1
|
Yang H, Xie Y, Yu J, Shi M, Li Y, Cai Y, Cai Q, Huang F, Ye Z, Wang H, Sun Y. Nrf2 deficiency enhances oxidative stress and promotes susceptibility to tinnitus in mice. Sci Rep 2025; 15:16474. [PMID: 40355648 PMCID: PMC12069615 DOI: 10.1038/s41598-025-01509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025] Open
Abstract
Tinnitus is a prevalent and distressing medical symptom, and no effective pharmacological treatment currently exists. Despite significant advances, tinnitus remains a scientific enigma. To explore the molecular underpinnings of tinnitus, we developed a noise-induced tinnitus model in mice and utilized metabolomics to identify key differences in metabolic pathways. Our results revealed that oxidative stress-related pathways, including glutathione (GSH) metabolism, were significantly enriched in the auditory cortex of mice exhibiting tinnitus-like behavior. To further explore the role of oxidative stress, we examined the involvement of nuclear factor erythroid 2-related factor 2 (Nrf2) in tinnitus by conducting experiments in Nrf2 knockout (Nrf2-KO) mice. While Nrf2-deficient mice did not develop spontaneous tinnitus or hearing loss, they displayed increased susceptibility to prolonged tinnitus-like behavior after noise exposure. This was accompanied by heightened microglial activation, neuroinflammation, and significant alterations in gut microbiota composition, including greater diversity and dysbiosis. Our findings highlight a novel mechanism underlying tinnitus, emphasizing the role of oxidative stress in the auditory cortex and its connection to noise-induced tinnitus. The deficiency of Nrf2 in mice increases their susceptibility to tinnitus, suggesting that Nrf2 may serve as a promising therapeutic target for preventing noise-induced tinnitus.
Collapse
Affiliation(s)
- Huiwen Yang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi Xie
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jintao Yu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengwen Shi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yutian Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yifan Cai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qinming Cai
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhewei Ye
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Clinic Research Center for Deafness and Vertigo, Wuhan, 430022, China.
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Lee HH, Chen YF, Yang TH, Chen PY, Liu JH, Lo TS, Cheng YF. Impact of tinnitus on chirp-evoked auditory brainstem response recorded using maximum length sequences. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2025; 157:2180-2190. [PMID: 40135958 DOI: 10.1121/10.0036241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
Tinnitus is considered a potential consequence of cochlear synaptopathy. While animal studies have shown that this neural deafferentation reduces wave I amplitudes of the auditory brainstem response (ABR) at suprathreshold levels, studies in humans with tinnitus have reported conflicting results. To enhance the sensitivity of ABRs in detecting neurophysiological conditions associated with tinnitus, this study aimed to examine chirp-evoked ABRs in normal-hearing individuals with tinnitus using the maximum length sequence (MLS) technique. Chirp stimuli improve synchronous neural discharge during ABR recording, while the MLS technique enables the extraction of evoked responses from overlapping waveforms. We hypothesized that this combined approach would more effectively reveal ABR morphological characteristics associated with tinnitus. The results indicated no significant difference in noise exposure between the tinnitus and control groups. However, the tinnitus group exhibited significantly larger wave I amplitude, prolonged wave V latency, and extended interpeak interval in MLS responses to chirps at the lowest stimulus rate of 13.8/s. These findings identify unique characteristics of MLS responses to chirps in individuals with tinnitus. We interpret our findings in relation to the ongoing discussion about the neurophysiological mechanisms of tinnitus. Further studies should be conducted to investigate possible etiologies of tinnitus.
Collapse
Affiliation(s)
- Hsiang-Hung Lee
- Department of Speech-Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Number 365, Mingde Road, Beitou District, Taipei City, 112303, Taiwan
| | - Yu-Fu Chen
- Department of Speech-Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Number 365, Mingde Road, Beitou District, Taipei City, 112303, Taiwan
| | - Tzong-Hann Yang
- Department of Otolaryngology-Head and Neck Surgery, Taipei City Hospital, Number 145, Zhengzhou Road, Datong District, Taipei City, 103212, Taiwan
| | - Pey-Yu Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, MacKay Memorial Hospital, Number 92, Section 2, Zhongshan North Road, Zhongshan Distict, Taipei City, 104217, Taiwan
| | - Ju-Han Liu
- School of Nursing, National Taipei University of Nursing and Health Sciences, Number 365, Mingde Road, Beitou District, Taipei City, 112303, Taiwan
| | - Tun-Shin Lo
- Department of Speech Language Pathology and Audiology, Chung Shan Medical University, Number 110, Section 1, Jianguo North Road, Taichung City, 402306, Taiwan
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Number 201, Section 2, Shipai Road, Beitou District, Taipei City, 112201, Taiwan
| |
Collapse
|
3
|
Guan C, Shaikh M, Warnecke A, Vona B, Albert JT. A burden shared: The evolutionary case for studying human deafness in Drosophila. Hear Res 2024; 450:109047. [PMID: 38896942 DOI: 10.1016/j.heares.2024.109047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Hearing impairment is the most prevalent sensory disease in humans and can have dramatic effects on the development, and preservation, of our cognitive abilities and social interactions. Currently 20 % of the world's population suffer from a form of hearing impairment; this is predicted to rise to 25 % by 2050. Despite this staggering disease load, and the vast damage it inflicts on the social, medical and economic fabric of humankind, our ability to predict, or prevent, the loss of hearing is very poor indeed. We here make the case for a paradigm shift in our approach to studying deafness. By exploiting more forcefully the molecular-genetic conservation between human hearing and hearing in morphologically distinct models, such as the fruit fly Drosophila melanogaster, we believe, a deeper understanding of hearing and deafness can be achieved. An understanding that moves beyond the surface of the 'deafness genes' to probe the underlying bedrock of hearing, which is shared across taxa, and partly shared across modalities. When it comes to understanding the workings (and failings) of human sensory function, a simple fruit fly has a lot to offer and a fly eye might sometimes be a powerful model for a human ear. Particularly the use of fly avatars, in which specific molecular (genetic or proteomic) states of humans (e.g. specific patients) are experimentally reproduced, in order to study the corresponding molecular mechanisms (e.g. specific diseases) in a controlled yet naturalistic environment, is a tool that promises multiple unprecedented insights. The use of the fly - and fly avatars - would benefit humans and will help enhance the power of other scientific models, such as the mouse.
Collapse
Affiliation(s)
- Chonglin Guan
- Sensory Physiology & Behaviour Group, Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Str. 9-11, 26111 Oldenburg, Germany; Cluster of Excellence Hearing4all, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Str. 9-11, 26111 Oldenburg, Germany
| | - Muhammad Shaikh
- Ear Institute, University College London, 332 Gray's Inn Road, London, WC1 × 8EE, UK
| | - Athanasia Warnecke
- Hannover Medical School, Department of Otorhinolaryngology, Head & Neck Surgery, Hannover, Germany; Cluster of Excellence Hearing4all, MHH Hannover, Germany
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany; Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.
| | - Joerg T Albert
- Sensory Physiology & Behaviour Group, Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Str. 9-11, 26111 Oldenburg, Germany; Cluster of Excellence Hearing4all, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Str. 9-11, 26111 Oldenburg, Germany; Ear Institute, University College London, 332 Gray's Inn Road, London, WC1 × 8EE, UK.
| |
Collapse
|
4
|
Parameshwarappa V, Norena AJ. The effects of acute and chronic noise trauma on stimulus-evoked activity across primary auditory cortex layers. J Neurophysiol 2024; 131:225-240. [PMID: 38198658 DOI: 10.1152/jn.00427.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Exposure to intense noise environments is a major cause of sensorineural hearing loss and auditory perception disorders, such as tinnitus and hyperacusis, which may have a central origin. The effects of noise-induced hearing loss on the auditory cortex have been documented in many studies. One limitation of these studies, however, is that the effects of noise trauma have been mostly studied at the granular layer (i.e, the main cortical recipient of thalamic input), while the cortex is a very complex structure, with six different layers each having its own pattern of connectivity and role in sensory processing. The present study aims to investigate the effects of acute and chronic noise trauma on the laminar pattern of stimulus-evoked activity in the primary auditory cortex of the anesthetized guinea pig. We show that acute and chronic noise trauma are both followed by an increase in stimulus-evoked cortical responses, mostly in the granular and supragranular layers. The cortical responses are more monotonic as a function of the intensity level after noise trauma. There was minimal change, if any, in local field potential (LFP) amplitude after acute noise trauma, while LFP amplitude was enhanced after chronic noise trauma. Finally, LFP and the current source density analysis suggest that acute but more specifically chronic noise trauma is associated with the emergence of a new sink in the supragranular layer. This result suggests that supragranular layers become a major input recipient. We discuss the possible mechanisms and functional implications of these changes.NEW & NOTEWORTHY Our study shows that cortical activity is enhanced after trauma and that the sequence of cortical column activation during stimulus-evoked response is altered, i.e. the supragranular layer becomes a major input recipient. We speculate that these large cortical changes may play a key role in the auditory hypersensitivity (hyperacusis) that can be triggered after noise trauma in human subjects.
Collapse
Affiliation(s)
- Vinay Parameshwarappa
- Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| | - Arnaud J Norena
- Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| |
Collapse
|
5
|
Husain FT, Khan RA. Review and Perspective on Brain Bases of Tinnitus. J Assoc Res Otolaryngol 2023; 24:549-562. [PMID: 37919556 PMCID: PMC10752862 DOI: 10.1007/s10162-023-00914-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
In advancing our understanding of tinnitus, some of the more impactful contributions in the past two decades have come from human brain imaging studies, specifically the idea of both auditory and extra-auditory neural networks that mediate tinnitus. These networks subserve both the perception of tinnitus and the psychological reaction to chronic, continuous tinnitus. In this article, we review particular studies that report on the nodes and links of such neural networks and their inter-network connections. Innovative neuroimaging tools have contributed significantly to the increased understanding of anatomical and functional connections of attention, emotion-processing, and default mode networks in adults with tinnitus. We differentiate between the neural correlates of tinnitus and those of comorbid hearing loss; surprisingly, tinnitus and hearing loss when they co-occur are not necessarily additive in their impact and, in rare cases, additional tinnitus may act to mitigate the consequences of hearing loss alone on the brain. The scale of tinnitus severity also appears to have an impact on brain networks, with some of the alterations typically attributed to tinnitus reaching significance only in the case of bothersome tinnitus. As we learn more about comorbid conditions of tinnitus, such as depression, anxiety, hyperacusis, or even aging, their contributions to the network-level changes observed in tinnitus will need to be parsed out in a manner similar to what is currently being done for hearing loss or severity. Together, such studies advance our understanding of the heterogeneity of tinnitus and will lead to individualized treatment plans.
Collapse
Affiliation(s)
- Fatima T Husain
- Department of Speech and Hearing Science, University of Illinois Urbana-Champaign, 901 S. Sixth Street, Champaign, IL, 61820, USA.
- Neuroscience Program, University of Illinois Urbana-Champaign, 2355/57 Beckman Institute, 405 North Mathews Avenue, Urbana, IL, 61801, USA.
- The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, 61801, USA.
| | - Rafay A Khan
- Neuroscience Program, University of Illinois Urbana-Champaign, 2355/57 Beckman Institute, 405 North Mathews Avenue, Urbana, IL, 61801, USA
- The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, 61801, USA
| |
Collapse
|
6
|
Vasilkov V, Caswell-Midwinter B, Zhao Y, de Gruttola V, Jung DH, Liberman MC, Maison SF. Evidence of cochlear neural degeneration in normal-hearing subjects with tinnitus. Sci Rep 2023; 13:19870. [PMID: 38036538 PMCID: PMC10689483 DOI: 10.1038/s41598-023-46741-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/04/2023] [Indexed: 12/02/2023] Open
Abstract
Tinnitus, reduced sound-level tolerance, and difficulties hearing in noisy environments are the most common complaints associated with sensorineural hearing loss in adult populations. This study aims to clarify if cochlear neural degeneration estimated in a large pool of participants with normal audiograms is associated with self-report of tinnitus using a test battery probing the different stages of the auditory processing from hair cell responses to the auditory reflexes of the brainstem. Self-report of chronic tinnitus was significantly associated with (1) reduced cochlear nerve responses, (2) weaker middle-ear muscle reflexes, (3) stronger medial olivocochlear efferent reflexes and (4) hyperactivity in the central auditory pathways. These results support the model of tinnitus generation whereby decreased neural activity from a damaged cochlea can elicit hyperactivity from decreased inhibition in the central nervous system.
Collapse
Affiliation(s)
- Viacheslav Vasilkov
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA
| | - Benjamin Caswell-Midwinter
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA
| | - Yan Zhao
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA
| | - Victor de Gruttola
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02114, USA
| | - David H Jung
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA
| | - Stéphane F Maison
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA.
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
7
|
Reisinger L, Schmidt F, Benz K, Vignali L, Roesch S, Kronbichler M, Weisz N. Ageing as risk factor for tinnitus and its complex interplay with hearing loss-evidence from online and NHANES data. BMC Med 2023; 21:283. [PMID: 37533027 PMCID: PMC10394883 DOI: 10.1186/s12916-023-02998-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Tinnitus affects 10 to 15% of the population, but its underlying causes are not yet fully understood. Hearing loss has been established as the most important risk factor. Ageing is also known to accompany increased prevalence; however, the risk is normally seen in context with (age-related) hearing loss. Whether ageing per se is a risk factor has not yet been established. We specifically focused on the effect of ageing and the relationship between age, hearing loss, and tinnitus. METHODS We used two samples for our analyses. The first, exploratory analyses comprised 2249 Austrian individuals. The second included data from 16,008 people, drawn from a publicly available dataset (NHANES). We used logistic regressions to investigate the effect of age on tinnitus. RESULTS In both samples, ageing per se was found to be a significant predictor of tinnitus. In the more decisive NHANES sample, there was an additional interaction effect between age and hearing loss. Odds ratio analyses show that per unit increase of hearing loss, the odds of reporting tinnitus is higher in older people (1.06 vs 1.03). CONCLUSIONS Expanding previous findings of hearing loss as the main risk factor for tinnitus, we established ageing as a risk factor in its own right. Underlying mechanisms remain unclear, and this work calls for urgent research efforts to link biological ageing processes, hearing loss, and tinnitus. We therefore suggest a novel working hypothesis that integrates these aspects from an ageing brain viewpoint.
Collapse
Affiliation(s)
- Lisa Reisinger
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria.
| | - Fabian Schmidt
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Kaja Benz
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria
| | | | - Sebastian Roesch
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Martin Kronbichler
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Nathan Weisz
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
8
|
Tan SL, Chen YF, Liu CY, Chu KC, Li PC. Shortened neural conduction time in young adults with tinnitus as revealed by chirp-evoked auditory brainstem response. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:2178. [PMID: 37092912 DOI: 10.1121/10.0017789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Tinnitus is generally considered to be caused by neuroplastic changes in the central nervous system, triggered by a loss of input from the damaged peripheral system; however, conflicting results on auditory brainstem responses (ABRs) to clicks have been reported previously in humans with tinnitus. This study aimed to compare the effect of tinnitus on ABRs to chirps with those to clicks in normal-hearing young adults with tinnitus. The results showed that the tinnitus group had no significantly poorer hearing thresholds (0.25-16 kHz), click-evoked otoacoustic emissions (1-16 kHz), and speech perception in noise (SPIN) than the control group. Although chirps evoked significantly larger wave I and V amplitudes than clicks, people with tinnitus had no significantly smaller wave I amplitudes for either stimulus. Nevertheless, adults with tinnitus exhibited significantly smaller interpeak interval (IPI) between waves I and V for chirps (IPI-chirp) but not for clicks. In addition, the IPI-chirp correlated significantly with the SPIN for individuals with tinnitus when the signal-to-noise ratio was low. The present results suggest that the chirp-evoked ABR may be a valuable clinical tool for objectively assessing the SPIN in individuals with tinnitus. Further studies should be conducted to investigate possible etiologies of tinnitus.
Collapse
Affiliation(s)
- See Ling Tan
- Department of Speech-Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Number 365, Mingde Road, Beitou District, Taipei City 112303, Taiwan
| | - Yu-Fu Chen
- Department of Speech-Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Number 365, Mingde Road, Beitou District, Taipei City 112303, Taiwan
| | - Chieh-Yu Liu
- Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Number 365, Mingde Road, Beitou District, Taipei City 112303, Taiwan
| | - Kuo-Chung Chu
- Department of Information Management, National Taipei University of Nursing and Health Sciences, Number 365, Mingde Road, Beitou District, Taipei City 112303, Taiwan
| | - Pei-Chun Li
- Department of Audiology and Speech-Language Pathology, MacKay Medical College, Number 46, Section 3, Zhongzheng Road, Sanzhi District, New Taipei City 25245, Taiwan
| |
Collapse
|
9
|
Hearing loss drug discovery and medicinal chemistry: Current status, challenges, and opportunities. PROGRESS IN MEDICINAL CHEMISTRY 2022; 61:1-91. [PMID: 35753714 DOI: 10.1016/bs.pmch.2022.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hearing loss is a severe high unmet need condition affecting more than 1.5 billion people globally. There are no licensed medicines for the prevention, treatment or restoration of hearing. Prosthetic devices, such as hearing aids and cochlear implants, do not restore natural hearing and users struggle with speech in the presence of background noise. Hearing loss drug discovery is immature, and small molecule approaches include repurposing existing drugs, combination therapeutics, late-stage discovery optimisation of known chemotypes for identified molecular targets of interest, phenotypic tissue screening and high-throughput cell-based screening. Hearing loss drug discovery requires the integration of specialist therapeutic area biology and otology clinical expertise. Small molecule drug discovery projects in the global clinical portfolio for hearing loss are here collated and reviewed. An overview is provided of human hearing, inner ear anatomy, inner ear delivery, types of hearing loss and hearing measurement. Small molecule experimental drugs in clinical development for hearing loss are reviewed, including their underpinning biology, discovery strategy and activities, medicinal chemistry, calculated physicochemical properties, pharmacokinetics and clinical trial status. SwissADME BOILED-Egg permeability modelling is applied to the molecules reviewed, and these results are considered. Non-small molecule hearing loss assets in clinical development are briefly noted in this review. Future opportunities in hearing loss drug discovery for human genomics and targeted protein degradation are highlighted.
Collapse
|
10
|
Zhao S, Brown CA, Holt LL, Dick F. Robust and Efficient Online Auditory Psychophysics. Trends Hear 2022; 26:23312165221118792. [PMID: 36131515 PMCID: PMC9500270 DOI: 10.1177/23312165221118792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
Most human auditory psychophysics research has historically been conducted in carefully controlled environments with calibrated audio equipment, and over potentially hours of repetitive testing with expert listeners. Here, we operationally define such conditions as having high 'auditory hygiene'. From this perspective, conducting auditory psychophysical paradigms online presents a serious challenge, in that results may hinge on absolute sound presentation level, reliably estimated perceptual thresholds, low and controlled background noise levels, and sustained motivation and attention. We introduce a set of procedures that address these challenges and facilitate auditory hygiene for online auditory psychophysics. First, we establish a simple means of setting sound presentation levels. Across a set of four level-setting conditions conducted in person, we demonstrate the stability and robustness of this level setting procedure in open air and controlled settings. Second, we test participants' tone-in-noise thresholds using widely adopted online experiment platforms and demonstrate that reliable threshold estimates can be derived online in approximately one minute of testing. Third, using these level and threshold setting procedures to establish participant-specific stimulus conditions, we show that an online implementation of the classic probe-signal paradigm can be used to demonstrate frequency-selective attention on an individual-participant basis, using a third of the trials used in recent in-lab experiments. Finally, we show how threshold and attentional measures relate to well-validated assays of online participants' in-task motivation, fatigue, and confidence. This demonstrates the promise of online auditory psychophysics for addressing new auditory perception and neuroscience questions quickly, efficiently, and with more diverse samples. Code for the tests is publicly available through Pavlovia and Gorilla.
Collapse
Affiliation(s)
- Sijia Zhao
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Christopher A. Brown
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lori L. Holt
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Frederic Dick
- Department of Psychological Sciences, Birkbeck College, University of London, London, UK
- Department of Experimental Psychology, PALS, University College London, London, UK
| |
Collapse
|
11
|
Noreña AJ, Lacher-Fougère S, Fraysse MJ, Bizaguet E, Grevin P, Thai-Van H, Moati L, Le Pajolec C, Fournier P, Ohresser M. A contribution to the debate on tinnitus definition. PROGRESS IN BRAIN RESEARCH 2021; 262:469-485. [PMID: 33931192 DOI: 10.1016/bs.pbr.2021.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tinnitus is generally defined as an auditory perception in the absence of environmental sound stimulation. However, this definition is quite incomplete as it omits an essential aspect, the patient's point of view. This point of view constitutes, first and foremost, a global and unified lived experience, which is not only sensory (localization, loudness, pitch and tone), but also cognitive (thoughts, attentiveness, behaviors) and emotional (discomfort, suffering). This experience can be lived in a very unpleasant way and consequently have a very negative impact on quality of life. This article proposes and justifies a new definition for tinnitus elaborated by a group of French clinicians and researchers, which is more in line with its phenomenology. It also provides a minimum knowledge base, including possibilities for clinical care, hoping to eradicate all misinformation, misconceptions and inappropriate attitudes or practices toward this condition. Here is the short version of our definition: Tinnitus is an auditory sensation without an external sound stimulation or meaning, which can be lived as an unpleasant experience, possibly impacting quality of life.
Collapse
Affiliation(s)
- Arnaud J Noreña
- Laboratoire de Neurosciences Cognitives, UMR 7291, Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France.
| | | | | | | | | | - Hung Thai-Van
- Hôpital Edouard Herriot, Pavillon U, Place d'Arsonval, Lyon, France
| | | | | | - Philippe Fournier
- Laboratoire de Neurosciences Cognitives, UMR 7291, Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| | | |
Collapse
|
12
|
Bourez PH, Fournier P, Noreña AJ. The difference in poststimulus suppression between residual inhibition and forward masking. PROGRESS IN BRAIN RESEARCH 2020; 262:23-56. [PMID: 33931182 DOI: 10.1016/bs.pbr.2020.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The phenomenon of tinnitus masking (TM) and residual inhibition (RI) of tinnitus are two ways to investigate how external sounds interact with tinnitus: TM provides insight on the fusion between external sound activity and tinnitus related activity while RI provides insight on how the external sound might suppress the tinnitus related activity for a period of time. Differences in masking level between the tinnitus and an external tone with tinnitus characteristics (frequency, loudness) have previously shown a high level of heterogeneity. The difference in poststimulus suppression between the two, that is, residual inhibition for the former, and forward masking for the latter, has never been explored. This study aims to investigate minimum masking levels (MMLs) and minimum residual inhibition levels (MRILs) of tinnitus and of an external tone mimicking tinnitus while using diotic and dichotic noises. Pulsed narrowband noises (1 octave width and centered at 1kHz, frequency of the hearing loss slope, tinnitus frequency) and white noise were randomly presented to 20 tinnitus participants and 20 controls with an external tone mimicking tinnitus (4kHz, intensity level corresponding to tinnitus loudness). The MML values obtained for the masking of tinnitus and for the mimicking external sounds were very similar. On the other hand, the MRILs were significantly different between the tinnitus and the mimicking external sounds within tinnitus participants. They were also different between the tinnitus participants and the controls. Overall, for both within and between comparisons, the MRIL values were much higher to produce a poststimulus suppression for the mimicking sound than for the tinnitus. The results showed no significant differences between the diotic and dichotic conditions. These results corroborate other findings suggesting that the tinnitus-related neural activity is very different from the stimulus-related neural activity. The consequences of this last finding are discussed.
Collapse
Affiliation(s)
- P H Bourez
- Laboratoire de Neurosciences Cognitives, UMR 7291, Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| | - Philippe Fournier
- Laboratoire de Neurosciences Cognitives, UMR 7291, Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| | - Arnaud J Noreña
- Laboratoire de Neurosciences Cognitives, UMR 7291, Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France.
| |
Collapse
|
13
|
Durai M, Sanders P, Doborjeh Z, Doborjeh M, Wendt A, Kasabov N, Searchfield GD. Prediction of tinnitus masking benefit within a case series using a spiking neural network model. PROGRESS IN BRAIN RESEARCH 2020; 260:129-165. [PMID: 33637215 DOI: 10.1016/bs.pbr.2020.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Masking has been widely used as a tinnitus therapy, with large individual differences in its effectiveness. The basis of this variation is unknown. We examined individual tinnitus and psychological responses to three masking types, energetic masking (bilateral broadband static or rain noise [BBN]), informational masking (BBN with a notch at tinnitus pitch and 3-dimensional cues) and a masker combining both effects (BBN with spatial cues). Eleven participants with chronic tinnitus were followed for 12 months, each person used each masking approach for 3 months with a 1 month washout-baseline. The Tinnitus Functional Index (TFI), Tinnitus Rating Scales, Positive and Negative Affect Scale and Depression Anxiety Stress Scales, were measured every month of treatment. Electroencephalography (EEG) and psychoacoustic assessment was undertaken at baseline and following 3 months of each masking sound. The computational modeling of EEG data was based on the framework of brain-inspired Spiking Neural Network (SNN) architecture called NeuCube, designed for this study for mapping, learning, visualizing and classifying of brain activity patterns. EEG was related to clinically significant change in the TFI using the SNN model. The SNN framework was able to predict sound therapy responders (93% accuracy) from non-responders (100% accuracy) using baseline EEG recordings. The combination of energetic and informational masking was an effective treatment sound in more individuals than the other sounds used. Although the findings are promising, they are preliminary and require confirmation in independent and larger samples.
Collapse
Affiliation(s)
- Mithila Durai
- Section of Audiology, The University of Auckland, Auckland, New Zealand; Eisdell Moore Centre, The University of Auckland, Auckland, New Zealand; Centre for Brain Research, The University of Auckland, Auckland, New Zealand; Brain Research New Zealand-Rangahau Roro Aotearoa, Auckland, New Zealand
| | - Philip Sanders
- Section of Audiology, The University of Auckland, Auckland, New Zealand; Eisdell Moore Centre, The University of Auckland, Auckland, New Zealand; Centre for Brain Research, The University of Auckland, Auckland, New Zealand; Brain Research New Zealand-Rangahau Roro Aotearoa, Auckland, New Zealand
| | - Zohreh Doborjeh
- Section of Audiology, The University of Auckland, Auckland, New Zealand; Eisdell Moore Centre, The University of Auckland, Auckland, New Zealand; Centre for Brain Research, The University of Auckland, Auckland, New Zealand; Brain Research New Zealand-Rangahau Roro Aotearoa, Auckland, New Zealand
| | - Maryam Doborjeh
- Information Technology and Software Engineering department, Auckland University of Technology, Auckland, New Zealand
| | - Anne Wendt
- School of Engineering, Computing and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Nikola Kasabov
- School of Engineering, Computing and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand; Intelligent Systems Research Centre, Ulster University, Newtownabbey, United Kingdom
| | - Grant D Searchfield
- Section of Audiology, The University of Auckland, Auckland, New Zealand; Eisdell Moore Centre, The University of Auckland, Auckland, New Zealand; Centre for Brain Research, The University of Auckland, Auckland, New Zealand; Brain Research New Zealand-Rangahau Roro Aotearoa, Auckland, New Zealand.
| |
Collapse
|
14
|
Abstract
Animal models have significantly contributed to understanding the pathophysiology of chronic subjective tinnitus. They are useful because they control etiology, which in humans is heterogeneous; employ random group assignment; and often use methods not permissible in human studies. Animal models can be broadly categorized as either operant or reflexive, based on methodology. Operant methods use variants of established psychophysical procedures to reveal what an animal hears. Reflexive methods do the same using elicited behavior, for example, the acoustic startle reflex. All methods contrast the absence of sound and presence of sound, because tinnitus cannot by definition be perceived as silence.
Collapse
|
15
|
Cederroth CR, PirouziFard M, Trpchevska N, Idrizbegovic E, Canlon B, Sundquist J, Sundquist K, Zöller B. Association of Genetic vs Environmental Factors in Swedish Adoptees With Clinically Significant Tinnitus. JAMA Otolaryngol Head Neck Surg 2020; 145:222-229. [PMID: 30653224 PMCID: PMC6439751 DOI: 10.1001/jamaoto.2018.3852] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Question Is clinically significant tinnitus associated with genetic factors? Findings In this study of national registry data from 11 060 adoptees, 19 015 adoptive parents, and 17 025 biological parents, a heritability of 32% and no association of shared environment with the transmission of tinnitus were found. Meaning The present study suggests that genetic factors are associated with the familial clustering of severe tinnitus. Importance No effective treatments are currently available for severe tinnitus, which affects 1% of the population and lowers the quality of life. The factors that contribute to the transition from mild to severe tinnitus are poorly known. Before performing genetic analyses and determining the mechanisms involved in the development of severe tinnitus, its heritability needs to be determined. Objectives To examine whether clinically significant tinnitus is associated with genetic factors and to evaluate the genetic risk in the transmission of tinnitus using adoptees. Design, Setting, and Participants Data from adoptees and their biological and adoptive parents from Swedish nationwide registers were collected from January 1, 1964, to December 31, 2015, and used to separate genetic from environmental factors in familial clustering. In all, 11 060 adoptees, 19 015 adoptive parents, and 17 025 biological parents were investigated. The study used a cohort design and a case-control approach to study genetic and nongenetic factors in tinnitus among adoptees. Main Outcomes and Measures The primary outcome was odds ratio (OR) of tinnitus in adoptees with at least 1 affected biological parent compared with adoptees without any affected biological parent using logistic regression. The secondary outcome was OR in adoptees with at least 1 affected adoptive parent compared with adoptees without any affected adoptive parent. Results A total of 1029 patients (440 [42.8%] male; mean [SD] age, 62 [14] years) with tinnitus were identified. The prevalence of diagnosed tinnitus was 2.2%. The OR for tinnitus was 2.22 for adoptees (95% CI, 1.03-4.81) of biological parents diagnosed with tinnitus, whereas the OR was 1.00 (95% CI, 0.43-2.32) for adoptees from adoptive parents diagnosed with tinnitus. Mean (SE) heritability determined using tetrachoric correlations was 31% (14%). Conclusions and Relevance The findings suggest that genetic factors are associated with the familial clustering of clinically significant tinnitus with no shared-environment association, revealing that the transition from negligible to severe tinnitus may be associated with genetic factors. These findings may provide insight for future genetic analyses that focus on severe tinnitus.
Collapse
Affiliation(s)
| | - MirNabi PirouziFard
- Centre for Primary Health Care Research, Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden
| | - Natalia Trpchevska
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Esma Idrizbegovic
- Hörsel-och Balanskliniken, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Sundquist
- Centre for Primary Health Care Research, Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden
| | - Kristina Sundquist
- Centre for Primary Health Care Research, Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden
| | - Bengt Zöller
- Centre for Primary Health Care Research, Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden
| |
Collapse
|
16
|
Xiong B, Liu Z, Liu Q, Peng Y, Wu H, Lin Y, Zhao X, Sun W. Missed hearing loss in tinnitus patients with normal audiograms. Hear Res 2019; 384:107826. [DOI: 10.1016/j.heares.2019.107826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
|
17
|
Abstract
OBJECTIVE To investigate how tinnitus affects the processing of speech and non-speech stimuli at the subcortical level. STUDY DESIGN Cross-sectional analytical study. SETTING Academic, tertiary referral center. PATIENTS Eighteen individuals with tinnitus and 20 controls without tinnitus matched based on their age and sex. All subjects had normal hearing sensitivity. INTERVENTION Diagnostic. MAIN OUTCOME MEASURES The effect of tinnitus on the parameters of auditory brainstem responses (ABR) to non-speech (click-ABR), and speech (sABR) stimuli was investigated. RESULTS Latencies of click ABR in waves III, V, and Vn, as well as inter-peak latency (IPL) of I to V were significantly longer in individuals with tinnitus compared with the controls. Individuals with tinnitus demonstrated significantly longer latencies of all sABR waves than the control group. The tinnitus patients also exhibited a significant decrease in the slope of the V-A complex and reduced encoding of the first and higher formants. A significant difference was observed between the two groups in the spectral magnitudes, the first formant frequency range (F1) and a higher frequency region (HF). CONCLUSIONS Our findings suggest that maladaptive neural plasticity resulting from tinnitus can be subcortically measured and affects timing processing of both speech and non-speech stimuli. The findings have been discussed based on models of maladaptive plasticity and the interference of tinnitus as an internal noise in synthesizing speech auditory stimuli.
Collapse
|
18
|
Cousins RPC. Medicines discovery for auditory disorders: Challenges for industry. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3652. [PMID: 31795652 DOI: 10.1121/1.5132706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Currently, no approved medicines are available for the prevention or treatment of hearing loss. Pharmaceutical industry productivity across all therapeutic indications has historically been disappointing, with a 90% chance of failure in delivering a marketed drug after entering clinical evaluation. To address these failings, initiatives have been applied in the three cornerstones of medicine discovery: target selection, clinical candidate selection, and clinical studies. These changes aimed to enable data-informed decisions on the translation of preclinical observations into a safe, clinically effective medicine by ensuring the best biological target is selected, the most appropriate chemical entity is advanced, and that the clinical studies enroll the correct patients. The specific underlying pathologies need to be known to allow appropriate patient selection, so improved diagnostics are required, as are methodologies for measuring in the inner ear target engagement, drug delivery and pharmacokinetics. The different therapeutic strategies of protecting hearing or preventing hearing loss versus restoring hearing are reviewed along with potential treatments for tinnitus. Examples of current investigational drugs are discussed to highlight key challenges in drug discovery and the learnings being applied to improve the probability of success of launching a marketed medicine.
Collapse
Affiliation(s)
- Rick P C Cousins
- University College London Ear Institute, University College London, London, WC1X 8EE, United Kingdom
| |
Collapse
|
19
|
Conlon B, Hamilton C, Hughes S, Meade E, Hall DA, Vanneste S, Langguth B, Lim HH. Noninvasive Bimodal Neuromodulation for the Treatment of Tinnitus: Protocol for a Second Large-Scale Double-Blind Randomized Clinical Trial to Optimize Stimulation Parameters. JMIR Res Protoc 2019; 8:e13176. [PMID: 31573942 PMCID: PMC6789422 DOI: 10.2196/13176] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 01/13/2023] Open
Abstract
Background There is increasing evidence from animal and human studies that bimodal neuromodulation combining sound and electrical somatosensory stimulation of the tongue can induce extensive brain changes and treat tinnitus. Objective The main objectives of the proposed clinical study are to confirm the efficacy, safety, and tolerability of treatment demonstrated in a previous large-scale study of bimodal auditory and trigeminal nerve (tongue) stimulation (Treatment Evaluation of Neuromodulation for Tinnitus - Stage A1); evaluate the therapeutic effects of adjusting stimulation parameters over time; and determine the contribution of different features of bimodal stimulation in improving tinnitus outcomes. Methods This study will be a prospective, randomized, double-blind, parallel-arm, comparative clinical trial of a 12-week treatment for tinnitus using a Conformité Européenne (CE)–marked device with a pre-post and 12-month follow-up design. Four treatment arms will be investigated, in which each arm consists of two different stimulation settings, with the first setting presented during the first 6 weeks and the second setting presented during the next 6 weeks of treatment. The study will enroll 192 participants, split in a ratio of 80:80:16:16 across the four arms. Participants will be randomized to one of four arms and stratified to minimize baseline variability in four categories: two separate strata for sound level tolerance (using loudness discomfort level as indicators for hyperacusis severity), high tinnitus symptom severity based on the Tinnitus Handicap Inventory (THI), and tinnitus laterality. The primary efficacy endpoints are within-arm changes in THI and Tinnitus Functional Index as well as between-arm changes in THI after 6 weeks of treatment for the full cohort and two subgroups of tinnitus participants (ie, one hyperacusis subgroup and a high tinnitus symptom severity subgroup). Additional efficacy endpoints include within-arm or between-arm changes in THI after 6 or 12 weeks of treatment and in different subgroups of tinnitus participants as well as at posttreatment assessments at 6 weeks, 6 months, and 12 months. Treatment safety, attrition rates, and compliance rates will also be assessed and reported. Results This study protocol was approved by the Tallaght University Hospital/St. James’s Hospital Joint Research Ethics Committee in Dublin, Ireland. The first participant was enrolled on March 20, 2018. The data collection and database lock are expected to be completed by February 2020, and the data analysis and manuscript submission are expected to be conducted in autumn of 2020. Conclusions The findings of this study will be disseminated to relevant research, clinical, and health services and patient communities through publications in peer-reviewed journals and presentations at scientific and clinical conferences. Trial Registration ClinicalTrials.gov NCT03530306; https://clinicaltrials.gov/ct2/show/NCT03530306 International Registered Report Identifier (IRRID) DERR1-10.2196/13176
Collapse
Affiliation(s)
- Brendan Conlon
- Department of Otolaryngology, St James Hospital Dublin and Tallaght University Hospital Dublin, Dublin, Ireland.,Neuromod Devices Limited, Dublin, Ireland.,Trinity College Dublin, Dublin, Ireland
| | | | | | - Emma Meade
- Neuromod Devices Limited, Dublin, Ireland
| | - Deborah A Hall
- Hearing Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, United Kingdom.,National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham, United Kingdom.,University of Nottingham Malaysia, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sven Vanneste
- Trinity College Dublin, Dublin, Ireland.,University of Texas at Dallas, Richardson, TX, United States
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Hubert H Lim
- Neuromod Devices Limited, Dublin, Ireland.,University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
20
|
Kar SK, Pandey P, Verma L, Agarwal V. Use of multi-site neuromodulation transcranial magnetic stimulation in management of tinnitus: A case study with review of literature. Asian J Psychiatr 2019; 43:123-124. [PMID: 31129562 DOI: 10.1016/j.ajp.2019.05.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 11/20/2022]
Affiliation(s)
- Sujita Kumar Kar
- Department of Psychiatry, King George's Medical University, Lucknow, U.P, India.
| | - Praveen Pandey
- Department of Psychiatry, King George's Medical University, Lucknow, U.P, India.
| | - Lavkush Verma
- Department of Psychiatry, King George's Medical University, Lucknow, U.P, India.
| | - Vivek Agarwal
- Department of Psychiatry, King George's Medical University, Lucknow, U.P, India.
| |
Collapse
|
21
|
Qu T, Qi Y, Yu S, Du Z, Wei W, Cai A, Wang J, Nie B, Liu K, Gong S. Dynamic Changes of Functional Neuronal Activities Between the Auditory Pathway and Limbic Systems Contribute to Noise-Induced Tinnitus with a Normal Audiogram. Neuroscience 2019; 408:31-45. [PMID: 30946875 DOI: 10.1016/j.neuroscience.2019.03.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022]
Abstract
Tinnitus is thought to be triggered by aberrant neural activity in the central auditory pathway and is often accompanied by comorbidities of emotional distress and anxiety, which imply maladaptive functional connectivity to limbic structures, such as the amygdala and hippocampus. Tinnitus patients with normal audiograms can also have accompanying anxiety and depression, clinically. To test the role of functional connectivity between the central auditory pathway and limbic structures in patients with tinnitus with normal audiograms, we developed a murine noise-induced tinnitus model with a temporary threshold shift (TTS). Tinnitus mice exhibited reduced auditory brainstem response wave I amplitude, and an enhanced wave IV amplitude and wave IV/I amplitude ratio, as compared with control and non-tinnitus mice. Resting-state functional magnetic resonance imaging (fMRI) was used to identify abnormal connectivity of the amygdala and hippocampus and to determine the relationship with tinnitus characteristics. We found increased fMRI responses with amplitude of low-frequency fluctuation (ALFF) in the auditory cortex and decreased ALFF in the amygdala and hippocampus at day 1, but decreased ALFF in the auditory cortex and increased ALFF in the amygdala at day 28 post-noise exposure in tinnitus mice. Decreased functional connectivity between auditory brain regions and limbic structures was demonstrated at day 28 in tinnitus mice. Therefore, aberrant neural activities in tinnitus mice with TTS involved not only the central auditory pathway, but also limbic structures, and there was maladaptive functional connectivity between the central auditory pathway and limbic structures, such as the amygdala and hippocampus.
Collapse
Affiliation(s)
- Tengfei Qu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yue Qi
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shukui Yu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhengde Du
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wei Wei
- Department of Otology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Aoling Cai
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China; Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China; Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
22
|
Fournier P, Cuvillier AF, Gallego S, Paolino F, Paolino M, Quemar A, Londero A, Norena A. A New Method for Assessing Masking and Residual Inhibition of Tinnitus. Trends Hear 2019; 22:2331216518769996. [PMID: 29708062 PMCID: PMC5949940 DOI: 10.1177/2331216518769996] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tinnitus masking and residual inhibition (RI) are two well-known psychoacoustic measures of tinnitus. While it has long been suggested that they may provide diagnostic and prognostic information, these measures are still rarely performed in clinics, as they are too time consuming. Given this issue, the main goal of the present study was to validate a new method for assessing these measures. An acoustic sequence made of pulsed stimuli, which included a fixed stimulus duration and interstimulus interval, was applied to 68 tinnitus patients at two testing sites. First, the minimum masking level (MML) was measured by raising the stimulus intensity until the tinnitus was unheard during the stimulus presentation. Second, the level of the stimulus was further increased until the tinnitus was suppressed during the silence interval between the acoustic pulses. This level was called the minimum residual inhibition level (MRIL). The sequential measurement of MML and MRIL from the same stimulus condition offers several advantages such as time efficiency and the ability to compare results between the MRIL and MML. Our study confirms that, from this new approach, MML and MRIL can be easily and quickly obtained from a wide variety of patients displaying either normal hearing or different hearing loss configurations. Indeed, MML was obtained in all patients except one (98.5%), and some level of MRIL was found on 59 patients (86.7%). More so, this approach allows the categorization of tinnitus patients into different subgroups based on the properties of their MRIL.
Collapse
Affiliation(s)
- Philippe Fournier
- 1 27051 Centre National de la Recherche Scientifique , Aix-Marseille University, France
| | - Anne-Flore Cuvillier
- 1 27051 Centre National de la Recherche Scientifique , Aix-Marseille University, France
| | - Stéphane Gallego
- 2 Institut des Sciences et Techniques de la Réadaptation, Lyon, France.,3 University Lyon 1, France
| | - Fabien Paolino
- 4 56173 Hôpital Privé Clairval , Explorations Oto-Neurologiques et Réhabilitation des Troubles de l'Equilibre, Marseille, France
| | - Michel Paolino
- 4 56173 Hôpital Privé Clairval , Explorations Oto-Neurologiques et Réhabilitation des Troubles de l'Equilibre, Marseille, France
| | - Anne Quemar
- 4 56173 Hôpital Privé Clairval , Explorations Oto-Neurologiques et Réhabilitation des Troubles de l'Equilibre, Marseille, France
| | | | - Arnaud Norena
- 1 27051 Centre National de la Recherche Scientifique , Aix-Marseille University, France
| |
Collapse
|
23
|
Parry LV, Maslin MR, Schaette R, Moore DR, Munro KJ. Increased auditory cortex neural response amplitude in adults with chronic unilateral conductive hearing impairment. Hear Res 2019; 372:10-16. [DOI: 10.1016/j.heares.2018.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/18/2018] [Accepted: 01/30/2018] [Indexed: 10/18/2022]
|
24
|
Vanneste S, To WT, De Ridder D. Tinnitus and neuropathic pain share a common neural substrate in the form of specific brain connectivity and microstate profiles. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:388-400. [PMID: 30142355 DOI: 10.1016/j.pnpbp.2018.08.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/06/2018] [Accepted: 08/19/2018] [Indexed: 12/12/2022]
Abstract
Tinnitus and neuropathic pain share similar pathophysiological, clinical, and treatment characteristics. In this EEG study, a group of tinnitus (n = 100) and neuropathic pain (n = 100) patients are compared to each other and to a healthy control group (n = 100). Spectral analysis demonstrates gamma band activity within the primary auditory and somatosensory cortices in patients with tinnitus and neuropathic pain, respectively. A conjunction analysis further demonstrates an overlap of tinnitus and pain related activity in the anterior and posterior cingulate cortex as well as in the dorsolateral prefrontal cortex in comparison to healthy controls. Further analysis reveals that similar states characterize tinnitus and neuropathic pain patients, two of which differ from the healthy group and two of which are shared. Both pain and tinnitus patients spend half of the time in one specific microstate. Seed-based functional connectivity with the source within the predominant microstate shows delta, alpha1, and gamma lagged phase synchronization overlap with multiple brain areas between pain and tinnitus. These data suggest that auditory and somatosensory phantom perceptions share an overlapping brain network with common activation and connectivity patterns and are differentiated by specific sensory cortex gamma activation.
Collapse
Affiliation(s)
- Sven Vanneste
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA.
| | - Wing Ting To
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| | - Dirk De Ridder
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| |
Collapse
|
25
|
Cederroth CR, Dyhrfjeld-Johnsen J, Langguth B. An update: emerging drugs for tinnitus. Expert Opin Emerg Drugs 2018; 23:251-260. [DOI: 10.1080/14728214.2018.1555240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- Interdisciplinary Tinnitus Clinic, University of Regensburg, Regensburg, Germany
| |
Collapse
|
26
|
Haider HF, Bojić T, Ribeiro SF, Paço J, Hall DA, Szczepek AJ. Pathophysiology of Subjective Tinnitus: Triggers and Maintenance. Front Neurosci 2018; 12:866. [PMID: 30538616 PMCID: PMC6277522 DOI: 10.3389/fnins.2018.00866] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 11/06/2018] [Indexed: 01/07/2023] Open
Abstract
Tinnitus is the conscious perception of a sound without a corresponding external acoustic stimulus, usually described as a phantom perception. One of the major challenges for tinnitus research is to understand the pathophysiological mechanisms triggering and maintaining the symptoms, especially for subjective chronic tinnitus. Our objective was to synthesize the published literature in order to provide a comprehensive update on theoretical and experimental advances and to identify further research and clinical directions. We performed literature searches in three electronic databases, complemented by scanning reference lists from relevant reviews in our included records, citation searching of the included articles using Web of Science, and manual searching of the last 6 months of principal otology journals. One-hundred and thirty-two records were included in the review and the information related to peripheral and central mechanisms of tinnitus pathophysiology was collected in order to update on theories and models. A narrative synthesis examined the main themes arising from this information. Tinnitus pathophysiology is complex and multifactorial, involving the auditory and non-auditory systems. Recent theories assume the necessary involvement of extra-auditory brain regions for tinnitus to reach consciousness. Tinnitus engages multiple active dynamic and overlapping networks. We conclude that advancing knowledge concerning the origin and maintenance of specific tinnitus subtypes origin and maintenance mechanisms is of paramount importance for identifying adequate treatment.
Collapse
Affiliation(s)
- Haúla Faruk Haider
- ENT Department, Hospital Cuf Infante Santo - NOVA Medical School, Lisbon, Portugal
| | - Tijana Bojić
- Laboratory of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Sara F Ribeiro
- ENT Department, Hospital Cuf Infante Santo - NOVA Medical School, Lisbon, Portugal
| | - João Paço
- ENT Department, Hospital Cuf Infante Santo - NOVA Medical School, Lisbon, Portugal
| | - Deborah A Hall
- NIHR Nottingham Biomedical Research Centre, Nottingham, United Kingdom.,Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom.,University of Nottingham Malaysia, Semeniyh, Malaysia
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
27
|
Investigating peripheral sources of speech-in-noise variability in listeners with normal audiograms. Hear Res 2018; 371:66-74. [PMID: 30504092 DOI: 10.1016/j.heares.2018.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/25/2018] [Accepted: 11/19/2018] [Indexed: 12/19/2022]
Abstract
A current initiative in auditory neuroscience research is to better understand why some listeners struggle to perceive speech-in-noise (SIN) despite having normal hearing sensitivity. Various hypotheses regarding the physiologic bases of this disorder have been proposed. Notably, recent work has suggested that the site of lesion underlying SIN deficits in normal hearing listeners may be either in "sub-clinical" outer hair cell damage or synaptopathic degeneration at the inner hair cell-auditory nerve fiber synapse. In this study, we present a retrospective investigation of these peripheral sources and their relationship with SIN performance variability in one of the largest datasets of young normal-hearing listeners presented to date. 194 participants completed detailed case history questionnaires assessing noise exposure, SIN complaints, tinnitus, and hyperacusis. Standard and extended high frequency audiograms, distortion product otoacoustic emissions, click-evoked auditory brainstem responses, and SIN performance measures were also collected. We found that: 1) the prevalence of SIN deficits in normal hearing listeners was 42% when based on subjective report and 8% when based on SIN performance, 2) hearing complaints and hyperacusis were more common in listeners with self-reported noise exposure histories than controls, 3) neither extended high frequency thresholds nor compound action potential amplitudes differed between noise-exposed and control groups, 4) extended high frequency hearing thresholds and compound action potential amplitudes were not predictive of SIN performance. These results suggest an association between noise exposure and hearing complaints in young, normal hearing listeners; however, SIN performance variability is not explained by peripheral auditory function to the extent that these measures capture subtle physiologic differences between participants.
Collapse
|
28
|
The Characteristic and Short-Term Prognosis of Tinnitus Associated with Sudden Sensorineural Hearing Loss. Neural Plast 2018; 2018:6059697. [PMID: 29861716 PMCID: PMC5971248 DOI: 10.1155/2018/6059697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/18/2018] [Indexed: 11/18/2022] Open
Abstract
Tinnitus is believed to result from the maladaptive plasticity of the auditory nervous system; reports regarding its severity and prognosis are conflicting. We evaluated the characteristic and short-term prognosis of tinnitus associated with sudden sensorineural hearing loss (SSNHL). A total of 230 cases were enrolled. The severity and 1-month prognosis of tinnitus (according to the Tinnitus Handicap Inventory (THI)) were assessed in terms of the patients' sex, age, level of hearing loss, type of audiogram results, and so on. According to our statistical analysis, the degree of handicap due to tinnitus was not related to sex, age, or level of hearing loss; the Tinnitus Handicap Inventory indicated that the low-frequency-audiogram group had a low tinnitus handicap (F = 7.516, P = 0.000). Furthermore, we found that the prognosis of tinnitus was not related to the type of audiogram or level of hearing loss. Recovery from a severe level of hearing loss was, however, found to be associated with a poor tinnitus prognosis (F = 5.203, P = 0.006). In summary, our study indicates that the association between tinnitus and SSNHL is extremely high. Tinnitus can be ameliorated by the successful treatment of hearing loss. The study was registered in the Chinese Clinical Trial Registry (ChiCTR1800014797).
Collapse
|
29
|
Weak Middle-Ear-Muscle Reflex in Humans with Noise-Induced Tinnitus and Normal Hearing May Reflect Cochlear Synaptopathy. eNeuro 2017; 4:eN-NWR-0363-17. [PMID: 29181442 PMCID: PMC5702873 DOI: 10.1523/eneuro.0363-17.2017] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/09/2017] [Indexed: 11/21/2022] Open
Abstract
Chronic tinnitus is a prevalent hearing disorder, and yet no successful treatments or objective diagnostic tests are currently available. The aim of this study was to investigate the relationship between the presence of tinnitus and the strength of the middle-ear-muscle reflex (MEMR) in humans with normal and near-normal hearing. Clicks were used as test stimuli to obtain a wideband measure of the effect of reflex activation on ear-canal sound pressure. The reflex was elicited using a contralateral broadband noise. The results show that the reflex strength is significantly reduced in individuals with noise-induced continuous tinnitus and normal or near-normal audiometric thresholds compared with no-tinnitus controls. Due to a shallower growth of the reflex strength in the tinnitus group, the difference between the two groups increased with increasing elicitor level. No significant difference in the effect of tinnitus on the strength of the middle-ear muscle reflex was found between males and females. The weaker reflex could not be accounted for by differences in audiometric hearing thresholds between the tinnitus and control groups. Similarity between our findings in humans and the findings of a reduced middle-ear muscle reflex in noise-exposed animals suggests that noise-induced tinnitus in individuals with clinically normal hearing may be a consequence of cochlear synaptopathy, a loss of synaptic connections between inner hair cells (IHCs) in the cochlea and auditory-nerve (AN) fibers that has been termed hidden hearing loss.
Collapse
|
30
|
Maas IL, Brüggemann P, Requena T, Bulla J, Edvall NK, Hjelmborg JV, Szczepek AJ, Canlon B, Mazurek B, Lopez-Escamez JA, Cederroth CR. Genetic susceptibility to bilateral tinnitus in a Swedish twin cohort. Genet Med 2017; 19:1007-1012. [PMID: 28333916 PMCID: PMC5589979 DOI: 10.1038/gim.2017.4] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/09/2017] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Genetic contributions to tinnitus have been difficult to determine due to the heterogeneity of the condition and its broad etiology. Here, we evaluated the genetic and nongenetic influences on self-reported tinnitus from the Swedish Twin Registry (STR). METHODS Cross-sectional data from the STR was obtained. Casewise concordance rates (the risk of one twin being affected given that his/her twin partner has tinnitus) were compared for monozygotic (MZ) and dizygotic (DZ) twin pairs (N = 10,464 concordant and discordant twin pairs) and heritability coefficients (the proportion of the total variance attributable to genetic factors) were calculated using biometrical model fitting procedures. RESULTS Stratification of tinnitus cases into subtypes according to laterality (unilateral versus bilateral) revealed that heritability of bilateral tinnitus was 0.56; however, it was 0.27 for unilateral tinnitus. Heritability was greater in men (0.68) than in women (0.41). However, when female pairs younger than 40 years of age were selected, heritability of 0.62 was achieved with negligible effects of shared environment. CONCLUSION Unlike unilateral tinnitus, bilateral tinnitus is influenced by genetic factors and might constitute a genetic subtype. Overall, our study provides the initial evidence for a tinnitus phenotype with a genetic influence.Genet Med advance online publication 23 March 2017.
Collapse
Affiliation(s)
- Iris Lianne Maas
- Department of Psychosomatic Medicine, Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Brüggemann
- Tinnitus Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Teresa Requena
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO – Center for Genomics and Oncological Research–Pfizer, University of Granada, Junta de Andalucía, PTS, Granada, Spain
| | - Jan Bulla
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Niklas K. Edvall
- Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jacob v.B. Hjelmborg
- Department of Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, Odense, Denmark
| | - Agnieszka J. Szczepek
- Department of ORL, Head and Neck Surgery, Research Laboratory, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Barbara Canlon
- Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Birgit Mazurek
- Tinnitus Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jose A. Lopez-Escamez
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO – Center for Genomics and Oncological Research–Pfizer, University of Granada, Junta de Andalucía, PTS, Granada, Spain
- Department of Otolaryngology, Complejo Hospitalario Universidad de Granada (CHUGRA), ibs.granada, Granada, Spain
| | - Christopher R. Cederroth
- Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Bauer CA, Berry JL, Brozoski TJ. The effect of tinnitus retraining therapy on chronic tinnitus: A controlled trial. Laryngoscope Investig Otolaryngol 2017; 2:166-177. [PMID: 28894836 PMCID: PMC5562945 DOI: 10.1002/lio2.76] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 11/15/2022] Open
Abstract
Objectives The goal of this study was to compare treatment outcomes for chronic bothersome tinnitus after Tinnitus Retraining Therapy (TRT) versus standard of care treatment (SC) and to determine the longevity of the effect over an 18‐month period. Study Design A randomized controlled trial comparing TRT to SC for chronic tinnitus. Methods Adults with subjective, stable, bothersome chronic tinnitus associated with hearing loss amenable to aural rehabilitation with hearing aids were recruited. The Tinnitus Handicap Inventory (THI) was the primary outcome measure and the Tinnitus Functional Index (TFI) the secondary outcome measure of tinnitus severity and impact. Data were collected at screening, entry (0 months), and 6, 12, and 18 months after the beginning of treatment, using an integrated digitized suite of evaluation modules. TRT consisted of directive counseling and acoustic enrichment using combination hearing aids and sound generators; SC consisted of general aural rehabilitation counseling and hearing aids. Results Significant improvement in tinnitus impact occurred after both TRT and SC therapy, with a larger treatment effect obtained in the TRT group. Lasting therapeutic benefit was evident at 18 months in both groups. THI initial scores were unstable in 10% of enrolled participants, showing moderate bidirectional fluctuation between screening and baseline (0 month) assessment. Conclusion Adults with moderate to severe tinnitus and hearing loss amenable to amplification, benefit from either TRT or SC treatment when combined with hearing aid use. TRT benefit may exceed that of SC. The global improvement in tinnitus severity that accrued over an 18‐month period appeared to be robust and clinically significant. Level of Evidence I
Collapse
Affiliation(s)
- Carol A Bauer
- Southern Illinois University School of Medicine Springfield Illinois
| | - Jennifer L Berry
- Southern Illinois University School of Medicine Springfield Illinois
| | - Thomas J Brozoski
- Southern Illinois University School of Medicine Springfield Illinois
| |
Collapse
|
32
|
Guest H, Munro KJ, Prendergast G, Howe S, Plack CJ. Tinnitus with a normal audiogram: Relation to noise exposure but no evidence for cochlear synaptopathy. Hear Res 2016; 344:265-274. [PMID: 27964937 PMCID: PMC5256478 DOI: 10.1016/j.heares.2016.12.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 11/25/2022]
Abstract
In rodents, exposure to high-level noise can destroy synapses between inner hair cells and auditory nerve fibers, without causing hair cell loss or permanent threshold elevation. Such "cochlear synaptopathy" is associated with amplitude reductions in wave I of the auditory brainstem response (ABR) at moderate-to-high sound levels. Similar ABR results have been reported in humans with tinnitus and normal audiometric thresholds, leading to the suggestion that tinnitus in these cases might be a consequence of synaptopathy. However, the ABR is an indirect measure of synaptopathy and it is unclear whether the results in humans reflect the same mechanisms demonstrated in rodents. Measures of noise exposure were not obtained in the human studies, and high frequency audiometric loss may have impacted ABR amplitudes. To clarify the role of cochlear synaptopathy in tinnitus with a normal audiogram, we recorded ABRs, envelope following responses (EFRs), and noise exposure histories in young adults with tinnitus and matched controls. Tinnitus was associated with significantly greater lifetime noise exposure, despite close matching for age, sex, and audiometric thresholds up to 14 kHz. However, tinnitus was not associated with reduced ABR wave I amplitude, nor with significant effects on EFR measures of synaptopathy. These electrophysiological measures were also uncorrelated with lifetime noise exposure, providing no evidence of noise-induced synaptopathy in this cohort, despite a wide range of exposures. In young adults with normal audiograms, tinnitus may be related not to cochlear synaptopathy but to other effects of noise exposure.
Collapse
Affiliation(s)
- Hannah Guest
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, UK.
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, UK; Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, UK
| | - Simon Howe
- Audiology Department, James Cook University Hospital, South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, UK; Department of Psychology, Lancaster University, Lancaster, UK
| |
Collapse
|
33
|
Liberman MC, Epstein MJ, Cleveland SS, Wang H, Maison SF. Toward a Differential Diagnosis of Hidden Hearing Loss in Humans. PLoS One 2016; 11:e0162726. [PMID: 27618300 PMCID: PMC5019483 DOI: 10.1371/journal.pone.0162726] [Citation(s) in RCA: 435] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/26/2016] [Indexed: 01/22/2023] Open
Abstract
Recent work suggests that hair cells are not the most vulnerable elements in the inner ear; rather, it is the synapses between hair cells and cochlear nerve terminals that degenerate first in the aging or noise-exposed ear. This primary neural degeneration does not affect hearing thresholds, but likely contributes to problems understanding speech in difficult listening environments, and may be important in the generation of tinnitus and/or hyperacusis. To look for signs of cochlear synaptopathy in humans, we recruited college students and divided them into low-risk and high-risk groups based on self-report of noise exposure and use of hearing protection. Cochlear function was assessed by otoacoustic emissions and click-evoked electrocochleography; hearing was assessed by behavioral audiometry and word recognition with or without noise or time compression and reverberation. Both groups had normal thresholds at standard audiometric frequencies, however, the high-risk group showed significant threshold elevation at high frequencies (10-16 kHz), consistent with early stages of noise damage. Electrocochleography showed a significant difference in the ratio between the waveform peaks generated by hair cells (Summating Potential; SP) vs. cochlear neurons (Action Potential; AP), i.e. the SP/AP ratio, consistent with selective neural loss. The high-risk group also showed significantly poorer performance on word recognition in noise or with time compression and reverberation, and reported heightened reactions to sound consistent with hyperacusis. These results suggest that the SP/AP ratio may be useful in the diagnosis of "hidden hearing loss" and that, as suggested by animal models, the noise-induced loss of cochlear nerve synapses leads to deficits in hearing abilities in difficult listening situations, despite the presence of normal thresholds at standard audiometric frequencies.
Collapse
Affiliation(s)
- M. Charles Liberman
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, United States of America
- Eaton-Peabody Laboratory, Massachusetts Eye & Ear Infirmary, Boston, MA, United States of America
- Harvard Program in Speech and Hearing Bioscience and Technology, Boston, MA, United States of America
| | - Michael J. Epstein
- Department of Communication Sciences and Disorders, Bouvé College of Health Sciences, Northeastern University, Boston, MA, United States of America
| | - Sandra S. Cleveland
- Department of Communication Sciences and Disorders, Bouvé College of Health Sciences, Northeastern University, Boston, MA, United States of America
| | - Haobing Wang
- Eaton-Peabody Laboratory, Massachusetts Eye & Ear Infirmary, Boston, MA, United States of America
| | - Stéphane F. Maison
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, United States of America
- Eaton-Peabody Laboratory, Massachusetts Eye & Ear Infirmary, Boston, MA, United States of America
- Harvard Program in Speech and Hearing Bioscience and Technology, Boston, MA, United States of America
| |
Collapse
|
34
|
Lopez-Escamez JA, Bibas T, Cima RFF, Van de Heyning P, Knipper M, Mazurek B, Szczepek AJ, Cederroth CR. Genetics of Tinnitus: An Emerging Area for Molecular Diagnosis and Drug Development. Front Neurosci 2016; 10:377. [PMID: 27594824 PMCID: PMC4990555 DOI: 10.3389/fnins.2016.00377] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022] Open
Abstract
Subjective tinnitus is the perception of sound in the absence of external or bodily-generated sounds. Chronic tinnitus is a highly prevalent condition affecting over 70 million people in Europe. A wide variety of comorbidities, including hearing loss, psychiatric disorders, neurodegenerative disorders, and temporomandibular joint (TMJ) dysfunction, have been suggested to contribute to the onset or progression of tinnitus; however, the precise molecular mechanisms of tinnitus are not well understood and the contribution of genetic and epigenetic factors remains unknown. Human genetic studies could enable the identification of novel molecular therapeutic targets, possibly leading to the development of novel pharmaceutical therapeutics. In this article, we briefly discuss the available evidence for a role of genetics in tinnitus and consider potential hurdles in designing genetic studies for tinnitus. Since multiple diseases have tinnitus as a symptom and the supporting genetic evidence is sparse, we propose various strategies to investigate the genetic underpinnings of tinnitus, first by showing evidence of heritability using concordance studies in twins, and second by improving patient selection according to phenotype and/or etiology in order to control potential biases and optimize genetic data output. The increased knowledge resulting from this endeavor could ultimately improve the drug development process and lead to the preventive or curative treatment of tinnitus.
Collapse
Affiliation(s)
- Jose A Lopez-Escamez
- Otology and Neurotology Group, Department of Genomic Medicine, Pfizer - Universidad de Granada - Junta de Andalucía Centro de Genómica e Investigación Oncológica, PTSGranada, Spain; Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospital Universitario GranadaGranada, Spain
| | - Thanos Bibas
- 1st Department of Otolaryngology, National and Kapodistrian University of Athens, Hippocrateion HospitalAthens, Greece; Ear Institute, UCLLondon, UK
| | - Rilana F F Cima
- Department of Clinical Psychological Science, Maastricht University Maastricht, Netherlands
| | - Paul Van de Heyning
- University Department ENT and Head and Neck Surgery, Antwerp University Hospital, University of Antwerp Antwerp, Belgium
| | - Marlies Knipper
- Hearing Research Centre Tübingen, Molecular Physiology of Hearing Tübingen, Germany
| | - Birgit Mazurek
- Tinnitus Center, Charité-Universitätsmedizin Berlin Berlin, Germany
| | | | - Christopher R Cederroth
- Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
35
|
Hall DA, Haider H, Szczepek AJ, Lau P, Rabau S, Jones-Diette J, Londero A, Edvall NK, Cederroth CR, Mielczarek M, Fuller T, Batuecas-Caletrio A, Brueggemen P, Thompson DM, Norena A, Cima RFF, Mehta RL, Mazurek B. Systematic review of outcome domains and instruments used in clinical trials of tinnitus treatments in adults. Trials 2016; 17:270. [PMID: 27250987 PMCID: PMC4888312 DOI: 10.1186/s13063-016-1399-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is no evidence-based guidance to facilitate design decisions for confirmatory trials or systematic reviews investigating treatment efficacy for adults with tinnitus. This systematic review therefore seeks to ascertain the current status of trial designs by identifying and evaluating the reporting of outcome domains and instruments in the treatment of adults with tinnitus. METHODS Records were identified by searching PubMed, EMBASE CINAHL, EBSCO, and CENTRAL clinical trial registries (ClinicalTrials.gov, ISRCTN, ICTRP) and the Cochrane Database of Systematic Reviews. Eligible records were those published from 1 July 2006 to 12 March 2015. Included studies were those reporting adults aged 18 years or older who reported tinnitus as a primary complaint, and who were enrolled into a randomised controlled trial, a before and after study, a non-randomised controlled trial, a case-controlled study or a cohort study, and written in English. Studies with fewer than 20 participants were excluded. RESULTS Two hundred and twenty-eight studies were included. Thirty-five different primary outcome domains were identified spanning seven categories (tinnitus percept, impact of tinnitus, co-occurring complaints, quality of life, body structures and function, treatment-related outcomes and unclear or not specified). Over half the studies (55 %) did not clearly define the complaint of interest. Tinnitus loudness was the domain most often reported (14 %), followed by tinnitus distress (7 %). Seventy-eight different primary outcome instruments were identified. Instruments assessing multiple attributes of the impact of tinnitus were most common (34 %). Overall, 24 different patient-reported tools were used, predominantly the Tinnitus Handicap Inventory (15 %). Loudness was measured in diverse ways including a numerical rating scale (8 %), loudness matching (4 %), minimum masking level (1 %) and loudness discomfort level (1 %). Ten percent of studies did not clearly report the instrument used. CONCLUSIONS Our findings indicate poor appreciation of the basic principles of good trial design, particularly the importance of specifying what aspect of therapeutic benefit is the main outcome. No single outcome was reported in all studies and there was a broad diversity of outcome instruments. PROSPERO REGISTRATION The systematic review protocol is registered on PROSPERO (International Prospective Register of Systematic Reviews): CRD42015017525 . Registered on 12 March 2015 revised on 15 March 2016.
Collapse
Affiliation(s)
- Deborah A Hall
- National Institute for Health Research (NIHR) Nottingham Hearing Biomedical Research Unit, Ropewalk House, 113 The Ropewalk, Nottingham, NG1 5DU, UK.
- Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK.
| | - Haula Haider
- ENT Department of Hospital Cuf Infante Santo - Nova Medical School, Travessa do Castro 3, 1350-070, Lisbon, Portugal
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Charite University Hospital, Chariteplatz 1, 10117, Berlin, Germany
| | - Pia Lau
- Institute of Biomagnetism and Biosignalanalysis, University Hospital Münster, Malmedyweg 15, 48149, Münster, Germany
| | - Sarah Rabau
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital of Antwerp, Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Julie Jones-Diette
- National Institute for Health Research (NIHR) Nottingham Hearing Biomedical Research Unit, Ropewalk House, 113 The Ropewalk, Nottingham, NG1 5DU, UK
- Centre for Reviews and Dissemination, University of York, York, YO10 5DD, UK
| | - Alain Londero
- Service ORL et CCF, Consultation Acouphène et Hyperacousie, Hôpital Européen G. Pompidou, 20, rue Leblanc, 75015, Paris, France
| | - Niklas K Edvall
- Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, Von Eulers väg 8, 171 77, Stockholm, Sweden
| | - Christopher R Cederroth
- Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, Von Eulers väg 8, 171 77, Stockholm, Sweden
| | - Marzena Mielczarek
- Department of Otolaryngology, Laryngological Oncology, Audiology and Phoniatrics, |Medical University of Lodz, 90-549 Lodz, 113 Zeromskiego Street, Lodz, Poland
| | - Thomas Fuller
- Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, PO Box 616, 6200, MD, Maastricht, The Netherlands
- Adelante, Centre of Expertise in Rehabilitation and Audiology, Zandbergsweg 111, 6432 CC, Hoensbroek, The Netherlands
| | - Angel Batuecas-Caletrio
- Department of Otorhinolaryngology, IBSAL, University Hospital of Salamanca, Paseo San Vicente 58-182, 37007, Salamanca, Spain
| | - Petra Brueggemen
- Tinnitus Center, Charite University Hospital, Chariteplatz 1, 10117, Berlin, Germany
| | - Dean M Thompson
- National Institute for Health Research (NIHR) Nottingham Hearing Biomedical Research Unit, Ropewalk House, 113 The Ropewalk, Nottingham, NG1 5DU, UK
- Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Arnaud Norena
- Laboratory of Adaptive and Integrative Neuroscience, Centre National de la Recherche Scientifique, Fédération de Recherche 3C, Aix-Marseille Université, Marseille, France
| | - Rilana F F Cima
- Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, PO Box 616, 6200, MD, Maastricht, The Netherlands
- Adelante, Centre of Expertise in Rehabilitation and Audiology, Zandbergsweg 111, 6432 CC, Hoensbroek, The Netherlands
| | - Rajnikant L Mehta
- National Institute for Health Research (NIHR) Nottingham Hearing Biomedical Research Unit, Ropewalk House, 113 The Ropewalk, Nottingham, NG1 5DU, UK
- Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Birgit Mazurek
- Tinnitus Center, Charite University Hospital, Chariteplatz 1, 10117, Berlin, Germany
| |
Collapse
|
36
|
Hyvärinen P, Mendonça C, Santala O, Pulkki V, Aarnisalo AA. Auditory localization by subjects with unilateral tinnitus. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 139:2280. [PMID: 27250123 DOI: 10.1121/1.4946897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tinnitus is associated with changes in neural activity. How such alterations impact the localization ability of subjects with tinnitus remains largely unexplored. In this study, subjects with self-reported unilateral tinnitus were compared to subjects with matching hearing loss at high frequencies and to normal-hearing subjects in horizontal and vertical plane localization tasks. Subjects were asked to localize a pink noise source either alone or over background noise. Results showed some degree of difference between subjects with tinnitus and subjects with normal hearing in horizontal plane localization, which was exacerbated by background noise. However, this difference could be explained by different hearing sensitivities between groups. In vertical plane localization there was no difference between groups in the binaural listening condition, but in monaural listening the tinnitus group localized significantly worse with the tinnitus ear. This effect remained when accounting for differences in hearing sensitivity. It is concluded that tinnitus may degrade auditory localization ability, but this effect is for the most part due to the associated levels of hearing loss. More detailed studies are needed to fully disentangle the effects of hearing loss and tinnitus.
Collapse
Affiliation(s)
- Petteri Hyvärinen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki 1, P.O. Box 220, FI-00029 HUS, Helsinki, Finland
| | - Catarina Mendonça
- Department of Signal Processing and Acoustics, Aalto University School of Electrical Engineering, Otakaari 5A, 02150 Espoo, Finland
| | - Olli Santala
- Department of Signal Processing and Acoustics, Aalto University School of Electrical Engineering, Otakaari 5A, 02150 Espoo, Finland
| | - Ville Pulkki
- Department of Signal Processing and Acoustics, Aalto University School of Electrical Engineering, Otakaari 5A, 02150 Espoo, Finland
| | - Antti A Aarnisalo
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki 1, P.O. Box 220, FI-00029 HUS, Helsinki, Finland
| |
Collapse
|
37
|
Towards a Diagnosis of Cochlear Neuropathy with Envelope Following Responses. J Assoc Res Otolaryngol 2015; 16:727-45. [PMID: 26323349 DOI: 10.1007/s10162-015-0539-3] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/09/2015] [Indexed: 10/23/2022] Open
Abstract
Listeners with normal audiometric thresholds can still have suprathreshold deficits, for example, in the ability to discriminate sounds in complex acoustic scenes. One likely source of these deficits is cochlear neuropathy, a loss of auditory nerve (AN) fibers without hair cell damage, which can occur due to both aging and moderate acoustic overexposure. Since neuropathy can affect up to 50 % of AN fibers, its impact on suprathreshold hearing is likely profound, but progress is hindered by lack of a robust non-invasive test of neuropathy in humans. Reduction of suprathreshold auditory brainstem responses (ABRs) can be used to quantify neuropathy in inbred mice. However, ABR amplitudes are highly variable in humans, and thus more challenging to use. Since noise-induced neuropathy is selective for AN fibers with high thresholds, and because phase locking to temporal envelopes is particularly strong in these fibers, the envelope following response (EFR) might be a more robust measure. We compared EFRs to sinusoidally amplitude-modulated tones and ABRs to tone-pips in mice following a neuropathic noise exposure. EFR amplitude, EFR phase-locking value, and ABR amplitude were all reduced in noise-exposed mice. However, the changes in EFRs were more robust: the variance was smaller, thus inter-group differences were clearer. Optimum detection of neuropathy was achieved with high modulation frequencies and moderate levels. Analysis of group delays was used to confirm that the AN population was dominating the responses at these high modulation frequencies. Application of these principles in clinical testing can improve the differential diagnosis of sensorineural hearing loss.
Collapse
|
38
|
Arts RAGJ, George ELJ, Griessner A, Zierhofer C, Stokroos RJ. Tinnitus Suppression by Intracochlear Electrical Stimulation in Single-Sided Deafness: A Prospective Clinical Trial - Part I. Audiol Neurootol 2015; 20:294-313. [PMID: 26227468 DOI: 10.1159/000381936] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/28/2015] [Indexed: 11/19/2022] Open
Abstract
Cochlear implantation is a viable treatment option for tinnitus, but the underlying mechanism is yet unclear. Is the tinnitus suppression due to the reversal of the assumed maladaptive neuroplasticity or is it the shift in attention from the tinnitus to environmental sounds and therefore a reduced awareness that reduces tinnitus perception? In this prospective trial, 10 patients with single-sided deafness were fitted with a cochlear implant to investigate the effect of looped intracochlear electrical stimulation (i.e. stimulation that does not encode environmental sounds) on tinnitus, in an effort to find optimal stimulation parameters. Variables under investigation were: amplitude (perceived stimulus loudness), anatomical location inside the cochlea (electrode/electrodes), amplitude modulation, polarity (cathodic/anodic first biphasic stimulation) and stimulation rate. The results suggest that tinnitus can be reduced with looped electrical stimulation, in some cases even with inaudible stimuli. The optimal stimuli for tinnitus suppression appear to be subject specific. However, medium-to-loud stimuli suppress tinnitus significantly better than soft stimuli, which partly can be explained by the masking effect. Although the long-term effects on tinnitus would still have to be investigated and will be described in part II, intracochlear electrical stimulation seems a potential treatment option for tinnitus in this population.
Collapse
Affiliation(s)
- Remo A G J Arts
- Department of ENT/Head and Neck Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
39
|
Diehl PU, Schaette R. Abnormal Auditory Gain in Hyperacusis: Investigation with a Computational Model. Front Neurol 2015; 6:157. [PMID: 26236277 PMCID: PMC4502361 DOI: 10.3389/fneur.2015.00157] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 06/24/2015] [Indexed: 12/27/2022] Open
Abstract
Hyperacusis is a frequent auditory disorder that is characterized by abnormal loudness perception where sounds of relatively normal volume are perceived as too loud or even painfully loud. As hyperacusis patients show decreased loudness discomfort levels (LDLs) and steeper loudness growth functions, it has been hypothesized that hyperacusis might be caused by an increase in neuronal response gain in the auditory system. Moreover, since about 85% of hyperacusis patients also experience tinnitus, the conditions might be caused by a common mechanism. However, the mechanisms that give rise to hyperacusis have remained unclear. Here, we have used a computational model of the auditory system to investigate candidate mechanisms for hyperacusis. Assuming that perceived loudness is proportional to the summed activity of all auditory nerve (AN) fibers, the model was tuned to reproduce normal loudness perception. We then evaluated a variety of potential hyperacusis gain mechanisms by determining their effects on model equal-loudness contours and comparing the results to the LDLs of hyperacusis patients with normal hearing thresholds. Hyperacusis was best accounted for by an increase in non-linear gain in the central auditory system. Good fits to the average patient LDLs were obtained for a general increase in gain that affected all frequency channels to the same degree, and also for a frequency-specific gain increase in the high-frequency range. Moreover, the gain needed to be applied after subtraction of spontaneous activity of the AN, which is in contrast to current theories of tinnitus generation based on amplification of spontaneous activity. Hyperacusis and tinnitus might therefore be caused by different changes in neuronal processing in the central auditory system.
Collapse
Affiliation(s)
- Peter U. Diehl
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | | |
Collapse
|
40
|
Canlon B. Progress in hearing research 2014. Hear Res 2014; 311:1-2. [PMID: 25151010 DOI: 10.1016/j.heares.2014.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/18/2014] [Indexed: 11/19/2022]
Affiliation(s)
- Barbara Canlon
- Karolinska Institutet, Department of Physiology and Pharmacology, von Eulers vag 8, 171 77 Stockholm, Sweden.
| |
Collapse
|
41
|
Gold JR, Bajo VM. Insult-induced adaptive plasticity of the auditory system. Front Neurosci 2014; 8:110. [PMID: 24904256 PMCID: PMC4033160 DOI: 10.3389/fnins.2014.00110] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/28/2014] [Indexed: 01/10/2023] Open
Abstract
The brain displays a remarkable capacity for both widespread and region-specific modifications in response to environmental challenges, with adaptive processes bringing about the reweighing of connections in neural networks putatively required for optimizing performance and behavior. As an avenue for investigation, studies centered around changes in the mammalian auditory system, extending from the brainstem to the cortex, have revealed a plethora of mechanisms that operate in the context of sensory disruption after insult, be it lesion-, noise trauma, drug-, or age-related. Of particular interest in recent work are those aspects of auditory processing which, after sensory disruption, change at multiple—if not all—levels of the auditory hierarchy. These include changes in excitatory, inhibitory and neuromodulatory networks, consistent with theories of homeostatic plasticity; functional alterations in gene expression and in protein levels; as well as broader network processing effects with cognitive and behavioral implications. Nevertheless, there abounds substantial debate regarding which of these processes may only be sequelae of the original insult, and which may, in fact, be maladaptively compelling further degradation of the organism's competence to cope with its disrupted sensory context. In this review, we aim to examine how the mammalian auditory system responds in the wake of particular insults, and to disambiguate how the changes that develop might underlie a correlated class of phantom disorders, including tinnitus and hyperacusis, which putatively are brought about through maladaptive neuroplastic disruptions to auditory networks governing the spatial and temporal processing of acoustic sensory information.
Collapse
Affiliation(s)
- Joshua R Gold
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| | - Victoria M Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| |
Collapse
|
42
|
Abstract
Tinnitus is one of the major audiological diseases, affecting a significant portion of the ageing society. Despite its huge personal and presumed economic impact there are only limited therapeutic options available. The reason for this deficiency lies in the very nature of the disease as it is deeply connected to elementary plasticity of auditory processing in the central nervous system. Understanding these mechanisms is essential for developing a therapy that reverses the plastic changes underlying the pathogenesis of tinnitus. This requires experiments that address individual neurons and small networks, something usually not feasible in human patients. However, in animals such invasive experiments on the level of single neurons with high spatial and temporal resolution are possible. Therefore, animal models are a very critical element in the combined efforts for engineering new therapies. This review provides an overview over the most important features of animal models of tinnitus: which laboratory species are suitable, how to induce tinnitus, and how to characterize the perceived tinnitus by behavioral means. In particular, these aspects of tinnitus animal models are discussed in the light of transferability to the human patients.
Collapse
|