1
|
Slugocki C, Kuk F, Korhonen P. Using the Mismatch Negativity to Evaluate Hearing Aid Directional Enhancement Based on Multistream Architecture. Ear Hear 2025; 46:747-757. [PMID: 39699127 PMCID: PMC11984554 DOI: 10.1097/aud.0000000000001619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/10/2024] [Indexed: 12/20/2024]
Abstract
OBJECTIVES To evaluate whether hearing aid directivity based on multistream architecture (MSA) might enhance the mismatch negativity (MMN) evoked by phonemic contrasts in noise. DESIGN Single-blind within-subjects design. Fifteen older adults (mean age = 72.7 years, range = 40 to 88 years, 8 females) with a moderate-to-severe degree of sensorineural hearing loss participated. Participants first performed an adaptive two-alternative forced choice phonemic discrimination task to determine the speech level-that is, signal to noise ratio (SNR)-required to reliably discriminate between two monosyllabic stimuli (/ba/ and /da/) presented in the presence of ongoing fixed-level background noise. Participants were then presented with a phonemic oddball sequence alternating on each trial between two loudspeakers located in the front at 0° and -30° azimuth. This sequence presented the same monosyllabic stimuli in the same background noise at individualized SNRs determined by the phonemic discrimination task. The MMN was measured as participants passively listened to the oddball sequence in two hearing aid conditions: MSA-ON and MSA-OFF. RESULTS The magnitude of the MMN component was significantly enhanced when evoked in MSA-ON relative to MSA-OFF conditions. Unexpectedly, MMN magnitudes were also positively related to degrees of hearing loss. Neither MSA nor the participant's hearing loss was found to independently affect MMN latency. However, MMN latency was significantly affected by the interaction of hearing aid condition and individualized SNRs, where a negative relationship between individualized SNR and MMN latency was observed only in the MSA-OFF condition. CONCLUSIONS Hearing aid directivity based on the MSA approach was found to improve preattentive detection of phonemic contrasts in a simulated multi-talker situation as indexed by larger MMN component magnitudes. The MMN may generally be useful for exploring the underlying nature of speech-in-noise benefits conferred by some hearing aid features.
Collapse
Affiliation(s)
- Christopher Slugocki
- Office of Research in Clinical Amplification, WS Audiology, Lisle, Illinois, USA
| | - Francis Kuk
- Office of Research in Clinical Amplification, WS Audiology, Lisle, Illinois, USA
| | - Petri Korhonen
- Office of Research in Clinical Amplification, WS Audiology, Lisle, Illinois, USA
| |
Collapse
|
2
|
Levy O, Korisky A, Zvilichovsky Y, Zion Golumbic E. The Neurophysiological Costs of Learning in a Noisy Classroom: An Ecological Virtual Reality Study. J Cogn Neurosci 2025; 37:300-316. [PMID: 39348110 DOI: 10.1162/jocn_a_02249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Many real-life situations can be extremely noisy, which makes it difficult to understand what people say. Here, we introduce a novel audiovisual virtual reality experimental platform to study the behavioral and neurophysiological consequences of background noise on processing continuous speech in highly realistic environments. We focus on a context where the ability to understand speech is particularly important: the classroom. Participants (n = 32) experienced sitting in a virtual reality classroom and were told to pay attention to a virtual teacher giving a lecture. Trials were either quiet or contained background construction noise, emitted from outside the classroom window. Two realistic types of noise were used: continuous drilling and intermittent air hammers. Alongside behavioral outcomes, we measured several neurophysiological metrics, including neural activity (EEG), eye-gaze and skin conductance (galvanic skin response). Our results confirm the detrimental effect of background noise. Construction noise, and particularly intermittent noise, was associated with reduced behavioral performance, reduced neural tracking of the teacher's speech and an increase in skin conductance, although it did not have a significant effect on alpha-band oscillations or eye-gaze patterns. These results demonstrate the neurophysiological costs of learning in noisy environments and emphasize the role of temporal dynamics in speech-in-noise perception. The finding that intermittent noise was more disruptive than continuous noise supports a "habituation" rather than "glimpsing" hypothesis of speech-in-noise processing. These results also underscore the importance of increasing the ecologically relevance of neuroscientific research and considering acoustic, temporal, and semantic features of realistic stimuli as well as the cognitive demands of real-life environments.
Collapse
|
3
|
Liu YL, Zhang YX, Wang Y, Yang Y. Evidence for early encoding of speech in blind people. BRAIN AND LANGUAGE 2024; 259:105504. [PMID: 39631270 DOI: 10.1016/j.bandl.2024.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/27/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Blind listeners rely more on their auditory skills than the sighted to adapt to unavailable visual information. However, it is still unclear whether the blind has stronger noise-related modulation compared with the sighted when speech is presented under adverse listening conditions. This study aims to address this research gap by constructing noisy conditions and syllable contrasts to obtain auditory middle-latency response (MLR) and long-latency response (LLR) in blind and sighted adults. We found that blind people showed higher MLR (Na, Nb, and Pa) and N1 amplitudes compared with sighted, while this phenomenon was not observed for mismatch negativity (MMN) during auditory discrimination in both quiet and noisy backgrounds, which might eventually affect stream segregation and facilitate the understanding of speech in complex environments, contributing to their more sensitive speech detection ability of blind people. These results had important implications regarding the interpretation of noise-induced changes in the early encoding of speech in blind people.
Collapse
Affiliation(s)
- Yu-Lu Liu
- Department of Hearing and Speech Rehabilitation, Binzhou Medical University, Yantai 264003, China.
| | - Yu-Xin Zhang
- Department of Hearing and Speech Rehabilitation, Binzhou Medical University, Yantai 264003, China.
| | - Yao Wang
- Department of Hearing and Speech Rehabilitation, Binzhou Medical University, Yantai 264003, China.
| | - Ying Yang
- Department of Hearing and Speech Rehabilitation, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
4
|
Zaltz Y. The Impact of Trained Conditions on the Generalization of Learning Gains Following Voice Discrimination Training. Trends Hear 2024; 28:23312165241275895. [PMID: 39212078 PMCID: PMC11367600 DOI: 10.1177/23312165241275895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/03/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Auditory training can lead to notable enhancements in specific tasks, but whether these improvements generalize to untrained tasks like speech-in-noise (SIN) recognition remains uncertain. This study examined how training conditions affect generalization. Fifty-five young adults were divided into "Trained-in-Quiet" (n = 15), "Trained-in-Noise" (n = 20), and "Control" (n = 20) groups. Participants completed two sessions. The first session involved an assessment of SIN recognition and voice discrimination (VD) with word or sentence stimuli, employing combined fundamental frequency (F0) + formant frequencies voice cues. Subsequently, only the trained groups proceeded to an interleaved training phase, encompassing six VD blocks with sentence stimuli, utilizing either F0-only or formant-only cues. The second session replicated the interleaved training for the trained groups, followed by a second assessment conducted by all three groups, identical to the first session. Results showed significant improvements in the trained task regardless of training conditions. However, VD training with a single cue did not enhance VD with both cues beyond control group improvements, suggesting limited generalization. Notably, the Trained-in-Noise group exhibited the most significant SIN recognition improvements posttraining, implying generalization across tasks that share similar acoustic conditions. Overall, findings suggest training conditions impact generalization by influencing processing levels associated with the trained task. Training in noisy conditions may prompt higher auditory and/or cognitive processing than training in quiet, potentially extending skills to tasks involving challenging listening conditions, such as SIN recognition. These insights hold significant theoretical and clinical implications, potentially advancing the development of effective auditory training protocols.
Collapse
Affiliation(s)
- Yael Zaltz
- Department of Communication Disorders, The Stanley Steyer School of Health Professions, Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Zhang M, Zhang H, Tang E, Ding H, Zhang Y. Evaluating the Relative Perceptual Salience of Linguistic and Emotional Prosody in Quiet and Noisy Contexts. Behav Sci (Basel) 2023; 13:800. [PMID: 37887450 PMCID: PMC10603920 DOI: 10.3390/bs13100800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
How people recognize linguistic and emotional prosody in different listening conditions is essential for understanding the complex interplay between social context, cognition, and communication. The perception of both lexical tones and emotional prosody depends on prosodic features including pitch, intensity, duration, and voice quality. However, it is unclear which aspect of prosody is perceptually more salient and resistant to noise. This study aimed to investigate the relative perceptual salience of emotional prosody and lexical tone recognition in quiet and in the presence of multi-talker babble noise. Forty young adults randomly sampled from a pool of native Mandarin Chinese with normal hearing listened to monosyllables either with or without background babble noise and completed two identification tasks, one for emotion recognition and the other for lexical tone recognition. Accuracy and speed were recorded and analyzed using generalized linear mixed-effects models. Compared with emotional prosody, lexical tones were more perceptually salient in multi-talker babble noise. Native Mandarin Chinese participants identified lexical tones more accurately and quickly than vocal emotions at the same signal-to-noise ratio. Acoustic and cognitive dissimilarities between linguistic prosody and emotional prosody may have led to the phenomenon, which calls for further explorations into the underlying psychobiological and neurophysiological mechanisms.
Collapse
Affiliation(s)
- Minyue Zhang
- Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, Shanghai 200240, China; (M.Z.); (H.Z.); (E.T.)
| | - Hui Zhang
- Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, Shanghai 200240, China; (M.Z.); (H.Z.); (E.T.)
| | - Enze Tang
- Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, Shanghai 200240, China; (M.Z.); (H.Z.); (E.T.)
| | - Hongwei Ding
- Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, Shanghai 200240, China; (M.Z.); (H.Z.); (E.T.)
| | - Yang Zhang
- Department of Speech-Language-Hearing Sciences and Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Sakakura K, Sonoda M, Mitsuhashi T, Kuroda N, Firestone E, O'Hara N, Iwaki H, Lee MH, Jeong JW, Rothermel R, Luat AF, Asano E. Developmental organization of neural dynamics supporting auditory perception. Neuroimage 2022; 258:119342. [PMID: 35654375 PMCID: PMC9354710 DOI: 10.1016/j.neuroimage.2022.119342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/09/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose: A prominent view of language acquisition involves learning to ignore irrelevant auditory signals through functional reorganization, enabling more efficient processing of relevant information. Yet, few studies have characterized the neural spatiotemporal dynamics supporting rapid detection and subsequent disregard of irrelevant auditory information, in the developing brain. To address this unknown, the present study modeled the developmental acquisition of cost-efficient neural dynamics for auditory processing, using intracranial electrocorticographic responses measured in individuals receiving standard-of-care treatment for drug-resistant, focal epilepsy. We also provided evidence demonstrating the maturation of an anterior-to-posterior functional division within the superior-temporal gyrus (STG), which is known to exist in the adult STG. Methods: We studied 32 patients undergoing extraoperative electrocorticography (age range: eight months to 28 years) and analyzed 2,039 intracranial electrode sites outside the seizure onset zone, interictal spike-generating areas, and MRI lesions. Patients were given forward (normal) speech sounds, backward-played speech sounds, and signal-correlated noises during a task-free condition. We then quantified sound processing-related neural costs at given time windows using high-gamma amplitude at 70–110 Hz and animated the group-level high-gamma dynamics on a spatially normalized three-dimensional brain surface. Finally, we determined if age independently contributed to high-gamma dynamics across brain regions and time windows. Results: Group-level analysis of noise-related neural costs in the STG revealed developmental enhancement of early high-gamma augmentation and diminution of delayed augmentation. Analysis of speech-related high-gamma activity demonstrated an anterior-to-posterior functional parcellation in the STG. The left anterior STG showed sustained augmentation throughout stimulus presentation, whereas the left posterior STG showed transient augmentation after stimulus onset. We found a double dissociation between the locations and developmental changes in speech sound-related high-gamma dynamics. Early left anterior STG high-gamma augmentation (i.e., within 200 ms post-stimulus onset) showed developmental enhancement, whereas delayed left posterior STG high-gamma augmentation declined with development. Conclusions: Our observations support the model that, with age, the human STG refines neural dynamics to rapidly detect and subsequently disregard uninformative acoustic noises. Our study also supports the notion that the anterior-to-posterior functional division within the left STG is gradually strengthened for efficient speech sound perception after birth.
Collapse
Affiliation(s)
- Kazuki Sakakura
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Neurosurgery, University of Tsukuba, Tsukuba, 3058575, Japan
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Neurosurgery, Yokohama City University, Yokohama, Kanagawa, 2360004, Japan
| | - Takumi Mitsuhashi
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Neurosurgery, Juntendo University, School of Medicine, Tokyo, 1138421, Japan
| | - Naoto Kuroda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Ethan Firestone
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Nolan O'Hara
- Translational Neuroscience Program, Wayne State University, Detroit, Michigan, 48201, USA
| | - Hirotaka Iwaki
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Min-Hee Lee
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Translational Neuroscience Program, Wayne State University, Detroit, Michigan, 48201, USA
| | - Robert Rothermel
- Department of Psychiatry, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA
| | - Aimee F Luat
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Pediatrics, Central Michigan University, Mt. Pleasant, MI 48858, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Translational Neuroscience Program, Wayne State University, Detroit, Michigan, 48201, USA..
| |
Collapse
|
7
|
Defenderfer J, Forbes S, Wijeakumar S, Hedrick M, Plyler P, Buss AT. Frontotemporal activation differs between perception of simulated cochlear implant speech and speech in background noise: An image-based fNIRS study. Neuroimage 2021; 240:118385. [PMID: 34256138 PMCID: PMC8503862 DOI: 10.1016/j.neuroimage.2021.118385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/10/2021] [Accepted: 07/09/2021] [Indexed: 10/27/2022] Open
Abstract
In this study we used functional near-infrared spectroscopy (fNIRS) to investigate neural responses in normal-hearing adults as a function of speech recognition accuracy, intelligibility of the speech stimulus, and the manner in which speech is distorted. Participants listened to sentences and reported aloud what they heard. Speech quality was distorted artificially by vocoding (simulated cochlear implant speech) or naturally by adding background noise. Each type of distortion included high and low-intelligibility conditions. Sentences in quiet were used as baseline comparison. fNIRS data were analyzed using a newly developed image reconstruction approach. First, elevated cortical responses in the middle temporal gyrus (MTG) and middle frontal gyrus (MFG) were associated with speech recognition during the low-intelligibility conditions. Second, activation in the MTG was associated with recognition of vocoded speech with low intelligibility, whereas MFG activity was largely driven by recognition of speech in background noise, suggesting that the cortical response varies as a function of distortion type. Lastly, an accuracy effect in the MFG demonstrated significantly higher activation during correct perception relative to incorrect perception of speech. These results suggest that normal-hearing adults (i.e., untrained listeners of vocoded stimuli) do not exploit the same attentional mechanisms of the frontal cortex used to resolve naturally degraded speech and may instead rely on segmental and phonetic analyses in the temporal lobe to discriminate vocoded speech.
Collapse
Affiliation(s)
- Jessica Defenderfer
- Speech and Hearing Science, University of Tennessee Health Science Center, Knoxville, TN, United States.
| | - Samuel Forbes
- Psychology, University of East Anglia, Norwich, England.
| | | | - Mark Hedrick
- Speech and Hearing Science, University of Tennessee Health Science Center, Knoxville, TN, United States.
| | - Patrick Plyler
- Speech and Hearing Science, University of Tennessee Health Science Center, Knoxville, TN, United States.
| | - Aaron T Buss
- Psychology, University of Tennessee, Knoxville, TN, United States.
| |
Collapse
|
8
|
Bader M, Schröger E, Grimm S. Auditory Pattern Representations Under Conditions of Uncertainty-An ERP Study. Front Hum Neurosci 2021; 15:682820. [PMID: 34305553 PMCID: PMC8299531 DOI: 10.3389/fnhum.2021.682820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
The auditory system is able to recognize auditory objects and is thought to form predictive models of them even though the acoustic information arriving at our ears is often imperfect, intermixed, or distorted. We investigated implicit regularity extraction for acoustically intact versus disrupted six-tone sound patterns via event-related potentials (ERPs). In an exact-repetition condition, identical patterns were repeated; in two distorted-repetition conditions, one randomly chosen segment in each sound pattern was replaced either by white noise or by a wrong pitch. In a roving-standard paradigm, sound patterns were repeated 1-12 times (standards) in a row before a new pattern (deviant) occurred. The participants were not informed about the roving rule and had to detect rarely occurring loudness changes. Behavioral detectability of pattern changes was assessed in a subsequent behavioral task. Pattern changes (standard vs. deviant) elicited mismatch negativity (MMN) and P3a, and were behaviorally detected above the chance level in all conditions, suggesting that the auditory system extracts regularities despite distortions in the acoustic input. However, MMN and P3a amplitude were decreased by distortions. At the level of MMN, both types of distortions caused similar impairments, suggesting that auditory regularity extraction is largely determined by the stimulus statistics of matching information. At the level of P3a, wrong-pitch distortions caused larger decreases than white-noise distortions. Wrong-pitch distortions likely prevented the engagement of restoration mechanisms and the segregation of disrupted from true pattern segments, causing stronger informational interference with the relevant pattern information.
Collapse
Affiliation(s)
- Maria Bader
- Cognitive and Biological Psychology, Institute of Psychology-Wilhelm Wundt, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Erich Schröger
- Cognitive and Biological Psychology, Institute of Psychology-Wilhelm Wundt, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Sabine Grimm
- Cognitive and Biological Psychology, Institute of Psychology-Wilhelm Wundt, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| |
Collapse
|
9
|
Bourke JD, Todd J. Acoustics versus linguistics? Context is Part and Parcel to lateralized processing of the parts and parcels of speech. Laterality 2021; 26:725-765. [PMID: 33726624 DOI: 10.1080/1357650x.2021.1898415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The purpose of this review is to provide an accessible exploration of key considerations of lateralization in speech and non-speech perception using clear and defined language. From these considerations, the primary arguments for each side of the linguistics versus acoustics debate are outlined and explored in context of emerging integrative theories. This theoretical approach entails a perspective that linguistic and acoustic features differentially contribute to leftward bias, depending on the given context. Such contextual factors include stimulus parameters and variables of stimulus presentation (e.g., noise/silence and monaural/binaural) and variances in individuals (sex, handedness, age, and behavioural ability). Discussion of these factors and their interaction is also aimed towards providing an outline of variables that require consideration when developing and reviewing methodology of acoustic and linguistic processing laterality studies. Thus, there are three primary aims in the present paper: (1) to provide the reader with key theoretical perspectives from the acoustics/linguistics debate and a synthesis of the two viewpoints, (2) to highlight key caveats for generalizing findings regarding predominant models of speech laterality, and (3) to provide a practical guide for methodological control using predominant behavioural measures (i.e., gap detection and dichotic listening tasks) and/or neurophysiological measures (i.e., mismatch negativity) of speech laterality.
Collapse
Affiliation(s)
- Jesse D Bourke
- School of Psychology, University Drive, Callaghan, NSW 2308, Australia
| | - Juanita Todd
- School of Psychology, University Drive, Callaghan, NSW 2308, Australia
| |
Collapse
|
10
|
Conversation in small groups: Speaking and listening strategies depend on the complexities of the environment and group. Psychon Bull Rev 2020; 28:632-640. [PMID: 33051825 PMCID: PMC8062389 DOI: 10.3758/s13423-020-01821-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 11/29/2022]
Abstract
Many conversations in our day-to-day lives are held in noisy environments – impeding comprehension, and in groups – taxing auditory attention-switching processes. These situations are particularly challenging for older adults in cognitive and sensory decline. In noisy environments, a variety of extra-linguistic strategies are available to speakers and listeners to facilitate communication, but while models of language account for the impact of context on word choice, there has been little consideration of the impact of context on extra-linguistic behaviour. To address this issue, we investigate how the complexity of the acoustic environment and interaction situation impacts extra-linguistic conversation behaviour of older adults during face-to-face conversations. Specifically, we test whether the use of intelligibility-optimising strategies increases with complexity of the background noise (from quiet to loud, and in speech-shaped vs. babble noise), and with complexity of the conversing group (dyad vs. triad). While some communication strategies are enhanced in more complex background noise, with listeners orienting to talkers more optimally and moving closer to their partner in babble than speech-shaped noise, this is not the case with all strategies, as we find greater vocal level increases in the less complex speech-shaped noise condition. Other behaviours are enhanced in the more complex interaction situation, with listeners using more optimal head orientations, and taking longer turns when gaining the floor in triads compared to dyads. This study elucidates how different features of the conversation context impact individuals’ communication strategies, which is necessary to both develop a comprehensive cognitive model of multimodal conversation behaviour, and effectively support individuals that struggle conversing.
Collapse
|
11
|
Rao A, Koerner TK, Madsen B, Zhang Y. Investigating Influences of Medial Olivocochlear Efferent System on Central Auditory Processing and Listening in Noise: A Behavioral and Event-Related Potential Study. Brain Sci 2020; 10:brainsci10070428. [PMID: 32635442 PMCID: PMC7408540 DOI: 10.3390/brainsci10070428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/21/2020] [Accepted: 06/30/2020] [Indexed: 11/16/2022] Open
Abstract
This electrophysiological study investigated the role of the medial olivocochlear (MOC) efferents in listening in noise. Both ears of eleven normal-hearing adult participants were tested. The physiological tests consisted of transient-evoked otoacoustic emission (TEOAE) inhibition and the measurement of cortical event-related potentials (ERPs). The mismatch negativity (MMN) and P300 responses were obtained in passive and active listening tasks, respectively. Behavioral responses for the word recognition in noise test were also analyzed. Consistent with previous findings, the TEOAE data showed significant inhibition in the presence of contralateral acoustic stimulation. However, performance in the word recognition in noise test was comparable for the two conditions (i.e., without contralateral stimulation and with contralateral stimulation). Peak latencies and peak amplitudes of MMN and P300 did not show changes with contralateral stimulation. Behavioral performance was also maintained in the P300 task. Together, the results show that the peripheral auditory efferent effects captured via otoacoustic emission (OAE) inhibition might not necessarily be reflected in measures of central cortical processing and behavioral performance. As the MOC effects may not play a role in all listening situations in adults, the functional significance of the cochlear effects of the medial olivocochlear efferents and the optimal conditions conducive to corresponding effects in behavioral and cortical responses remain to be elucidated.
Collapse
Affiliation(s)
- Aparna Rao
- Department of Speech and Hearing Science, Arizona State University, Tempe, AZ 85287, USA
- Correspondence: (A.R.); (Y.Z.); Tel.: +1-480-727-2761 (A.R.); +1-612-624-7818 (Y.Z.)
| | - Tess K. Koerner
- VA RR & D National Center for Rehabilitative Auditory Research, Portland, OR 97239, USA; (T.K.K.); (B.M.)
| | - Brandon Madsen
- VA RR & D National Center for Rehabilitative Auditory Research, Portland, OR 97239, USA; (T.K.K.); (B.M.)
| | - Yang Zhang
- Department of Speech-Language-Hearing Sciences & Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (A.R.); (Y.Z.); Tel.: +1-480-727-2761 (A.R.); +1-612-624-7818 (Y.Z.)
| |
Collapse
|
12
|
Alnıaçık A, Akdaş F. The effects of adaptive directional microphone on auditory evoked cortical P300 response and speech performance in cochlear implant users. Int J Audiol 2019; 58:861-868. [PMID: 31268365 DOI: 10.1080/14992027.2019.1637028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: The aim of this study was to evaluate the possible benefits of an adaptive directional microphone in noise by using auditory P300 and speech recognition scores (SRSs) in cochlear implant subjects.Design: The P300 and speech recognition scores were obtained (a) in quiet with an omnidirectional microphone (Quiet OM), (b) in noise with an omnidirectional microphone (Noise OM) and (c) in noise with an adaptive directional microphone (Noise BEAM) to compare the microphone effects.Study sample: Thirty-five cochlear implant subjects (22.87 ± 1.30 years)Results: The latencies of the P2, N2 and P3 responses as the discrimination potentials were significantly prolonged in the Noise OM condition compared with those obtained in the Quiet OM and Noise BEAM conditions (p < 0.05). The latencies of all responses in the Quiet OM and Noise BEAM conditions were similarly obtained (p > 0.05). SRSs were significantly lower in the Noise OM condition than in the Quiet OM and Noise BEAM condition (p < 0.05).Conclusions: During noise, the adaptive directional microphone system provided a discrimination ability similar to that seen in quiet settings for cochlear implant users.
Collapse
Affiliation(s)
| | - Ferda Akdaş
- Department of Audiology, Marmara University, Istanbul, Turkey
| |
Collapse
|
13
|
Peter V, Fratturo L, Sharma M. Electrophysiological and behavioural study of localisation in presence of noise. Int J Audiol 2019; 58:345-354. [PMID: 30890004 DOI: 10.1080/14992027.2019.1575989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE The ability to determine the location of the sound source is often important for effective communication. However, it is not clear how the localisation is affected by background noise. In the current study, localisation in quiet versus noise was evaluated in adults both behaviourally, and using MMN and P3b. DESIGN The speech token/da/was presented in a multi-deviant oddball paradigm in quiet and in presence of speech babble at +5 dB SNR. The deviants were presented at locations that differed from the standard by 30°, 60° and 90°. STUDY SAMPLE Sixteen normal hearing adults between the age range of 18-35 years participated in the study. RESULTS The results showed that participants were significantly faster and more accurate at identifying deviants presented at 60° and 90° as compared to 30°. Neither reaction times nor electrophysiological measures (MMN/P3b) were affected by the background noise. The deviance magnitude (30°, 60° and 90°) did not affect the MMN amplitude, but the smaller deviant (30°) generated P3b with smaller amplitude. CONCLUSIONS Under the stimulus paradigm and measures employed in this study, localisation ability as effectively sampled appeared resistant to speech babble interference.
Collapse
Affiliation(s)
- Varghese Peter
- a MARCS Institute for Brain, Behaviour and Development , Western Sydney University , Penrith , Australia.,b Department of Linguistics , Macquarie University , North Ryde , Australia.,c The HEARing Cooperative Research Centre , Melbourne , Victoria , Australia
| | - Luke Fratturo
- d The Balance Clinic and Laboratory , Royal Prince Alfred Hospital , Camperdown , Australia
| | - Mridula Sharma
- b Department of Linguistics , Macquarie University , North Ryde , Australia.,c The HEARing Cooperative Research Centre , Melbourne , Victoria , Australia
| |
Collapse
|
14
|
Yellamsetty A, Bidelman GM. Brainstem correlates of concurrent speech identification in adverse listening conditions. Brain Res 2019; 1714:182-192. [PMID: 30796895 DOI: 10.1016/j.brainres.2019.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/07/2019] [Accepted: 02/19/2019] [Indexed: 01/20/2023]
Abstract
When two voices compete, listeners can segregate and identify concurrent speech sounds using pitch (fundamental frequency, F0) and timbre (harmonic) cues. Speech perception is also hindered by the signal-to-noise ratio (SNR). How clear and degraded concurrent speech sounds are represented at early, pre-attentive stages of the auditory system is not well understood. To this end, we measured scalp-recorded frequency-following responses (FFR) from the EEG while human listeners heard two concurrently presented, steady-state (time-invariant) vowels whose F0 differed by zero or four semitones (ST) presented diotically in either clean (no noise) or noise-degraded (+5dB SNR) conditions. Listeners also performed a speeded double vowel identification task in which they were required to identify both vowels correctly. Behavioral results showed that speech identification accuracy increased with F0 differences between vowels, and this perceptual F0 benefit was larger for clean compared to noise degraded (+5dB SNR) stimuli. Neurophysiological data demonstrated more robust FFR F0 amplitudes for single compared to double vowels and considerably weaker responses in noise. F0 amplitudes showed speech-on-speech masking effects, along with a non-linear constructive interference at 0ST, and suppression effects at 4ST. Correlations showed that FFR F0 amplitudes failed to predict listeners' identification accuracy. In contrast, FFR F1 amplitudes were associated with faster reaction times, although this correlation was limited to noise conditions. The limited number of brain-behavior associations suggests subcortical activity mainly reflects exogenous processing rather than perceptual correlates of concurrent speech perception. Collectively, our results demonstrate that FFRs reflect pre-attentive coding of concurrent auditory stimuli that only weakly predict the success of identifying concurrent speech.
Collapse
Affiliation(s)
- Anusha Yellamsetty
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; Department of Communication Sciences & Disorders, University of South Florida, USA.
| | - Gavin M Bidelman
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA.
| |
Collapse
|
15
|
Koerner TK, Zhang Y. Differential effects of hearing impairment and age on electrophysiological and behavioral measures of speech in noise. Hear Res 2018; 370:130-142. [DOI: 10.1016/j.heares.2018.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/06/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
|
16
|
Rämä P, Leminen A, Koskenoja-Vainikka S, Leminen M, Alho K, Kujala T. Effect of language experience on selective auditory attention: An event-related potential study. Int J Psychophysiol 2018. [DOI: 10.1016/j.ijpsycho.2018.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Zhang X, Li X, Chen J, Gong Q. Background Suppression and its Relation to Foreground Processing of Speech Versus Non-speech Streams. Neuroscience 2018; 373:60-71. [PMID: 29337239 DOI: 10.1016/j.neuroscience.2018.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
Since sound perception takes place against a background with a certain amount of noise, both speech and non-speech processing involve extraction of target signals and suppression of background noise. Previous works on early processing of speech phonemes largely neglected how background noise is encoded and suppressed. This study aimed to fill in this gap. We adopted an oddball paradigm where speech (vowels) or non-speech stimuli (complex tones) were presented with or without a background of amplitude-modulated noise and analyzed cortical responses related to foreground stimulus processing, including mismatch negativity (MMN), N2b, and P300, as well as neural representations of the background noise, that is, auditory steady-state response (ASSR). We found that speech deviants elicited later and weaker MMN, later N2b, and later P300 than non-speech ones, but N2b and P300 had similar strength, suggesting more complex processing of certain acoustic features in speech. Only for vowels, background noise enhanced N2b strength relative to silence, suggesting an attention-related speech-specific process to improve perception of foreground targets. In addition, noise suppression in speech contexts, quantified by ASSR amplitude reduction after stimulus onset, was lateralized towards the left hemisphere. The left-lateralized suppression following N2b was associated with the N2b enhancement in noise for speech, indicating that foreground processing may interact with background suppression, particularly during speech processing. Together, our findings indicate that the differences between perception of speech and non-speech sounds involve not only the processing of target information in the foreground but also the suppression of irrelevant aspects in the background.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaolin Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Jingjing Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Qin Gong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Research Center of Biomedical Engineering, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong Province, China.
| |
Collapse
|
18
|
Yellamsetty A, Bidelman GM. Low- and high-frequency cortical brain oscillations reflect dissociable mechanisms of concurrent speech segregation in noise. Hear Res 2018; 361:92-102. [PMID: 29398142 DOI: 10.1016/j.heares.2018.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 12/09/2017] [Accepted: 01/12/2018] [Indexed: 10/18/2022]
Abstract
Parsing simultaneous speech requires listeners use pitch-guided segregation which can be affected by the signal-to-noise ratio (SNR) in the auditory scene. The interaction of these two cues may occur at multiple levels within the cortex. The aims of the current study were to assess the correspondence between oscillatory brain rhythms and determine how listeners exploit pitch and SNR cues to successfully segregate concurrent speech. We recorded electrical brain activity while participants heard double-vowel stimuli whose fundamental frequencies (F0s) differed by zero or four semitones (STs) presented in either clean or noise-degraded (+5 dB SNR) conditions. We found that behavioral identification was more accurate for vowel mixtures with larger pitch separations but F0 benefit interacted with noise. Time-frequency analysis decomposed the EEG into different spectrotemporal frequency bands. Low-frequency (θ, β) responses were elevated when speech did not contain pitch cues (0ST > 4ST) or was noisy, suggesting a correlate of increased listening effort and/or memory demands. Contrastively, γ power increments were observed for changes in both pitch (0ST > 4ST) and SNR (clean > noise), suggesting high-frequency bands carry information related to acoustic features and the quality of speech representations. Brain-behavior associations corroborated these effects; modulations in low-frequency rhythms predicted the speed of listeners' perceptual decisions with higher bands predicting identification accuracy. Results are consistent with the notion that neural oscillations reflect both automatic (pre-perceptual) and controlled (post-perceptual) mechanisms of speech processing that are largely divisible into high- and low-frequency bands of human brain rhythms.
Collapse
Affiliation(s)
- Anusha Yellamsetty
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
| | - Gavin M Bidelman
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; Univeristy of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA.
| |
Collapse
|
19
|
Niemitalo-Haapola E, Haapala S, Kujala T, Raappana A, Kujala T, Jansson-Verkasalo E. Noise Equally Degrades Central Auditory Processing in 2- and 4-Year-Old Children. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2017; 60:2297-2309. [PMID: 28763806 DOI: 10.1044/2017_jslhr-h-16-0267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 02/04/2017] [Indexed: 06/07/2023]
Abstract
PURPOSE The aim of this study was to investigate developmental and noise-induced changes in central auditory processing indexed by event-related potentials in typically developing children. METHOD P1, N2, and N4 responses as well as mismatch negativities (MMNs) were recorded for standard syllables and consonants, frequency, intensity, vowel, and vowel duration changes in silent and noisy conditions in the same 14 children at the ages of 2 and 4 years. RESULTS The P1 and N2 latencies decreased and the N2, N4, and MMN amplitudes increased with development of the children. The amplitude changes were strongest at frontal electrodes. At both ages, background noise decreased the P1 amplitude, increased the N2 amplitude, and shortened the N4 latency. The noise-induced amplitude changes of P1, N2, and N4 were strongest frontally. Furthermore, background noise degraded the MMN. At both ages, MMN was significantly elicited only by the consonant change, and at the age of 4 years, also by the vowel duration change during noise. CONCLUSIONS Developmental changes indexing maturation of central auditory processing were found from every response studied. Noise degraded sound encoding and echoic memory and impaired auditory discrimination at both ages. The older children were as vulnerable to the impact of noise as the younger children. SUPPLEMENTAL MATERIALS https://doi.org/10.23641/asha.5233939.
Collapse
Affiliation(s)
- Elina Niemitalo-Haapola
- Child Language Research Center, Faculty of Humanities, University of Oulu, Finland
- Clinical Neurophysiology, Oulu University Hospital, Finland
| | - Sini Haapala
- Clinical Neurophysiology, Oulu University Hospital, Finland
- Department of Psychology and Speech-Language Pathology, University of Turku, Finland
| | - Teija Kujala
- Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of Helsinki, Finland
| | - Antti Raappana
- PEDEGO Research Unit, University of Oulu, Finland
- Department of Otorhinolaryngology-Head and Neck Surgery, Institute of Clinical Medicine, Oulu University Hospital, Finland
| | - Tiia Kujala
- PEDEGO Research Unit, University of Oulu, Finland
- Medical Research Center Oulu, Finland
| | | |
Collapse
|
20
|
Bidelman GM, Yellamsetty A. Noise and pitch interact during the cortical segregation of concurrent speech. Hear Res 2017; 351:34-44. [PMID: 28578876 DOI: 10.1016/j.heares.2017.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/09/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
Abstract
Behavioral studies reveal listeners exploit intrinsic differences in voice fundamental frequency (F0) to segregate concurrent speech sounds-the so-called "F0-benefit." More favorable signal-to-noise ratio (SNR) in the environment, an extrinsic acoustic factor, similarly benefits the parsing of simultaneous speech. Here, we examined the neurobiological substrates of these two cues in the perceptual segregation of concurrent speech mixtures. We recorded event-related brain potentials (ERPs) while listeners performed a speeded double-vowel identification task. Listeners heard two concurrent vowels whose F0 differed by zero or four semitones presented in either clean (no noise) or noise-degraded (+5 dB SNR) conditions. Behaviorally, listeners were more accurate in correctly identifying both vowels for larger F0 separations but F0-benefit was more pronounced at more favorable SNRs (i.e., pitch × SNR interaction). Analysis of the ERPs revealed that only the P2 wave (∼200 ms) showed a similar F0 x SNR interaction as behavior and was correlated with listeners' perceptual F0-benefit. Neural classifiers applied to the ERPs further suggested that speech sounds are segregated neurally within 200 ms based on SNR whereas segregation based on pitch occurs later in time (400-700 ms). The earlier timing of extrinsic SNR compared to intrinsic F0-based segregation implies that the cortical extraction of speech from noise is more efficient than differentiating speech based on pitch cues alone, which may recruit additional cortical processes. Findings indicate that noise and pitch differences interact relatively early in cerebral cortex and that the brain arrives at the identities of concurrent speech mixtures as early as ∼200 ms.
Collapse
Affiliation(s)
- Gavin M Bidelman
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, 38152, USA; Institute for Intelligent Systems, University of Memphis, Memphis, TN, 38152, USA; Univeristy of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, 38163, USA.
| | - Anusha Yellamsetty
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, 38152, USA
| |
Collapse
|
21
|
Trista N-Hernández E, Pav On-García I, Campos-Cantón I, Ontaño N-García LJ, Kolosovas-Machuca ES. Influence of Background Noise Produced in University Facilities on the Brain Waves Associated With Attention of Students and Employees. Perception 2017; 46:1105-1117. [PMID: 28350245 DOI: 10.1177/0301006617700672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As a consequence of noise exposure, lack of attention badly affects directly the academic and work performance. The study of the brain and the waves that it produces is the most objective way to evaluate this process. Attentional improvement is associated with increases of the amplitude in both beta and theta bands. The objective of this work is to study the influence of background noise produced inside university facilities on changes in the cerebral waves related to attention processes (beta 13-30 Hz and theta 4-7 Hz). Volunteers were asked to perform a specific task in which attention was involved. This task was performed in both silent and noisy conditions. To evaluate the cerebral activity of volunteers during the development of the test, measurement of spontaneous activity (electroencephalogram) was developed. The results show significant decreases in both beta and theta frequency bands under background noise exposure. Since attentional improvement is related to an increment on amplitude of both beta and theta bands, it is suggested that decreases on amplitude of these frequency bands could directly be related to a lack of attention caused by the exposure to background noise.
Collapse
Affiliation(s)
- E Trista N-Hernández
- Instituto de Investigación en Comunicación Óptica (IICO), Universidad Autónoma de San Luis Potosí (UASLP), México
| | - I Pav On-García
- Grupo de Investigación en Instrumentación y Acústica Aplicada (I2A2), Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), España
| | - I Campos-Cantón
- Instituto de Investigación en Comunicación Óptica (IICO), Universidad Autónoma de San Luis Potosí (UASLP), México
| | - L J Ontaño N-García
- Coordinación Académica Región Altiplano Oeste (CARAO), Universidad Autónoma de San Luis Potosí (UASLP), México
| | - E S Kolosovas-Machuca
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí (UASLP), México
| |
Collapse
|
22
|
Mamashli F, Khan S, Bharadwaj H, Michmizos K, Ganesan S, Garel KLA, Ali Hashmi J, Herbert MR, Hämäläinen M, Kenet T. Auditory processing in noise is associated with complex patterns of disrupted functional connectivity in autism spectrum disorder. Autism Res 2016; 10:631-647. [PMID: 27910247 DOI: 10.1002/aur.1714] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/09/2016] [Accepted: 09/16/2016] [Indexed: 11/12/2022]
Abstract
Autism spectrum disorder (ASD) is associated with difficulty in processing speech in a noisy background, but the neural mechanisms that underlie this deficit have not been mapped. To address this question, we used magnetoencephalography to compare the cortical responses between ASD and typically developing (TD) individuals to a passive mismatch paradigm. We repeated the paradigm twice, once in a quiet background, and once in the presence of background noise. We focused on both the evoked mismatch field (MMF) response in temporal and frontal cortical locations, and functional connectivity with spectral specificity between those locations. In the quiet condition, we found common neural sources of the MMF response in both groups, in the right temporal gyrus and inferior frontal gyrus (IFG). In the noise condition, the MMF response in the right IFG was preserved in the TD group, but reduced relative to the quiet condition in ASD group. The MMF response in the right IFG also correlated with severity of ASD. Moreover, in noise, we found significantly reduced normalized coherence (deviant normalized by standard) in ASD relative to TD, in the beta band (14-25 Hz), between left temporal and left inferior frontal sub-regions. However, unnormalized coherence (coherence during deviant or standard) was significantly increased in ASD relative to TD, in multiple frequency bands. Our findings suggest increased recruitment of neural resources in ASD irrespective of the task difficulty, alongside a reduction in top-down modulations, usually mediated by the beta band, needed to mitigate the impact of noise on auditory processing. Autism Res 2016,. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 631-647. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fahimeh Mamashli
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Sheraz Khan
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,McGovern Institute for Brain Research Massachusetts Institute of Technology, Boston, Massachusetts
| | - Hari Bharadwaj
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Konstantinos Michmizos
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,McGovern Institute for Brain Research Massachusetts Institute of Technology, Boston, Massachusetts
| | - Santosh Ganesan
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Keri-Lee A Garel
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Javeria Ali Hashmi
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Martha R Herbert
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts.,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science Espoo, Finland
| | - Matti Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Tal Kenet
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
23
|
Koerner TK, Zhang Y, Nelson PB, Wang B, Zou H. Neural indices of phonemic discrimination and sentence-level speech intelligibility in quiet and noise: A mismatch negativity study. Hear Res 2016; 339:40-9. [PMID: 27267705 DOI: 10.1016/j.heares.2016.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/16/2016] [Accepted: 06/02/2016] [Indexed: 11/17/2022]
Abstract
Successful speech communication requires the extraction of important acoustic cues from irrelevant background noise. In order to better understand this process, this study examined the effects of background noise on mismatch negativity (MMN) latency, amplitude, and spectral power measures as well as behavioral speech intelligibility tasks. Auditory event-related potentials (AERPs) were obtained from 15 normal-hearing participants to determine whether pre-attentive MMN measures recorded in response to a consonant (from /ba/ to /bu/) and vowel change (from /ba/ to /da/) in a double-oddball paradigm can predict sentence-level speech perception. The results showed that background noise increased MMN latencies and decreased MMN amplitudes with a reduction in the theta frequency band power. Differential noise-induced effects were observed for the pre-attentive processing of consonant and vowel changes due to different degrees of signal degradation by noise. Linear mixed-effects models further revealed significant correlations between the MMN measures and speech intelligibility scores across conditions and stimuli. These results confirm the utility of MMN as an objective neural marker for understanding noise-induced variations as well as individual differences in speech perception, which has important implications for potential clinical applications.
Collapse
Affiliation(s)
- Tess K Koerner
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yang Zhang
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Minneapolis, MN 55455, USA; Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN 55455, USA; Center for Applied Translational Sensory Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Peggy B Nelson
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Minneapolis, MN 55455, USA; Center for Applied Translational Sensory Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Boxiang Wang
- School of Statistics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hui Zou
- School of Statistics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
24
|
Nowakowska-Kotas M, Pokryszko-Dragan A, Brodowski M, Szydło M, Podemski R. Effects of noise and mental task performance upon changes in cerebral blood flow parameters. Noise Health 2016; 17:422-8. [PMID: 26572702 PMCID: PMC4900476 DOI: 10.4103/1463-1741.169709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The objectives of this paper were to determine whether traffic noise influences the parameters of cerebral blood flow (CBF) measured by functional transcranial Doppler sonography (fTCD) during the performance of mental tasks, and to see whether impact of noise on CBF changes with age. The study comprised 36 healthy volunteers, 22 women and 14 men, aged 25-49 years. The fTCD was performed using a fixed 2-MHz probe, aiming for an evaluation of mean velocity (MFV) and the pulsatility index (PI) in the middle cerebral artery (MCA) on both sides. Subsequently, fTCD was monitored: At rest; during performance of the Paced Auditory Serial Addition Test (PASAT); during exposure to traffic noise; and during concomitant exposure to noise and PASAT performance. MFV and PI were compared for particular conditions and correlated with age. During exposure to noise, flow parameters did not change significantly. PASAT performance in silence increased MFV and decreased PI in MCA on both sides. During PASAT performance, on exposure to noise, MCV and PI changed significantly only in the left MCA. However, values of MFV were significantly lower during noise than in silence. Correlations with age were noted for velocities in the right MCA during PASAT performance in silence and for PI on both sides during PASAT performed in noise conditions. Noise impairs the CBF during mental tasks. A comparison of changes in CBF parameters correlated with age suggests that the involvement of the nondominant hemisphere in managing with noise effects increases with age.
Collapse
|
25
|
Dromey C, Scott S. The effects of noise on speech movements in young, middle-aged, and older adults. SPEECH, LANGUAGE AND HEARING 2016. [DOI: 10.1080/2050571x.2015.1133757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Attentional modulation of informational masking on early cortical representations of speech signals. Hear Res 2016; 331:119-30. [DOI: 10.1016/j.heares.2015.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 10/27/2015] [Accepted: 11/04/2015] [Indexed: 11/27/2022]
|
27
|
Chen J, Chen S, Zheng Y, Ou Y. The Effect of Aging and the High-Frequency Auditory Threshold on Speech-Evoked Mismatch Negativity in a Noisy Background. Audiol Neurootol 2015; 21:1-11. [DOI: 10.1159/000441693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/13/2015] [Indexed: 11/19/2022] Open
Abstract
Mismatch negativity (MMN) has been widely used to study the function of central auditory processing in the elderly. However, current research has not yet considered the effect of noise and high-frequency hearing threshold on MMN in the elderly. The aim of this study was to evaluate the effect of aging and high-frequency hearing loss on speech-related MMN in noisy backgrounds. Additionally, the possible mechanisms of central auditory processing dysfunction in the elderly were investigated. Fifty people aged 61-80 (70 ± 5.8) years were recruited for this study. They were divided into a 61- to 70-year-old group and a 71- to 80-year-old group. Fifty younger adults aged 21-40 (31 ± 5.3) years were recruited as healthy controls. Pure-tone hearing thresholds were recorded. A speech discrimination score (SDS) and a speech-evoked MMN under white noise with a bandwidth from 125 to 8,000 Hz background condition were recorded. The relationships between SDS and MMN latency and amplitude were analyzed. The effects of age and binaural 2,000-, 4,000- and 8,000-Hz pure-tone hearing thresholds on MMN latency and amplitude were analyzed. We found that the hearing thresholds of 2,000, 4,000 and 8,000 Hz in the 61- to 70-year-old and 71- to 80-year-old groups were higher than those in the control group. The SDS in a noisy background in the 61- to 70-year-old and 71- to 80-year-old groups were lower than those in the control group. Speech-evoked MMN latency was longer in the 61- to 70-year-old and in the 71- to 80-year-old groups than in the control group (215.8 ± 14.2 ms). SDS and speech-evoked MMN latency were negatively correlated. Age and speech-evoked MMN latency were positively correlated, as were the binaural 4,000- to 8,000-Hz pure-tone hearing thresholds and speech-evoked MMN. This study suggests that in elderly subjects, the function of preattentive central auditory processing changes. Additionally, increasing age and high-frequency hearing thresholds create a synergy in neurons that is weakened in the MMN time window, which may be a cause of central auditory processing disorders in elderly subjects in noisy background conditions.
Collapse
|
28
|
Bidelman GM, Howell M. Functional changes in inter- and intra-hemispheric cortical processing underlying degraded speech perception. Neuroimage 2015; 124:581-590. [PMID: 26386346 DOI: 10.1016/j.neuroimage.2015.09.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/29/2015] [Accepted: 09/09/2015] [Indexed: 11/18/2022] Open
Abstract
Previous studies suggest that at poorer signal-to-noise ratios (SNRs), auditory cortical event-related potentials are weakened, prolonged, and show a shift in the functional lateralization of cerebral processing from left to right hemisphere. Increased right hemisphere involvement during speech-in-noise (SIN) processing may reflect the recruitment of additional brain resources to aid speech recognition or alternatively, the progressive loss of involvement from left linguistic brain areas as speech becomes more impoverished (i.e., nonspeech-like). To better elucidate the brain basis of SIN perception, we recorded neuroelectric activity in normal hearing listeners to speech sounds presented at various SNRs. Behaviorally, listeners obtained superior SIN performance for speech presented to the right compared to the left ear (i.e., right ear advantage). Source analysis of neural data assessed the relative contribution of region-specific neural generators (linguistic and auditory brain areas) to SIN processing. We found that left inferior frontal brain areas (e.g., Broca's areas) partially disengage at poorer SNRs but responses do not right lateralize with increasing noise. In contrast, auditory sources showed more resilience to noise in left compared to right primary auditory cortex but also a progressive shift in dominance from left to right hemisphere at lower SNRs. Region- and ear-specific correlations revealed that listeners' right ear SIN advantage was predicted by source activity emitted from inferior frontal gyrus (but not primary auditory cortex). Our findings demonstrate changes in the functional asymmetry of cortical speech processing during adverse acoustic conditions and suggest that "cocktail party" listening skills depend on the quality of speech representations in the left cerebral hemisphere rather than compensatory recruitment of right hemisphere mechanisms.
Collapse
Affiliation(s)
- Gavin M Bidelman
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA.
| | - Megan Howell
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
| |
Collapse
|
29
|
Bidelman GM, Dexter L. Bilinguals at the "cocktail party": dissociable neural activity in auditory-linguistic brain regions reveals neurobiological basis for nonnative listeners' speech-in-noise recognition deficits. BRAIN AND LANGUAGE 2015; 143:32-41. [PMID: 25747886 DOI: 10.1016/j.bandl.2015.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 12/22/2014] [Accepted: 02/08/2015] [Indexed: 06/04/2023]
Abstract
We examined a consistent deficit observed in bilinguals: poorer speech-in-noise (SIN) comprehension for their nonnative language. We recorded neuroelectric mismatch potentials in mono- and bi-lingual listeners in response to contrastive speech sounds in noise. Behaviorally, late bilinguals required ∼10dB more favorable signal-to-noise ratios to match monolinguals' SIN abilities. Source analysis of cortical activity demonstrated monotonic increase in response latency with noise in superior temporal gyrus (STG) for both groups, suggesting parallel degradation of speech representations in auditory cortex. Contrastively, we found differential speech encoding between groups within inferior frontal gyrus (IFG)-adjacent to Broca's area-where noise delays observed in nonnative listeners were offset in monolinguals. Notably, brain-behavior correspondences double dissociated between language groups: STG activation predicted bilinguals' SIN, whereas IFG activation predicted monolinguals' performance. We infer higher-order brain areas act compensatorily to enhance impoverished sensory representations but only when degraded speech recruits linguistic brain mechanisms downstream from initial auditory-sensory inputs.
Collapse
Affiliation(s)
- Gavin M Bidelman
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA.
| | - Lauren Dexter
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
| |
Collapse
|
30
|
Ito T, Gracco VL, Ostry DJ. Temporal factors affecting somatosensory-auditory interactions in speech processing. Front Psychol 2014; 5:1198. [PMID: 25452733 PMCID: PMC4233986 DOI: 10.3389/fpsyg.2014.01198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 10/04/2014] [Indexed: 12/03/2022] Open
Abstract
Speech perception is known to rely on both auditory and visual information. However, sound-specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009). In the present study, we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory–auditory interaction in speech perception. We examined the changes in event-related potentials (ERPs) in response to multisensory synchronous (simultaneous) and asynchronous (90 ms lag and lead) somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the ERP was reliably different from the two unisensory potentials. More importantly, the magnitude of the ERP difference varied as a function of the relative timing of the somatosensory–auditory stimulation. Event-related activity change due to stimulus timing was seen between 160 and 220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory–auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production.
Collapse
Affiliation(s)
| | - Vincent L Gracco
- Haskins Laboratories, New Haven , CT, USA ; McGill University, Montréal , QC, Canada
| | - David J Ostry
- Haskins Laboratories, New Haven , CT, USA ; McGill University, Montréal , QC, Canada
| |
Collapse
|
31
|
Age-related laterality shifts in auditory and attention networks with normal ageing: Effects on a working memory task. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.npbr.2013.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Ito T, Johns AR, Ostry DJ. Left lateralized enhancement of orofacial somatosensory processing due to speech sounds. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2013; 56:S1875-S1881. [PMID: 24687443 PMCID: PMC4228692 DOI: 10.1044/1092-4388(2013/12-0226)] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
PURPOSE Somatosensory information associated with speech articulatory movements affects the perception of speech sounds and vice versa, suggesting an intimate linkage between speech production and perception systems. However, it is unclear which cortical processes are involved in the interaction between speech sounds and orofacial somatosensory inputs. The authors examined whether speech sounds modify orofacial somatosensory cortical potentials that were elicited using facial skin perturbations. METHOD Somatosensory event-related potentials in EEG were recorded in 3 background sound conditions (pink noise, speech sounds, and nonspeech sounds) and also in a silent condition. Facial skin deformations that are similar in timing and duration to those experienced in speech production were used for somatosensory stimulation. RESULTS The authors found that speech sounds reliably enhanced the first negative peak of the somatosensory event-related potential when compared with the other 3 sound conditions. The enhancement was evident at electrode locations above the left motor and premotor area of the orofacial system. The result indicates that speech sounds interact with somatosensory cortical processes that are produced by speech-production-like patterns of facial skin stretch. CONCLUSION Neural circuits in the left hemisphere, presumably in left motor and premotor cortex, may play a prominent role in the interaction between auditory inputs and speech-relevant somatosensory processing.
Collapse
Affiliation(s)
| | - Alexis R. Johns
- Haskins Laboratories, New Haven, CT
- University of Connecticut, Storrs
| | - David J. Ostry
- Haskins Laboratories, New Haven, CT
- McGill University, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Moreau P, Jolicœur P, Lidji P, Peretz I. Successful measurement of the mismatch negativity despite a concurrent movie soundtrack: reduced amplitude but normal component morphology. Clin Neurophysiol 2013; 124:2378-88. [PMID: 23770087 DOI: 10.1016/j.clinph.2013.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 05/14/2013] [Accepted: 05/24/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To examine the mechanisms responsible for the reduction of the mismatch negativity (MMN) ERP component observed in response to pitch changes when the soundtrack of a movie is presented while recording the MMN. METHODS In three experiments we measured the MMN to tones that differed in pitch from a repeated standard tone presented with a silent subtitled movie, with the soundtrack played forward or backward, or with soundtracks set at different intensity levels. RESULTS MMN amplitude was reduced when the soundtrack was presented either forward or backward compared to the silent subtitled movie. With the soundtrack, MMN amplitude increased proportionally to the increments in the sound-to-noise intensity ratio. CONCLUSION MMN was reduced in amplitude but had normal morphology with a concurrent soundtrack, most likely because of basic acoustical interference from the soundtrack with MMN-critical tones rather than from attentional effects. SIGNIFICANCE A normal MMN can be recorded with a concurrent movie soundtrack, but signal amplitudes need to be set with caution to ensure a sufficiently high sound-to-noise ratio between MMN stimuli and the soundtrack.
Collapse
Affiliation(s)
- Patricia Moreau
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Department of Psychology, University of Montreal, Canada.
| | | | | | | |
Collapse
|
34
|
Fast parametric evaluation of central speech-sound processing with mismatch negativity (MMN). Int J Psychophysiol 2013. [DOI: 10.1016/j.ijpsycho.2012.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
The mismatch negativity (MMN)--a unique window to disturbed central auditory processing in ageing and different clinical conditions. Clin Neurophysiol 2011; 123:424-58. [PMID: 22169062 DOI: 10.1016/j.clinph.2011.09.020] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 12/14/2022]
Abstract
In this article, we review clinical research using the mismatch negativity (MMN), a change-detection response of the brain elicited even in the absence of attention or behavioural task. In these studies, the MMN was usually elicited by employing occasional frequency, duration or speech-sound changes in repetitive background stimulation while the patient was reading or watching videos. It was found that in a large number of different neuropsychiatric, neurological and neurodevelopmental disorders, as well as in normal ageing, the MMN amplitude was attenuated and peak latency prolonged. Besides indexing decreased discrimination accuracy, these effects may also reflect, depending on the specific stimulus paradigm used, decreased sensory-memory duration, abnormal perception or attention control or, most importantly, cognitive decline. In fact, MMN deficiency appears to index cognitive decline irrespective of the specific symptomatologies and aetiologies of the different disorders involved.
Collapse
|
36
|
Shetake JA, Wolf JT, Cheung RJ, Engineer CT, Ram SK, Kilgard MP. Cortical activity patterns predict robust speech discrimination ability in noise. Eur J Neurosci 2011; 34:1823-38. [PMID: 22098331 DOI: 10.1111/j.1460-9568.2011.07887.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neural mechanisms that support speech discrimination in noisy conditions are poorly understood. In quiet conditions, spike timing information appears to be used in the discrimination of speech sounds. In this study, we evaluated the hypothesis that spike timing is also used to distinguish between speech sounds in noisy conditions that significantly degrade neural responses to speech sounds. We tested speech sound discrimination in rats and recorded primary auditory cortex (A1) responses to speech sounds in background noise of different intensities and spectral compositions. Our behavioral results indicate that rats, like humans, are able to accurately discriminate consonant sounds even in the presence of background noise that is as loud as the speech signal. Our neural recordings confirm that speech sounds evoke degraded but detectable responses in noise. Finally, we developed a novel neural classifier that mimics behavioral discrimination. The classifier discriminates between speech sounds by comparing the A1 spatiotemporal activity patterns evoked on single trials with the average spatiotemporal patterns evoked by known sounds. Unlike classifiers in most previous studies, this classifier is not provided with the stimulus onset time. Neural activity analyzed with the use of relative spike timing was well correlated with behavioral speech discrimination in quiet and in noise. Spike timing information integrated over longer intervals was required to accurately predict rat behavioral speech discrimination in noisy conditions. The similarity of neural and behavioral discrimination of speech in noise suggests that humans and rats may employ similar brain mechanisms to solve this problem.
Collapse
Affiliation(s)
- Jai A Shetake
- The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR41 Richardson, TX 75080-3021, USA
| | | | | | | | | | | |
Collapse
|
37
|
Renvall H, Formisano E, Parviainen T, Bonte M, Vihla M, Salmelin R. Parametric Merging of MEG and fMRI Reveals Spatiotemporal Differences in Cortical Processing of Spoken Words and Environmental Sounds in Background Noise. Cereb Cortex 2011; 22:132-43. [DOI: 10.1093/cercor/bhr095] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Romei L, Wambacq IJA, Besing J, Koehnke J, Jerger J. Neural indices of spoken word processing in background multi-talker babble. Int J Audiol 2011; 50:321-33. [DOI: 10.3109/14992027.2010.547875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Boulenger V, Hoen M, Jacquier C, Meunier F. Interplay between acoustic/phonetic and semantic processes during spoken sentence comprehension: an ERP study. BRAIN AND LANGUAGE 2011; 116:51-63. [PMID: 20965558 DOI: 10.1016/j.bandl.2010.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 09/14/2010] [Accepted: 09/18/2010] [Indexed: 05/30/2023]
Abstract
When listening to speech in everyday-life situations, our cognitive system must often cope with signal instabilities such as sudden breaks, mispronunciations, interfering noises or reverberations potentially causing disruptions at the acoustic/phonetic interface and preventing efficient lexical access and semantic integration. The physiological mechanisms allowing listeners to react instantaneously to such fast and unexpected perturbations in order to maintain intelligibility of the delivered message are still partly unknown. The present electroencephalography (EEG) study aimed at investigating the cortical responses to real-time detection of a sudden acoustic/phonetic change occurring in connected speech and how these mechanisms interfere with semantic integration. Participants listened to sentences in which final words could contain signal reversals along the temporal dimension (time-reversed speech) of varying durations and could have either a low- or high-cloze probability within sentence context. Results revealed that early detection of the acoustic/phonetic change elicited a fronto-central negativity shortly after the onset of the manipulation that matched the spatio-temporal features of the Mismatch Negativity (MMN) recorded in the same participants during an oddball paradigm. Time reversal also affected late event-related potentials (ERPs) reflecting semantic expectancies (N400) differently when words were predictable or not from the sentence context. These findings are discussed in the context of brain signatures to transient acoustic/phonetic variations in speech. They contribute to a better understanding of natural speech comprehension as they show that acoustic/phonetic information and semantic knowledge strongly interact under adverse conditions.
Collapse
Affiliation(s)
- Véronique Boulenger
- Laboratoire Dynamique du Langage, CNRS, Université Lyon 2, UMR 5596, Lyon, France.
| | | | | | | |
Collapse
|
40
|
Parbery-Clark A, Marmel F, Bair J, Kraus N. What subcortical-cortical relationships tell us about processing speech in noise. Eur J Neurosci 2011; 33:549-57. [PMID: 21255123 DOI: 10.1111/j.1460-9568.2010.07546.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To advance our understanding of the biological basis of speech-in-noise perception, we investigated the effects of background noise on both subcortical- and cortical-evoked responses, and the relationships between them, in normal hearing young adults. The addition of background noise modulated subcortical and cortical response morphology. In noise, subcortical responses were later, smaller in amplitude and demonstrated decreased neural precision in encoding the speech sound. Cortical responses were also delayed by noise, yet the amplitudes of the major peaks (N1, P2) were affected differently, with N1 increasing and P2 decreasing. Relationships between neural measures and speech-in-noise ability were identified, with earlier subcortical responses, higher subcortical response fidelity and greater cortical N1 response magnitude all relating to better speech-in-noise perception. Furthermore, it was only with the addition of background noise that relationships between subcortical and cortical encoding of speech and the behavioral measures of speech in noise emerged. Results illustrate that human brainstem responses and N1 cortical response amplitude reflect coordinated processes with regards to the perception of speech in noise, thereby acting as a functional index of speech-in-noise perception.
Collapse
Affiliation(s)
- Alexandra Parbery-Clark
- Auditory Neuroscience Laboratory, Frances Searle Building, 2240 Campus Drive, Evanston, IL 60208-2952, USA.
| | | | | | | |
Collapse
|
41
|
Miettinen I, Alku P, Salminen N, May PJ, Tiitinen H. Responsiveness of the human auditory cortex to degraded speech sounds: Reduction of amplitude resolution vs. additive noise. Brain Res 2011; 1367:298-309. [DOI: 10.1016/j.brainres.2010.10.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/07/2010] [Accepted: 10/12/2010] [Indexed: 11/15/2022]
|
42
|
Miettinen I, Tiitinen H, Alku P, May PJC. Sensitivity of the human auditory cortex to acoustic degradation of speech and non-speech sounds. BMC Neurosci 2010; 11:24. [PMID: 20175890 PMCID: PMC2837048 DOI: 10.1186/1471-2202-11-24] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 02/22/2010] [Indexed: 12/04/2022] Open
Abstract
Background Recent studies have shown that the human right-hemispheric auditory cortex is particularly sensitive to reduction in sound quality, with an increase in distortion resulting in an amplification of the auditory N1m response measured in the magnetoencephalography (MEG). Here, we examined whether this sensitivity is specific to the processing of acoustic properties of speech or whether it can be observed also in the processing of sounds with a simple spectral structure. We degraded speech stimuli (vowel /a/), complex non-speech stimuli (a composite of five sinusoidals), and sinusoidal tones by decreasing the amplitude resolution of the signal waveform. The amplitude resolution was impoverished by reducing the number of bits to represent the signal samples. Auditory evoked magnetic fields (AEFs) were measured in the left and right hemisphere of sixteen healthy subjects. Results We found that the AEF amplitudes increased significantly with stimulus distortion for all stimulus types, which indicates that the right-hemispheric N1m sensitivity is not related exclusively to degradation of acoustic properties of speech. In addition, the P1m and P2m responses were amplified with increasing distortion similarly in both hemispheres. The AEF latencies were not systematically affected by the distortion. Conclusions We propose that the increased activity of AEFs reflects cortical processing of acoustic properties common to both speech and non-speech stimuli. More specifically, the enhancement is most likely caused by spectral changes brought about by the decrease of amplitude resolution, in particular the introduction of periodic, signal-dependent distortion to the original sound. Converging evidence suggests that the observed AEF amplification could reflect cortical sensitivity to periodic sounds.
Collapse
Affiliation(s)
- Ismo Miettinen
- Department of Biomedical Engineering and Computational Science, Aalto University School of Science and Technology, Espoo, Finland.
| | | | | | | |
Collapse
|
43
|
Kujala T, Brattico E. Detrimental noise effects on brain's speech functions. Biol Psychol 2009; 81:135-43. [DOI: 10.1016/j.biopsycho.2009.03.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 12/12/2008] [Accepted: 03/30/2009] [Indexed: 11/16/2022]
|
44
|
Fisher DJ, Labelle A, Knott VJ. The right profile: Mismatch negativity in schizophrenia with and without auditory hallucinations as measured by a multi-feature paradigm. Clin Neurophysiol 2008; 119:909-21. [DOI: 10.1016/j.clinph.2007.12.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 11/21/2007] [Accepted: 12/08/2007] [Indexed: 11/26/2022]
|
45
|
The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 2007; 118:2544-90. [PMID: 17931964 DOI: 10.1016/j.clinph.2007.04.026] [Citation(s) in RCA: 1764] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 04/18/2007] [Accepted: 04/28/2007] [Indexed: 11/22/2022]
Abstract
In the present article, the basic research using the mismatch negativity (MMN) and analogous results obtained by using the magnetoencephalography (MEG) and other brain-imaging technologies is reviewed. This response is elicited by any discriminable change in auditory stimulation but recent studies extended the notion of the MMN even to higher-order cognitive processes such as those involving grammar and semantic meaning. Moreover, MMN data also show the presence of automatic intelligent processes such as stimulus anticipation at the level of auditory cortex. In addition, the MMN enables one to establish the brain processes underlying the initiation of attention switch to, conscious perception of, sound change in an unattended stimulus stream.
Collapse
|
46
|
Kujala T, Tervaniemi M, Schröger E. The mismatch negativity in cognitive and clinical neuroscience: Theoretical and methodological considerations. Biol Psychol 2007; 74:1-19. [PMID: 16844278 DOI: 10.1016/j.biopsycho.2006.06.001] [Citation(s) in RCA: 363] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 05/12/2006] [Accepted: 06/03/2006] [Indexed: 11/20/2022]
Abstract
Mismatch negativity (MMN) component of the event-related brain potentials has become popular in cognitive and clinical brain research during the recent years. It is an early response to a violation of an auditory rule such as an infrequent change in the physical feature of a repetitive sound. There is a lot of evidence on the association of the MMN parameters and behavioral discrimination ability, although this relationship is not always straight-forward. Since the MMN reflects sound discrimination accuracy, it can be used for probing how well different groups of individuals perceive sound differences, and how training or remediation affects this ability. In the present review, we first introduce some of the essential MMN findings in probing sound discrimination, memory, and their deficits. Thereafter, issues which need to be taken into account in MMN investigations as well as new improved recording paradigms are discussed.
Collapse
Affiliation(s)
- Teija Kujala
- Helsinki Collegium for Advanced Studies, University of Helsinki, FIN-00014 Helsinki, Finland.
| | | | | |
Collapse
|