers for subpopulations in forensic genetic fields.
Collapse
|
37
|
Momota F, Tsuji A, Ishiko A, Ikeda N. Examination of the usefulness of next-generation sequencing in mixed DNA samples. Leg Med (Tokyo) 2021; 51:101874. [PMID: 33930717 DOI: 10.1016/j.legalmed.2021.101874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
The identification of individuals from mixed DNA samples is an important application of DNA typing. Although the discriminatory power of DNA profiling has improved dramatically, a limiting factor is that individuals cannot be identified via short tandem repeat (STR) analysis. We used next-generation sequencing (NGS) to examine the mixed DNA samples. Our results showed that STR nucleotide sequences and single nucleotide polymorphisms (SNPs) analysis via NGS may enable the identification of each distinct subject from a DNA mixture containing DNA of the victim and suspect.
Collapse
Affiliation(s)
- Fumi Momota
- Department of Forensic Pathology and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Forensic Science Laboratory, Fukuoka Prefectural Police Headquarters, 912-9576, Japan.
| | - Akiko Tsuji
- Department of Forensic Pathology and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi Ishiko
- Forensic Science Laboratory, Fukuoka Prefectural Police Headquarters, 912-9576, Japan
| | - Noriaki Ikeda
- Department of Forensic Pathology and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
38
|
Lee JH, Kim J, Kim H, Kim HS, Kim E. Massively parallel sequencing of 25 short tandem repeat loci including the SE33 marker in Koreans. Genes Genomics 2021; 43:133-140. [PMID: 33481226 DOI: 10.1007/s13258-020-01033-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/19/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Massively parallel sequencing (MPS) technology has recently been introduced in research, clinical diagnostics, and forensics. MPS enables determination of the genotypes of multiple short tandem repeat (STR) markers and to determine nucleotide sequence variations, additionally. OBJECTIVE To improve STR analysis and a paternity index, a new, smaller-sized STR panel was designed that includes the SE33 locus. METHODS This study performed MPS using an STR panel including the SE33 marker in 101 Koreans. The concordance study was conducted by comparing the data obtained from the MPS assay with the results of a capillary electrophoresis (CE)-based method. RESULTS In this study, an in-house MPS panel is designed that incorporates the 20 Combined DNA Index System (CODIS) loci and the Penta D, Penta E, and SE33 markers for enhanced discriminatory ability. The data obtained via MPS analysis were compared with CE data to confirm concordance. Fifty previously unreported alleles were detected through the MPS analysis. Three new SNP variations in the flanking region were also identified. Statistical analysis demonstrated that the SE33 marker was most effectively determined the match probability (PM) and typical paternity index (TPI). In the sensitivity study, concentrations as low as 80 pg could be used to obtain full and concordant profiles. CONCLUSIONS We designed a new, smaller-sized STR panel that includes the SE33 locus to improve STR analysis and the paternity index. Various new alleles were identified in SE33, indicating a high degree of polymorphism. The panel is expected to provide valid data for discrimination of unidentified bodies.
Collapse
Affiliation(s)
- Ja Hyun Lee
- Forensic DNA Division, National Forensic Service, Wonju, 26460, Korea
| | - Jeongyong Kim
- Forensic DNA Division, National Forensic Service, Wonju, 26460, Korea
| | - Hyojeong Kim
- Forensic DNA Division, National Forensic Service, Wonju, 26460, Korea
| | - Hyo Sook Kim
- Forensic DNA Division, National Forensic Service, Wonju, 26460, Korea
| | - Eungsoo Kim
- DNA Analysis Division, National Forensic Service Seoul Institute, Seoul, 08036, Korea.
| |
Collapse
|
39
|
Abstract
Background and aims Wildlife conservation has focused primarily on species for the last decades. Recently, popular perception and laws have begun to recognize the central importance of genetic diversity in the conservation of biodiversity. How to incorporate genetic diversity in ongoing monitoring and management of wildlife is still an open question. Methods We tested a panel of multiplexed, high-throughput sequenced introns in the small mammal communities of two UNESCO World Heritage Sites on different continents to assess their viability for large-scale monitoring of genetic variability in a spectrum of diverse species. To enhance applicability across other systems, the bioinformatic pipeline for primer design was outlined. Results The number of loci amplified and amplification evenness decreased as phylogenetic distance increased from the reference taxa, yet several loci were still variable across multiple mammal orders. Conclusions Genetic variability found is informative for population genetic analyses and for addressing phylogeographic and phylogenetic questions, illustrated by small mammal examples here.
Collapse
|
40
|
Liskova A, Samec M, Koklesova L, Giordano FA, Kubatka P, Golubnitschaja O. Liquid Biopsy is Instrumental for 3PM Dimensional Solutions in Cancer Management. J Clin Med 2020; 9:E2749. [PMID: 32854390 PMCID: PMC7563444 DOI: 10.3390/jcm9092749] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
One in every four deaths is due to cancer in Europe. In view of its increasing incidence, cancer became the leading cause of death and disease burden in Denmark, France, the Netherlands, and the UK. Without essential improvements in cancer prevention, an additional 775,000 cases of annual incidence have been prognosed until 2040. Between 1995 and 2018, the direct costs of cancer doubled from EUR 52 billion to EUR 103 billion in Europe, and per capita health spending on cancer increased by 86% from EUR 105 to EUR 195 in general, whereby Austria, Germany, Switzerland, Benelux, and France spend the most on cancer care compared to other European countries. In view of the consequent severe socio-economic burden on society, the paradigm change from a reactive to a predictive, preventive, and personalized medical approach in the overall cancer management is essential. Concepts of predictive, preventive, and personalized medicine (3PM) demonstrate a great potential to revise the above presented trends and to implement cost-effective healthcare that benefits the patient and society as a whole. At any stage, application of early and predictive diagnostics, targeted prevention, and personalization of medical services are basic pillars making 3PM particularly attractive for the patients as well as ethical and cost-effective healthcare. Optimal 3PM approach requires novel instruments such as well-designed liquid biopsy application. This review article highlights current achievements and details liquid biopsy approaches specifically in cancer management. 3PM-relevant expert recommendations are provided.
Collapse
Affiliation(s)
- Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.)
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.)
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.)
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
41
|
Rauf S, Zahra N, Malik SS, Zahra SAE, Sughra K, Khan MR. Extraction of Mitochondrial Genome from Whole Genome Next Generation Sequencing Data and Unveiling of Forensically Relevant Markers. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420080128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
You X, Thiruppathi S, Liu W, Cao Y, Naito M, Furihata C, Honma M, Luan Y, Suzuki T. Detection of genome-wide low-frequency mutations with Paired-End and Complementary Consensus Sequencing (PECC-Seq) revealed end-repair-derived artifacts as residual errors. Arch Toxicol 2020; 94:3475-3485. [PMID: 32737516 DOI: 10.1007/s00204-020-02832-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023]
Abstract
To improve the accuracy and the cost-efficiency of next-generation sequencing in ultralow-frequency mutation detection, we developed the Paired-End and Complementary Consensus Sequencing (PECC-Seq), a PCR-free duplex consensus sequencing approach. PECC-Seq employed shear points as endogenous barcodes to identify consensus sequences from the overlap in the shortened, complementary DNA strand-derived paired-end reads for sequencing error correction. With the high accuracy of PECC-Seq, we identified the characteristic base substitution errors introduced by the end-repair process of mechanical fragmentation-based library preparations, which were prominent at the terminal 7 bp of the library fragments in the 5'-NpCpA-3' and 5'-NpCpT-3' trinucleotide context. As demonstrated at the human genome scale (TK6 cells), after removing these potential end-repair artifacts from the terminal 7 bp, PECC-Seq could reduce the sequencing error frequency to mid-10-7 with a relatively low sequencing depth. For TA base pairs, the background error rate could be suppressed to mid-10-8. In mutagen-treated (6 μg/mL methyl methanesulfonate or 12 μg/mL N-nitroso-N-ethylurea) TK6, increases in mutagen treatment-related mutant frequencies could be detected, indicating the potential of PECC-Seq in detecting genome-wide ultra-rare mutations. In addition, our finding on the patterns of end-repair artifacts may provide new insights into further reducing technical errors not only for PECC-Seq, but also for other next-generation sequencing techniques.
Collapse
Affiliation(s)
- Xinyue You
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China.,Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, 210-9501, Japan
| | - Suresh Thiruppathi
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, 210-9501, Japan
| | - Weiying Liu
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China
| | - Yiyi Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China.,Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, 210-9501, Japan
| | - Mikihiko Naito
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, 210-9501, Japan
| | - Chie Furihata
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, 210-9501, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, 210-9501, Japan
| | - Yang Luan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China.
| | - Takayoshi Suzuki
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, 210-9501, Japan.
| |
Collapse
|
43
|
Sharma V, van der Plaat DA, Liu Y, Wurmbach E. Analyzing degraded DNA and challenging samples using the ForenSeq™ DNA Signature Prep kit. Sci Justice 2020; 60:243-252. [DOI: 10.1016/j.scijus.2019.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/08/2019] [Accepted: 11/17/2019] [Indexed: 01/05/2023]
|
44
|
Grassi S, Campuzano O, Coll M, Brión M, Arena V, Iglesias A, Carracedo Á, Brugada R, Oliva A. Genetic variants of uncertain significance: How to match scientific rigour and standard of proof in sudden cardiac death? Leg Med (Tokyo) 2020; 45:101712. [PMID: 32361481 DOI: 10.1016/j.legalmed.2020.101712] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 02/17/2020] [Accepted: 04/21/2020] [Indexed: 02/08/2023]
Abstract
In many SCD cases, in particular in pediatric age, autopsy can be completely negative and then a post-mortem genetic testing (molecular autopsy) is indicated. In NGS era finding new/rare variants is extremely frequent and, when only variants of unknown significance are found, molecular autopsy fails to find a cause of death. We describe the emblematic case of the sudden death of a 7-year-old girl. We performed a full-body micro-CT analysis, an accurate autopsy, a serum tryptase test and toxicological tests. Since the only macroscopic abnormality we found was a myocardial bridging (length: 1,1 cm, thickness: 0,5 cm) of the left anterior descending coronary artery, a molecular autopsy has been performed. NGS analysis on victim DNA detected rare variants in DPP6, MYH7, SCN2B and NOTCH1 and segregation analysis was then achieved. On the basis of ACMG/AMP (clinical) guidelines, all the found variants were classified as of unknown significance. In other words, both the macroscopic and genetic anomalies we found were of uncertain significance and then the autopsy failed to find the cause of the death. Our case raises three main discussion points: (a) economical, ethical and legal limitations of genetic investigation; (b) risk that genetic testing does not succeed in finding a certain cause of the death; (c) absence of specific guidelines to face the problem of VUS in forensic cases.
Collapse
Affiliation(s)
- Simone Grassi
- Institute of Public Health, Section of Legal Medicine, Catholic University, Rome, Italy
| | - Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain; Medical Science Department, School of Medicine, University of Girona, Girona, Spain; Centro Investigación Biomédica Red Enfermedades Cardiovasculares, Madrid, Spain; Department of Biochemistry and Molecular Genetics, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Mònica Coll
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
| | - María Brión
- Genetics of Cardiovascular and Ophthalmological Diseases, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Genomic Medicine, University of Santiago de Compostela, IDIS, CIBERER, Santiago de Compostela, Spain
| | - Vincenzo Arena
- Institute of Anatomical Pathology, Catholic University, Rome, Italy
| | - Anna Iglesias
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
| | - Ángel Carracedo
- Genomic Medicine, University of Santiago de Compostela, IDIS, CIBERER, Santiago de Compostela, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain; Medical Science Department, School of Medicine, University of Girona, Girona, Spain; Centro Investigación Biomédica Red Enfermedades Cardiovasculares, Madrid, Spain; Cardiology Service, Hospital Josep Trueta, Girona, Spain
| | - Antonio Oliva
- Institute of Public Health, Section of Legal Medicine, Catholic University, Rome, Italy.
| |
Collapse
|
45
|
Guo Y, Jin X, Xia Z, Chen C, Cui W, Zhu B. A small NGS–SNP panel of ancestry inference designed to distinguish African, European, East, and South Asian populations. Electrophoresis 2020; 41:649-656. [DOI: 10.1002/elps.201900231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Yu‐Xin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of Stomatology, Xi'an Jiaotong University Xi'an P. R. China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of Stomatology, Xi'an Jiaotong University Xi'an P. R. China
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center Xi'an P. R. China
| | - Xiao‐Ye Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of Stomatology, Xi'an Jiaotong University Xi'an P. R. China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of Stomatology, Xi'an Jiaotong University Xi'an P. R. China
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center Xi'an P. R. China
| | - Zhi‐Yu Xia
- Department of EpidemiologyUniversity of Washington Seattle WA USA
| | - Chong Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of Stomatology, Xi'an Jiaotong University Xi'an P. R. China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of Stomatology, Xi'an Jiaotong University Xi'an P. R. China
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center Xi'an P. R. China
| | - Wei Cui
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of Stomatology, Xi'an Jiaotong University Xi'an P. R. China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of Stomatology, Xi'an Jiaotong University Xi'an P. R. China
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center Xi'an P. R. China
| | - Bo‐Feng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of Stomatology, Xi'an Jiaotong University Xi'an P. R. China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of Stomatology, Xi'an Jiaotong University Xi'an P. R. China
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center Xi'an P. R. China
- Department of Forensic GeneticsSchool of Forensic Medicine, Southern Medical University Guangzhou P. R. China
| |
Collapse
|
46
|
Cui W, Jin X, Guo Y, Chen C, Zhang W, Kong T, Meng H, Zhu B. An innovative panel containing a set of insertion/deletion loci for individual identification and its forensic efficiency evaluations in Chinese Hui ethnic minority. Mol Genet Genomic Med 2020; 8:e1074. [PMID: 31865639 PMCID: PMC7005628 DOI: 10.1002/mgg3.1074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/25/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Individual identification is one of the most important tasks in the field of forensic genetics. Insertion/Deletion (InDel) polymorphism marker has been a promising marker for individual identification. However, a part of InDel loci in commonly used commercial kit show low polymorphisms in Chinese populations. METHODS We evaluated a panel of 35 InDel loci constructed previously for individual identifications in Hui group. Subsequently, population data of three Chinese populations from 1,000 Genomes Project database were used to evaluate individual identification performance of these 35 InDels. Forensic parameters, such as heterozygosity, power of exclusion, match probability and power of discrimination, were calculated to evaluate the forensic efficiency of these loci in Hui group. The heatmap of insertion allelic frequencies, Nei's genetic distances, pairwise fixation index values, principal component analyses and admixture analyses were used to analyze the genetic differentiations and structure between Hui group and other populations. RESULTS In studied Hui group, besides rs3054057, polymorphism information content values of the remaining loci were greater than 0.3. Values of expected heterozygosity of these loci were close to 0.5. The combined power of discrimination and power of exclusion values were 0.99999999999999659609 and 0.998682, respectively. Analyses of population genetics revealed that Chinese Hui group had closer genetic relationships with East Asian populations than other intercontinental populations. CONCLUSION The forensic statistical analyses revealed these loci showed relatively high genetic polymorphisms in Chinese Hui group, and could be served as a useful tool for individual identifications in Hui group. Population genetic evaluations indicated that Chinese Hui group had close genetic relationships with East Asian populations.
Collapse
Affiliation(s)
- Wei Cui
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- College of Medicine and ForensicsXi’an Jiaotong University Health Science CenterXi’anChina
| | - Xiaoye Jin
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- College of Medicine and ForensicsXi’an Jiaotong University Health Science CenterXi’anChina
| | - Yuxin Guo
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- College of Medicine and ForensicsXi’an Jiaotong University Health Science CenterXi’anChina
| | - Chong Chen
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- College of Medicine and ForensicsXi’an Jiaotong University Health Science CenterXi’anChina
| | - Wenqing Zhang
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
| | - Tingting Kong
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
| | - Haotian Meng
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
| | - Bofeng Zhu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- Department of Forensic GeneticsSchool of Forensic MedicineSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
47
|
Wang Z, Wang L, Liu J, Ye J, Hou Y. Characterization of sequence variation at 30 autosomal STRs in Chinese Han and Tibetan populations. Electrophoresis 2020; 41:194-201. [PMID: 31916267 DOI: 10.1002/elps.201900278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/25/2019] [Accepted: 12/08/2019] [Indexed: 11/11/2022]
Abstract
Massively parallel sequencing (MPS) technologies have the ability to reveal sequence variations within STR alleles as well as their nominal allele lengths, which have traditionally been detected by CE instruments. Recently, Thermo Fisher Scientific has updated the MPS-STR panel, named the Precision ID GlobalFiler next-generation sequencing (NGS) STR Panel version 2, with primers redesigned to add two pentanucleotide tandem repeat loci and profile interpretation supported by the Converge software. Using the Ion Chef System, the Ion S5XL System, and the Converge software, genetic variations were characterized within STR repeat and flanking regions of 30 autosomal STR markers in 115 unrelated individuals from two Chinese population groups (58 Tibetans and 57 Hans). Nineteen STRs demonstrated a relative increase in diversity with the variant sequence alleles compared with those of traditional nominal length alleles. In total, 390 alleles were identified by their sequences compared with 258 alleles that were identified by length. Of these 92 sequence variants found within the STR repeat regions, 40 variants were located in STR flanking regions. Additionally, the agreement of the results with CE data was evaluated, as was the ability of this new MPS panel to analyze case-type (11 samples) and artificially degraded samples (seven samples in triplicate). The results generated from this study illustrate that extensive sequence variation exists in commonly used STR markers in the selected population samples and indicate that this NGS STR panel has the potential to be used as an effective tool for human forensics.
Collapse
Affiliation(s)
- Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Le Wang
- National Engineering Laboratory for Forensic Science, Institute of Forensic Science, Ministry of Public Security, Beijing, P. R. China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Jian Ye
- National Engineering Laboratory for Forensic Science, Institute of Forensic Science, Ministry of Public Security, Beijing, P. R. China.,Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, P. R. China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
48
|
Giampaoli S, De Vittori E, Frajese G, Paytuví A, Sanseverino W, Anselmo A, Barni F, Berti A. A semi-automated protocol for NGS metabarcoding and fungal analysis in forensic. Forensic Sci Int 2020; 306:110052. [DOI: 10.1016/j.forsciint.2019.110052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/04/2019] [Accepted: 11/11/2019] [Indexed: 11/29/2022]
|
49
|
Liu Y, Xu J, Chen M, Wang C, Li S. A unified STR profiling system across multiple species with whole genome sequencing data. BMC Bioinformatics 2019; 20:671. [PMID: 31861983 PMCID: PMC6923897 DOI: 10.1186/s12859-019-3246-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Short tandem repeats (STRs) serve as genetic markers in forensic scenes due to their high polymorphism in eukaryotic genomes. A variety of STRs profiling systems have been developed for species including human, dog, cat, cattle, etc. Maintaining these systems simultaneously can be costly. These mammals share many high similar regions along their genomes. With the availability of the massive amount of the whole genomics data of these species, it is possible to develop a unified STR profiling system. In this study, our objective is to propose and develop a unified set of STR loci that could be simultaneously applied to multiple species. Result To find a unified STR set, we collected the whole genome sequence data of the concerned species and mapped them to the human genome reference. Then we extracted the STR loci across the species. From these loci, we proposed an algorithm which selected a subset of loci by incorporating the optimized combined power of discrimination. Our results show that the unified set of loci have high combined power of discrimination, >1−10−9, for both individual species and the mixed population, as well as the random-match probability, <10−7 for all the involved species, indicating that the identified set of STR loci could be applied to multiple species. Conclusions We identified a set of STR loci which shared by multiple species. It implies that a unified STR profiling system is possible for these species under the forensic scenes. The system can be applied to the individual identification or paternal test of each of the ten common species which are Sus scrofa (pig), Bos taurus (cattle), Capra hircus (goat), Equus caballus (horse), Canis lupus familiaris (dog), Felis catus (cat), Ovis aries (sheep), Oryctolagus cuniculus (rabbit), and Bos grunniens (yak), and Homo sapiens (human). Our loci selection algorithm employed a greedy approach. The algorithm can generate the loci under different forensic parameters and for a specific combination of species.
Collapse
Affiliation(s)
- Yilin Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Jiao Xu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Miaoxia Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China.
| | - Shuaicheng Li
- City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
50
|
Kuffel A, Gray A, Nic Daeid N. Human Leukocyte Antigen alleles as an aid to STR in complex forensic DNA samples. Sci Justice 2019; 60:1-8. [PMID: 31924284 DOI: 10.1016/j.scijus.2019.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 10/25/2022]
Abstract
Human biological samples with multiple contributors remain one of the most challenging aspects of DNA typing within a forensic science context. With the increasing sensitivity of commercially available kits allowing detection of low template DNA, complex mixtures are now a standard component of forensic DNA evidence. Over the years, various methods and techniques have been developed to try to resolve the issue of mixed profiles. However, forensic DNA analysis has relied on the same markers to generate DNA profiles for the past 30 years causing considerable challenges in the deconvolution of complex mixed samples. The future of resolving complicated DNA mixtures may rely on utilising markers that have been previously applied to gene typing of non-forensic relevance. With Massively Parallel Sequencing (MPS), techniques becoming more popular and accessible even epigenetic markers have become a source of interest for forensic scientists. The aim of this review is to consider the potential of alleles from the Human Leukocyte Antigen (HLA) complex as effective forensic markers. While Massively Parallel Sequencing of HLA is routinely used in clinical laboratories in fields such as transplantation, pharmacology or population studies, there have not been any studies testing its suitability for forensic casework samples.
Collapse
Affiliation(s)
- Agnieszka Kuffel
- Leverhulme Research Centre for Forensic Science, Ewing Building, University of Dundee, Small's Lane, Dundee DD1 4HR, United Kingdom.
| | - Alexander Gray
- Leverhulme Research Centre for Forensic Science, Ewing Building, University of Dundee, Small's Lane, Dundee DD1 4HR, United Kingdom.
| | - Niamh Nic Daeid
- Leverhulme Research Centre for Forensic Science, Ewing Building, University of Dundee, Small's Lane, Dundee DD1 4HR, United Kingdom.
| |
Collapse
|