1
|
Zhang Z, Ji J, Pan X, Niu C, Xu L, Lei W, Zeng Z, Chen Q, Peng Q, Zheng S, Lu J, Zhou P. Normothermic Ex Vivo Heart Perfusion With Exosomes From Human Umbilical Cord Mesenchymal Stem Cells Improves Graft Function in Donation After Circulatory Death Hearts. Transplantation 2024; 108:2209-2221. [PMID: 38685203 DOI: 10.1097/tp.0000000000005040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
BACKGROUND This study aimed to investigate the cardioprotective effect of exosomes derived from human umbilical cord mesenchymal stem cells on donation after circulatory death (DCD) hearts preserved with normothermic ex vivo heart perfusion (EVHP) in a rat heart transplantation model. METHODS Thirty-two male Lewis rats were divided into 2 groups: the control group and the exosome group. The donor-heart rats were subjected to the DCD procedure by suffering a 15-min warm ischemia injury, subsequently preserved with EVHP for 90 min, and then transplanted into recipients via abdominal heterotopic heart transplantation. Vehicle or exosome was added into the perfusate of normothermic EVHP in the control or exosome group. We evaluated left ventricular graft function, myocardial inflammation, and myocardial apoptosis of the donor heart 1.5 h after heart transplantation. Furthermore, we investigate the alternation of myocardial gene expression in the donor hearts between both groups by transcriptome sequencing. RESULTS The treatment with exosome significantly enhanced cardiac function through increasing left ventricular developed pressure, dp/dt max , and dp/dt min of DCD hearts at 90 min after heart transplantation compared with the control group. The myocardial cells in the exosome group exhibited an orderly arrangement without obvious edema. Furthermore, exosome added into perfusate in the exosome group significantly attenuated the level of inflammatory response and apoptosis. Transcriptome sequencing and RT-qPCR showed the phosphoinositide 3-kinase/protein kinase B pathway was activated after exosome treatment. CONCLUSIONS Normothermic EVHP combined with exosome can be a promising and novel DCD heart preservation strategy, alleviating myocardial ischemia-reperfusion injury in the DCD heart.
Collapse
Affiliation(s)
- Zhong Zhang
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianqiang Ji
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Pan
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuanjie Niu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liwei Xu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenrui Lei
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zifeng Zeng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiong Chen
- Precision Medical Center of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingbao Peng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Lu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Niroomand A, Nita GE, Lindstedt S. Machine Perfusion and Bioengineering Strategies in Transplantation-Beyond the Emerging Concepts. Transpl Int 2024; 37:13215. [PMID: 39267617 PMCID: PMC11390383 DOI: 10.3389/ti.2024.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Solid organ transplantation has progressed rapidly over the decades from the first experimental procedures to its role in the modern era as an established treatment for end-stage organ disease. Solid organ transplantation including liver, kidney, pancreas, heart, and lung transplantation, is the definitive option for many patients, but despite the advances that have been made, there are still significant challenges in meeting the demand for viable donor grafts. Furthermore, post-operatively, the recipient faces several hurdles, including poor early outcomes like primary graft dysfunction and acute and chronic forms of graft rejection. In an effort to address these issues, innovations in organ engineering and treatment have been developed. This review covers efforts made to expand the donor pool including bioengineering techniques and the use of ex vivo graft perfusion. It also covers modifications and treatments that have been trialed, in addition to research efforts in both abdominal organs and thoracic organs. Overall, this article discusses recent innovations in machine perfusion and organ bioengineering with the aim of improving and increasing the quality of donor organs.
Collapse
Affiliation(s)
- Anna Niroomand
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - George Emilian Nita
- Department of Transplantation Surgery, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Division of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Sandra Lindstedt
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Zhuang Q, Li M, Hu D, Li J. Recent advances in potential targets for myocardial ischemia reperfusion injury: Role of macrophages. Mol Immunol 2024; 169:1-9. [PMID: 38447462 DOI: 10.1016/j.molimm.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a complex process that occurs when blood flow is restored after myocardium infarction (MI) with exacerbated tissue damage. Macrophages, essential cell type of the immune response, play an important role in MIRI. Macrophage subpopulations, namely M1 and M2, are distinguished by distinct phenotypes and functions. In MIRI, macrophages infiltrate in infarcted area, shaping the inflammatory response and influencing tissue healing. Resident cardiac macrophages interact with monocyte-derived macrophages in MIRI, and influence injury progression. Key factors including chemokines, cytokines, and toll-like receptors modulate macrophage behavior in MIRI. This review aims to address recent findings on the classification and the roles of macrophages in the myocardium, spanning from MI to subsequent MIRI, and highlights various signaling pathways implicated in macrophage polarization underlining the complexity of MIRI. This article will shed light on developing advanced therapeutic strategies for MIRI management.
Collapse
Affiliation(s)
- Qigang Zhuang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingyue Li
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junyi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Miceli V, Bulati M, Gallo A, Iannolo G, Busà R, Conaldi PG, Zito G. Role of Mesenchymal Stem/Stromal Cells in Modulating Ischemia/Reperfusion Injury: Current State of the Art and Future Perspectives. Biomedicines 2023; 11:689. [PMID: 36979668 PMCID: PMC10045387 DOI: 10.3390/biomedicines11030689] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) is a multistep damage that occurs in several tissues when a blood flow interruption is inevitable, such as during organ surgery or transplantation. It is responsible for cell death and tissue dysfunction, thus leading, in the case of transplantation, to organ rejection. IRI takes place during reperfusion, i.e., when blood flow is restored, by activating inflammation and reactive oxygen species (ROS) production, causing mitochondrial damage and apoptosis of parenchymal cells. Unfortunately, none of the therapies currently in use are definitive, prompting the need for new therapeutic approaches. Scientific evidence has proven that mesenchymal stem/stromal cells (MSCs) can reduce inflammation and ROS, prompting this cellular therapy to also be investigated for treatment of IRI. Moreover, it has been shown that MSC therapeutic effects were mediated in part by their secretome, which appears to be involved in immune regulation and tissue repair. For these reasons, mediated MSC paracrine function might be key for injury amelioration upon IRI damage. In this review, we highlight the scientific literature on the potential beneficial use of MSCs and their products for improving IRI outcomes in different tissues/organs, focusing in particular on the paracrine effects mediated by MSCs, and on the molecular mechanisms behind these effects.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCSS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | | | | | | | | | | | - Giovanni Zito
- Research Department, IRCSS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| |
Collapse
|
5
|
Luijmes SH, Verstegen MMA, Hoogduijn MJ, Seghers L, Minnee RC, Mahtab EAF, Taverne YJHJ, Reinders MEJ, van der Laan LJW, de Jonge J. The current status of stem cell-based therapies during ex vivo graft perfusion: An integrated review of four organs. Am J Transplant 2022; 22:2723-2739. [PMID: 35896477 PMCID: PMC10087443 DOI: 10.1111/ajt.17161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/26/2022] [Accepted: 07/15/2022] [Indexed: 01/25/2023]
Abstract
The use of extended criteria donor grafts is a promising strategy to increase the number of organ transplantations and reduce waitlist mortality. However, these organs are often compromised and/or damaged, are more susceptible to preservation injury, and are at risk for developing post-transplant complications. Ex vivo organ perfusion is a novel technology to preserve donor organs while providing oxygen and nutrients at distinct perfusion temperatures. This preservation method allows to resuscitate grafts and optimize function with therapeutic interventions prior to solid organ transplantation. Stem cell-based therapies are increasingly explored for their ability to promote regeneration and reduce the inflammatory response associated with in vivo reperfusion. The aim of this review is to describe the current state of stem cell-based therapies during ex vivo organ perfusion for the kidney, liver, lung, and heart. We discuss different strategies, including type of cells, route of administration, mechanisms of action, efficacy, and safety. The progress made within lung transplantation justifies the initiation of clinical trials, whereas more research is likely required for the kidney, liver, and heart to progress into clinical application. We emphasize the need for standardization of methodology to increase comparability between future (clinical) studies.
Collapse
Affiliation(s)
- Stefan H Luijmes
- Department of Surgery, Division of Hepatopancreatobiliary and Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Monique M A Verstegen
- Department of Surgery, Division of Hepatopancreatobiliary and Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Martin J Hoogduijn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leonard Seghers
- Department of Pulmonology, Thorax Center, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert C Minnee
- Department of Surgery, Division of Hepatopancreatobiliary and Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Edris A F Mahtab
- Department of Cardiothoracic Surgery, Thorax Center, Erasmus MC Transplant Institute, University Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Yannick J H J Taverne
- Department of Cardiothoracic Surgery, Thorax Center, Erasmus MC Transplant Institute, University Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marlies E J Reinders
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Division of Hepatopancreatobiliary and Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jeroen de Jonge
- Department of Surgery, Division of Hepatopancreatobiliary and Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Normothermic Ex Vivo Heart Perfusion with Mesenchymal Stem Cell-Derived Conditioned Medium Improves Myocardial Tissue Protection in Rat Donation after Circulatory Death Hearts. Stem Cells Int 2022; 2022:8513812. [DOI: 10.1155/2022/8513812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022] Open
Abstract
Objective. Adopting hearts from donation after circulatory death (DCD) is a promising approach to enlarge the donor pool. Nevertheless, DCD hearts experience severe warm ischemia/reperfusion (I/R) injury. Recent studies have demonstrated that conditioned medium (CM) derived from bone marrow mesenchymal stem cells (BMSCs) has the potential of reducing organ I/R injury. Therefore, we investigated whether DCD heart preservation with normothermic ex vivo heart perfusion (EVHP) and BMSCs-CM treatment could alleviate myocardial warm I/R injury in the DCD hearts. Methods. We randomly divided donor rats into two groups: (1) DCD-Control group and (2) DCD-CM group. Before DCD heart preservation with the normothermic EVHP system for 105 minutes, rats suffered from a 25-minute warm ischemia injury in the DCD procedure. Vehicle or CM (300 μl) was added to the perfusate at the beginning of the perfusion process. The cardiac function of DCD hearts in the DCD-Control and DCD-CM groups was measured every 30 minutes. Besides, non-DCD hearts were harvested from the beating-heart rats. Results. The antibody array demonstrated that the CM contained 14 bioactive factors involved in apoptosis, inflammation, and oxidative stress. Warm ischemia injury resulted in a significant increase in the level of oxidative stress, inflammation, and apoptosis in the DCD hearts of DCD-Control group. Furthermore, compared with the DCD-Control group, CM treatment increased the developed pressure,
and
of the left ventricular in the DCD hearts during a 90-minute EVHP. Moreover, the administration of CM attenuated the level of oxidative stress, inflammation, and apoptosis in the DCD hearts of the DCD-CM group. Conclusions. Normothermic EVHP combined with CM treatment can alleviate warm I/R injury in the DCD hearts by decreasing the level of oxidative stress, inflammatory response, and apoptosis, which might alleviate the shortage of donor hearts by adopting DCD hearts.
Collapse
|
7
|
Bone Marrow Culture-Derived Conditioned Medium Recovers Endothelial Function of Vascular Grafts following In Vitro Ischemia/Reperfusion Injury in Diabetic Rats. Stem Cells Int 2022; 2022:7019088. [PMID: 36277042 PMCID: PMC9586819 DOI: 10.1155/2022/7019088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Ischemia/reperfusion injury (IRI) remains a challenge in coronary artery bypass grafting (CABG). Diabetic patients with coronary artery disease are more likely to require CABG and therefore run a high risk for cardiovascular complications. Conditioned medium (CM) from bone marrow-derived mesenchymal stem cells has been shown to have beneficial effects against IRI. We hypothesized that adding CM to physiological saline protects vascular grafts from IRI in diabetic rats. Bone-marrow derived cells were isolated from nondiabetic rat femurs/tibias, and CM was generated. As we previously reported, CM contains 23 factors involved in inflammation, oxidative stress, and apoptosis. DM was induced by streptozotocin administration. Eight weeks later, to measure vascular function, aortic rings were isolated and mounted in organ bath chambers (DM group) or stored in 4°C saline, supplemented either with a vehicle (DM-IR group) or CM (DM-IR+CM group). Although DM was associated with structural changes compared to controls, there were no functional alterations. However, compared to the DM group, in the DM-IR aortas, impaired maximum endothelium-dependent vasorelaxation in response to acetylcholine (DM 86.7 ± 0.1% vs. DM-IR 42.5 ± 2.5% vs. DM-IR+CM 61.9 ± 2.0%, p < 0.05) was improved, caspase-3, caspase-8, caspase-9, and caspase-12 immunoreactivity was decreased, and DNA strand breakage, detected by the TUNEL assay, was reduced by CM. We present the experimental finding that the preservation of vascular grafts with CM prevents endothelial dysfunction after IRI in diabetic rats. Targeting apoptosis by CM may contribute to its protective effect.
Collapse
|
8
|
Wang M, Yan L, Li Q, Yang Y, Turrentine M, March K, Wang IW. Mesenchymal stem cell secretions improve donor heart function following ex vivo cold storage. J Thorac Cardiovasc Surg 2022; 163:e277-e292. [PMID: 32981709 PMCID: PMC7921217 DOI: 10.1016/j.jtcvs.2020.08.095] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Heart transplantation is the gold standard of treatments for end-stage heart failure, but its use is limited by extreme shortage of donor organs. The time "window" between procurement and transplantation sets the stage for myocardial ischemia/reperfusion injury, which constrains the maximal storage time and lowers use of donor organs. Given mesenchymal stem cell (MSC)-derived paracrine protection, we aimed to evaluate the efficacy of MSC-conditioned medium (CM) and extracellular vesicles (EVs) when added to ex vivo preservation solution on ameliorating ischemia/reperfusion-induced myocardial damage in donor hearts. METHODS Mouse donor hearts were stored at 0°C-4°C of <1-hour cold ischemia (<1hr-I), 6hr-I + vehicle, 6hr-I + MSC-CM, 6hr-I + MSC-EVs, and 6hr-I + MSC-CM from MSCs treated with exosome release inhibitor. The hearts were then heterotopically implanted into recipient mice. At 24 hours postsurgery, myocardial function was evaluated. Heart tissue was collected for analysis of histology, apoptotic cell death, microRNA (miR)-199a-3p expression, and myocardial cytokine production. RESULTS Six-hour cold ischemia significantly impaired myocardial function, increased cell death, and reduced miR-199a-3p in implanted hearts versus <1hr-I. MSC-CM or MSC-EVs in preservation solution reversed the detrimental effects of prolong cold ischemia on donor hearts. Exosome-depleted MSC-CM partially abolished MSC secretome-mediated cardioprotection in implanted hearts. MiR-199a-3p was highly enriched in MSC-EVs. MSC-CM and MSC-EVs increased cold ischemia-downregulated miR-199a-3p in donor hearts, whereas exosome-depletion neutralized this effect. CONCLUSIONS MSC-CM and MSC-EVs confer improved myocardial preservation in donor hearts during prolonged cold static storage and MSC-EVs can be used for intercellular transport of miRNAs in heart transplantation.
Collapse
Affiliation(s)
- Meijing Wang
- Division of Cardiothoracic Surgery, Department of Surgery, IU School of Medicine, Indianapolis, Ind.
| | - Liangliang Yan
- Division of Cardiothoracic Surgery, Department of Surgery, IU School of Medicine, Indianapolis, Ind; Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fujian, China
| | - Qianzhen Li
- Division of Cardiothoracic Surgery, Department of Surgery, IU School of Medicine, Indianapolis, Ind; Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fujian, China; Division of Cardiovascular Medicine, Department of Medicine, IU School of Medicine, Indianapolis, Ind
| | - Yang Yang
- Division of Cardiothoracic Surgery, Department of Surgery, IU School of Medicine, Indianapolis, Ind
| | - Mark Turrentine
- Division of Cardiothoracic Surgery, Department of Surgery, IU School of Medicine, Indianapolis, Ind
| | - Keith March
- Division of Cardiovascular Medicine, Department of Medicine, IU School of Medicine, Indianapolis, Ind; Division of Cardiovascular Medicine, Center for Regenerative Medicine, University of Florida, Gainesville, Fla
| | - I-Wen Wang
- Division of Cardiothoracic Surgery, Department of Surgery, IU School of Medicine, Indianapolis, Ind; Methodist Hospital, IU Health, IU School of Medicine, Indianapolis, Ind.
| |
Collapse
|
9
|
Scott SR, March KL, Wang IW, Singh K, Liu J, Turrentine M, Sen CK, Wang M. Bone marrow- or adipose-mesenchymal stromal cell secretome preserves myocardial transcriptome profile and ameliorates cardiac damage following ex vivo cold storage. J Mol Cell Cardiol 2022; 164:1-12. [PMID: 34774548 PMCID: PMC8860861 DOI: 10.1016/j.yjmcc.2021.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/24/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Heart transplantation, a life-saving approach for patients with end-stage heart disease, is limited by shortage of donor organs. While prolonged storage provides more organs, it increases the extent of ischemia. Therefore, we seek to understand molecular mechanisms underlying pathophysiological changes of donor hearts during prolonged storage. Additionally, considering mesenchymal stromal cell (MSC)-derived paracrine protection, we aim to test if MSC secretome preserves myocardial transcriptome profile and whether MSC secretome from a certain source provides the optimal protection in donor hearts during cold storage. METHODS AND RESULTS Isolated mouse hearts were divided into: no cold storage (control), 6 h cold storage (6 h-I), 6 h-I + conditioned media from bone marrow MSCs (BM-MSC CM), and 6 h-I + adipose-MSC CM (Ad-MSC CM). Deep RNA sequencing analysis revealed that compared to control, 6 h-I led to 266 differentially expressed genes, many of which were implicated in modulating mitochondrial performance, oxidative stress response, myocardial function, and apoptosis. BM-MSC CM and Ad-MSC CM restored these gene expression towards control. They also improved 6 h-I-induced myocardial functional depression, reduced inflammatory cytokine production, decreased apoptosis, and reduced myocardial H2O2. However, neither MSC-exosomes nor exosome-depleted CM recapitulated MSC CM-ameliorated apoptosis and CM-improved mitochondrial preservation during cold ischemia. Knockdown of Per2 by specific siRNA abolished MSC CM-mediated these protective effects in cardiomyocytes following 6 h cold storage. CONCLUSIONS Our results demonstrated that using MSC secretome (BM-MSCs and Ad-MSCs) during prolonged cold storage confers preservation of the normal transcriptional "fingerprint", and reduces donor heart damage. MSC-released soluble factors and exosomes may synergistically act for donor heart protection.
Collapse
Affiliation(s)
- Susan R Scott
- Department of Surgery, IU School of Medicine, Indianapolis, IN, U.S.A
| | - Keith L March
- Division of Cardiovascular Medicine, Department of Medicine, IU School of Medicine, Indianapolis, IN, U.S.A,Division of Cardiovascular Medicine, Center for Regenerative Medicine, University of Florida, Gainesville, FL, U.S.A
| | - I-wen Wang
- Department of Surgery, IU School of Medicine, Indianapolis, IN, U.S.A,Methodist Hospital, IU Health, IU School of Medicine, Indianapolis, IN, U.S.A
| | - Kanhaiya Singh
- Department of Surgery, IU School of Medicine, Indianapolis, IN, U.S.A,Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, U.S.A
| | - Jianyun Liu
- Department of Surgery, IU School of Medicine, Indianapolis, IN, U.S.A
| | - Mark Turrentine
- Department of Surgery, IU School of Medicine, Indianapolis, IN, U.S.A
| | - Chandan K Sen
- Department of Surgery, IU School of Medicine, Indianapolis, IN, U.S.A,Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, U.S.A
| | - Meijing Wang
- Department of Surgery, IU School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
10
|
Li J, Peng Q, Yang R, Li K, Zhu P, Zhu Y, Zhou P, Szabó G, Zheng S. Application of Mesenchymal Stem Cells During Machine Perfusion: An Emerging Novel Strategy for Organ Preservation. Front Immunol 2022; 12:713920. [PMID: 35024039 PMCID: PMC8744145 DOI: 10.3389/fimmu.2021.713920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022] Open
Abstract
Although solid organ transplantation remains the definitive management for patients with end-stage organ failure, this ultimate treatment has been limited by the number of acceptable donor organs. Therefore, efforts have been made to expand the donor pool by utilizing marginal organs from donation after circulatory death or extended criteria donors. However, marginal organs are susceptible to ischemia-reperfusion injury (IRI) and entail higher requirements for organ preservation. Recently, machine perfusion has emerged as a novel preservation strategy for marginal grafts. This technique continually perfuses the organs to mimic the physiologic condition, allows the evaluation of pretransplant graft function, and more excitingly facilitates organ reconditioning during perfusion with pharmacological, gene, and stem cell therapy. As mesenchymal stem cells (MSCs) have anti-oxidative, immunomodulatory, and regenerative properties, mounting studies have demonstrated the therapeutic effects of MSCs on organ IRI and solid organ transplantation. Therefore, MSCs are promising candidates for organ reconditioning during machine perfusion. This review provides an overview of the application of MSCs combined with machine perfusion for lung, kidney, liver, and heart preservation and reconditioning. Promising preclinical results highlight the potential clinical translation of this innovative strategy to improve the quality of marginal grafts.
Collapse
Affiliation(s)
- Jiale Li
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinbao Peng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ronghua Yang
- Department of Burn Surgery and Skin Regeneration, The First People's Hospital of Foshan, Foshan, China
| | - Kunsheng Li
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yufeng Zhu
- Laboratory Animal Research Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Gábor Szabó
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Department of Cardiac Surgery, University Hospital Halle (Saale), Halle, Germany
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Guidetti F, Arrigo M, Frank M, Mikulicic F, Sokolski M, Aser R, Wilhelm MJ, Flammer AJ, Ruschitzka F, Winnik S. Treatment of Advanced Heart Failure-Focus on Transplantation and Durable Mechanical Circulatory Support: What Does the Future Hold? Heart Fail Clin 2021; 17:697-708. [PMID: 34511216 DOI: 10.1016/j.hfc.2021.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Heart transplantation (HTx) is the treatment of choice in patients with late-stage advanced heart failure (Advanced HF). Survival rates 1, 5, and 10 years after transplantation are 87%, 77%, and 57%, respectively, and the average life expectancy is 9.16 years. However, because of the donor organ shortage, waiting times often exceed life expectancy, resulting in a waiting list mortality of around 20%. This review aims to provide an overview of current standard, recent advances, and future developments in the treatment of Advanced HF with a focus on long-term mechanical circulatory support and HTx.
Collapse
Affiliation(s)
- Federica Guidetti
- Department of Cardiology, University Hospital of Zürich, Rämistrasse 100, Zürich 8091, Switzerland.
| | - Mattia Arrigo
- Department of Internal Medicine, Triemli Hospital Zürich, Birmensdorferstrasse 497, 8063 Zürich, Switzerland
| | - Michelle Frank
- Department of Cardiology, University Hospital of Zürich, Rämistrasse 100, Zürich 8091, Switzerland
| | - Fran Mikulicic
- Department of Cardiology, University Hospital of Zürich, Rämistrasse 100, Zürich 8091, Switzerland
| | - Mateusz Sokolski
- Department of Heart Diseases, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Raed Aser
- Department of Cardiac Surgery, University Hospital of Zürich, Rämistrasse 100, Zürich 8091, Switzerland
| | - Markus J Wilhelm
- Department of Cardiac Surgery, University Hospital of Zürich, Rämistrasse 100, Zürich 8091, Switzerland
| | - Andreas J Flammer
- Department of Cardiology, University Hospital of Zürich, Rämistrasse 100, Zürich 8091, Switzerland
| | - Frank Ruschitzka
- Department of Cardiology, University Hospital of Zürich, Rämistrasse 100, Zürich 8091, Switzerland
| | - Stephan Winnik
- Department of Cardiology, University Hospital of Zürich, Rämistrasse 100, Zürich 8091, Switzerland
| |
Collapse
|
12
|
Patel PM, Connolly MR, Coe TM, Calhoun A, Pollok F, Markmann JF, Burdorf L, Azimzadeh A, Madsen JC, Pierson RN. Minimizing Ischemia Reperfusion Injury in Xenotransplantation. Front Immunol 2021; 12:681504. [PMID: 34566955 PMCID: PMC8458821 DOI: 10.3389/fimmu.2021.681504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
The recent dramatic advances in preventing "initial xenograft dysfunction" in pig-to-non-human primate heart transplantation achieved by minimizing ischemia suggests that ischemia reperfusion injury (IRI) plays an important role in cardiac xenotransplantation. Here we review the molecular, cellular, and immune mechanisms that characterize IRI and associated "primary graft dysfunction" in allotransplantation and consider how they correspond with "xeno-associated" injury mechanisms. Based on this analysis, we describe potential genetic modifications as well as novel technical strategies that may minimize IRI for heart and other organ xenografts and which could facilitate safe and effective clinical xenotransplantation.
Collapse
Affiliation(s)
- Parth M. Patel
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Margaret R. Connolly
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Taylor M. Coe
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Anthony Calhoun
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Franziska Pollok
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - James F. Markmann
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Transplantation, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lars Burdorf
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Agnes Azimzadeh
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Joren C. Madsen
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Richard N. Pierson
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Zheng XH, Wang LL, Zheng MZ, Zhong JJ, Chen YY, Shen YL. RGFP966 inactivation of the YAP pathway attenuates cardiac dysfunction induced by prolonged hypothermic preservation. J Zhejiang Univ Sci B 2021; 21:703-715. [PMID: 32893527 PMCID: PMC7519627 DOI: 10.1631/jzus.b2000026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022]
Abstract
Oxidative stress and apoptosis are the key factors that limit the hypothermic preservation time of donor hearts to within 4-6 h. The aim of this study was to investigate whether the histone deacetylase 3 (HDAC3) inhibitor RGFP966 could protect against cardiac injury induced by prolonged hypothermic preservation. Rat hearts were hypothermically preserved in Celsior solution with or without RGFP966 for 12 h followed by 60 min of reperfusion. Hemodynamic parameters during reperfusion were evaluated. The expression and phosphorylation levels of mammalian STE20-like kinase-1 (Mst1) and Yes-associated protein (YAP) were determined by western blotting. Cell apoptosis was measured by the terminal deoxynucleotidyl-transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) method. Addition of RGFP966 in Celsior solution significantly inhibited cardiac dysfunction induced by hypothermic preservation. RGFP966 inhibited the hypothermic preservation-induced increase of the phosphorylated (p)-Mst1/Mst1 and p-YAP/YAP ratios, prevented a reduction in total YAP protein expression, and increased the nuclear YAP protein level. Verteporfin (VP), a small molecular inhibitor of YAP-transcriptional enhanced associate domain (TEAD) interaction, partially abolished the protective effect of RGFP966 on cardiac function, and reduced lactate dehydrogenase activity and malondialdehyde content. RGFP966 increased superoxide dismutase, catalase, and glutathione peroxidase gene and protein expression, which was abolished by VP. RGFP966 inhibited hypothermic preservation-induced overexpression of B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax) and cleaved caspase-3, increased Bcl-2 mRNA and protein expression, and reduced cardiomyocyte apoptosis. The antioxidant and anti-apoptotic effects of RGFP966 were cancelled by VP. The results suggest that supplementation of Celsior solution with RGFP966 attenuated prolonged hypothermic preservation-induced cardiac dysfunction. The mechanism may involve inhibition of oxidative stress and apoptosis via inactivation of the YAP pathway.
Collapse
Affiliation(s)
- Xiao-he Zheng
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lin-lin Wang
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Ming-zhi Zheng
- Department of Pharmacology, Hangzhou Medical College, Hangzhou 310053, China
| | - Jin-jie Zhong
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Obstetrics, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ying-ying Chen
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Obstetrics, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yue-liang Shen
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
14
|
Korkmaz-Icöz S, Kocer C, Sayour AA, Kraft P, Benker MI, Abulizi S, Georgevici AI, Brlecic P, Radovits T, Loganathan S, Karck M, Szabó G. The Sodium-Glucose Cotransporter-2 Inhibitor Canagliflozin Alleviates Endothelial Dysfunction Following In Vitro Vascular Ischemia/Reperfusion Injury in Rats. Int J Mol Sci 2021; 22:ijms22157774. [PMID: 34360539 PMCID: PMC8345991 DOI: 10.3390/ijms22157774] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 01/10/2023] Open
Abstract
Vascular ischemia/reperfusion injury (IRI) contributes to graft failure and adverse clinical outcomes following coronary artery bypass grafting. Sodium-glucose-cotransporter (SGLT)-2-inhibitors have been shown to protect against myocardial IRI, irrespective of diabetes. We hypothesized that adding canagliflozin (CANA) (an SGLT-2-inhibitor) to saline protects vascular grafts from IRI. Aortic rings from non-diabetic rats were isolated and immediately mounted in organ bath chambers (control, n = 9–10 rats) or underwent cold ischemic preservation in saline, supplemented either with a DMSO vehicle (IR, n = 8–10 rats) or 50µM CANA (IR + CANA, n = 9–11 rats). Vascular function was measured, the expression of 88 genes using PCR-array was analyzed, and feature selection using machine learning was applied. Impaired maximal vasorelaxation to acetylcholine in the IR-group compared to controls was significantly ameliorated by CANA (IR 31.7 ± 3.2% vs. IR + CANA 51.9 ± 2.5%, p < 0.05). IR altered the expression of 17 genes. Ccl2, Ccl3, Ccl4, CxCr4, Fos, Icam1, Il10, Il1a and Il1b have been found to have the highest interaction. Compared to controls, IR significantly upregulated the mRNA expressions of Il1a and Il6, which were reduced by 1.5- and 1.75-fold with CANA, respectively. CANA significantly prevented the upregulation of Cd40, downregulated NoxO1 gene expression, decreased ICAM-1 and nitrotyrosine, and increased PECAM-1 immunoreactivity. CANA alleviates endothelial dysfunction following IRI.
Collapse
Affiliation(s)
- Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.K.); (A.A.S.); (P.K.); (M.I.B.); (S.A.); (P.B.); (S.L.); (M.K.); (G.S.)
- Correspondence: ; Tel.: +49-6221-566246; Fax: +49-6221-564571
| | - Cenk Kocer
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.K.); (A.A.S.); (P.K.); (M.I.B.); (S.A.); (P.B.); (S.L.); (M.K.); (G.S.)
| | - Alex A. Sayour
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.K.); (A.A.S.); (P.K.); (M.I.B.); (S.A.); (P.B.); (S.L.); (M.K.); (G.S.)
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary;
| | - Patricia Kraft
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.K.); (A.A.S.); (P.K.); (M.I.B.); (S.A.); (P.B.); (S.L.); (M.K.); (G.S.)
| | - Mona I. Benker
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.K.); (A.A.S.); (P.K.); (M.I.B.); (S.A.); (P.B.); (S.L.); (M.K.); (G.S.)
| | - Sophia Abulizi
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.K.); (A.A.S.); (P.K.); (M.I.B.); (S.A.); (P.B.); (S.L.); (M.K.); (G.S.)
| | - Adrian-Iustin Georgevici
- Department of Anesthesiology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany;
| | - Paige Brlecic
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.K.); (A.A.S.); (P.K.); (M.I.B.); (S.A.); (P.B.); (S.L.); (M.K.); (G.S.)
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary;
| | - Sivakkanan Loganathan
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.K.); (A.A.S.); (P.K.); (M.I.B.); (S.A.); (P.B.); (S.L.); (M.K.); (G.S.)
- Department of Cardiac Surgery, University Hospital Halle (Saale), 06120 Halle, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.K.); (A.A.S.); (P.K.); (M.I.B.); (S.A.); (P.B.); (S.L.); (M.K.); (G.S.)
| | - Gábor Szabó
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.K.); (A.A.S.); (P.K.); (M.I.B.); (S.A.); (P.B.); (S.L.); (M.K.); (G.S.)
- Department of Cardiac Surgery, University Hospital Halle (Saale), 06120 Halle, Germany
| |
Collapse
|
15
|
Hypotherme Perfusion von Spenderherzen mit einer mesenchymale Stammzellen enthaltenden Konservierungslösung. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2021. [DOI: 10.1007/s00398-021-00429-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Korkmaz-Icöz S, Sun X, Li S, Brlecic P, Loganathan S, Ruppert M, Sayour AA, Radovits T, Karck M, Szabó G. Conditioned Medium from Mesenchymal Stem Cells Alleviates Endothelial Dysfunction of Vascular Grafts Submitted to Ischemia/Reperfusion Injury in 15-Month-Old Rats. Cells 2021; 10:1231. [PMID: 34067928 PMCID: PMC8155879 DOI: 10.3390/cells10051231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/09/2023] Open
Abstract
In patients undergoing coronary artery bypass grafting (CABG), ischemia/reperfusion injury (IRI) is the main contributor to organ dysfunction. Aging-induced vascular damage may be further aggravated during CABG. Favorable effects of conditioned medium (CM) from mesenchymal stem cells (MSCs) have been suggested against IRI. We hypothesized that adding CM to saline protects vascular grafts from IRI in rats. We found that CM contains 28 factors involved in apoptosis, inflammation, and oxidative stress. Thoracic aortic rings from 15-month-old rats were explanted and immediately mounted in organ bath chambers (aged group) or underwent 24 h of cold ischemic preservation in saline-supplemented either with vehicle (aged-IR group) or CM (aged-IR+CM group), prior to mounting. Three-month-old rats were used as referent young animals. Aging was associated with an increase in intima-to-media thickness, an increase in collagen content, higher caspase-12 mRNA levels, and immunoreactivity compared to young rats. Impaired endothelium-dependent vasorelaxation to acetylcholine in the aged-IR group compared to the aged-aorta was improved by CM (aged 61 ± 2% vs. aged-IR 38 ± 2% vs. aged-IR+CM 50 ± 3%, p < 0.05). In the aged-IR group, the already high mRNA levels of caspase-12 were decreased by CM. CM alleviates endothelial dysfunction following IRI in 15-month-old rats. The protective effect may be related to the inhibition of caspase-12 expression.
Collapse
Affiliation(s)
- Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (X.S.); (S.L.); (P.B.); (S.L.); (M.R.); (A.A.S.); (M.K.); (G.S.)
| | - Xiaoxin Sun
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (X.S.); (S.L.); (P.B.); (S.L.); (M.R.); (A.A.S.); (M.K.); (G.S.)
| | - Shiliang Li
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (X.S.); (S.L.); (P.B.); (S.L.); (M.R.); (A.A.S.); (M.K.); (G.S.)
| | - Paige Brlecic
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (X.S.); (S.L.); (P.B.); (S.L.); (M.R.); (A.A.S.); (M.K.); (G.S.)
| | - Sivakkanan Loganathan
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (X.S.); (S.L.); (P.B.); (S.L.); (M.R.); (A.A.S.); (M.K.); (G.S.)
- Department of Cardiac Surgery, University Hospital Halle (Saale), 06120 Halle, Germany
| | - Mihály Ruppert
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (X.S.); (S.L.); (P.B.); (S.L.); (M.R.); (A.A.S.); (M.K.); (G.S.)
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary;
| | - Alex Ali Sayour
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (X.S.); (S.L.); (P.B.); (S.L.); (M.R.); (A.A.S.); (M.K.); (G.S.)
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary;
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary;
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (X.S.); (S.L.); (P.B.); (S.L.); (M.R.); (A.A.S.); (M.K.); (G.S.)
| | - Gábor Szabó
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (X.S.); (S.L.); (P.B.); (S.L.); (M.R.); (A.A.S.); (M.K.); (G.S.)
- Department of Cardiac Surgery, University Hospital Halle (Saale), 06120 Halle, Germany
| |
Collapse
|
17
|
Scheuer SE, Jansz PC, Macdonald PS. Heart transplantation following donation after circulatory death: Expanding the donor pool. J Heart Lung Transplant 2021; 40:882-889. [PMID: 33994229 DOI: 10.1016/j.healun.2021.03.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022] Open
Abstract
Heart transplantation from donation after circulatory death (DCD) donors is a rapidly expanding practice. In this review, we describe the history and challenges of DCD heart transplantation and overview the procurement protocols and methods of limiting ischemic injury, current outcomes, and future directions. There are now at least three protocols that permit resuscitation and viability assessment of the DCD heart either in situ or ex situ. While the retrieval protocol for hearts from DCD donors will depend on local regulations, the outcomes of DCD heart transplant recipients reported to date are excellent regardless of the retrieval protocol and are comparable to the outcomes of heart transplant recipients from donation after brain death (DBD) donors. In the two centers with the largest published experience, DCD heart transplantation now accounts for one third of their heart transplant activity. With international trends indicating that there is an increasing utilisation of the DCD pathway, it is expected that DCD donors will become a major source of heart donation worldwide.
Collapse
Affiliation(s)
- Sarah E Scheuer
- Cardiac Physiology & Transplantation, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Randwick, Australia
| | - Paul C Jansz
- Cardiac Physiology & Transplantation, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Randwick, Australia
| | - Peter S Macdonald
- Cardiac Physiology & Transplantation, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Randwick, Australia.
| |
Collapse
|
18
|
Korkmaz-Icöz S, Zhou P, Guo Y, Loganathan S, Brlecic P, Radovits T, Sayour AA, Ruppert M, Veres G, Karck M, Szabó G. Mesenchymal stem cell-derived conditioned medium protects vascular grafts of brain-dead rats against in vitro ischemia/reperfusion injury. Stem Cell Res Ther 2021; 12:144. [PMID: 33627181 PMCID: PMC7905634 DOI: 10.1186/s13287-021-02166-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Brain death (BD) has been suggested to induce coronary endothelial dysfunction. Ischemia/reperfusion (IR) injury during heart transplantation may lead to further damage of the endothelium. Previous studies have shown protective effects of conditioned medium (CM) from bone marrow-derived mesenchymal stem cells (MSCs) against IR injury. We hypothesized that physiological saline-supplemented CM protects BD rats' vascular grafts from IR injury. METHODS The CM from rat MSCs, used for conservation purposes, indicates the presence of 23 factors involved in apoptosis, inflammation, and oxidative stress. BD was induced by an intracranial-balloon. Controls were subjected to a sham operation. After 5.5 h, arterial pressures were measured in vivo. Aortic rings from BD rats were harvested and immediately mounted in organ bath chambers (BD group, n = 7) or preserved for 24 h in 4 °C saline-supplemented either with a vehicle (BD-IR group, n = 8) or CM (BD-IR+CM group, n = 8), prior to mounting. Vascular function was measured in vitro. Furthermore, immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR) have been performed. RESULTS BD in donors was associated with significantly impaired hemodynamic parameters and higher immunoreactivity of aortic myeloperoxidase (MPO), nitrotyrosine, caspase-3, caspase-8, caspase-9, and caspase-12 compared to sham-operated rats. In organ bath experiments, impaired endothelium-dependent vasorelaxation to acetylcholine in the BD-IR group compared to BD rats was significantly improved by CM (maximum relaxation to acetylcholine: BD 81 ± 2% vs. BD-IR 50 ± 3% vs. BD-IR + CM 72 ± 2%, p < 0.05). Additionally, the preservation of BD-IR aortic rings with CM significantly lowered MPO, caspase-3, caspase-8, and caspase-9 immunoreactivity compared with the BD-IR group. Furthermore, increased mRNA expression of vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1 in the aortas from the BD-IR rats compared to BD group were significantly decreased by CM. CONCLUSIONS The preservation of BD rats' vascular grafts with CM alleviates endothelial dysfunction following IR injury, in part, by reducing levels of inflammatory response and caspase-mediated apoptosis.
Collapse
Affiliation(s)
- Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, Laboratory of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany.
| | - Pengyu Zhou
- Department of Cardiac Surgery, Laboratory of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany
| | - Yuxing Guo
- Department of Cardiac Surgery, Laboratory of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany
| | - Sivakkanan Loganathan
- Department of Cardiac Surgery, University Hospital Halle (Saale), Halle, 06120, Germany
| | - Paige Brlecic
- Department of Cardiac Surgery, Laboratory of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, 1122, Hungary
| | - Alex Ali Sayour
- Department of Cardiac Surgery, Laboratory of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany.,Heart and Vascular Center, Semmelweis University, Budapest, 1122, Hungary
| | - Mihály Ruppert
- Department of Cardiac Surgery, Laboratory of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany.,Heart and Vascular Center, Semmelweis University, Budapest, 1122, Hungary
| | - Gábor Veres
- Department of Cardiac Surgery, Laboratory of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany.,Department of Cardiac Surgery, University Hospital Halle (Saale), Halle, 06120, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, Laboratory of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, Laboratory of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany.,Department of Cardiac Surgery, University Hospital Halle (Saale), Halle, 06120, Germany
| |
Collapse
|
19
|
Zhou P, Liu H, Liu X, Ling X, Xiao Z, Zhu P, Zhu Y, Lu J, Zheng S. Donor heart preservation with hypoxic-conditioned medium-derived from bone marrow mesenchymal stem cells improves cardiac function in a heart transplantation model. Stem Cell Res Ther 2021; 12:56. [PMID: 33435991 PMCID: PMC7805188 DOI: 10.1186/s13287-020-02114-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Background In heart transplantation, donor hearts inevitably suffer from ischemia/reperfusion (I/R) injury, which leads to primary graft dysfunction and affects patients’ survival rate. Bone marrow mesenchymal stem cells (BMSCs) have been reported to attenuate myocardial I/R injury via their paracrine effects, which can be enhanced by hypoxic preconditioning. We hypothesized that the donor heart preservation with hypoxic conditioned medium (CdM) derived from BMSCs would improve post-transplant graft function. Methods Normoxic or hypoxic CdM were isolated from rat BMSCs cultured under normoxic (20% O2) or hypoxic (1% O2) condition. Donor hearts were explanted; stored in cardioplegic solution supplemented with either a medium (vehicle), normoxic CdM (N-CdM), or hypoxic CdM (H-CdM); and then heterotopically transplanted. Antibody arrays were performed to compare the differences between hypoxic and normoxic CdM. Results After heart transplantation, the donor heart preservation with normoxic CdM was associated with a shorter time to return of spontaneous contraction and left ventricular systolic diameter, lower histopathological scores, higher ejection fraction, and fractional shortening of the transplanted hearts. The cardioprotective effects may be associated with the inhibition of apoptosis and inflammation, as reflected by less TUNEL-positive cells and lower levels of plasma proinflammatory cytokines (interleukin-1β, interleukin-6, tumor necrosis factor-α) and cardiac troponin I in the N-CdM group compared with the vehicle group. These therapeutic effects can be further enhanced by hypoxic preconditioning. Antibody arrays revealed that nine proteins were significantly increased in hypoxic CdM compared with normoxic CdM. Furthermore, compared with vehicle and N-CdM groups, the protein levels of PI3K and p-Akt/Akt ratio in the transplanted hearts significantly increased in the H-CdM group. However, no significant difference was found in the phosphorylation of Smad2 and Smad3 for the donor hearts among the three groups. Conclusions Our results indicate that the cardioplegic solution-enriched with hypoxic CdM can be a novel and promising preservation solution for donor hearts.
Collapse
Affiliation(s)
- Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China
| | - Hao Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China
| | - Ximao Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China
| | - Xiao Ling
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China
| | - Zezhou Xiao
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China
| | - Yufeng Zhu
- Laboratory Animal Research Center, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China.
| | - Jun Lu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China.
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China.
| |
Collapse
|
20
|
Lee TL, Lai TC, Lin SR, Lin SW, Chen YC, Pu CM, Lee IT, Tsai JS, Lee CW, Chen YL. Conditioned medium from adipose-derived stem cells attenuates ischemia/reperfusion-induced cardiac injury through the microRNA-221/222/PUMA/ETS-1 pathway. Theranostics 2021; 11:3131-3149. [PMID: 33537078 PMCID: PMC7847683 DOI: 10.7150/thno.52677] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023] Open
Abstract
Rationale: Cardiovascular diseases, such as myocardial infarction (MI), are the leading causes of death worldwide. Reperfusion therapy is the common standard treatment for MI. However, myocardial ischemia/reperfusion (I/R) causes cardiomyocyte injury, including apoptosis and fibrosis. We aimed to investigate the effects of conditioned medium from adipose-derived stem cells (ADSC-CM) on apoptosis and fibrosis in I/R-treated hearts and hypoxia/reoxygenation (H/R)-treated cardiomyocytes and the underlying mechanisms. Methods: ADSC-CM was collected from ADSCs. The effects of intramuscular injection of ADSC-CM on cardiac function, cardiac apoptosis, and fibrosis examined by echocardiography, Evans blue/TTC staining, TUNEL assay, and Masson's trichrome staining in I/R-treated mice. We also examined the effects of ADSC-CM on apoptosis and fibrosis in H/R-treated H9c2 cells by annexin V/PI flow cytometry, TUNEL assay, and immunocytochemistry. Results: ADSC-CM treatment significantly reduced heart damage and fibrosis of I/R-treated mice and H/R-treated cardiomyocytes. In addition, the expression of apoptosis-related proteins, such as p53 upregulated modulator of apoptosis (PUMA), p-p53 and B-cell lymphoma 2 (BCL2), as well as the fibrosis-related proteins ETS-1, fibronectin and collagen 3, were significantly reduced by ADSC-CM treatment. Moreover, we demonstrated that ADSC-CM contains a large amount of miR-221/222, which can target and regulate PUMA or ETS-1 protein levels. Furthermore, the knockdown of PUMA and ETS-1 decreased the induction of apoptosis and fibrosis, respectively. MiR-221/222 overexpression achieved similar results. We also observed that cardiac I/R markedly increased apoptosis and fibrosis in miR-221/222 knockout (KO) mice, while ADSC-CM decreased these effects. The increased phosphorylation of p38 and NF‐κB not only mediated myocardial apoptosis through the PUMA/p53/BCL2 pathway but also regulated fibrosis through the ETS-1/fibronectin/collagen 3 pathway. Conclusions: Overall, our results show that ADSC-CM attenuates cardiac apoptosis and fibrosis by reducing PUMA and ETS-1 expression, respectively. The protective effect is mediated via the miR-221/222/p38/NF-κB pathway.
Collapse
|
21
|
Ellis BW, Traktuev DO, Merfeld-Clauss S, Can UI, Wang M, Bergeron R, Zorlutuna P, March KL. Adipose stem cell secretome markedly improves rodent heart and human induced pluripotent stem cell-derived cardiomyocyte recovery from cardioplegic transport solution exposure. STEM CELLS (DAYTON, OHIO) 2020; 39:170-182. [PMID: 33159685 DOI: 10.1002/stem.3296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022]
Abstract
Heart transplantation is a life-saving therapy for end-stage organ failure. Organ deterioration during transportation limits storage to 4 hours, limiting hearts available. Approaches ameliorating organ damage could increase the number of hearts acceptable for transplantation. Prior studies show that adipose-derived stem/stromal cell secretome (ASC-S) rescues tissues from postischemic damage in vivo. This study tested whether ASC-S preserved the function of mouse hearts and human induced pluripotent stem cell-derived cardiomyocytes (iCM) exposed to organ transportation and transplantation conditions. Hearts were subjected to cold University of Wisconsin (UW) cardioplegic solution ± ASC-S for 6 hours followed by analysis using the Langendorff technique. In parallel, the effects of ASC-S on the recovery of iCM from UW solution were examined when provided either during or after cold cardioplegia. Exposure of hearts and iCM to UW deteriorated contractile activity and caused cell apoptosis, worsening in iCM as a function of exposure time; these were ameliorated by augmenting with ASC-S. Silencing of superoxide dismutase 3 and catalase expression prior to secretome generation compromised the ASC-S cardiomyocyte-protective effects. In this study, a novel in vitro iCM model was developed to complement a rodent heart model in assessing efficacy of approaches to improve cardiac preservation. ASC-S displays strong cardioprotective activity on iCM either with or following cold cardioplegia. This effect is associated with ASC-S-mediated cellular clearance of reactive oxygen species. The effect of ASC-S on the temporal recovery of iCM function supports the possibility of lengthening heart storage by augmenting cardioplegic transport solution with ASC-S, expanding the pool of hearts for transplantation.
Collapse
Affiliation(s)
- Bradley W Ellis
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana, USA
| | - Dmitry O Traktuev
- Division of Cardiovascular Medicine and Center for Regenerative Medicine, University of Florida, Gainesville, Florida, USA.,Malcom Randall Veterans' Affairs Medical Center, Gainesville, Florida, USA
| | - Stephanie Merfeld-Clauss
- Division of Cardiovascular Medicine and Center for Regenerative Medicine, University of Florida, Gainesville, Florida, USA.,Malcom Randall Veterans' Affairs Medical Center, Gainesville, Florida, USA
| | - Uryan Isik Can
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, USA
| | - Meijing Wang
- The Division of Cardiothoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ray Bergeron
- Division of Cardiovascular Medicine and Center for Regenerative Medicine, University of Florida, Gainesville, Florida, USA
| | - Pinar Zorlutuna
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana, USA.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, USA
| | - Keith L March
- Division of Cardiovascular Medicine and Center for Regenerative Medicine, University of Florida, Gainesville, Florida, USA.,Malcom Randall Veterans' Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
22
|
Wu Z, Liang J, Huang W, Jiang L, Paul C, Gao X, Alam P, Kanisicak O, Xu M, Wang Y. Immunomodulatory effects of mesenchymal stem cells for the treatment of cardiac allograft rejection. Exp Biol Med (Maywood) 2020; 246:851-860. [PMID: 33327780 DOI: 10.1177/1535370220978650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heart transplantation continues to be the gold standard clinical intervention to treat patients with end-stage heart failure. However, there are major complications associated with this surgical procedure that reduce the survival prognosis of heart transplant patients, including allograft rejection, malignancies, infections, and other complications that arise from the use of broad-spectrum immunosuppression drugs. Recent studies have demonstrated the use of mesenchymal stem cells (MSCs) against allotransplantation rejection in both in vitro and in vivo settings due to their immunomodulatory properties. Therefore, utilization of MSCs provides new and exciting strategies to improve heart transplantation and potentially reduce the use of broad-spectrum immunosuppression drugs while alleviating allograft rejection. In this review, we will discuss the current research on the mechanisms of cardiac allograft rejection, the physiological and immunological characteristics of MSCs, the effects of MSCs on the immune system, and immunomodulation of heart transplantation by MSCs.
Collapse
Affiliation(s)
- Zhichao Wu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Lin Jiang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Xiang Gao
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Perwez Alam
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
23
|
Wang L, MacGowan GA, Ali S, Dark JH. Ex situ heart perfusion: The past, the present, and the future. J Heart Lung Transplant 2020; 40:69-86. [PMID: 33162304 DOI: 10.1016/j.healun.2020.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/30/2020] [Accepted: 10/08/2020] [Indexed: 01/06/2023] Open
Abstract
Despite the advancements in medical treatment, mechanical support, and stem cell therapy, heart transplantation remains the most effective treatment for selected patients with advanced heart failure. However, with an increase in heart failure prevalence worldwide, the gap between donor hearts and patients on the transplant waiting list keeps widening. Ex situ machine perfusion has played a key role in augmenting heart transplant activities in recent years by enabling the usage of donation after circulatory death hearts, allowing longer interval between procurement and implantation, and permitting the safe use of some extended-criteria donation after brainstem death hearts. This exciting field is at a hinge point, with 1 commercially available heart perfusion machine, which has been used in hundreds of heart transplantations, and a number of devices being tested in the pre-clinical and Phase 1 clinical trial stage. However, no consensus has been reached over the optimal preservation temperature, perfusate composition, and perfusion parameters. In addition, there is a lack of objective measurement for allograft quality and viability. This review aims to comprehensively summarize the lessons about ex situ heart perfusion as a platform to preserve, assess, and repair donor hearts, which we have learned from the pre-clinical studies and clinical applications, and explore its exciting potential of revolutionizing heart transplantation.
Collapse
Affiliation(s)
- Lu Wang
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Cardiothoracic Centre, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Guy A MacGowan
- Cardiothoracic Centre, Freeman Hospital, Newcastle upon Tyne, United Kingdom; Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simi Ali
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John H Dark
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
24
|
Korkmaz-Icöz S, Li K, Loganathan S, Ding Q, Ruppert M, Radovits T, Brlecic P, Sayour AA, Karck M, Szabó G. Brain-dead donor heart conservation with a preservation solution supplemented by a conditioned medium from mesenchymal stem cells improves graft contractility after transplantation. Am J Transplant 2020; 20:2847-2856. [PMID: 32162462 DOI: 10.1111/ajt.15843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
Abstract
Hearts are usually procured from brain-dead (BD) donors. However, brain death may induce hemodynamic instability, which may contribute to posttransplant graft dysfunction. We hypothesized that BD-donor heart preservation with a conditioned medium (CM) from mesenchymal stem cells (MSCs) would improve graft function after transplantation. Additionally, we explored the PI3K pathway's potential role. Rat MSCs-derived CM was used for conservation purposes. Donor rats were either exposed to sham operation or brain death by inflation of a subdural balloon-catheter for 5.5 hours. Then, the hearts were explanted, stored in cardioplegic solution-supplemented with either a medium vehicle (BD and sham), CM (BD + CM), or LY294002, an inhibitor of PI3K (BD + CM + LY), and finally transplanted. Systolic performance and relaxation parameters were significantly reduced in BD-donors compared to sham. After transplantation, systolic and diastolic functions were significantly decreased, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells and endonuclease G positive cells were increased in the BD-group compared to sham. Preservation of BD-donor hearts with CM resulted in a recovery of systolic graft function (dP/dtmax : BD + CM: 3148 ± 178 vs BD: 2192 ± 94 mm Hg/s at 110 µL, P < .05) and reduced apoptosis. LY294002 partially lowered graft protection afforded by CM in the BD group. Our data suggest that PI3K/Akt pathway is not the primary mechanism of action of CM in improving posttransplant cardiac contractility and preventing caspase-independent apoptosis.
Collapse
Affiliation(s)
- Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Kunsheng Li
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Sivakkanan Loganathan
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Department of Anesthesiology, Ruhr-University Bochum, St. Josef- and St. Elisabeth Hospital, Bochum, Germany.,Department of Cardiac Surgery, University Hospital Halle (Saale), Halle, Germany
| | - Qingwei Ding
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Mihály Ruppert
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Paige Brlecic
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Alex A Sayour
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Matthias Karck
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Department of Cardiac Surgery, University Hospital Halle (Saale), Halle, Germany
| |
Collapse
|
25
|
Critchley WR, Stone JP, Liao Q, Qin G, Risnes I, Trafford A, Scott H, Sjöberg T, Steen S, Fildes JE. Non-ischemic Heart Preservation via Hypothermic Cardioplegic Perfusion Induces Immunodepletion of Donor Hearts Resulting in Diminished Graft Infiltration Following Transplantation. Front Immunol 2020; 11:1621. [PMID: 32849549 PMCID: PMC7399062 DOI: 10.3389/fimmu.2020.01621] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction: Many donor organs contain significant leukocyte reservoirs which upon transplantation activate recipient leukocytes to initiate acute rejection. We aimed to assess whether non-ischemic heart preservation via ex vivo perfusion promotes immunodepletion and alters the inflammatory status of the donor organ prior to transplantation. Methods: Isolated porcine hearts underwent ex vivo hypothermic, cardioplegic perfusion for 8 h. Leukocyte populations were quantified in left ventricle samples by flow cytometry. Cell-free DNA, cytokines, and chemokines were quantified in the perfusate. Tissue integrity was profiled by targeted proteomics and a histological assessment was performed. Heterotopic transplants comparing ex vivo hypothermic preservation and static cold storage were utilized to assess graft infiltration as a solid clinical endpoint. Results: Ex vivo perfusion significantly immunodepleted myocardial tissue. The perfusate displayed a selective, pro-inflammatory cytokine/chemokine pattern dominated by IFN-γ. The tissue molecular profile was improved following perfusion by diminished expression of nine pro-apoptotic and six ischemia-associated proteins. Histologically, no evidence of tissue damage was observed and cardiac troponin I was low throughout perfusion. Cell-free DNA was detected, the source of which may be necrotic/apoptotic leukocytes. Post-transplant graft infiltration was markedly reduced in terms of both leucocyte distribution and intensity of foci. Conclusions: These findings demonstrate that ex vivo perfusion significantly reduced donor heart immunogenicity via loss of resident leukocytes. Despite the pro-inflammatory cytokine pattern observed, a pro-survival and reduced ischemia-related profile was observed, indicating an improvement in graft viability by perfusion. Diminished graft infiltration was observed in perfused hearts compared with those preserved by static cold storage following 48 h of transplantation.
Collapse
Affiliation(s)
- William R Critchley
- The Ex-Vivo Lab, Division of Cell Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom.,The Transplant Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - John P Stone
- The Ex-Vivo Lab, Division of Cell Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom.,The Transplant Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Qiuming Liao
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Guangqi Qin
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ivar Risnes
- Department of Thoracic Surgery, Rikshospitalet, Oslo, Norway
| | - Andrew Trafford
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Helge Scott
- Department of Pathology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Trygve Sjöberg
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Stig Steen
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - James E Fildes
- The Ex-Vivo Lab, Division of Cell Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom.,The Transplant Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
26
|
Chen Y, Shen J, Ma C, Cao M, Yan J, Liang J, Ke K, Cao M, Xiaosu G. Skin-derived precursor Schwann cells protect SH-SY5Y cells against 6-OHDA-induced neurotoxicity by PI3K/AKT/Bcl-2 pathway. Brain Res Bull 2020; 161:84-93. [PMID: 32360763 DOI: 10.1016/j.brainresbull.2020.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/22/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023]
Abstract
Skin-derived precursors (SKPs) are self-renewing and pluripotent adult stem cell sources that have been successfully obtained and cultured from adult tissues of rodents and humans. Skin-derived precursor Schwann cells (SKP-SCs), derived from SKPs when cultured in a neuro stromal medium supplemented with some appropriate neurotrophic factors, have been reported to play a neuroprotective effect in the peripheral nervous system. This proves our previous studies that SKP-SCs' function to bridge sciatic nerve gap in rats. However, the function of SKP-SCs in Parkinson disease (PD) remains unknown. This study was aimed to investigate the possible neuroprotective effects of SKP-SCs in 6-OHDA-induced Parkinson's disease (PD) model. Our results showed that the treatment with SKP-SCs prevented SH-SY5Y cells from 6-OHDA-induced apoptosis, accompanied by modulation of apoptosis-related proteins (Bcl-2 and Bax) and the decreased expression of active caspase-3. Furthermore, we confirmed that SKP-SCs might exert protective effects and increase the mitochondrial membrane potential (MMP) through PI3K/AKT/Bcl-2 pathway. Taken together, our results demonstrated that SKP-SCs protect against 6-OHDA-induced cytotoxicity through PI3K/AKT/Bcl-2 pathway in PD model in vitro, which provides a new theoretical basis for the treatment of PD.
Collapse
Affiliation(s)
- Ying Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Chengxiao Ma
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Maosheng Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jianan Yan
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jingjing Liang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Kaifu Ke
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Gu Xiaosu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
27
|
Kvietkauskas M, Leber B, Strupas K, Stiegler P, Schemmer P. Machine Perfusion of Extended Criteria Donor Organs: Immunological Aspects. Front Immunol 2020; 11:192. [PMID: 32180769 PMCID: PMC7057848 DOI: 10.3389/fimmu.2020.00192] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
Due to higher vulnerability and immunogenicity of extended criteria donor (ECD) organs used for organ transplantation (Tx), the discovery of new treatment strategies, involving tissue allorecognition pathways, is important. The implementation of machine perfusion (MP) led to improved estimation of the organ quality and introduced the possibility to achieve graft reconditioning prior to Tx. A significant number of experimental and clinical trials demonstrated increasing support for MP as a promising method of ECD organ preservation compared to classical static cold storage. MP reduced ischemia-reperfusion injury resulting in the protection from inadequate activation of innate immunity. However, there are no general agreements on MP protocols, and clinical application is limited. The objective of this comprehensive review is to summarize literature on immunological effects of MP of ECD organs based on experimental studies and clinical trials.
Collapse
Affiliation(s)
- Mindaugas Kvietkauskas
- Department of General, Visceral and Transplant Surgery, Medical University of Graz, Graz, Austria
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Bettina Leber
- Department of General, Visceral and Transplant Surgery, Medical University of Graz, Graz, Austria
| | | | - Philipp Stiegler
- Department of General, Visceral and Transplant Surgery, Medical University of Graz, Graz, Austria
| | - Peter Schemmer
- Department of General, Visceral and Transplant Surgery, Medical University of Graz, Graz, Austria
| |
Collapse
|
28
|
Loganathan S, Guo Y, Jiang W, Radovits T, Ruppert M, Sayour AA, Brune M, Brlecic P, Gude P, Georgevici AI, Yard B, Karck M, Korkmaz-Icöz S, Szabó G. N-octanoyl dopamine is superior to dopamine in protecting graft contractile function when administered to the heart transplant recipients from brain-dead donors. Pharmacol Res 2019; 150:104503. [PMID: 31629091 DOI: 10.1016/j.phrs.2019.104503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 11/17/2022]
Abstract
The major source of heart transplantation comes from brain-dead (BD) donors. However, brain death and myocardial ischemia/reperfusion injury during transplantation may lead to cardiac dysfunction and hemodynamic instability. A previous work demonstrated that pre-treatment of BD donors with dopamine improved the graft survival of heart allograft in recipient after transplantation. However, low-dose dopamine treatment might result in tachycardia and hypertension. Our previous experimental study showed that pre-treatment of BD donor rats with the dopamine derivate N-octanoyl dopamine (NOD), devoid of any hemodynamic effects, improved graft function after transplantation. Herein, we hypothesized that NOD confers superior myocardial protection than dopamine, in terms of graft function. Male Lewis donor rats were either subjected to sham-operation or brain death via a subdurally placed balloon followed by 5.5 h monitoring. Then, the hearts were explanted and heterotopically transplanted into Lewis recipient rats. Shortly before the onset of reperfusion, continuous intravenous infusion of either NOD (14.7 μg/kg/min, BD + NOD group, n = 9), dopamine (10 μg/kg/min, BD + Dopamine group, n = 8) or physiological saline vehicle (sham, n = 9 and BD group, n = 9) were administered to the recipient rats. In vivo left-ventricular (LV) graft function was evaluated after 1.5 h reperfusion. Additionally, immunohistochemical detection of 4-hydroxy-2-nonenal (HNE, an indicator of oxidative stress) and nitrotyrosine (a nitro-oxidative stress marker), was performed. After heart transplantation, systolic and diastolic functions were significantly decreased in the BD group compared to sham. Treatment with NOD but not dopamine, resulted in better LV graft systolic functional recovery (LV systolic pressure BD + NOD 90 ± 8 vs BD + Dopamine 66 ± 5 vs BD 65 ± 4 mmHg; maximum rate of rise of LV pressure dP/dtmax BD + NOD 2686 ± 225 vs BD + Dopamine 2243 ± 70 vs BD 1999 ± 147 mmHg/s, at an intraventricular volume of 140 μl, p < 0.05) and myocardial work compared to BD group. The re-beating time (time to restoration of heartbeat) was significantly shorter in BD + NOD group than that of BD hearts (32 ± 4 s vs. 48 ± 6 s, p < 0.05), Dopamine treatment had no impact on all of these parameters. Furthermore, NOD as well as dopamine decreased HNE and nitrotyrosine immunoreactivity to the same level. NOD is superior to dopamine in terms of protecting LV graft contractile function when administered to the heart transplant recipients from BD donors.
Collapse
Affiliation(s)
- Sivakkanan Loganathan
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; Department of Anaesthesiology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany.
| | - Yuxing Guo
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Weipeng Jiang
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Mihály Ruppert
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Alex Ali Sayour
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Maik Brune
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Paige Brlecic
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Phillipp Gude
- Department of Anaesthesiology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Adrian-Iustin Georgevici
- Department of Anaesthesiology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Benito Yard
- Department of Medicine V (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, 68167 Mannheim, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|