1
|
Zheng J, Hu J, Guo R, Lu D, Dai X, Wang R, Jin H, Sun Z, Li J, Chen F, Chen J, Wang P. Early warning on the potential harmful algal bloom species in Beibu Gulf of South China Sea under the background of climate change and human activity. ENVIRONMENTAL RESEARCH 2025; 276:121516. [PMID: 40180263 DOI: 10.1016/j.envres.2025.121516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/12/2025] [Accepted: 03/30/2025] [Indexed: 04/05/2025]
Abstract
Human activity and global climate change increasingly affect marine environments, leading to increases in harmful algal blooms (HABs) caused by phytoplankton. These blooms pose significant threats to public health, tourism, fisheries, and ecosystems. As an important fishing ground and tourist destination, the Beibu Gulf faces growing environmental pressure. This study sought to assess the phytoplankton community structure and status of HABs, with a focus on potential HAB species. Using environmental DNA (eDNA) metabarcoding, summer and winter surveys at both coastal and offshore waters revealed 66 potential HAB species, 23 of which were newly recorded in the Beibu Gulf. The potential HAB species exhibited greater richness and relative abundance in summer than in winter. Offshore areas showed greater diversity, whereas coastal areas showed greater relative abundance. Temperature emerged as the most influential factor shaping phytoplankton composition, and pH was found to play an important role in coastal areas. Nutrients such as silicate and ammonium are critical for the distribution of potential HAB species. Among the potential HAB species, Cyclotella cryptica predominated in coastal areas during winter, whereas Chaetoceros tenuissimus predominated in summer. Some species that caused severe HAB events in other oceanic regions were first detected in this study, including Margalefidinium polykrikoides, Karlodinium veneficum, and Prorocentrum concavum. This study revealed the diversity and complexity of the phytoplankton community in the Beibu Gulf, emphasizing the critical importance of monitoring and early warning of potential HAB species, particularly those driven by human activities and climate change.
Collapse
Affiliation(s)
- Junjie Zheng
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Jiarong Hu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; School of Marine Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Ruoyu Guo
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Douding Lu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Xinfeng Dai
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Ruifang Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Haiyan Jin
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Zihan Sun
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Jiongyi Li
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; School of Mathematics, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fajin Chen
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jianfang Chen
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Ocean College, Zhejiang University, Zhoushan, 316021, China.
| |
Collapse
|
2
|
Zhang Y, Lin L, Zheng H, Xie C, Gu J, Wang Z, Zhao J. The combination of microscopic and metabarcoding analyses revealed a high diversity of algal bloom species in the Taiwan Strait. MARINE POLLUTION BULLETIN 2025; 216:118027. [PMID: 40267796 DOI: 10.1016/j.marpolbul.2025.118027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/29/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
The Taiwan Strait is located between Fujian and Taiwan Provinces, China, and is susceptible to various currents and human activities, which result in frequent algal blooms. Surface water samples were collected in the Taiwan Strait in the spring of 2022, and phytoplankton community structure was assessed by both microscopic and metabarcoding analyses. Diatoms dominated in phytoplankton community based on microscopy, while dinoflagellates dominated in the eukaryotic phytoplankton based on metabarcoding. Water temperature was the main environmental factor affecting the phytoplankton community structure. A total of 133 algal bloom (AB) species, including 32 harmful algal bloom (HAB) species, were detected via the combination of both methods. Scrippsiella acuminata and Noctiluca scintillans were the dominant AB species. N. scintillans occurs abundantly in shallow coastal waters with low temperatures, low salinities and high nutrient levels. The distribution of AB species in our study is consistent with historical algal blooms in the Taiwan Strait.
Collapse
Affiliation(s)
- Yuning Zhang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lanping Lin
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hu Zheng
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Changliang Xie
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Junning Gu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhaohui Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Jiangang Zhao
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Low WV, Zhang L, Wang P, Zheng P, Yang X, Lu L, Zheng J, Zhu Z, Chen J, Tong M. Spatiotemporal distribution, composition, and influencing factors of lipophilic marine algal toxins in the Beibu Gulf, China: Implications for necessity of offshore seawater monitoring. HARMFUL ALGAE 2025; 145:102845. [PMID: 40324855 DOI: 10.1016/j.hal.2025.102845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 05/07/2025]
Abstract
Lipophilic marine algal toxins (LMATs) are persistent, bioaccumulative metabolites that pose significant threats to marine biodiversity and seafood safety. To comprehensively understand LMATs pollution in offshore natural fishing grounds, we investigated the spatiotemporal distribution and composition of 13 LMATs in surface seawater in Beibu Gulf's offshore area, along with their key influencing factors and latitudinal variations across coastal regions in China. We detected 20-methyl spirolide G (SPX20G) for the first time in coastal waters in China, alongside other frequently detected LMATs, including okadaic acid (OA), dinophysistoxin-1 (DTX1), pectenotoxin-2 (PTX2), azaspiracid-1 (AZA1), azaspiracid-2 (AZA2), gymnodimine (GYM), and 13-desmethyl spirolide C (SPX1). Significant seasonal variations were observed, with summer exhibiting eight LMAT types and higher total LMAT concentrations (ΣLMATs) (16.92 ± 20.45 ng/L) compared to winter's five LMAT types and ΣLMATs concentrations at 5.63 ± 3.30 ng/L. Predominant PTX2 and OA concentrations showed a decreasing trend from northern to southern Beibu Gulf, while other LMATs were distributed in patches, particularly in summer. Notably, cyclic imines (GYM and SPX1) were detected with high frequencies and concentrations, underscoring the need for their monitoring. Spearman correlation and redundancy analyses identified water depth, chlorophyll a (Chla), temperature, salinity, nutrients (DIN:DIP and SiO₃²⁻), and dissolved oxygen (DO) as key factors influencing LMATs distribution in the Beibu Gulf. Latitudinal analysis of LMAT contents across Chinese waters revealed DTX1 as more prevalent at higher latitudes, and GYM, SPX1, and AZA1 more common at lower latitudes, while ΣLMATs concentrations from this study ranked at moderate to high levels compared to other regions. Therefore, special attention is required for LMATs pollution in offshore fishing areas.
Collapse
Affiliation(s)
- Wee Vian Low
- Ocean College, Zhejiang University, Zhoushan 316021, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, China
| | - Li Zhang
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, China.
| | - Pengbin Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, MNR, Hangzhou 310012, China
| | - Pengfei Zheng
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, China
| | - Xi Yang
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Lu Lu
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, China
| | - Junjie Zheng
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, MNR, Hangzhou 310012, China
| | - Zuhao Zhu
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, China
| | - Jie Chen
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan 316021, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development & Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536000, China.
| |
Collapse
|
4
|
Lv Y, Zhen Y, Cen J, Lu S, Li M, Liu Y, Chi X, Yuan J, Wang J. Kareniaceae in focus: A molecular survey of harmful algal dinoflagellates in the South China Sea. HARMFUL ALGAE 2025; 145:102863. [PMID: 40324863 DOI: 10.1016/j.hal.2025.102863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 05/07/2025]
Abstract
In recent years, species of the family Kareniaceae have been forming algal blooms worldwide, leading to significant fish mortality. The biodiversity of this group of dinoflagellates has been underestimated, primarily due to their highly similar morphologies. In this study, using high-throughput sequencing (HTS) targeted the large subunit ribosomal DNA (LSU rDNA) of dinoflagellates, 21 Kareniaceae species were identified from the South China Sea (SCS), including nine species newly recorded in Chinese coastal waters. Additionally, species-specific real-time fluorescent quantitative PCR (qPCR) assays targeting the internal transcribed spacer (ITS) for three Karenia species (Karenia longicanalis, K. papilionacea, and K. selliformis) isolated from the SCS were established. Karenia longicanalis and K. papilionacea were identified as the most prevalent Karenia species in summer in the Zhujiang Estuary via qPCR. Further qPCR analysis during a Karenia spp. bloom in the Beibu Gulf on August 3, 2023, revealed K. selliformis as the most abundant species, followed by K. longicanalis, K. mikimotoi, and K. papilionacea. Both HTS and qPCR methods successfully detected the targeted Karenia species in field samples; however, qPCR assays identified them at more stations than HTS. The integration of qPCR assays with HTS provides a comprehensive and precise assessment of the diversity of Kareniaceae species and harmful dinoflagellates. This multi-method approach enhances our understanding and management of harmful algal blooms, thereby contributing to the improved protection of marine ecosystems.
Collapse
Affiliation(s)
- Yuping Lv
- Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yu Zhen
- Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jingyi Cen
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, PR China
| | - Songhui Lu
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, PR China
| | - Mingmin Li
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Beihai 536000, PR China
| | - Yifan Liu
- Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xiaoyu Chi
- Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jian Yuan
- Departments of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames 50011, USA
| | - Jianyan Wang
- Department of Life Sciences, Natural History Museum of China, Beijing 100050, PR China.
| |
Collapse
|
5
|
Borer G, Monteiro C, Lima FP, Martins FMS. Performance of DNA Metabarcoding vs. Morphological Methods for Assessing Intertidal Turf and Foliose Algae Diversity. Mol Ecol Resour 2025:e14115. [PMID: 40270465 DOI: 10.1111/1755-0998.14115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 03/17/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
Large biogeographical shifts in marine communities are taking place in response to climate change and biological invasions yet we still lack a full understanding of their diversity and distribution. An important example of this is turf and foliose algae that are key coastal primary producers in several regions and are expanding into new environments. Traditionally, monitoring turf and foliose algae communities involves species identification based on morphological traits, which is challenging due to their reduced dimensions and highly variable morphology. Molecular methods promise to revolutionise this field, but their effectiveness in detecting turf and foliose algae has yet to be tested. Here, we evaluate the performance of DNA metabarcoding (COI and rbcL markers) and morphological identification (in situ and photoquadrat) to describe intertidal turf and foliose algae communities along the Portuguese coast. Both molecular markers detected more taxa than the morphological methods and showed greater discrimination of turf and foliose algae communities between regions, matching our knowledge of the geographical and climatic patterns for the region. In sum, our multi-marker metabarcoding approach was more efficient than morphology-based methods in characterising turf and foliose algae communities along the Portuguese coast, differentiating morphologically similar species, and detecting unicellular organisms. However, certain taxa that were identified by in situ and photoquadrat approaches were not detected through metabarcoding, partly due to lack of reference barcodes or taxonomic resolution. Metabarcoding emerges as a valuable tool for monitoring these communities, particularly in long-term programmes requiring accuracy, speed, and reproducibility.
Collapse
Affiliation(s)
- Gabriela Borer
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vila do Conde, Portugal
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vila do Conde, Portugal
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Porto, Portugal
| | - Cátia Monteiro
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vila do Conde, Portugal
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vila do Conde, Portugal
| | - Fernando P Lima
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vila do Conde, Portugal
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vila do Conde, Portugal
| | - Filipa M S Martins
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vila do Conde, Portugal
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vila do Conde, Portugal
| |
Collapse
|
6
|
Thevarajan S, Sun P, Wang P, Xu J, Chen J, Tan Y, Zheng J, Tong M. Morphological and Molecular Diversity of Phytoplankton in Beibu Gulf, Northern South China Sea. Ecol Evol 2025; 15:e71207. [PMID: 40212923 PMCID: PMC11981879 DOI: 10.1002/ece3.71207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/27/2025] [Accepted: 03/20/2025] [Indexed: 04/17/2025] Open
Abstract
The Beibu Gulf, a vital region for marine biodiversity and aquaculture, is increasingly affected by nutrient-driven ecological shifts in the phytoplankton community. This study combined morphology and eDNA metabarcoding (18S rDNA V4) to investigate phytoplankton diversity and environmental drivers during summer and winter in the Beibu Gulf. Metabarcoding detected 3.5 times more phytoplankton species, contributing to higher species diversity and richness than morphology. Metabarcoding identified 200 phytoplankton genera from eight phyla, while morphology only identified 49 genera from six phyla. Both methods revealed different dominant phytoplankton communities. Bacillariophyta and Haptophyta dominated the phytoplankton community based on morphology, in summer and winter, respectively; meanwhile, Dinophyta dominated in both seasons under metabarcoding due to their high 18S rDNA copy number. Altogether, 83 HAB and/or toxic species were identified, among which 10 were dominant, suggesting a high risk of HAB outbreaks in the Beibu Gulf. Phytoplankton abundance increased from south to north and west to east in both seasons, following the high input of dissolved inorganic nitrogen (DIN) and silicate. Excess ammonium input can promote the dominance of Scrippsiella trochoidea and Heterocapsa circularisquama, positioning them as emerging HAB species, while excess DIN caused extreme phosphorus limitation and favored the dominance of Phaeocystis globosa in the Beibu Gulf. This study provided a comprehensive description of the influence of environmental drivers on the phytoplankton community in the Beibu Gulf.
Collapse
Affiliation(s)
- Shalini Thevarajan
- Ocean CollegeZhejiang UniversityZhoushanChina
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
| | - Pengfei Sun
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
| | - Pengbin Wang
- Ocean CollegeZhejiang UniversityZhoushanChina
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of OceanographyMinistry of Natural ResourcesHangzhouChina
| | - Jie Xu
- Centre for Regional Oceans & Department of Ocean Science and Technology, Faculty of Science and TechnologyUniversity of MacauMacauChina
| | - Jie Chen
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
| | - Yongyu Tan
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
| | - Junjie Zheng
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of OceanographyMinistry of Natural ResourcesHangzhouChina
| | - Mengmeng Tong
- Ocean CollegeZhejiang UniversityZhoushanChina
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of OceanographyMinistry of Natural ResourcesBeihaiChina
| |
Collapse
|
7
|
Zou J, Xiao Y, Su J, Liu Y, Wu P, Wang T, Lin L, Li C, Liu Y, Liu Y. Spatial-temporal distribution of phytoplankton HAB species and contamination status of oyster toxins under intensive oyster farming in Jiangmen coasts, the South China Sea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117834. [PMID: 39904260 DOI: 10.1016/j.ecoenv.2025.117834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
The diversity and spatial-temporal distribution of phytoplankton HAB species, contamination status of oyster toxin, and their sources were investigated in Jiangmen oyster farming area based on morphological observation and liquid chromatography-tandem mass spectrometry analysis. The results revealed there were 28 HAB species, including 19 harmless HAB species, two toxic species (Akashiwo sanguinea and Karenia brevis), and seven toxin-producing microalgae (Alexandrium pacificum, Dinophysis caudata, D. miles, D. fortii, Gonyaulax spinifera, Gymnodinium catenatum, and K. mikimotoi). The mean abundance of total HAB species generally showed a trend of increasing from winter to autumn. The total average abundances of toxic HAB species were 269, 265, 321 and 2.6 × 103 cells L-1 in winter, spring, summer and autumn, respectively. Redundancy analysis showed temperature, dissolved oxygen, silicate and phosphate were the key factors related with variations of HAB species. Only spring oyster samples were detected paralytic shellfish toxins (PSTs) (1/15), and the composition included gonyautoxins (GTX1&2) and decarbamoyl gonyautoxin 2 (dcGTX2), with a total toxicity level of 9.96 µg STXeq kg-1. N-sulfocarbamyl (C1) and decarbamoyl gonyautoxin 3 (dcGTX3) were observed in the net-concentrated phytoplankton samples. It is inferred that these five types of PSTs derived from A. pacificum. The cultured oysters were observed five types of low-concentration lipophilic marine toxins (LMTs) including okadaic acid (OA), dinophysis-1 (DTX1), pectenotoxin-2 (PTX2), gymnodimine (GYM), and homo-yessotoxin (homo-YTX). Though the levels of PSTs and LMTs in the cultured oysters were low, the presence highlights a potential threat to the safety of oyster products from HAB species.
Collapse
Affiliation(s)
- Jian Zou
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, PR China
| | - Yayuan Xiao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, PR China
| | - Jiaqi Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China
| | - Yang Liu
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Peng Wu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, PR China
| | - Teng Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, PR China; Observation and Research Station of Xisha Island Reef Fishery Ecosystem of Hainan Province/ Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province/ Sanya Tropical Fisheries Research Institute, Sanya, Hainan 572018, PR China
| | - Lin Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China
| | - Chunhou Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China
| | - Yu Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China; Observation and Research Station of Xisha Island Reef Fishery Ecosystem of Hainan Province/ Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province/ Sanya Tropical Fisheries Research Institute, Sanya, Hainan 572018, PR China
| | - Yong Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, PR China; Observation and Research Station of Xisha Island Reef Fishery Ecosystem of Hainan Province/ Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province/ Sanya Tropical Fisheries Research Institute, Sanya, Hainan 572018, PR China.
| |
Collapse
|
8
|
Tong Y, Lei K, Wang L, Li Y, Lan W, Cheng Y, Deng Z, Zhai J, Huang Z. Spatial-temporal characteristics and the importance of environmental factors in relation to algal blooms in coastal seas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177686. [PMID: 39577599 DOI: 10.1016/j.scitotenv.2024.177686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/22/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
In the prediction of algal blooms with the artificial intelligence (AI) technology, the proper selection of the indices is crucial to the quality of the results. Although eutrophication and climate change have been identified as the main contributors to algal blooms, limited knowledge of the relationships among environmental factors hinders the accurate and correct AI prediction. To explore the importance of environmental factors in the occurrence of algal blooms in coastal seas and facilitate the selection of inputs for the prediction model, this study examines observed water quality data and analyzes their relationship using machine learning methods. It was found that nutrients, water temperature, and salinity play important roles in controlling algal blooms in coastal seas, and their influence varies depending on locations. The high-risk cases of algal bloom mainly occur in environments with medium salinity (22-28 psu), particularly in open estuaries with high nutrient levels. According to the feature importance analysis, water temperature presented the most significant impact on algal bloom risk compared to other environmental factors. The variations of water temperature and Chl-a concentration are synchronous when the water temperature is below 32 °C. Additionally, the relationships between inorganic nutrients (NO3--NO2- and Ortho-P) and Chl-a exhibit asynchronous across multi-temporal scales. The uptake of inorganic nutrients occurs in large quantities within the 24 h prior to the boom in Chl-a concentration. This demonstrates that variations in concentration of inorganic nutrients can be considered as crucial factors in algal bloom predictions, and their significant decrease can be served as an important signal of an impending algal bloom. This study enhances our understanding of the mechanisms behind algal blooms and facilitates their management and prediction strategies in coastal seas.
Collapse
Affiliation(s)
- Yanbin Tong
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Kun Lei
- Chinses Research Academy of Environmental Sciences, Beijing 100012, China
| | - Li Wang
- Shanghai East Sea Marine Engineering Survey and Design Institute Co. Ltd., Shanghai 200137, China
| | - Yuanyi Li
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Wenlu Lan
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai 536000, China.
| | - Yuming Cheng
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zeng'an Deng
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jingsheng Zhai
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhe Huang
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin, China
| |
Collapse
|
9
|
Perkins JC, Zenger KR, Liu Y, Strugnell JM. Ciguatera poisoning: A review of the ecology and detection methods for Gambierdiscus and Fukuyoa species. HARMFUL ALGAE 2024; 139:102735. [PMID: 39567072 DOI: 10.1016/j.hal.2024.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 11/22/2024]
Abstract
Ciguatera poisoning is the most prevalent non-bacterial seafood illness globally, with an estimated 10,000 to 50,000 human cases reported annually. While most symptoms are generally mild, some cases can result in severe and long-lasting neurological and psychological damage, and in some instances, even death. The known causative agents of ciguatera poisoning are benthic toxic dinoflagellate species belonging to the genera Gambierdiscus and Fukuyoa. These species produce highly potent ciguatoxins that bioaccumulate through the marine food chain, eventually reaching humans through seafood consumption. Although Gambierdiscus and Fukuyoa species are widespread in tropical waters worldwide, the full extent of their distribution remains uncertain. This review provides a detailed examination of the ecological dynamics of these dinoflagellates and explores the diverse range of detection methods used to monitor them. These include a focus on molecular techniques for detection, alongside morphological methods, emerging technologies, and a toxin detection overview. Additionally, we offer recommendations on how the field can advance, highlighting novel solutions and next steps for improving detection and monitoring practices. By assessing the strengths and limitations of current approaches and proposing directions for future research, this review aims to support efforts in better understanding and mitigating the risk of ciguatera poisoning.
Collapse
Affiliation(s)
- Joseph C Perkins
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville 4811, Qld, Australia.
| | - Kyall R Zenger
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville 4811, Qld, Australia
| | - Yang Liu
- College of Science and Engineering, James Cook University, Townsville 4811, Qld, Australia
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville 4811, Qld, Australia
| |
Collapse
|
10
|
Liu F, Li J, Jin S, Liu L. Molecular diversity and seasonal dynamics of Ostreococcus (Mamiellophyceae, Chlorophyta) in typical mariculture bays based on metabarcoding analysis. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106764. [PMID: 39332317 DOI: 10.1016/j.marenvres.2024.106764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/30/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Ostreococcus (Mamiellophyceae, Chlorophyta) is a cosmopolitan genus of marine pico-phytoplankton and the smallest free-living photosynthetic eukaryotes with cell size of 1-2 μm. To understand the diversity and spatio-temporal distribution of Ostreococcus in the Rongcheng coastal regions in northern China, metabarcoding analysis based on the 18S rDNA V4 molecular marker was applied to study the molecular diversity and seasonal dynamics of Ostreococcus in three typical mariculture bays (Rongcheng Bay, Lidao Bay and Sanggou Bay). A total of 103 amplicon sequence variants (ASVs) annotated as Ostreococcus were detected in these three typical mariculture bays throughout the year. The top five ASVs in terms of abundance were ASV4, ASV9, ASV14, ASV28 and ASV109, totally occupying 99.1% of Ostreococcus reads. Phylogenetic analysis showed that these five dominant ASVs represented two Ostreococcus ecotypes (OI and OII) and were grouped into four Ostreococcus clades including Ostreococcus lucimarinus (ASV9) and Ostreococcus tauri (ASV28 and ASV109) in OI, and Ostreococcus sp. RC1 (ASV4) and Ostreococcus sp. RC2 (ASV14) in OII, which provided direct evidence to support the co-existence of two ecotypes in the Rongcheng coastal regions. Five dominant ASVs in OI and OII exhibited two distinct seasonal distribution patterns. Three dominant ASVs (ASV9, ASV28 and ASV109) in OI could be detected in all four seasons of the year, exhibiting native distribution properties, while two ASVs (ASV4 and ASV14) in OII decreased sharply in winter and could not be detected in spring, exhibiting characteristics of alien inputs. The composition, succession and association of Ostreococcus community were mainly driven by water temperature in these mariculture bays. This study helps us systematically understand the molecular diversity and distribution patterns of Ostreococcus in typical mariculture bays in northern China, laying the foundation for understanding and revealing the ecological functions of pico-phytoplankton.
Collapse
Affiliation(s)
- Feng Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, Shandong, 266000, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, PR China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 101408, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266000, PR China.
| | - Jiamin Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, Shandong, 266000, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266000, PR China
| | - Shuangle Jin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, Shandong, 266000, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, PR China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 101408, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266000, PR China
| | - Liang Liu
- Rongcheng Ocean and Fishery Monitoring and Disaster Mitigation Center, Rongcheng, Shandong, 264300, PR China
| |
Collapse
|
11
|
Zhang H, Wang N, Zhang D, Wang F, Xu S, Ding X, Xie Y, Tian J, Li B, Cui Z, Jiang T. Composition and temporal dynamics of the phytoplankton community in Laizhou Bay revealed by microscopic observation and rbcL gene sequencing. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106734. [PMID: 39244953 DOI: 10.1016/j.marenvres.2024.106734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Laizhou Bay, a major breeding ground for economic marine organisms in the northern waters of China, is facing rapid environmental degradation. In this study, field surveys in this area were conducted in the spring, summer, and autumn of 2020. Microscopic observation and RuBisCO large subunit (rbcL) gene analysis were employed to understand the community structure and temporal dynamics of phytoplankton. The phytoplankton community structures detected by the two methods showed significant differences. Microscopic observation revealed the dominance of dinoflagellates in spring that shifted to the dominance of diatoms in summer and autumn. However, rbcL gene sequencing consistently identified diatoms as dominant throughout all three seasons, with their relative abundance showing an increasing trend. Conversely, the relative abundance of the second- and third-most abundant taxa, namely, haptophytes and ochrophytes, decreased as the seasons transitioned. rbcL gene sequencing annotated more species than microscopy. It could detect haptophytes and cryptophytes, which were overlooked by microscopy. In addition, rbcL gene sequencing detected a remarkable amount of Thalassiosira profunda, which was previously unidentified in this sea area. However, it appeared to underestimate the contribution of dinoflagellates considerably, with most taxa being only identified through microscopic identification. The two methods jointly identified 28 harmful algal bloom taxa with similar detection quantities but substantial differences in species composition. Phytoplankton communities were influenced by temperature, salinity, and nutrients. The results of this work suggest that a combination of multiple techniques is necessary for a comprehensive understanding of phytoplankton.
Collapse
Affiliation(s)
- Huihui Zhang
- School of Oceanography, Yantai University, Yantai, 264005, China
| | - Nan Wang
- School of Oceanography, Yantai University, Yantai, 264005, China
| | - Di Zhang
- School of Oceanography, Yantai University, Yantai, 264005, China
| | - Fei Wang
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Shiji Xu
- Yantai Ocean Center, Ministry of Natural Resources, Yantai, 264006, China
| | - Xiaokun Ding
- School of Oceanography, Yantai University, Yantai, 264005, China
| | - Yixuan Xie
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jinghuan Tian
- School of Oceanography, Yantai University, Yantai, 264005, China
| | - Bin Li
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Zhengguo Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| | - Tao Jiang
- School of Oceanography, Yantai University, Yantai, 264005, China.
| |
Collapse
|
12
|
Ouyang H, Chen J, Lin L, Zheng H, Xie C, Wang C, Wang Z. Metabarcoding and co-occurrence network reveal significant effects of mariculture on benthic eukaryotic microalgal community: A case study in Daya Bay of the South China Sea. MARINE POLLUTION BULLETIN 2024; 207:116832. [PMID: 39128232 DOI: 10.1016/j.marpolbul.2024.116832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Benthic eukaryotic microalgae were analyzed by metabarcoding the partial 18S rRNA gene in Daya Bay bi-monthly in 2021. Altogether 941 eukaryotic microalgal OTUs were detected, belonging to 27 classes of 8 phyla. Dinophyta and Chlorophyta were the dominant phyla. Microalgal community in the mariculture zone differed significantly from those in non-mariculture zone, reflected by low alpha diversity indexes and increasing abundance and richness of chlorophytes and correspondingly decreasing of dinoflagellates. The abundant occurrences of the pico- and nano-sized taxa such as the chlorophyte Picochlorum in the mariculture zone suggested that nutrient enrichment might result in the miniaturization of the benthic eukaryotic microalgae. The co-occurrence network suggested more negative interactions between taxa in the mariculture zone. A total of 41 algal bloom and/or harmful algal bloom (HAB) species were detected in this study, suggesting a high potential risk of HABs in Daya Bay, especially for the recurrent bloom species Scrippsiella acuminata.
Collapse
Affiliation(s)
- Hong Ouyang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiazhuo Chen
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lanping Lin
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hu Zheng
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Changliang Xie
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Chaofan Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhaohui Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Huang J, Zhao H, Wang W, Qin X, Wang P, Hou Q, Chen Q, Jiang G, Dong K, Jiang T, Pu Y, Li N. Harmful Microalgae Exhibit Broad Environmental Adaptability in High-Salinity Area Across the Dafengjiang River Estuary. Ecol Evol 2024; 14:e70455. [PMID: 39445184 PMCID: PMC11496773 DOI: 10.1002/ece3.70455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Harmful algal blooms (HABs) often occur in estuaries due to their unique environmental heterogeneity, posing significant environmental and human health risks. However, there is limited understanding of the community composition and community-level change points (thresholds) of harmful microalgae in subtropical estuaries. This study explored harmful microalgae community structure and thresholds in the Dafengjiang River estuary using a metabarcoding approach. The results revealed 63 harmful microalgae species, and major species included Guinardia flaccida, Prorocentrum cordatum, Thalassiosira punctigera, Pseudo-nitzschia galaxiae and T. gravida. Nonparametric change-point analysis and threshold indicator taxa analysis (TITAN) showed threshold responses of harmful microalgae community structure to ammonium (57.5-60 μg·L-1), total phosphorus (27.8-28.5 μg·L-1) and dissolved inorganic phosphorus (14.5-28 μg·L-1) along the salinity gradient. Wider environmental thresholds were also found in hypersaline areas. Additionally, Pyrodinium bahamense, Pfiesteria piscicida, Skeletonema tropicum and T. punctigera were sensitive to environmental changes and thus could be used as bioindicators. Overall, our study unveiled diverse abrupt transitions of harmful microalgal communities, providing a risk assessment for human health and ecological safety in subtropical estuary ecosystems.
Collapse
Affiliation(s)
- Jiongqing Huang
- School of AgricultureLudong UniversityYantaiChina
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and MeteorologyGuangdong Ocean UniversityZhanjiangChina
| | - Huaxian Zhao
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong ProvinceGuangdong Ocean UniversityZhanjiangChina
| | - WeiJun Wang
- School of AgricultureLudong UniversityYantaiChina
| | - Xinyi Qin
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and MeteorologyGuangdong Ocean UniversityZhanjiangChina
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong ProvinceGuangdong Ocean UniversityZhanjiangChina
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of EducationNanning Normal UniversityNanningChina
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem DynamicsSecond Institute of Oceanography, Ministry of Natural ResourcesHangzhouChina
| | - Qinghua Hou
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and MeteorologyGuangdong Ocean UniversityZhanjiangChina
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong ProvinceGuangdong Ocean UniversityZhanjiangChina
| | - Qingxiang Chen
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and MeteorologyGuangdong Ocean UniversityZhanjiangChina
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong ProvinceGuangdong Ocean UniversityZhanjiangChina
| | - Gonglingxia Jiang
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and MeteorologyGuangdong Ocean UniversityZhanjiangChina
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong ProvinceGuangdong Ocean UniversityZhanjiangChina
| | - Ke Dong
- Department of Biological SciencesKyonggi UniversitySuwonSouth Korea
| | - Tao Jiang
- School of OceanYantai UniversityYantaiChina
| | - Yang Pu
- School of AgricultureLudong UniversityYantaiChina
| | - Nan Li
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and MeteorologyGuangdong Ocean UniversityZhanjiangChina
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong ProvinceGuangdong Ocean UniversityZhanjiangChina
| |
Collapse
|
14
|
Zhang S, Fu Z, Dong X, Zheng X, Gu H. Diversity and seasonal occurrence of haptophyta in northern South China Sea through size-fractionated metabarcoding. MARINE POLLUTION BULLETIN 2024; 205:116609. [PMID: 38905736 DOI: 10.1016/j.marpolbul.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024]
Abstract
Haptophyta plays a key role in marine pico-nanoeukaryote communities but information on their diversity and ecology is extremely limited. A total of 103 water samples were collected in northern South China Sea to assess the diversity of haptophyta through metabarcoding targeting 18S V4 rDNA. Furthermore, we investigated the potential genetic differentiation among seasonal occurring Phaeocystis globosa using the high resolution molecular marker pgcp1. 18S V4 rDNA metabarcoding dataset revealed 41 species of haptophytes, with 16 of them as the first record in this region. Notably, six harmful species were detected, including Chrysochromulina leadbeateri, Phaeocystis globosa, and Prymnesium parvum. The pgcp1 marker revealed two clades of Phaeocystis globosa and both of them were present around the year. Clade I was found to predominate in warm season, while Clade III tended to bloom in cold waters. Our results highlight the risk potential of harmful haptophytes in the northern South China Sea.
Collapse
Affiliation(s)
- Shiya Zhang
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China; Department of Marine Ecology Conservation, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zhengxu Fu
- Department of Marine Ecology Conservation, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xu Dong
- Department of Marine Ecology Conservation, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xinqing Zheng
- Department of Marine Ecology Conservation, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Haifeng Gu
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China; Department of Marine Ecology Conservation, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China.
| |
Collapse
|
15
|
Zou J, Xiao Y, Wu P, Wang T, Lin L, Liu Y, Liu Y, Li C. Distribution, community structure and assembly patterns of phytoplankton in the northern South China Sea. Front Microbiol 2024; 15:1450706. [PMID: 39144206 PMCID: PMC11322478 DOI: 10.3389/fmicb.2024.1450706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
A cruise was conducted in the summer of 2023 from the Pearl River Estuary (PRE) to the adjacent waters of the Xisha Islands in the northern South China Sea (NSCS) to investigate the distribution, community structure, and assembly patterns of eukaryotic and prokaryotic phytoplankton using high-throughput sequencing (HTS) and microscopic observation. Dinophyta were the most abundant phylum in the eukaryotic phytoplankton community based on HTS, accounting for 92.17% of the total amplicon sequence variants (ASVs). Syndiniales was the most abundant order among eukaryotic phytoplankton, whereas Prochlorococcus was the most abundant genus within cyanobacteria. The alpha diversity showed the lowest values in the PRE area and decreased gradually with depth, while cyanobacteria exhibited higher alpha diversity indices in the PRE and at depths ranging from 75 m to 750 m. The morphological results were different from the data based on HTS. Diatoms (37 species) dominated the phytoplankton community, with an average abundance of 3.01 × 104 cells L-1, but only six species of dinoflagellate were observed. Spearman correlation analysis and redundancy analysis (RDA) showed that the distribution and community structure of phytoplankton were largely influenced by geographical location and environmental parameters in the NSCS. The neutral community model (NCM) and null model indicated that deterministic processes played a significant role in the assembly of eukaryotic phytoplankton, with heterogeneous selection and homogeneous selection accounting for 47.27 and 29.95%, respectively. However, stochastic processes (over 60%) dominated the assembly of cyanobacteria and undominated processes accounted for 63.44%. In summary, the formation of eukaryotic phytoplankton was mainly influenced by environmental factors and geographic location, but the assembly of cyanobacteria was shaped by both stochastic processes, which accounted for over 60%, and environmental selection in the NSCS.
Collapse
Affiliation(s)
- Jian Zou
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
- Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou, China
| | - Yayuan Xiao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
- Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou, China
| | - Peng Wu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
- Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou, China
| | - Teng Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
- Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou, China
- Observation and Research Station of Xisha Island Reef Fishery Ecosystem of Hainan Province, Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Lin Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
- Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou, China
| | - Yu Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
- Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou, China
- Observation and Research Station of Xisha Island Reef Fishery Ecosystem of Hainan Province, Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Yong Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
- Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou, China
| | - Chunhou Li
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
- Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou, China
| |
Collapse
|
16
|
Kaleli A, Gozde Ozbayram E, Akcaalan R. Environmental DNA metabarcoding reveals diverse phytoplankton assemblages and potentially harmful algal distribution along the urban coasts of Türkiye. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106623. [PMID: 38917660 DOI: 10.1016/j.marenvres.2024.106623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Marine phytoplankton are widely used to monitor the state of the water column due to their rapid changes in response to environmental conditions. In this study, we aimed to investigate the coastal phytoplankton assemblages, including bloom-forming species using high-throughput sequencing of 18S rRNA genes targeting the V4 region and their relationship with environmental variables along the Istanbul coasts of the Sea of Marmara. A total of 118 genera belonging to six phyla were detected. Among them, Dinoflagellata (36) and Bacillariophyta (26) were represented with the highest number of genera. According to the relative abundance of DNA reads, the most abundant taxa were Dinoflagellata_phylum (18.1%), Emiliania (8.4%), Biecheleria (8.4), and Noctiluca (8.1%). The ANOSIM test showed that there was a significant temporal difference in the assemblages, while the driving environmental factors were pH, water temperature, and salinity. According to the TRIX index, the trophic state of the coasts was highly mesotrophic and eutrophic. In addition, 45 bloom-forming and HAB taxa were detected and two species of Noctiluca and Emiliania, which frequently cause blooms in the area, were recorded in high abundance. Our results provide insight into the phytoplankton assemblages along the urbanized coastlines by analysing the V4 region of 18S rRNA. This data can support future studies that use both traditional methods and metabarcoding, employing various primers and targeting different genes and regions.
Collapse
Affiliation(s)
- Aydın Kaleli
- Istanbul University, Faculty of Aquatic Sciences, Department of Marine and Freshwater Resources Management, 34134, Istanbul, Türkiye.
| | - Emine Gozde Ozbayram
- Istanbul University, Faculty of Aquatic Sciences, Department of Marine and Freshwater Resources Management, 34134, Istanbul, Türkiye.
| | - Reyhan Akcaalan
- Istanbul University, Faculty of Aquatic Sciences, Department of Marine and Freshwater Resources Management, 34134, Istanbul, Türkiye.
| |
Collapse
|
17
|
Wang C, Gu J, Li W, Wang J, Wang Z, Lin Q. Metabarcoding reveals a high diversity and complex eukaryotic microalgal community in coastal waters of the northern Beibu Gulf, China. Front Microbiol 2024; 15:1403964. [PMID: 38903786 PMCID: PMC11188352 DOI: 10.3389/fmicb.2024.1403964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Beibu Gulf is an important semi-enclosed bay located in the northwestern South China Sea, and is famous for its high bio-productivity and rich bio-diversity. The fast development along the Beibu Gulf Economical Rim has brought pressure to the environment, and algal blooms occurred frequently in the gulf. In this study, surface water samples and micro-plankton samples (20-200 μm) were collected in the northern Beibu Gulf coast. Diversity and distribution of eukaryotic planktonic microalgae were analyzed by both metabarcoding and microscopic analyses. Metabarcoding revealed much higher diversity and species richness of microalgae than morphological observation, especially for dinoflagellates. Metabarcoding detected 144 microalgal genera in 8 phyla, while microscopy only detected 40 genera in 2 phyla. The two methods revealed different microalgal community structures. Dinoflagellates dominated in microalgal community based on metabarcoding due to their high copies of 18 s rRNA gene, and diatoms dominated under microscopy. Altogether 48 algal bloom and/or toxic species were detected in this study, 34 species by metabarcoding and 19 species by microscopy. Our result suggested a high potential risk of HABs in the Beibu Gulf. Microalgal community in the surface water samples demonstrated significantly higher OTU/species richness, alpha diversity, and abundance than those in the micro-plankton samples, although more HAB taxa were detected by microscopic observations in the micro-plankton samples. Furthermore, nano-sized taxa, such as those in chlorophytes, haptophytes, and chrysophyceans, occurred more abundantly in the surface water samples. This study provided a comprehensive morphological and molecular description of microalgal community in the northern Beibu Gulf.
Collapse
Affiliation(s)
| | | | | | | | - Zhaohui Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qiuqi Lin
- College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Stuart J, Ryan KG, Pearman JK, Thomson-Laing J, Hampton HG, Smith KF. A comparison of two gene regions for assessing community composition of eukaryotic marine microalgae from coastal ecosystems. Sci Rep 2024; 14:6442. [PMID: 38499675 PMCID: PMC10948787 DOI: 10.1038/s41598-024-56993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
Two gene regions commonly used to characterise the diversity of eukaryotic communities using metabarcoding are the 18S ribosomal DNA V4 and V9 gene regions. We assessed the effectiveness of these two regions for characterising diverisity of coastal eukaryotic microalgae communities (EMCs) from tropical and temperate sites. We binned amplicon sequence variants (ASVs) into the high level taxonomic groups: dinoflagellates, pennate diatoms, radial centric diatoms, polar centric diatoms, chlorophytes, haptophytes and 'other microalgae'. When V4 and V9 generated ASV abundances were compared, the V9 region generated a higher number of raw reads, captured more diversity from all high level taxonomic groups and was more closely aligned with the community composition determined using light microscopy. The V4 region did resolve more ASVs to a deeper taxonomic resolution within the dinoflagellates, but did not effectively resolve other major taxonomic divisions. When characterising these communities via metabarcoding, the use of multiple gene regions is recommended, but the V9 gene region can be used in isolation to provide high-level community biodiversity to reflect relative abundances within groups. This approach reduces the cost of sequencing multiple gene regions whilst still providing important baseline ecosystem function information.
Collapse
Affiliation(s)
- Jacqui Stuart
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand.
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand.
| | - Ken G Ryan
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - John K Pearman
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | | | | | - Kirsty F Smith
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| |
Collapse
|
19
|
Liu L, Gao X, Dong C, Wang H, Chen X, Ma X, Liu S, Chen Q, Lin D, Jiao N, Tang K. Enantioselective transformation of phytoplankton-derived dihydroxypropanesulfonate by marine bacteria. THE ISME JOURNAL 2024; 18:wrae084. [PMID: 38709871 PMCID: PMC11131964 DOI: 10.1093/ismejo/wrae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/08/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024]
Abstract
Chirality, a fundamental property of matter, is often overlooked in the studies of marine organic matter cycles. Dihydroxypropanesulfonate (DHPS), a globally abundant organosulfur compound, serves as an ecologically important currency for nutrient and energy transfer from phytoplankton to bacteria in the ocean. However, the chirality of DHPS in nature and its transformation remain unclear. Here, we developed a novel approach using chiral phosphorus-reagent labeling to separate DHPS enantiomers. Our findings demonstrated that at least one enantiomer of DHPS is present in marine diatoms and coccolithophores, and that both enantiomers are widespread in marine environments. A novel chiral-selective DHPS catabolic pathway was identified in marine Roseobacteraceae strains, where HpsO and HpsP dehydrogenases at the gateway to DHPS catabolism act specifically on R-DHPS and S-DHPS, respectively. R-DHPS is also a substrate for the dehydrogenase HpsN. All three dehydrogenases generate stable hydrogen bonds between the chirality-center hydroxyls of DHPS and highly conserved residues, and HpsP also form coordinate-covalent bonds between the chirality-center hydroxyls and Zn2+, which determines the mechanistic basis of strict stereoselectivity. We further illustrated the role of enzymatic promiscuity in the evolution of DHPS metabolism in Roseobacteraceae and SAR11. This study provides the first evidence of chirality's involvement in phytoplankton-bacteria metabolic currencies, opening a new avenue for understanding the ocean organosulfur cycle.
Collapse
Affiliation(s)
- Le Liu
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Xiang Gao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Changjie Dong
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Huanyu Wang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Xiaofeng Chen
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361001, China
| | - Xiaoyi Ma
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Shujing Liu
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Quanrui Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Dan Lin
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| |
Collapse
|
20
|
Argyle PA, Rhodes LL, Smith KF, Harwood DT, Halafihi T, Marsden ID. Diversity and distribution of benthic dinoflagellates in Tonga include the potentially harmful genera Gambierdiscus and Fukuyoa. HARMFUL ALGAE 2023; 130:102524. [PMID: 38061817 DOI: 10.1016/j.hal.2023.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/01/2023] [Accepted: 10/07/2023] [Indexed: 12/18/2023]
Abstract
Benthic dinoflagellates that can cause illness, such as ciguatera poisoning (CP), are prevalent around the Pacific but are poorly described in many locations. This study represents the first ecological assessment of benthic harmful algae species in the Kingdom of Tonga, a country where CP occurs regularly. Surveys were conducted in June 2016 in the Tongatapu island group, and in June 2017 across three island groups: Ha'apai, Vava'u, and Tongatapu. Shallow subtidal coastal habitats were investigated by measuring water quality parameters and conducting quadrat surveys. Microalgae samples were collected using either macrophyte collection or the artificial substrate method. Benthic dinoflagellates (Gambierdiscus and/or Fukuyoa, Ostreopsis, and Prorocentrum) were counted using light microscopy, followed by molecular analyses (real-time PCR in 2016 and high throughput sequencing (metabarcoding) in 2017) to identify Gambierdiscus and Fukuyoa to species level. Six species were detected from the Tongatapu island group in 2016 (G. australes, G. carpenteri, G. honu, G. pacificus, F. paulensis, and F. ruetzleri) using real-time PCR. Using the metabarcoding approach in 2017, a total of eight species (G. australes, G. carpenteri, G. honu, G. pacificus, G. cheloniae, G. lewisii, G. polynesiensis, and F. yasumotoi) were detected. Species were detected in mixed assemblages of up to six species, with G. pacificus and G. carpenteri being the most frequently observed. Ha'apai had the highest diversity with eight species detected, which identifies this area as a Gambierdiscus diversity 'hotspot'. Vava'u and Tongatapu had three and six species found respectively. Gambierdiscus polynesiensis, a described ciguatoxin producer and proposed causative agent of CP was found only in Ha'apai and Vava'u in 2017, but not in Tongatapu in either year. Ostreopsis spp. and Prorocentrum spp. were also frequently observed, with Prorocentrum most abundant at the majority of sites. In 2016, the highest number of Gambierdiscus and/or Fukuyoa cells were observed on seagrass (Halodule uninervis) from Sopu, Tongatapu. In 2017, the highest numbers of Gambierdiscus and/or Fukuyoa from artificial substrate samples were recorded in the Halimeda dominant habitat at Neiafu Tahi, Vava'u, a low energy site. This raised the question of the effect of wave motion or currents on abundance measurements from artificial substrates. Differences in detection were noticed between macrophytes and artificial substrates, with higher numbers of species found on artificial substrates. This study provides a baseline of benthic dinoflagellate distributions and diversity for Tonga that may be used for future studies and the development of monitoring programmes.
Collapse
Affiliation(s)
- Phoebe A Argyle
- School of Biological Sciences, University of Canterbury, Private Bag 4800, 20 Kirkwood Ave, Christchurch 8041, New Zealand; Cawthron Institute, Private Bag 2, 98 Halifax St East, Nelson 7042, New Zealand; Ministry of Marine Resources, PO Box 85, Moss Rd, Avarua, Rarotonga, Cook Islands.
| | - Lesley L Rhodes
- Cawthron Institute, Private Bag 2, 98 Halifax St East, Nelson 7042, New Zealand
| | - Kirsty F Smith
- Cawthron Institute, Private Bag 2, 98 Halifax St East, Nelson 7042, New Zealand
| | - D Tim Harwood
- Cawthron Institute, Private Bag 2, 98 Halifax St East, Nelson 7042, New Zealand
| | | | - Islay D Marsden
- School of Biological Sciences, University of Canterbury, Private Bag 4800, 20 Kirkwood Ave, Christchurch 8041, New Zealand
| |
Collapse
|
21
|
Abdul Manaff AHN, Hii KS, Luo Z, Liu M, Law IK, Teng ST, Akhir MF, Gu H, Leaw CP, Lim PT. Mapping harmful microalgal species by eDNA monitoring: A large-scale survey across the southwestern South China Sea. HARMFUL ALGAE 2023; 129:102515. [PMID: 37951609 DOI: 10.1016/j.hal.2023.102515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/02/2023] [Accepted: 09/23/2023] [Indexed: 11/14/2023]
Abstract
A large-scale sampling was undertaken during a research cruise across the South China Sea in August 2016, covering an area of about 100,000 km2 to investigate the molecular diversity and distributions of micro-eukaryotic protists, with a focus on the potentially harmful microalgal (HAB) species along the east coast of Peninsular Malaysia. Environmental DNAs from 30 stations were extracted and DNA metabarcoding targeting the V4 and V9 markers in the 18S rDNA was performed. Many protistan molecular units, including previously unreported HAB taxa, were discovered for the first time in the water. Our findings also revealed interesting spatial distribution patterns, with a marked signal of compositional turnover between latitudinal regimes of water masses, where dinophytes and diatom compositions were among the most strongly enhanced at the fronts, leading to distinct niches. Our results further confirmed the widespread distribution of HAB species, such as the toxigenic Alexandrium tamiyavaichii and Pseudo-nitzschia species, and the fish-killing Margalefidinium polykrikoides and Karlodinium veneficum. The molecular information obtained from this study provides an updated HAB species inventory and a toolset that could facilitate existing HAB monitoring schemes in the region to better inform management decisions.
Collapse
Affiliation(s)
| | - Kieng Soon Hii
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia
| | - Zhaohe Luo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Minlu Liu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Ing Kuo Law
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia
| | - Sing Tung Teng
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Mohd Fadzil Akhir
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia.
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia.
| |
Collapse
|
22
|
Peng C, Wang K, Wang W, Kuang F, Gao Y, Jiang R, Sun X, Dong X, Chen B, Lin H. Phytoplankton community structure and environmental factors during the outbreak of Crown-of-Thorns Starfish in Xisha Islands, South China Sea. ENVIRONMENTAL RESEARCH 2023; 235:116568. [PMID: 37422114 DOI: 10.1016/j.envres.2023.116568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
The "larval starvation hypothesis" proposed that the growing frequency of Crown-of-Thorns Starfish (CoTS) outbreaks could be attributed to increased availability of phytoplankton. However, comprehensive field investigation on the living environment of CoTS larvae and the availability of phytoplankton are still lacking. A cruise was conducted in June 2022 in Xisha Islands, South China Sea, to study the interaction between environmental conditions and phytoplankton communities during CoTS outbreak period. The average concentrations of dissolved inorganic phosphorus (0.05 ± 0.01 μmol L-1), dissolved inorganic nitrogen (0.66 ± 0.8 μmol L-1) and chlorophyll a (0.05 ± 0.05 μg L-1) suggested that phytoplankton may be limited for CoTS larvae in Xisha Islands. Microscopic observation and high-throughput sequencing were used to study the composition and structure of the phytoplankton communities. Bacillariophyta predominated in phytoplankton communities with the highest abundance and species richness. 29 dominant species, including 4 species with size-range preferred by CoTS larvae, were identified in Xisha Islands. The diversity index of all stations indicated a species-rich and structure-stable phytoplankton community in Xisha Islands during the period of CoTS outbreak, which may contribute to CoTS outbreak. These findings revealed the structure of phytoplankton community and environmental factors in the study area during CoTS outbreak, providing the groundwork for future research into the causes and processes of CoTS outbreak.
Collapse
Affiliation(s)
- Conghui Peng
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Kang Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Wei Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Fangfang Kuang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Yahui Gao
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Ronggen Jiang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Xiuwu Sun
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Xu Dong
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Baohong Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; Xiamen Ocean Vocational College, Xiamen, 361102, China.
| | - Hui Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| |
Collapse
|
23
|
Bilbao J, Pavloudi C, Blanco-Rayón E, Franco J, Madariaga I, Seoane S. Phytoplankton community composition in relation to environmental variability in the Urdaibai estuary (SE Bay of Biscay): Microscopy and eDNA metabarcoding. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106175. [PMID: 37717336 DOI: 10.1016/j.marenvres.2023.106175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Phytoplankton monitoring is essential for the global understanding of aquatic ecosystems. The present research studies the phytoplankton community of the Urdaibai estuary, combining microscopy and eDNA metabarcoding for the first time in the area. The main aims were to describe the phytoplankton community composition in relation to the environmental conditions of the estuary, and to compare the two methods used. Diatoms Minutocellus polymorphus and Chaetoceros tenuissimus dominated the outer estuary, being replaced by Teleaulax acuta (cryptophyte), Kryptoperidinium foliaceum (dinoflagellate) and Cyclotella spp. (diatom) towards the inner area. This change was mainly prompted by salinity and nutrients. Metabarcoding revealed the presence of 223 species that were not observed by microscopy in previous studies in the estuary. However, several characteristic species (e.g., K. foliaceum) were only detected with microscopy. Additionally, microscopy covered the limitations of eDNA metabarcoding concerning quantification. Thus, to give a full insight, a combination of techniques is recommended.
Collapse
Affiliation(s)
- Jone Bilbao
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station, PiE- UPV/EHU), University of the Basque Country, UPV/EHU, Plentzia, Spain.
| | - Christina Pavloudi
- Institute of Marine Biology, Biotechnology, Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Crete, Greece; Department of Biological Sciences, The George Washington University, District of Columbia, USA
| | - Esther Blanco-Rayón
- Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station, PiE- UPV/EHU), University of the Basque Country, UPV/EHU, Plentzia, Spain
| | | | - Iosu Madariaga
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Sergio Seoane
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station, PiE- UPV/EHU), University of the Basque Country, UPV/EHU, Plentzia, Spain
| |
Collapse
|
24
|
Wang Z, Wang F, Wang C, Xie C, Tang T, Chen J, Ji S, Zhang S, Zhang Y, Jiang T. Annual variation in domoic acid in phytoplankton and shellfish samples from Daya Bay of the South China Sea. HARMFUL ALGAE 2023; 127:102438. [PMID: 37544665 DOI: 10.1016/j.hal.2023.102438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 08/08/2023]
Abstract
Domoic acid (DA) is a well-known phycotoxin that causes amnesic shellfish poisoning (ASP) and is mainly produced by diatom species belonging to the genus Pseudo-nitzschia. An annual survey was conducted monthly over the period of September 2020 to August 2021 in Daya Bay of the South China Sea to investigate the dynamics of particulate and shellfish DA and their relationships with the abundance of Pseudo-nitzschia spp. and environmental parameters. Pseudo-nitzschia spp. was one of the most dominant phytoplankton taxa, and a Pseudo-nitzschia bloom occurred during the survey with the highest abundance of 1.91 × 106 cells L-1. DA was detected in almost all plankton samples with the highest value of 120.7 ng L-1, and high DA concentrations coincided with the abundant presence of Pseudo-nitzschia. DA is prevalent in Daya Bay throughout the year, with detection rates of 98.3%, 82.6%, and 82.6% in plankton samples, in-situ and purchased shellfish, respectively. Higher DA concentrations were detected in the scallop (Chamys nobilis), with the highest concentration of 5.34 µg g-1. High water temperature and low DSi:DIN ratio promoted the growth of Pseudo-nitzschia and DA production. The results suggest that the increasing nitrogen loading and silicate limitation during Pseudo-nitzschia blooms together with the increase in water temperature may increase the risk of DA contamination in Daya Bay.
Collapse
Affiliation(s)
- Zhaohui Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Fan Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Chaofan Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Changliang Xie
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tao Tang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiazhuo Chen
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shuanghui Ji
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shuai Zhang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yuning Zhang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tianjian Jiang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
25
|
He L, Yu Z, Xu X, Zhu J, Yuan Y, Cao X, Song X. Metabarcoding analysis identifies high diversity of harmful algal bloom species in the coastal waters of the Beibu Gulf. Ecol Evol 2023; 13:e10127. [PMID: 37223313 PMCID: PMC10202623 DOI: 10.1002/ece3.10127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Harmful algal blooms (HABs) have occurred more frequently in recent years. In this study, to investigate their potential impact in the Beibu Gulf, short-read and long-read metabarcoding analyses were combined for annual marine phytoplankton community and HAB species identification. Short-read metabarcoding showed a high level of phytoplankton biodiversity in this area, with Dinophyceae dominating, especially Gymnodiniales. Multiple small phytoplankton, including Prymnesiophyceae and Prasinophyceae, were also identified, which complements the previous lack of identifying small phytoplankton and those unstable after fixation. Of the top 20 phytoplankton genera identified, 15 were HAB-forming genera, which accounted for 47.3%-71.5% of the relative abundance of phytoplankton. Based on long-read metabarcoding, a total of 147 OTUs (PID > 97%) belonging to phytoplankton were identified at the species level, including 118 species. Among them, 37 species belonged to HAB-forming species, and 98 species were reported for the first time in the Beibu Gulf. Contrasting the two metabarcoding approaches at the class level, they both showed a predominance of Dinophyceae, and both included high abundances of Bacillariophyceae, Prasinophyceae, and Prymnesiophyceae, but the relative contents of the classes varied. Notably, the results of the two metabarcoding approaches were quite different below the genus level. The high abundance and diversity of HAB species were probably due to their special life history and multiple nutritional modes. Annual HAB species variation revealed in this study provided a basis for evaluating their potential impact on aquaculture and even nuclear power plant safety in the Beibu Gulf.
Collapse
Affiliation(s)
- Liyan He
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xin Xu
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Jianan Zhu
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Yongquan Yuan
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Xihua Cao
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Xiuxian Song
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
26
|
Da J, Xi Y, Cheng Y, He H, Liu Y, Li H, Wu QL. The Effects of Intraguild Predation on Phytoplankton Assemblage Composition and Diversity: A Mesocosm Experiment. BIOLOGY 2023; 12:biology12040578. [PMID: 37106778 PMCID: PMC10136063 DOI: 10.3390/biology12040578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
Intraguild predation (IGP) can have a significant impact on phytoplankton biomass, but its effects on their diversity and assemblage composition are not well understood. In this study, we constructed an IGP model based on the common three-trophic food chain of "fish (or shrimp)-large branchiopods (Daphnia)-phytoplankton", and investigated the effects of IGP on phytoplankton assemblage composition and diversity in outdoor mesocosms using environmental DNA high-throughput sequencing. Our results indicated that the alpha diversities (number of amplicon sequence variants and Faith's phylogenetic diversity) of phytoplankton and the relative abundance of Chlorophyceae increased with the addition of Pelteobagrus fulvidraco, while similar trends were found in alpha diversities but with a decrease in the relative abundance of Chlorophyceae in the Exopalaemon modestus treatment. When both predators were added to the community, the strength of collective cascading effects on phytoplankton alpha diversities and assemblage composition were weaker than the sum of the individual predator effects. Network analysis further showed that this IGP effect also decreased the strength of collective cascading effects in reducing the complexity and stability of the phytoplankton assemblages. These findings contribute to a better understanding of the mechanisms underlying the impacts of IGP on lake biodiversity, and provide further knowledge relevant to lake management and conservation.
Collapse
Affiliation(s)
- Jun Da
- School of Ecology and Environment, Anhui Normal University, Wuhu 050031, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yilong Xi
- School of Ecology and Environment, Anhui Normal University, Wuhu 050031, China
| | - Yunshan Cheng
- School of Ecology and Environment, Anhui Normal University, Wuhu 050031, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hu He
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yanru Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Huabing Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
27
|
Shen Y, Zhang M, Li Z, Cao S, Lou Y, Cong Y, Jin F, Wang Y. Long-Term Toxicity of 50-nm and 1-μm Surface-Charged Polystyrene Microbeads in the Brine Shrimp Artemia parthenogenetica and Role of Food Availability. TOXICS 2023; 11:356. [PMID: 37112583 PMCID: PMC10145996 DOI: 10.3390/toxics11040356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Micro and nanoplastics (MNPs) as emerging contaminants have become a global environmental issue due to their small size and high bioavailability. However, very little information is available regarding their impact on zooplankton, especially when food availability is a limiting factor. Therefore, the present study aims at evaluating the long-term effects of two different sizes (50 nm and 1 μm) of amnio-modified polystyrene (PS-NH2) particles on brine shrimp, Artemia parthenogenetica, by providing different levels of food (microalgae) supply. Larvae were exposed to three environmentally relevant concentrations (5.5, 55, and 550 μg/L) of MNPs over a 14-days of exposure with two food levels, high (3 × 105~1 × 107 cells/mL), and low (1 × 105 cells/mL) food conditions. When exposed to high food levels, the survival, growth, and development of A. parthenogenetica were not negatively affected at the studied exposure concentrations. By comparison, when exposed to a low food level, a U shape trend was observed for the three measured effects (survival rate, body length, and instar). Significant interactions between food level and exposure concentration were found for all three measured effects (three-way ANOVA, p < 0.05). The activities of additives extracted from 50 nm PS-NH2 suspensions were below toxic levels, while those from 1-μm PS-NH2 showed an impact on artemia growth and development. Our results demonstrate the long-term risks posed by MNPs when zooplankton have low levels of food intake.
Collapse
Affiliation(s)
- Yu Shen
- College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China;
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
- Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Mingxing Zhang
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
- Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Zhaochuan Li
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
- Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Shuo Cao
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
- Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yadi Lou
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
- Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yi Cong
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
- Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Fei Jin
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
- Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Ying Wang
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
- Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| |
Collapse
|
28
|
Verma A, Hoppenrath M, Smith KF, Murray JS, Harwood DT, Hosking JM, Rongo T, Rhodes LL, Murray SA. Ostreopsis Schmidt and Coolia Meunier (Dinophyceae, Gonyaulacales) from Cook Islands and Niue (South Pacific Ocean), including description of Ostreopsis tairoto sp. nov. Sci Rep 2023; 13:3110. [PMID: 36813881 PMCID: PMC9947023 DOI: 10.1038/s41598-023-29969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
It is important to decipher the diversity and distribution of benthic dinoflagellates, as there are many morphologically indistinct taxa that differ from one another in production of potent toxins. To date, the genus Ostreopsis comprises twelve described species, of which seven are potentially toxic and produce compounds presenting a threat to human and environmental health. In this study, isolates previously identified as "Ostreopsis sp. 3" were sampled from the area where it was first reported, Rarotonga, Cook Islands, and have been taxonomically and phylogenetically characterised as Ostreopsis tairoto sp. nov. Phylogenetically, the species is closely related to "Ostreopsis sp. 8", O. mascarenensis, "O. sp. 4", O. fattorussoi, O. rhodesiae and O. cf. siamensis. Previously, it was considered a part of the O. cf. ovata complex but can be distinguished from O. cf. ovata based on the small pores identified on this study, and from O. fattorussoi and O. rhodesiae based on relative lengths of the 2' plates. No known palytoxin -like compounds were detected in strains investigated in this study. Strains of O. lenticularis, Coolia malayensis and C. tropicalis were also identified and described. This study advances our knowledge of biogeography, distribution, and toxins of Ostreopsis and Coolia species.
Collapse
Affiliation(s)
- A. Verma
- grid.117476.20000 0004 1936 7611School of Life Sciences, University of Technology, Broadway, Sydney, NSW 2007 Australia
| | - M. Hoppenrath
- grid.500026.10000 0004 0487 6958Senckenberg am Meer, German Center for Marine Biodiversity Research (DZMB), Südstrand 44, D-26382 Wilhelmshaven, Germany
| | - K. F. Smith
- grid.418703.90000 0001 0740 4700Cawthron Institute, Nelson, 7010 New Zealand
| | - J. S. Murray
- grid.418703.90000 0001 0740 4700Cawthron Institute, Nelson, 7010 New Zealand
| | - D. T. Harwood
- grid.418703.90000 0001 0740 4700Cawthron Institute, Nelson, 7010 New Zealand
| | - J. M. Hosking
- Te Ipukarea Society, PO Box 649, Rarotonga, Cook Islands
| | - T. Rongo
- Kōrero O Te `Ōrau, Avarua, PO Box 881, Avarua, Rarotonga, Cook Islands
| | - L. L. Rhodes
- grid.418703.90000 0001 0740 4700Cawthron Institute, Nelson, 7010 New Zealand
| | - S. A. Murray
- grid.117476.20000 0004 1936 7611School of Life Sciences, University of Technology, Broadway, Sydney, NSW 2007 Australia
| |
Collapse
|
29
|
Wu J, Zhu Z, Waniek JJ, Niu M, Wang Y, Zhang Z, Zhou M, Zhang R. The biogeography and co-occurrence network patterns of bacteria and microeukaryotes in the estuarine and coastal waters. MARINE ENVIRONMENTAL RESEARCH 2023; 184:105873. [PMID: 36628821 DOI: 10.1016/j.marenvres.2023.105873] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/02/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Community and diversity shifts of bacteria and microeukaryotes with strong environmental and spatial variations have been unveiled in the Pearl River Estuary (PRE) and northern coastal part of South China Sea (SCS). However, it is not clear what the determining factors shape the microbial community and how the biotic interactions respond to the estuarine and oceanic environment. Here, we established the multiple regression models (MRM) and co-occurrence networks on microbial communities in PRE and SCS habitats. The results showed that there were significant differences of the abiotic factors affecting the bacterial and microeukaryotic communities between PRE and SCS habitats. Salinity explained the largest variations to the microbial community dissimilarities in PRE. Whereas spatial and environmental factors determined the microbial community dissimilarities in SCS. Positive relations between parasitic lineages (e.g. Perkinsea and Cercozoa) and algal taxa (Dinophyceae, Cryptophyta, Chlorophyta and Ochrophyta) dominated in the PRE network. While parasites Syndiniales positively correlated with other Syndiniales and protists in SCS. Strong positive associations among autotrophic and heterotrophic groups were revealed in both niches. Therefore, the biotic interactions are also important and may be responsible for the unexplained variations of the abiotic factors from MRM models. Microbial network in the PRE estuarine water had weakened resistance to environmental disturbances, while the SCS network had greater capacity to maintain network stability. This study shed light on the different mechanisms of abiotic and biotic factors in shaping the compositions of bacteria and microeukaryotes between PRE and SCS niches, and highlights the weakening effect of environmental disturbances on the microbial network stability.
Collapse
Affiliation(s)
- Jinnan Wu
- School of Oceanography, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Zhu Zhu
- School of Oceanography, Shanghai Jiao Tong University, 200030, Shanghai, China.
| | - Joanna J Waniek
- Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, 18119, Rostock, Germany
| | - Mingyang Niu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Yuntao Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 310000, Hangzhou, Zhejiang, China
| | - Zhaoru Zhang
- School of Oceanography, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Meng Zhou
- School of Oceanography, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Ruifeng Zhang
- School of Oceanography, Shanghai Jiao Tong University, 200030, Shanghai, China.
| |
Collapse
|
30
|
Chai X, Zheng L, Liu J, Zhan J, Song L. Comparison of photosynthetic responses between haptophyte Phaeocystis globosa and diatom Skeletonema costatum under phosphorus limitation. Front Microbiol 2023; 14:1085176. [PMID: 36756351 PMCID: PMC9899818 DOI: 10.3389/fmicb.2023.1085176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
The diatom Skeletonema costatum and the haptophyte Phaeocystis globosa often form blooms in the coastal waters of the South China Sea. Skeletonema costatum commonly dominates in nutrient enrichment coastal waters, whereas P. globosa starts flourishing after the diatom blooms when phosphorus (P) is limited. Therefore, P limitation was proposed to be a critical factor affecting diatom-haptophyte transition. To elucidate the tolerance to P limitation in P. globosa compared with S. costatum, the effect of P limitation on their photosystem II (PSII) performance was investigated and their photosynthesis acclimation strategies in response to P limitation were evaluated. P limitation did not affect the growth of P. globosa over 7 days but decreased it for S. costatum. Correspondingly, the PSII activity of S. costatum was significantly inhibited by P limitation. The decline in PSII activity in S. costatum under P limitation was associated with the impairment of the oxygen-evolving complex (the donor side of PSII), the hindrance of electron transport from QA - to QB (the acceptor side of PSII), and the inhibition of electron transport to photosystem I (PSI). The 100% decrease in D1 protein level of S. costatum after P limitation for 6 days and PsbO protein level after 2 days of P limitation were attributed to its enhanced photoinhibition. In contrast, P. globosa maintained its photosynthetic activity with minor impairment of the function of PSII. With accelerated PSII repair and highly increased non-photochemical quenching (NPQ), P. globosa can avoid serious PSII damage under P limitation. On the contrary, S. costatum decreased its D1 restoration under P limitation, and the maximum NPQ value in S. costatum was only one-sixth of that in P. globosa. The present work provides extensive evidence that a close interaction exists between the tolerance to P limitation and photosynthetic responses of S. costatum and P. globosa.
Collapse
Affiliation(s)
- Xiaojie Chai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lingling Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jin Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiao Zhan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,*Correspondence: Jiao Zhan, ✉
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
31
|
Boudriga I, Abdennadher M, Khammeri Y, Mahfoudi M, Quéméneur M, Hamza A, Bel Haj Hmida N, Zouari AB, Hassen MB. Karenia selliformis bloom dynamics and growth rate estimation in the Sfax harbour (Tunisia), by using automated flow cytometry equipped with image in flow, during autumn 2019. HARMFUL ALGAE 2023; 121:102366. [PMID: 36639188 DOI: 10.1016/j.hal.2022.102366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
A Karenia selliformis bloom event in the Gulf of Gabès (Mediterranean Sea), was monitored over 9 days at high frequency during fall 2019, by using an automated flow cytometer (Cytosense, Cytobuoy b.v.) with an image-in-flow attachment. The instrument recorded the shape of the optical signals that lead to the resolution of six cell groups of pico-, nano- and microphytoplankton, during the Harmful Algal Bloom (HAB). K. selliformis cell dimensions derived from the hourly records, enabled to estimate the daily division rate over the bloom period. Results revealed that K. selliformis was the only bloom-forming species and it reached its highest mean abundance the fourth day of the survey. A shift in the nutrient composition occurred with a potential P limitation during the bloom growth and N limitation during the bloom collapse. The co-inertia analysis revealed opposite patterns for K. selliformis and heterotrophic prokaryotes suggesting trophic interactions and possible mixotrophic behaviour of K. selliformis at the end of the bloom. K. selliformis exhibited low growth rates generally < 1 division day-1, which could not explain the observed high abundance. The tide played a crucial role in the dynamics of K. selliformis at a semi-diurnal scale and at spring-neap tide scale and was probably enhancing K. selliformis accumulation.
Collapse
Affiliation(s)
- Ismail Boudriga
- INSTM - Institut National des Sciences et Technologies de la Mer, Tunisia.
| | | | - Yosra Khammeri
- INSTM - Institut National des Sciences et Technologies de la Mer, Tunisia
| | - Mabrouka Mahfoudi
- INSTM - Institut National des Sciences et Technologies de la Mer, Tunisia
| | - Marianne Quéméneur
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Asma Hamza
- INSTM - Institut National des Sciences et Technologies de la Mer, Tunisia
| | | | | | - Malika Bel Hassen
- INSTM - Institut National des Sciences et Technologies de la Mer, Tunisia
| |
Collapse
|