1
|
Van Hecke R, Dhooge I, Dhondt C, Martens S, Sucaet M, Vanaudenaerde S, Rombaut L, De Leenheer E, Van Hoecke H, Deconinck FJA, Maes L. Motor Competence in School-Aged Children at Risk of Vestibular Loss: An Overview. Ear Hear 2025:00003446-990000000-00428. [PMID: 40269338 DOI: 10.1097/aud.0000000000001659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
OBJECTIVES On the basis of research and clinical experience, our otorhinolaryngology department developed an extensive protocol including auditory, vestibular, and motor assessments for all children at risk of vestibular disorders. The purpose of this study was to present the outcomes of this clinical protocol in a school-aged population and to provide an overview of the main clinical features and the motor competence of the children at risk of vestibular dysfunctions. DESIGN Data collection for this study took place between October 2017 and October 2021. During this timeframe, all school-aged children (4.0 to 16.9 years old), who were either in follow-up or referred to our otorhinolaryngology department at the Ghent University Hospital because of a risk of vestibular deficits, and who expressed a willingness to participate in the study, were included. Children were deemed at risk if they had (1) vestibular complaints (i.e., vertigo, instability, dizziness), (2) sensorineural hearing loss (with or without cochlear implant[s]), (3) a medical history with ototoxic drugs, (4) inner ear malformations defined by imaging, (5) a head trauma, (6) genetic mutations linked to vestibular loss, or (7) evidence of prior infections that are related to vestibular loss in the literature (e.g., meningitis, congenital cytomegalovirus infection). RESULTS Among the 117 participants (59 boys; 7.3 ± 3.1 years), four groups could be identified: those with combined vestibular and hearing loss (n = 47), with isolated vestibular loss (n = 5) or hearing loss (n = 33), and those without audiovestibular deficits (n = 32). Group differences revealed diminished fine motor skills, as well as lower balance and total MABC-2 scores in the group with combined vestibular and auditory dysfunctions (p < 0.001), particularly in children with severe bilateral vestibular deficits. Moreover, the majority (38/47; 80.9%) were referred for additional monitoring of their motor functioning and/or for physical therapy. CONCLUSIONS This first large-scale study encompassing school-aged children at risk of vestibular disorders revealed a diverse clinical presentation among them. Considering crucial trends and influential factors, the study emphasized the importance of adopting a comprehensive approach, including auditory, vestibular, and motor tests, for assessing and managing pediatric vestibular concerns, particularly in children with combined vestibular and auditory deficits.
Collapse
Affiliation(s)
- Ruth Van Hecke
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Ingeborg Dhooge
- Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Cleo Dhondt
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Sarie Martens
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Marieke Sucaet
- Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | | | - Lotte Rombaut
- Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Els De Leenheer
- Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Helen Van Hoecke
- Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | | | - Leen Maes
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
- Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
2
|
Deng L, Yang X, Cheng X, Wen C, Yu Y, Li Y, Gao S, Liu H, Liu D, Ruan Y, Xie J, En H, Xian J, Huang L. Hearing loss trajectory and prediction model for children with enlarged vestibular aqueduct. Am J Otolaryngol 2025; 46:104573. [PMID: 39740534 DOI: 10.1016/j.amjoto.2024.104573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
PURPOSE To explore how hearing changes over time and the characteristics associated with progressive hearing loss in children with enlarged vestibular aqueduct (EVA), and develop a prediction model for anticipation of hearing progression probability. METHODS A retrospective analysis was conducted on 48 children (92 ears) diagnosed with EVA. A total of 314 audiograms were included in the analysis of hearing loss trajectories using linear mixed-effects model. Progressive hearing loss was defined based on the difference between the initial and final hearing threshold. All participants had underwent one or two gene detection methods, including deafness gene screening and SLC26A4 whole coding exon sequencing. RESULTS The pure-tone thresholds (PTTs) at frequencies of 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz and the average are expected to increase by 0.34, 0.49, 0.54, 0.57, and 0.55 dB HL per each additional month. Age and genotypes have an interactive effect on PTT at frequencies of 500 Hz, 1000 Hz, and the average. The hazard ratio for the genotype without SLC26A4 c.919-2 A > G mutation was 4.91 (95 % confidence interval 1.76-13.7, P < 0.01). This prediction model fitted using age, initial average PTT, midpoint size of vestibular aqueduct, incomplete partition type II, and genotypes of SLC26A4 showed strong consistency and differentiation. CONCLUSION These findings reveal that the PTT would deteriorate over time in patients with EVA. The hearing threshold at high frequency and genotype without c.919-2 A > G heterozygous mutation deteriorated relatively fast. Genotype is an important predictive factor and the nomogram helps to predict progressive hearing loss.
Collapse
Affiliation(s)
- Lin Deng
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Xiaozhe Yang
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Xiaohua Cheng
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Cheng Wen
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Yiding Yu
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Yue Li
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Shan Gao
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Hui Liu
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Dongxin Liu
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Yu Ruan
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Jinge Xie
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Hui En
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lihui Huang
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China.
| |
Collapse
|
3
|
Jang SH, Yoon K, Gee HY. Common genetic etiologies of sensorineural hearing loss in Koreans. Genomics Inform 2024; 22:27. [PMID: 39609929 PMCID: PMC11605866 DOI: 10.1186/s44342-024-00030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
Hearing loss is the most common sensory disorder. Genetic factors contribute substantially to this condition, although allelic heterogeneity and variable expressivity make a definite molecular diagnosis challenging. To provide a brief overview of the genomic landscape of sensorineural hearing loss in Koreans, this article reviews the genetic etiologies of nonsyndromic hearing loss in Koreans as well as the clinical characteristics, genotype-phenotype correlations, and pathogenesis of hearing loss arising from common variants observed in this population. Furthermore, potential genetic factors associated with age-related hearing loss, identified through genome-wide association studies, are briefly discussed. Understanding these genetic etiologies is crucial for advancing precise molecular diagnoses and developing targeted therapeutic interventions for hearing loss.
Collapse
Affiliation(s)
- Seung Hyun Jang
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Won-Sang Lee Institute for Hearing Loss, Seoul, 03722, Republic of Korea
| | - Kuhn Yoon
- Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Won-Sang Lee Institute for Hearing Loss, Seoul, 03722, Republic of Korea.
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
4
|
Tsukada K, Nishio SY, Takumi Y, Usami SI. Comparison of vestibular function in hereditary hearing loss patients with GJB2, CDH23, and SLC26A4 variants. Sci Rep 2024; 14:10596. [PMID: 38720048 PMCID: PMC11078969 DOI: 10.1038/s41598-024-61442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
To investigate the association between hereditary hearing loss and vestibular function, we compared vestibular function and symptoms among patients with GJB2, SLC26A4, and CDH23 variants. Thirty-nine patients with sensory neural hearing loss (11 males and 28 females) with biallelic pathogenic variants in either GJB2, SLC26A4, or CDH23 were included in this study (13 GJB2, 15 SLC26A4, and 11 CDH23). The patients were examined using caloric testing and cervical and ocular vestibular-evoked myogenic potentials (cVEMP and oVEMP). We also compared vestibular function and symptoms between patients with these gene variants and 78 normal-hearing ears without vestibular symptoms as controls. The frequency of semicircular canal hypofunction in caloric testing was higher in patients with SLC26A4 variants (47%) than in those with GJB2 (0%) and CDH23 variants (27%). According to the cVEMP results, 69% of patients with GJB2 variants had saccular hypofunction, a significantly higher proportion than in those carrying other variants (SLC26A4, 20%; CDH23, 18%). In oVEMP, which reflects utricular function, no difference was observed in the frequency of hypofunction among the three genes (GJB2, 15%; SLC26A4, 40%; and CDH23, 36%). Hence, discernable trends indicate vestibular dysfunction associated with each gene.
Collapse
Affiliation(s)
- Keita Tsukada
- Department of Otorhinolaryngology Head and Neck Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
| | - Shin-Ya Nishio
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yutaka Takumi
- Department of Otorhinolaryngology Head and Neck Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Shin-Ichi Usami
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| |
Collapse
|
5
|
Lee SY, Song SY, Lee SH, Kim GY, Park JW, Bae CS, Park DH, Cho SS. Ginseng Berry Juice (GBJ) Regulates the Inflammation in Acute Ulcerative Mouse Models and the Major Bioactive Substances Are Ginsenosides Rb3, Rc, Rd, and Re. Nutrients 2024; 16:1031. [PMID: 38613064 PMCID: PMC11013427 DOI: 10.3390/nu16071031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Panax ginseng fruit is known to have various biological effects owing to its large amount of saponins such as ginsenosides. In the present study, ginseng berry juice was confirmed to be effective against acute inflammation. Ginseng berry juice was used for analysis of active constituents, antioxidant efficacy, and in vivo inflammation. A high-performance liquid chromatography method was used for analysis of ginsenosides. In an HCl/ethanol-induced acute gastric injury model, microscopic, immunofluorescent, and immunohistochemical techniques were used for analysis of inhibition of gastric injury and mechanism study. In a mouse model of acute gastritis induced with HCl/ethanol, ginseng berry juice (GBJ, 250 mg/kg) showed similar gastric injury inhibitory effects as cabbage water extract (CB, 500 mg/kg, P.O). GBJ dose-dependently modulated the pro-inflammatory cytokines such as Tumor Necrosis Factor-α (TNF-α), Interleukin-6 (IL-6), and Interleukin-13 (IL-13). GBJ inhibited the activation of Nuclear Factor kappa bB (NF-κB) and suppressed the expressions of cyclooxigenase-2 (COX-2) and prostaglandin 2 (PGE2). The anti-inflammatory effect of GBJ is attributed to ginsenosides which have anti-inflammatory effects. Productivity as an effective food source for acute gastritis was analyzed and showed that GBJ was superior to CB. In addition, as a functional food for suppressing acute ulcerative symptoms, it was thought that the efficacy of gastric protection products would be higher if GBJ were produced in the form of juice rather than through various extraction methods.
Collapse
Affiliation(s)
- Soon-Young Lee
- College of Oriental Medicine, Dongshin University, Naju-si 58245, Republic of Korea
| | - Seung-Yub Song
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun 58554, Republic of Korea (J.-W.P.)
- Biomedicine, Health and Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan-gun 58554, Republic of Korea
| | - Sung-Ho Lee
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun 58554, Republic of Korea (J.-W.P.)
- Biomedicine, Health and Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan-gun 58554, Republic of Korea
| | - Gye-Yeop Kim
- Department of Physical Therapy, Dongshin University, Naju-si 58245, Republic of Korea
| | - Jin-Woo Park
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun 58554, Republic of Korea (J.-W.P.)
- Biomedicine, Health and Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan-gun 58554, Republic of Korea
| | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju 61186, Republic of Korea;
| | - Dae-Hun Park
- College of Oriental Medicine, Dongshin University, Naju-si 58245, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun 58554, Republic of Korea (J.-W.P.)
- Biomedicine, Health and Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan-gun 58554, Republic of Korea
| |
Collapse
|
6
|
Han JH, Bae SH, Joo SY, Kim JA, Kim SJ, Jang SH, Won D, Gee HY, Choi JY, Jung J, Kim SH. Characterization of Vestibular Phenotypes in Patients with Genetic Hearing Loss. J Clin Med 2024; 13:2001. [PMID: 38610765 PMCID: PMC11012556 DOI: 10.3390/jcm13072001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Background: The vestibular phenotypes of patients with genetic hearing loss are poorly understood. Methods: we performed genetic testing including exome sequencing and vestibular function tests to investigate vestibular phenotypes and functions in patients with genetic hearing loss. Results: Among 627 patients, 143 (22.8%) had vestibular symptoms. Genetic variations were confirmed in 45 (31.5%) of the 143 patients. Nineteen deafness genes were linked with vestibular symptoms; the most frequent genes in autosomal dominant and recessive individuals were COCH and SLC26A4, respectively. Vestibular symptoms were mostly of the vertigo type, recurrent, and persisted for hours in the genetically confirmed and unconfirmed groups. Decreased vestibular function in the caloric test, video head impulse test, cervical vestibular-evoked myogenic potential, and ocular vestibular-evoked myogenic potential was observed in 42.0%, 16.3%, 57.8%, and 85.0% of the patients, respectively. The caloric test revealed a significantly higher incidence of abnormal results in autosomal recessive individuals than in autosomal dominant individuals (p = 0.011). The genes, including SLC26A4, COCH, KCNQ4, MYH9, NLRP3, EYA4, MYO7A, MYO15A, and MYH9, were heterogeneously associated with abnormalities in the vestibular function test. Conclusions: In conclusion, diverse vestibular symptoms are commonly concomitant with genetic hearing loss and are easily overlooked.
Collapse
Affiliation(s)
- Ji Hyuk Han
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.H.H.); (J.Y.C.)
| | - Seong Hoon Bae
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.H.H.); (J.Y.C.)
| | - Sun Young Joo
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.Y.J.); (J.A.K.); (S.J.K.); (S.H.J.); (H.Y.G.)
| | - Jung Ah Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.Y.J.); (J.A.K.); (S.J.K.); (S.H.J.); (H.Y.G.)
| | - Se Jin Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.Y.J.); (J.A.K.); (S.J.K.); (S.H.J.); (H.Y.G.)
| | - Seung Hyun Jang
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.Y.J.); (J.A.K.); (S.J.K.); (S.H.J.); (H.Y.G.)
| | - Dongju Won
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.Y.J.); (J.A.K.); (S.J.K.); (S.H.J.); (H.Y.G.)
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.H.H.); (J.Y.C.)
| | - Jinsei Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.H.H.); (J.Y.C.)
| | - Sung Huhn Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.H.H.); (J.Y.C.)
| |
Collapse
|
7
|
Jung J, Noh SH, Jo S, Song D, Kang MJ, Shin MH, Lee HJ, Pyun JC, Namkung W, Han G, Lee MG, Choi JY. Novel small molecule-mediated restoration of the surface expression and anion exchange activity of mutated pendrin causing Pendred syndrome and DFNB4. Biomed Pharmacother 2023; 167:115445. [PMID: 37690388 DOI: 10.1016/j.biopha.2023.115445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023] Open
Abstract
Variants in SLC26A4 (pendrin) are the most common reasons for genetic hearing loss and vestibular dysfunction in East Asians. In patients with Pendred syndrome and DFNB4 (autosomal recessive type of genetic hearing loss 4), caused by variants in SLC26A4, the hearing function is residual at birth and deteriorates over several years, with no curative treatment for these disorders. In the present study, we revealed that a novel small molecule restores the expression and function of mutant pendrin. High-throughput screening of 54,000 small molecules was performed. We observed that pendrin corrector (PC2-1) increased the surface expression and anion exchange activity of p.H723R pendrin (H723R-PDS), the most prevalent genetic variant that causes Pendred syndrome and DFNB4. Furthermore, in endogenous H723R-PDS-expressing human nasal epithelial cells, PC2-1 significantly increased the surface expression of pendrin. PC2-1 exhibited high membrane permeability in vitro and high micromolar concentrations in the cochlear perilymph in vivo. In addition, neither inhibition of Kv11.1 activity in the human ether-a-go-go-related gene assay nor cell toxicity in the cell proliferation assay was observed at a high PC2-1 concentration (30 μM). These preclinical data support the hypothesis of the druggability of mutant pendrin using the novel corrector molecule PC2-1. In conclusion, PC2-1 may be a new therapeutic molecule for ameliorating hearing loss and treating vestibular disorders in patients with Pendred syndrome or DFNB4.
Collapse
Affiliation(s)
- Jinsei Jung
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Won-Sang Lee Institute for Hearing Loss, Seoul 03722, Republic of Korea
| | - Shin Hye Noh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sungwoo Jo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Doona Song
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea; Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Republic of Korea; Translational Research Center for Protein Function Control, Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Min Jin Kang
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Won-Sang Lee Institute for Hearing Loss, Seoul 03722, Republic of Korea
| | - Mi Hwa Shin
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Won-Sang Lee Institute for Hearing Loss, Seoul 03722, Republic of Korea
| | - Hyun Jae Lee
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, USA
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Wan Namkung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea.
| | - Gyoonhee Han
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea; Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Republic of Korea; Translational Research Center for Protein Function Control, Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
| | - Min Goo Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Republic of Korea, Seoul 03722, Republic of Korea.
| | - Jae Young Choi
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Won-Sang Lee Institute for Hearing Loss, Seoul 03722, Republic of Korea.
| |
Collapse
|
8
|
Li M, Leng Y, Liu B. Clinical Implication of Caloric and Video Head Impulse Tests for Patients With Enlarged Vestibular Aqueduct Presenting With Vertigo. Front Neurol 2021; 12:717035. [PMID: 34707555 PMCID: PMC8542699 DOI: 10.3389/fneur.2021.717035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/10/2021] [Indexed: 11/25/2022] Open
Abstract
Background: By examining the clinical features and results of video head impulse test (vHIT) and caloric tests in patients with enlarged vestibular aqueduct (EVA) presenting with vertigo, we aimed to investigate the function of angular vestibulo-ocular reflex (VOR) and its clinical implications. Methods: Nine patients with EVA manifesting with vertigo were enrolled. The medical history, audiological examination, imaging, and the results of the caloric test and the vHIT were analyzed. Results: Of the nine patients with EVA (eight bilateral and one unilateral case), five were pediatric cases. All 17 ears exhibited sensorineural hearing loss (SNHL). Enlarged vestibular aqueduct patients can present with recurrent (seven cases) or single (two cases) vertigo attack, trauma-induced (two cases), or spontaneous (seven cases) vertigo. Diminished caloric responses were observed in 77.8% (7/9) of the patients (four cases unilaterally and three bilaterally), while unilateral abnormal vHIT results in 11.1% (1/9) patients. Abnormal caloric and normal horizontal vHIT responses were found in 66.7% (6/9) of EVA patients. Conclusions: Vestibular manifestations in EVA are diverse. Enlarged vestibular aqueduct patients with vertigo can present with a reduced caloric response and normal horizontal vHIT, and this pattern of angular VOR impairment was also found in other hydropic ear diseases.
Collapse
Affiliation(s)
- Ming Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangming Leng
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Honda K, Griffith AJ. Genetic architecture and phenotypic landscape of SLC26A4-related hearing loss. Hum Genet 2021; 141:455-464. [PMID: 34345941 DOI: 10.1007/s00439-021-02311-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Mutations of coding regions and splice sites of SLC26A4 cause Pendred syndrome and nonsyndromic recessive hearing loss DFNB4. SLC26A4 encodes pendrin, a transmembrane exchanger of anions and bases. The mutant SLC26A4 phenotype is characterized by inner ear malformations, including an enlarged vestibular aqueduct (EVA), incomplete cochlear partition type II and modiolar hypoplasia, progressive and fluctuating hearing loss, and vestibular dysfunction. A thyroid iodine organification defect can lead to multinodular goiter and distinguishes Pendred syndrome from DFNB4. Pendred syndrome and DFNB4 are each inherited as an autosomal recessive trait caused by biallelic mutations of SLC26A4 (M2). However, there are some EVA patients with only one detectable mutant allele (M1) of SLC26A4. In most European-Caucasian M1 patients, there is a haplotype that consists of 12 variants upstream of SLC26A4, called CEVA (Caucasian EVA), which acts as a pathogenic recessive allele in trans to mutations affecting the coding regions or splice sites of SLC26A4. This combination of an M1 genotype with the CEVA haplotype is associated with a less severe phenotype than the M2 genotype. The phenotype in EVA patients with no mutant alleles of SLC26A4 (M0) has a very low recurrence probability and is likely to be caused by other factors.
Collapse
Affiliation(s)
- Keiji Honda
- Department of Otorhinolaryngology, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Andrew J Griffith
- Department of Otolaryngology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
10
|
Simon F, Denoyelle F, Beraneck M. Interpreting pendred syndrome as a foetal hydrops: Clinical and animal model evidence. J Vestib Res 2021; 31:315-321. [PMID: 33579884 DOI: 10.3233/ves-200789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Menière disease (MD) and SLC26A4 related deafness (Pendred syndrome (PS) or DFNB4) are two different inner ear disorders which present with fluctuating and progressive hearing loss, which could be a direct consequence of endolymphatic hydrops. OBJECTIVE To present similarities between both pathologies and explore how the concept of hydrops may be applied to PS/DFNB4. METHODS Review of the literature on MD, PS/DFNB4 and mouse model of PS/DFNB4. RESULTS MD and PS/DFNB4 share a number of similarities such as fluctuating and progressive hearing loss, acute episodes with vertigo and tinnitus, MRI and histological evidence of endolymphatic hydrops (although with different underlying mechanisms). MD is usually diagnosed during the fourth decade of life whereas PS/DFNB4 is congenital. The PS/DFNB4 mouse models have shown that biallelic slc26a4 mutations lead to Na+ and water retention in the endolymph during the perinatal period, which in turn induces degeneration of the stria vascularis and hearing loss. Crossing clinical/imagery characteristics and animal models, evidence seems to support the hypothesis of PS being a foetal hydrops. CONCLUSIONS When understanding PS/DFNB4 as a developmental hydrops, treatments used in MD could be repositioned to PS.
Collapse
Affiliation(s)
- François Simon
- Université de Paris, INCC UMR 8002, CNRS, F-75006 Paris, France.,Université de Paris, Faculté de Médecine, F-75006 Paris, France.,Department of Paediatric Otolaryngology, AP-HP, Hôpital Necker-Enfants Malades, F-75015 Paris, France
| | - Françoise Denoyelle
- Université de Paris, Faculté de Médecine, F-75006 Paris, France.,Department of Paediatric Otolaryngology, AP-HP, Hôpital Necker-Enfants Malades, F-75015 Paris, France
| | | |
Collapse
|
11
|
Natural Course of Residual Hearing with Reference to GJB2 and SLC26A4 Genotypes: Clinical Implications for Hearing Rehabilitation. Ear Hear 2021; 42:644-653. [PMID: 33928925 DOI: 10.1097/aud.0000000000000965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Understanding the characteristics of residual hearing at low frequencies and its natural course in relation to molecular genetic etiology may be important in developing rehabilitation strategies. Thus, we aimed to explore the characteristics and natural course of residual hearing at low frequencies associated with the two most frequent deafness genes: GJB2 and SLC26A4. METHODS Initially, 53 GJB2 and 65 SLC26A4 subjects were enrolled, respectively. Only those whose audiograms exhibited hearing thresholds ≤70 dB at 250 and 500 Hz, and who had at least 1-year follow-up period between the first and last audiograms, were included. Collectively, the clinical characteristics of 14 ears from eight subjects with GJB2 variants, and 31 ears from 22 subjects with SLC26A4 variants fulfilled the strict criteria. In this study, a dropout rate refers to an incidence of dropping out of the cohort by cochlear implant surgery due to severe hearing deterioration. RESULTS Among the ears with complete serial audiogram data set, significant residual hearing at low frequencies at the time of inclusion was observed in 18.8% of those with GJB2 variants (15 out of 80 ears) and 42.6% of those with SLC26A4 variants (46 out of 108 ears), revealing a difference between two deafness genes. Subsequently, ears with SLC26A4 variants (11 of 46 ears, 23.9%) turned out to have a higher dropout rate for cochlear implantation due to hearing deterioration within the first year than those with GJB2 variants (1 of 15, 6.7%), albeit with no statistical significance. Throughout the follow-up period (mean: 37.2 ± 6.8, range: 12 to 80 months), deterioration of residual hearing at low frequencies at 250 Hz (dB HL/y) and 500 Hz (dB HL/y) of those with GJB2 variants exhibited 3.1 ± 1.3 (range: 0 to 15) and 5.2 ± 1.6 (range: 0 to 20), respectively, suggesting the deterioration of residual hearing in GJB2 variants was rather slow and gradual. Specifically, GJB2 p.Leu79Cysfs*3 show less remarkable residual hearing at low frequencies, but then a relatively stable nature. In contrast, SLC26A4 variants demonstrated a significantly higher dropout rate due to severe hearing deterioration requiring cochlear implantation compared with the GJB2 variants. This trend was observed not only in the first-year follow-up period but also in the follow-up periods thereafter. The p.His723Arg;c.919-2A>G genotype of SLC26A4, in particular, was associated with a high propensity for sudden hearing deterioration, as indicated by the dropout rate, which was as high as 46.2% for cochlear implantation due to hearing deterioration during the first year follow-up period. Furthermore, the dropout rate for cochlear implantation was observed in 7.1% of those with GJB2 variants (one out of 14 ears) and 30.3% of those with SLC26A4 variants (10 out of 33 ears) throughout the entire follow-up period. CONCLUSIONS Our results suggest that there is a difference with respect to the progressive nature of residual hearing at low frequencies between the two most common genes responsible for hearing loss, which may provide clinical implications of having individualized rehabilitation and timely intervention.
Collapse
|
12
|
Na G, Lee JM, Lee HJ, Jeong Y, Jung J, Choi JY. Effect of Cochlear Implantation on Hearing Fluctuation in Patients with Biallelic SLC26A4 Variants. Audiol Neurootol 2020; 26:111-120. [PMID: 32877901 DOI: 10.1159/000508858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/21/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Fluctuating hearing loss is a distinctive feature caused by SLC26A4 variants. We investigated whether cochlear implantation had protective or deleterious effect on hearing fluctuation in patients with biallelic SLC26A4 variants. METHODS Patients with biallelic SLC26A4 variants (N = 16; age = 10.24 ± 9.20 years) who had unilateral cochlear implantation and consecutive postsurgical, bilateral pure-tone audiograms more than 3 times were selected. We retrospectively reviewed the patients' medical records from 2008 to 2019 obtained from a tertiary medical center and used the auditory threshold change (Shift) over time as a marker of hearing fluctuation. Fluctuation events were counted, and the Shift of the implanted and contralateral ears was compared using logistic regression with a generalized estimating equation and linear mixed model. A total of 178 values were included. RESULTS The odds of fluctuating hearing frequency were 11.185-fold higher in the unimplanted ears than in the implanted ears postoperatively (p = 0.001). The extent of fluctuation at 250 and 500 Hz was also significantly lower in the implanted ears than in the unimplanted ears after adjusting for every other effect (p = 0.003 and p < 0.001, respectively). Notably, higher residual hearing was rather associated with lesser fluctuation in frequency and the extent of fluctuation at 500 Hz, indicating residual hearing function is not the positive predictor for hearing fluctuation. CONCLUSION In patients with biallelic SLC26A4 variants, cochlear implantation may reduce the frequency and extent of hearing fluctuations.
Collapse
Affiliation(s)
- Gina Na
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeon Mi Lee
- Department of Otorhinolaryngology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - Hyun Jin Lee
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeonsu Jeong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinsei Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea,
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
13
|
Choi HJ, Lee HJ, Choi JY, Jeon IH, Noh B, Devkota S, Lee HW, Eo SK, Choi JY, Lee MG, Jung J. DNAJC14 Ameliorates Inner Ear Degeneration in the DFNB4 Mouse Model. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 17:188-197. [PMID: 31909090 PMCID: PMC6940655 DOI: 10.1016/j.omtm.2019.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 11/23/2019] [Indexed: 01/22/2023]
Abstract
The His723Arg (H723R) mutation in SLC26A4, encoding pendrin, is the most prevalent mutation in East Asia, resulting in DFNB4, an autosomal recessive type of genetic hearing loss. Although the main pathological mechanism of H723R was identified as a protein-folding defect in pendrin, there is still no curative treatment for associated hearing loss. Here, we show that H723R-pendrin expression and activity are rescued by activation of the chaperonin DNAJC14. In vitro, DNAJC14 was activated via Japanese encephalitis virus (JEV) inoculation, and toxin-attenuated JEV rescued the surface expression and anion exchange activity of H723R-pendrin. Human H723R-pendrin transgenic mice (hH723R Tg) were established in a mouse slc26a4 knockout background, in which only hH723R-pendrin was expressed in the inner ear (Pax2-Cre dependent) to mimic human DFNB4 pathology. Crossing hH723R Tg with DNAJC14-overexpressing mice resulted in reduced cochlear hydrops and more preserved outer hair cells in the cochlea compared to those in hH723R Tg mice. Furthermore, the stria vascularis and spiral ligament were thicker and KCNJ10 expression was increased with DNAJC14 overexpression; however, hearing function and enlarged endolymphatic hydrops were not recovered. These results indicate that DNAJC14 overexpression ameliorates the cochlear degeneration caused by misfolded pendrin and might be a potential therapeutic target for DFNB4.
Collapse
Affiliation(s)
- Hye Ji Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Hyun Jae Lee
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Jin Young Choi
- Department of Microbiology, College of Veterinary Medicine, Chonbuk National University, Iksan City 54596, Republic of Korea
| | - Ik Hyun Jeon
- Department of Ophthalmology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Byunghwa Noh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Sushil Devkota
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Laboratory Animal Research Center, Yonsei University, Seoul 03722, Republic of Korea
| | - Seong Kug Eo
- Department of Microbiology, College of Veterinary Medicine, Chonbuk National University, Iksan City 54596, Republic of Korea
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
- Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Jinsei Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
- Corresponding author: Jinsei Jung, Department of Otorhinolaryngology, Yonsei University College of Medicine, 134 Sinchon-dong, Seodaemun-gu, Seoul 120-752, Korea.
| |
Collapse
|
14
|
Kim MA, Kim SH, Ryu N, Ma JH, Kim YR, Jung J, Hsu CJ, Choi JY, Lee KY, Wangemann P, Bok J, Kim UK. Gene therapy for hereditary hearing loss by SLC26A4 mutations in mice reveals distinct functional roles of pendrin in normal hearing. Theranostics 2019; 9:7184-7199. [PMID: 31695761 PMCID: PMC6831294 DOI: 10.7150/thno.38032] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
Rationale: Mutations of SLC26A4 that abrogate pendrin, expressed in endolymphatic sac, cochlea and vestibule, are known to cause autosomal recessive sensorineural hearing loss with enlargement of the membranous labyrinth. This is the first study to demonstrate the feasibility of gene therapy for pendrin-related hearing loss. Methods: We used a recombinant viral vector to transfect Slc26a4 cDNA into embryonic day 12.5 otocysts of pendrin-deficient knock-out (Slc26a4∆/∆ ) and pendrin-deficient knock-in (Slc26a4tm1Dontuh/tm1Dontuh ) mice. Results: Local gene-delivery resulted in spatially and temporally limited pendrin expression, prevented enlargement, failed to restore vestibular function, but succeeded in the restoration of hearing. Restored hearing phenotypes included normal hearing as well as sudden, fluctuating, and progressive hearing loss. Conclusion: Our study illustrates the feasibility of gene therapy for pendrin-related hearing loss, suggests differences in the requirement of pendrin between the cochlea and the vestibular labyrinth, and documents that insufficient pendrin expression during late embryonal and early postnatal development of the inner ear can cause sudden, fluctuating and progressive hearing loss without obligatory enlargement of the membranous labyrinth.
Collapse
Affiliation(s)
- Min-A Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung Huhn Kim
- Department of Otorhinolaryngology, Head and Neck Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Nari Ryu
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-Hyun Ma
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ye-Ri Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jinsei Jung
- Department of Otorhinolaryngology, Head and Neck Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chuan-Jen Hsu
- Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jae Young Choi
- Department of Otorhinolaryngology, Head and Neck Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kyu-Yup Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Philine Wangemann
- Department of Anatomy and Physiology, Kansas State University, Manhattan, United States of America
| | - Jinwoong Bok
- Department of Otorhinolaryngology, Head and Neck Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- BK21PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
15
|
|
16
|
Yu S, Choi HJ, Lee JS, Lee HJ, Rim JH, Choi JY, Gee HY, Jung J. A novel early truncation mutation in OTOG causes prelingual mild hearing loss without vestibular dysfunction. Eur J Med Genet 2018; 62:81-84. [PMID: 29800624 DOI: 10.1016/j.ejmg.2018.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 05/09/2018] [Accepted: 05/21/2018] [Indexed: 01/30/2023]
Abstract
OTOG was identified as a nonsyndrmoic hearing loss gene in 2012 in two families with nonprogressive mild-to-moderate hearing loss. However, no further literature have this gene for nonsyndromic hearing loss. Furthermore, it is still unclear whether vestibular impairment is involved or not in patients with mutations in OTOG. This study presents a validated second report for homozygous causative mutations in OTOG of mild hearing loss. Whole exome sequencing (WES) was performed in a five-year-old male proband with mild hearing loss. The analysis of WES revealed a homozygous truncating mutation (c.330C > G; p.Tyr110*) in OTOG. The identified novel mutation, p.Tyr110*, leads to a null allele based on the fact that early truncated protein contains no functional domain of otogelin. While defects in otogelin previously reported to result in hearing loss and vestibular dysfunction, p.Tyr110* only caused nonsydromic and nonprogressive hearing loss without any vestibular impairment, indicating that vestibular phenotype would be variable. Given that mild hearing loss is not easy to be detected early, mutations of OTOG may be more prevalent than reported. Therefore, genetic evaluation for OTOG should be considered in children with mild hearing loss with/without vestibular dysfunction.
Collapse
Affiliation(s)
- Seyoung Yu
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hye Ji Choi
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Joon Suk Lee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyun Jae Lee
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - John Hoon Rim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jae Young Choi
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Jinsei Jung
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
17
|
Qu C, Liang F, Long Q, Zhao M, Shang H, Fan L, Wang L, Foster J, Yan D, Liu X. Genetic screening revealed usher syndrome in a paediatric Chinese patient. HEARING BALANCE AND COMMUNICATION 2017; 15:98-106. [PMID: 30800556 DOI: 10.1080/21695717.2017.1321217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Introduction Usher syndrome is the most common cause of hereditary deaf-blindness. Three clinical subtypes have been classified. Usher syndrome type I is the most severe subtype characterized by congenital severe-to-profound hearing loss, retinitis pigmentosa and vestibular dysfunction. Methods One family was analyzed and the analysis included the combination of a custom capture/next-generation sequencing panel of 180 known deafness gene, Sanger sequencing and bioinformatics approaches. Results Compound heterozygous mutations in the MYO7A gene: a known missense mutation c.494C>T (p.Thr165Met) and a novel missense mutation c.6113G>A (p.Gly2038Glu) were identified in a proband. This Chinese hearing-impaired child was misdiagnosed as non-syndromic hearing loss which was later changed to the diagnosis of Usher syndrome type I after comprehensive audiometric, vestibular and ophthalmological examinations at 9 years old. Conclusions Due to the features of genetic heterogeneity and variation in clinical manifestation, molecular diagnosis and ophthalmological examinations by skilled ophthalmologists with knowledge of Usher syndrome should be suggested as a routine assessment which may improve the accuracy and reliability of etiological diagnosis for hearing loss.
Collapse
Affiliation(s)
- Chunyan Qu
- China Rehabilitation and Research Center for Deaf Children, Beijing 100029, China
| | - Fenghe Liang
- Department of Otolaryngology-Head and Neck Surgery, Capital Medical University, Beijing Tongren Hospital, Beijing 100730, China
| | - Qin Long
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Min Zhao
- China Rehabilitation and Research Center for Deaf Children, Beijing 100029, China
| | - Haiqiong Shang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Lynn Fan
- BSc, University of Miami, Miami, FL 33136, USA
| | - Li Wang
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Joseph Foster
- Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami, FL 33136, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xuezhong Liu
- Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami, FL 33136, USA.,Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Dr. John T. Macdonald Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|