1
|
Fabrizio-Stover E, Wu J, Lang H, Harris KC. Middle-aged CBA/CaJ mice exhibit auditory dysfunction in background noise. Hear Res 2025; 461:109259. [PMID: 40194356 DOI: 10.1016/j.heares.2025.109259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025]
Abstract
Aging is associated with deficits in auditory functioning. Characterization of auditory deficits that originate in middle-age is crucial for understanding the initial age-related functional impairments and the spatio-temporal progression of age-related auditory pathophysiology. Early age-related deficits in auditory processing are evident in difficult listening conditions, such as background noise, before becoming evident in quiet. To investigate the effect of noise on age-related auditory dysfunction, we collected suprathreshold auditory brainstem responses (ABRs) from young, middle-aged, and aged CBA/CaJ mice in quiet and broad-band background noise. We utilized multiple ABR metrics, including phase locking value (PLV), a measure of neural synchrony correlated to speech-in-noise understanding in humans. Despite no differences in auditory processing in quiet between young and middle-aged mice, middle-aged mice exhibited a distinct auditory phenotype from both young and aged mice in background noise conditions. We found that noise significantly decreased amplitude in middle-aged mice more than in young and aged mice. Noise significantly increased latencies for wave I and V in young mice, but only affected wave V in middle-aged mice and did not affect aged latencies. Noise significantly decreased PLV in middle-aged mice to a greater extent than in young mice, but to a lesser extent in aged mice. These results show that middle-aged mice have a distinct, auditory dysfunction phenotype evident in background noise. Our data show that suprathreshold auditory function in noise can identify early age-related hearing loss and can be used as a sensitive tool for detecting auditory dysfunction in normal hearing animal models.
Collapse
Affiliation(s)
- E Fabrizio-Stover
- Department of Otolaryngology - Head & Neck Surgery, Medical University of South Carolina, USA; Department of Pathology & Laboratory Medicine, Medical University of South Carolina, USA.
| | - J Wu
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, USA
| | - H Lang
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, USA
| | - K C Harris
- Department of Otolaryngology - Head & Neck Surgery, Medical University of South Carolina, USA
| |
Collapse
|
2
|
Li W, Xu B, Huang Y, Wang X, Yu D. Rodent models in sensorineural hearing loss research: A comprehensive review. Life Sci 2024; 358:123156. [PMID: 39442868 DOI: 10.1016/j.lfs.2024.123156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Sensorineural hearing loss (SNHL) constitutes a major global health challenge, affecting millions of individuals and substantially impairing social integration and quality of life. The complexity of the auditory system and the multifaceted nature of SNHL necessitate advanced methodologies to understand its etiology, progression, and potential therapeutic interventions. This review provides a comprehensive overview of the current animal models used in SNHL research, focusing on their selection based on specific characteristics and their contributions to elucidating pathophysiological mechanisms and evaluating novel treatment strategies. It discusses the most commonly used rodent models in hearing research, including mice, rats, guinea pigs, Mongolian gerbils, and chinchillas. Through a comparative analysis, this review underscores the importance of selecting models that align with specific research objectives in SNHL studies, discussing the advantages and limitations of each model. By advocating for a multidisciplinary approach that leverages the strengths of various animal models with technological advancements, this review aims to facilitate significant advancements in the prevention, diagnosis, and treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
3
|
Williams IR, Ryugo DK. Bilateral and symmetric glycinergic and glutamatergic projections from the LSO to the IC in the CBA/CaH mouse. Front Neural Circuits 2024; 18:1430598. [PMID: 39184455 PMCID: PMC11341401 DOI: 10.3389/fncir.2024.1430598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/10/2024] [Indexed: 08/27/2024] Open
Abstract
Auditory space has been conceptualized as a matrix of systematically arranged combinations of binaural disparity cues that arise in the superior olivary complex (SOC). The computational code for interaural time and intensity differences utilizes excitatory and inhibitory projections that converge in the inferior colliculus (IC). The challenge is to determine the neural circuits underlying this convergence and to model how the binaural cues encode location. It has been shown that midbrain neurons are largely excited by sound from the contralateral ear and inhibited by sound leading at the ipsilateral ear. In this context, ascending projections from the lateral superior olive (LSO) to the IC have been reported to be ipsilaterally glycinergic and contralaterally glutamatergic. This study used CBA/CaH mice (3-6 months old) and applied unilateral retrograde tracing techniques into the IC in conjunction with immunocytochemical methods with glycine and glutamate transporters (GlyT2 and vGLUT2, respectively) to analyze the projection patterns from the LSO to the IC. Glycinergic and glutamatergic neurons were spatially intermixed within the LSO, and both types projected to the IC. For GlyT2 and vGLUT2 neurons, the average percentage of ipsilaterally and contralaterally projecting cells was similar (ANOVA, p = 0.48). A roughly equal number of GlyT2 and vGLUT2 neurons did not project to the IC. The somatic size and shape of these neurons match the descriptions of LSO principal cells. A minor but distinct population of small (< 40 μm2) neurons that labeled for GlyT2 did not project to the IC; these cells emerge as candidates for inhibitory local circuit neurons. Our findings indicate a symmetric and bilateral projection of glycine and glutamate neurons from the LSO to the IC. The differences between our results and those from previous studies suggest that species and habitat differences have a significant role in mechanisms of binaural processing and highlight the importance of research methods and comparative neuroscience. These data will be important for modeling how excitatory and inhibitory systems converge to create auditory space in the CBA/CaH mouse.
Collapse
Affiliation(s)
- Isabella R. Williams
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - David K. Ryugo
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
- Department of Otolaryngology, Head, Neck and Skull Base Surgery, St. Vincent’s Hospital, Darlinghurst, NSW, Australia
| |
Collapse
|
4
|
Postolache M, Connelly Graham CJ, Burke K, Lauer AM, Xu-Friedman MA. Effects of Age on Responses of Principal Cells of the Mouse Anteroventral Cochlear Nucleus in Quiet and Noise. eNeuro 2024; 11:ENEURO.0215-24.2024. [PMID: 39134409 PMCID: PMC11320020 DOI: 10.1523/eneuro.0215-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024] Open
Abstract
Older listeners often report difficulties understanding speech in noisy environments. It is important to identify where in the auditory pathway hearing-in-noise deficits arise to develop appropriate therapies. We tested how encoding of sounds is affected by masking noise at early stages of the auditory pathway by recording responses of principal cells in the anteroventral cochlear nucleus (AVCN) of aging CBA/CaJ and C57BL/6J mice in vivo. Previous work indicated that masking noise shifts the dynamic range of single auditory nerve fibers (ANFs), leading to elevated tone thresholds. We hypothesized that such threshold shifts could contribute to increased hearing-in-noise deficits with age if susceptibility to masking increased in AVCN units. We tested this by recording the responses of AVCN principal neurons to tones in the presence and absence of masking noise. Surprisingly, we found that masker-induced threshold shifts decreased with age in primary-like units and did not change in choppers. In addition, spontaneous activity decreased in primary-like and chopper units of old mice, with no change in dynamic range or tuning precision. In C57 mice, which undergo early-onset hearing loss, units showed similar changes in threshold and spontaneous rate at younger ages, suggesting they were related to hearing loss and not simply aging. These findings suggest that sound information carried by AVCN principal cells remains largely unchanged with age. Therefore, hearing-in-noise deficits may result from other changes during aging, such as distorted across-channel input from the cochlea and changes in sound coding at later stages of the auditory pathway.
Collapse
Affiliation(s)
- Maggie Postolache
- Department of Biological Sciences, University at Buffalo, State University of NewYork, Buffalo, New York 14260
| | - Catherine J Connelly Graham
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Kali Burke
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Solomon H. Snyder Dept. of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Matthew A Xu-Friedman
- Department of Biological Sciences, University at Buffalo, State University of NewYork, Buffalo, New York 14260
| |
Collapse
|
5
|
Montazeri K, Farhadi M, Akbarnejad Z, Asadpour A, Majdabadi A, Fekrazad R, Mahmoudian S. Acoustic and optoacoustic stimulations in auditory brainstem response test in salicylate induced tinnitus. Sci Rep 2023; 13:11930. [PMID: 37488197 PMCID: PMC10366222 DOI: 10.1038/s41598-023-39033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023] Open
Abstract
As a common debilitating disorder worldwide, tinnitus requires objective assessment. In the auditory brainstem response (ABR) test, auditory potentials can be evoked by acoustic or optoacoustic (induced by laser light) stimulations. In order to use the ABR test in the objective assessment of tinnitus, in this study, acoustic ABR (aABR) and optoacoustic ABR (oABR) were compared in the control and tinnitus groups to determine the changes caused by sodium salicylate (SS)-induced tinnitus in rat. In both aABR and oABR, wave II was the most prominent waveform, and the amplitude of wave II evoked by oABR was significantly higher than that of aABR. Brainstem transmission time (BTT), which represents the time required for a neural stimulation to progress from the auditory nerve ending to the inferior colliculus, was significantly shorter in oABR. In the tinnitus group, there was a significant increase in the threshold of both ABRs and a significant decrease in the amplitude of wave II only in the oABR. Based on our findings, the ABR test has the potential to be used in the assessment of SS-induced tinnitus, but oABR has the advantages of producing more prominent waveforms and significantly reducing the amplitude of wave II in tinnitus.
Collapse
Affiliation(s)
- Katayoon Montazeri
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Hazrate Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, 1445613131, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Hazrate Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, 1445613131, Iran
| | - Zeinab Akbarnejad
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Hazrate Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, 1445613131, Iran
| | - Abdoreza Asadpour
- Intelligent Systems Research Centre, Ulster University, Derry Campus, Derry~Londonderry, Northern Ireland, UK
| | - Abbas Majdabadi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
| | - Saeid Mahmoudian
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Hazrate Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, 1445613131, Iran.
| |
Collapse
|
6
|
Ryugo DK, Milinkeviciute G. Differential projections from the cochlear nucleus to the inferior colliculus in the mouse. Front Neural Circuits 2023; 17:1229746. [PMID: 37554670 PMCID: PMC10405501 DOI: 10.3389/fncir.2023.1229746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/26/2023] [Indexed: 08/10/2023] Open
Abstract
The cochlear nucleus (CN) is often regarded as the gateway to the central auditory system because it initiates all ascending pathways. The CN consists of dorsal and ventral divisions (DCN and VCN, respectively), and whereas the DCN functions in the analysis of spectral cues, circuitry in VCN is part of the pathway focused on processing binaural information necessary for sound localization in horizontal plane. Both structures project to the inferior colliculus (IC), which serves as a hub for the auditory system because pathways ascending to the forebrain and descending from the cerebral cortex converge there to integrate auditory, motor, and other sensory information. DCN and VCN terminations in the IC are thought to overlap but given the differences in VCN and DCN architecture, neuronal properties, and functions in behavior, we aimed to investigate the pattern of CN connections in the IC in more detail. This study used electrophysiological recordings to establish the frequency sensitivity at the site of the anterograde dye injection for the VCN and DCN of the CBA/CaH mouse. We examined their contralateral projections that terminate in the IC. The VCN projections form a topographic sheet in the central nucleus (CNIC). The DCN projections form a tripartite set of laminar sheets; the lamina in the CNIC extends into the dorsal cortex (DC), whereas the sheets to the lateral cortex (LC) and ventrolateral cortex (VLC) are obliquely angled away. These fields in the IC are topographic with low frequencies situated dorsally and progressively higher frequencies lying more ventrally and/or laterally; the laminae nestle into the underlying higher frequency fields. The DCN projections are complementary to the somatosensory modules of layer II of the LC but both auditory and spinal trigeminal terminations converge in the VLC. While there remains much to be learned about these circuits, these new data on auditory circuits can be considered in the context of multimodal networks that facilitate auditory stream segregation, signal processing, and species survival.
Collapse
Affiliation(s)
- David K. Ryugo
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Kensington, NSW, Australia
- Department of Otolaryngology, Head and Neck and Skull Base Surgery, St. Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - Giedre Milinkeviciute
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
7
|
Tarnovsky YC, Taiber S, Nissan Y, Boonman A, Assaf Y, Wilkinson GS, Avraham KB, Yovel Y. Bats experience age-related hearing loss (presbycusis). Life Sci Alliance 2023; 6:e202201847. [PMID: 36997281 PMCID: PMC10067528 DOI: 10.26508/lsa.202201847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
Hearing loss is a hallmark of aging, typically initially affecting the higher frequencies. In echolocating bats, the ability to discern high frequencies is essential. However, nothing is known about age-related hearing loss in bats, and they are often assumed to be immune to it. We tested the hearing of 47 wild Egyptian fruit bats by recording their auditory brainstem response and cochlear microphonics, and we also assessed the cochlear histology in four of these bats. We used the bats' DNA methylation profile to evaluate their age and found that bats exhibit age-related hearing loss, with more prominent deterioration at the higher frequencies. The rate of the deterioration was ∼1 dB per year, comparable to the hearing loss observed in humans. Assessing the noise in the fruit bat roost revealed that these bats are exposed to continuous immense noise-mostly of social vocalizations-supporting the assumption that bats might be partially resistant to loud noise. Thus, in contrast to previous assumptions, our results suggest that bats constitute a model animal for the study of age-related hearing loss.
Collapse
Affiliation(s)
- Yifat Chaya Tarnovsky
- School of Neurobiology, Biochemistry, and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Taiber
- School of Neurobiology, Biochemistry, and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yomiran Nissan
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Arjan Boonman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Assaf
- School of Neurobiology, Biochemistry, and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | - Karen B Avraham
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Li HY, Zhu MZ, Yuan XR, Guo ZX, Pan YD, Li YQ, Zhu XH. A thalamic-primary auditory cortex circuit mediates resilience to stress. Cell 2023; 186:1352-1368.e18. [PMID: 37001500 DOI: 10.1016/j.cell.2023.02.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/09/2023] [Accepted: 02/23/2023] [Indexed: 04/01/2023]
Abstract
Resilience enables mental elasticity in individuals when rebounding from adversity. In this study, we identified a microcircuit and relevant molecular adaptations that play a role in natural resilience. We found that activation of parvalbumin (PV) interneurons in the primary auditory cortex (A1) by thalamic inputs from the ipsilateral medial geniculate body (MG) is essential for resilience in mice exposed to chronic social defeat stress. Early attacks during chronic social defeat stress induced short-term hyperpolarizations of MG neurons projecting to the A1 (MGA1 neurons) in resilient mice. In addition, this temporal neural plasticity of MGA1 neurons initiated synaptogenesis onto thalamic PV neurons via presynaptic BDNF-TrkB signaling in subsequent stress responses. Moreover, optogenetic mimicking of the short-term hyperpolarization of MGA1 neurons, rather than merely activating MGA1 neurons, elicited innate resilience mechanisms in response to stress and achieved sustained antidepressant-like effects in multiple animal models, representing a new strategy for targeted neuromodulation.
Collapse
|
9
|
Morse K, Vander Werff KR. Onset-offset cortical auditory evoked potential amplitude differences indicate auditory cortical hyperactivity and reduced inhibition in people with tinnitus. Clin Neurophysiol 2023; 149:223-233. [PMID: 36963993 DOI: 10.1016/j.clinph.2023.02.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/26/2022] [Accepted: 02/05/2023] [Indexed: 02/25/2023]
Abstract
OBJECTIVE The current study investigates evidence of hypothesized reduced central inhibition and/or increased excitation in individuals with tinnitus by evaluating cortical auditory onset versus offset responses. METHODS Cortical auditory evoked potentials (CAEPs) were recorded to the onset and offset of 3-second white noise stimuli in tinnitus and control groups matched in pairs by age, hearing, and sex (n = 26 total). Independent t-tests and 2-way mixed model ANOVA were used to evaluate onset-offset differences in amplitude, area, and latency of CAEP components by group. The predictive influence of tinnitus presence and associated participant characteristics on CAEP outcomes was assessed by multiple regression proportional reduction in error. RESULTS The tinnitus group had significantly larger onset minus offset P2 amplitudes (ΔP2 amplitudes) than control group participants. No other component variables differed significantly. ΔP2 amplitude was best predicted by tinnitus status and not significantly influenced by other variables such as hearing loss or age. CONCLUSIONS Hypothesized reduced central inhibition and/or increased excitation in tinnitus participants was partially supported by a group difference in ΔP2 amplitude. SIGNIFICANCE This was the first study to evaluate CAEP onset minus offset differences to investigate changes in central excitation/inhibition in individuals with tinnitus versus controls in matched groups.
Collapse
Affiliation(s)
- Kenneth Morse
- West Virginia University, Division of Communication Sciences and Disorders, USA.
| | | |
Collapse
|
10
|
Williams IR, Filimontseva A, Connelly CJ, Ryugo DK. The lateral superior olive in the mouse: Two systems of projecting neurons. Front Neural Circuits 2022; 16:1038500. [PMID: 36338332 PMCID: PMC9630946 DOI: 10.3389/fncir.2022.1038500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023] Open
Abstract
The lateral superior olive (LSO) is a key structure in the central auditory system of mammals that exerts efferent control on cochlear sensitivity and is involved in the processing of binaural level differences for sound localization. Understanding how the LSO contributes to these processes requires knowledge about the resident cells and their connections with other auditory structures. We used standard histological stains and retrograde tracer injections into the inferior colliculus (IC) and cochlea in order to characterize two basic groups of neurons: (1) Principal and periolivary (PO) neurons have projections to the IC as part of the ascending auditory pathway; and (2) lateral olivocochlear (LOC) intrinsic and shell efferents have descending projections to the cochlea. Principal and intrinsic neurons are intermixed within the LSO, exhibit fusiform somata, and have disk-shaped dendritic arborizations. The principal neurons have bilateral, symmetric, and tonotopic projections to the IC. The intrinsic efferents have strictly ipsilateral projections, known to be tonotopic from previous publications. PO and shell neurons represent much smaller populations (<10% of principal and intrinsic neurons, respectively), have multipolar somata, reside outside the LSO, and have non-topographic, bilateral projections. PO and shell neurons appear to have widespread projections to their targets that imply a more diffuse modulatory function. The somata and dendrites of principal and intrinsic neurons form a laminar matrix within the LSO and share quantifiably similar alignment to the tonotopic axis. Their restricted projections emphasize the importance of frequency in binaural processing and efferent control for auditory perception. This study addressed and expanded on previous findings of cell types, circuit laterality, and projection tonotopy in the LSO of the mouse.
Collapse
Affiliation(s)
- Isabella R. Williams
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia,School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia,*Correspondence: Isabella R. Williams,
| | | | - Catherine J. Connelly
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia,School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - David K. Ryugo
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia,School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia,Department of Otolaryngology-Head, Neck and Skull Base Surgery, St. Vincent’s Hospital, Darlinghurst, NSW, Australia
| |
Collapse
|
11
|
Ding L, Wang J. MiR-106a facilitates the sensorineural hearing loss induced by oxidative stress by targeting connexin-43. Bioengineered 2022; 13:14080-14093. [PMID: 35730503 PMCID: PMC9342191 DOI: 10.1080/21655979.2022.2071021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is a common clinical side effect resulted from the overusing of aminoglycoside antibacterial drugs, such as gentamicin. Oxidative stress is recently evidenced to be an important inducer for SNHL, which is reported to be associated with the knockdown of connexin-43. MiR-106a is recently found as a regulator of connexin-43. The present study aims to investigate whether miR-106a is a vital mediator in the development of SNHL. Firstly, upregulated miR-106a was observed in the peripheral blood sample of SNHL patients. Glucose oxidase (GO) was utilized to induce oxidative injury in isolated rat cochlear marginal cells (MCs), followed by introducing the miR-106a inhibitor. We found that the declined proliferation ability, increased apoptosis, and activated oxidative stress in GO-stimulated MCs were dramatically abolished by the miR-106a inhibitor, accompanied by the upregulation of connexin-43. The targeting correlation between miR-106a and connexin-43 was predicted and confirmed by the dual luciferase gene reporter assay. Furthermore, the regulatory effect of miR-106a inhibitor against the proliferation, apoptosis, and oxidative stress in GO-treated MCs were dramatically abolished by the knockdown of connexin-43. Gentamicin was utilized to establish the SNHL model in rats, followed by the treatments of antagomir-106a and antagomir-106a combined with carbenoxolone, an inhibitor of connexin-43. The alleviated pathological state, reduced apoptosis, and ameliorated oxidative stress in cochlea tissues were observed in antagomir-106a treated SNHL rats, which were dramatically reversed by the co-administration of carbenoxolone. Collectively, miR-106a facilitated the SNHL induced by oxidative stress via targeting connexin-43.
Collapse
Affiliation(s)
- Lei Ding
- ENT Department, Beijing University of Chinese Medicine Subsidiary Dongfang Hospital, Beijing, China
| | - Jiaxi Wang
- ENT Department, Beijing University of Chinese Medicine Subsidiary Dongfang Hospital, Beijing, China
| |
Collapse
|
12
|
Harris KC, Bao J. Optimizing non-invasive functional markers for cochlear deafferentation based on electrocochleography and auditory brainstem responses. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:2802. [PMID: 35461487 PMCID: PMC9034896 DOI: 10.1121/10.0010317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Accumulating evidence suggests that cochlear deafferentation may contribute to suprathreshold deficits observed with or without elevated hearing thresholds, and can lead to accelerated age-related hearing loss. Currently there are no clinical diagnostic tools to detect human cochlear deafferentation in vivo. Preclinical studies using a combination of electrophysiological and post-mortem histological methods clearly demonstrate cochlear deafferentation including myelination loss, mitochondrial damages in spiral ganglion neurons (SGNs), and synaptic loss between inner hair cells and SGNs. Since clinical diagnosis of human cochlear deafferentation cannot include post-mortem histological quantification, various attempts based on functional measurements have been made to detect cochlear deafferentation. So far, those efforts have led to inconclusive results. Two major obstacles to the development of in vivo clinical diagnostics include a lack of standardized methods to validate new approaches and characterize the normative range of repeated measurements. In this overview, we examine strategies from previous studies to detect cochlear deafferentation from electrocochleography and auditory brainstem responses. We then summarize possible approaches to improve these non-invasive functional methods for detecting cochlear deafferentation with a focus on cochlear synaptopathy. We identify conceptual approaches that should be tested to associate unique electrophysiological features with cochlear deafferentation.
Collapse
Affiliation(s)
- Kelly C Harris
- Department of Otolaryngology, Head & Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, South Carolina 29425, USA
| | - Jianxin Bao
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio 44272, USA
| |
Collapse
|
13
|
Cass ND, Perkins EL, Bennett ML, Ricketts TA. Evaluating Risk of Noise-Induced Hearing Loss in Otologic Surgery. Ann Otol Rhinol Laryngol 2022; 132:35-40. [PMID: 35109716 DOI: 10.1177/00034894221075422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To evaluate risk for noise-induced hearing damage from otologic surgery-related noise exposure, given recent research indicating that noise levels previously believed to be safe and without long-term consequence may result in cochlear synaptopathy with subsequent degeneration of spiral ganglion neurons, degradation of neural transmission in response to suprathreshold acoustic stimuli, and difficulty understanding in background noise. METHODS A prospective observational study of surgeon noise exposure during otologic and neurotologic procedures was performed in a tertiary care center. Surgeon noise exposure was recorded in A- and C-weighted decibel scales (dBA, dBC), including average equivalent (LAeq) and peak (LApeak, LCpeak) levels and noise dose. RESULTS Sound measurements taken at the ear with continuous recording equipment during cadaveric otologic surgery demonstrated LAeq 80-83 dBA, LApeaks of 105 dBA, LCpeaks of 127 dBC, with noise doses of 0.9% to 6.7%. Sound level measurements during live surgery translabyrinthine approaches yielded lower LAeq of 72 to 74 dBA and lower noise doses compared with temporal bone lab measurements. Raw sound recordings during live surgery demonstrated narrow band, high frequency, high amplitude spikes between 4 and 12 kHz. CONCLUSION Noise exposure to surgeons, staff, and patients in the operating room is acceptable per NIOSH recommendations. Temporal bone lab noise exposures are greater, possibly due to poorly maintained drill systems and lack of noise shielding from microscope bulk, yet are also within NIOSH recommended levels.
Collapse
Affiliation(s)
- Nathan D Cass
- The Otology Group of Vanderbilt, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth L Perkins
- The Otology Group of Vanderbilt, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marc L Bennett
- The Otology Group of Vanderbilt, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Todd A Ricketts
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
14
|
Abstract
The auditory cortex of people with sensorineural hearing loss can be re-afferented using a cochlear implant (CI): a neural prosthesis that bypasses the damaged cells in the cochlea to directly stimulate the auditory nerve. Although CIs are the most successful neural prosthesis to date, some CI users still do not achieve satisfactory outcomes using these devices. To explain variability in outcomes, clinicians and researchers have increasingly focused their attention on neuroscientific investigations that examined how the auditory cortices respond to the electric signals that originate from the CI. This chapter provides an overview of the literature that examined how the auditory cortex changes its functional properties in response to inputs from the CI, in animal models and in humans. We focus first on the basic responses to sounds delivered through electrical hearing and, next, we examine the integrity of two fundamental aspects of the auditory system: tonotopy and processing of binaural cues. When addressing the effects of CIs in humans, we also consider speech-evoked responses. We conclude by discussing to what extent this neuroscientific literature can contribute to clinical practices and help to overcome variability in outcomes.
Collapse
Affiliation(s)
- Francesco Pavani
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy.
| | | |
Collapse
|
15
|
Xue N, Song L, Song Q, Santos-Sacchi J, Wu H, Navaratnam D. Genes related to SNPs identified by Genome-wide association studies of age-related hearing loss show restriction to specific cell types in the adult mouse cochlea. Hear Res 2021; 410:108347. [PMID: 34536825 DOI: 10.1016/j.heares.2021.108347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/19/2021] [Accepted: 08/28/2021] [Indexed: 01/11/2023]
Abstract
ARHL has been thought to result from disordered hair cell function and their loss. ARHL has a significant genetic component. We sought to determine the expression in the cochlea of genes associated with single nucleotide polymorphisms linked to ARHL. We find widespread and varying expression of genes associated with these SNPs in subtypes of cells in the cochlea identified by single-cell RNA sequencing. Genes associated with SNPs with the highest significance were preferentially expressed highly in hair cells, while genes associated with SNPs with a lower significance were expressed more universally. In addition, we find significant overlap with genesets associated with Alzheimer's disease suggesting shared mechanisms, and genesets enriched for apical cell polarity and vesicle recycling suggesting mechanisms of cell death/ dysfunction with ageing.
Collapse
Affiliation(s)
- Na Xue
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China; Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Lei Song
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China; Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Qiang Song
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA; Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Joseph Santos-Sacchi
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA; Department of Cell and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Dhasakumar Navaratnam
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA; Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
16
|
Milinkeviciute G, Chokr SM, Castro EM, Cramer KS. CX3CR1 mutation alters synaptic and astrocytic protein expression, topographic gradients, and response latencies in the auditory brainstem. J Comp Neurol 2021; 529:3076-3097. [PMID: 33797066 DOI: 10.1002/cne.25150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/04/2021] [Accepted: 03/27/2021] [Indexed: 01/14/2023]
Abstract
The precise and specialized circuitry in the auditory brainstem develops through adaptations of cellular and molecular signaling. We previously showed that elimination of microglia during development impairs synaptic pruning that leads to maturation of the calyx of Held, a large encapsulating synapse that terminates on neurons of the medial nucleus of the trapezoid body (MNTB). Microglia depletion also led to a decrease in glial fibrillary acidic protein (GFAP), a marker for mature astrocytes. Here, we investigated the role of signaling through the fractalkine receptor (CX3CR1), which is expressed by microglia and mediates communication with neurons. CX3CR1-/- and wild-type mice were studied before and after hearing onset and at 9 weeks of age. Levels of GFAP were significantly increased in the MNTB in mutants at 9 weeks. Pruning was unaffected at the calyx of Held, but we found an increase in expression of glycinergic synaptic marker in mutant mice at P14, suggesting an effect on maturation of inhibitory inputs. We observed disrupted tonotopic gradients of neuron and calyx size in MNTB in mutant mice. Auditory brainstem recording (ABR) revealed that CX3CR1-/- mice had normal thresholds and amplitudes but decreased latencies and interpeak latencies, particularly for the highest frequencies. These results demonstrate that disruption of fractalkine signaling has a significant effect on auditory brainstem development. Our findings highlight the importance of neuron-microglia-astrocyte communication in pruning of inhibitory synapses and establishment of tonotopic gradients early in postnatal development.
Collapse
Affiliation(s)
- Giedre Milinkeviciute
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Sima M Chokr
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Emily M Castro
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| |
Collapse
|
17
|
Johannesen PT, Lopez-Poveda EA. Age-related central gain compensation for reduced auditory nerve output for people with normal audiograms, with and without tinnitus. iScience 2021; 24:102658. [PMID: 34151241 PMCID: PMC8192693 DOI: 10.1016/j.isci.2021.102658] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/24/2021] [Accepted: 05/25/2021] [Indexed: 11/30/2022] Open
Abstract
Central gain compensation for reduced auditory nerve output has been hypothesized as a mechanism for tinnitus with a normal audiogram. Here, we investigate if gain compensation occurs with aging. For 94 people (aged 12-68 years, 64 women, 7 tinnitus) with normal or close-to-normal audiograms, the amplitude of wave I of the auditory brainstem response decreased with increasing age but was not correlated with wave V amplitude after accounting for age-related subclinical hearing loss and cochlear damage, a result indicative of age-related gain compensation. The correlations between age and wave I/III or III/V amplitude ratios suggested that compensation occurs at the wave III generator site. For each one of the seven participants with non-pulsatile tinnitus, the amplitude of wave I, wave V, and the wave I/V amplitude ratio were well within the confidence limits of the non-tinnitus participants. We conclude that increased central gain occurs with aging and is not specific to tinnitus.
Collapse
Affiliation(s)
- Peter T Johannesen
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, 37007 Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, 37007 Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, 37007 Salamanca, Spain.,Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
18
|
Suthakar K, Ryugo DK. Projections from the ventral nucleus of the lateral lemniscus to the cochlea in the mouse. J Comp Neurol 2021; 529:2995-3012. [PMID: 33754334 DOI: 10.1002/cne.25143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/01/2023]
Abstract
Auditory efferents originate in the central auditory system and project to the cochlea. Although the specific anatomy of the olivocochlear (OC) efferents can vary between species, two types of auditory efferents have been identified based upon the general location of their cell bodies and their distinctly different axon terminations in the organ of Corti. In the mouse, the relatively small somata of the lateral (LOC) efferents reside in the lateral superior olive (LSO), have unmyelinated axons, and terminate around ipsilateral inner hair cells (IHCs), primarily against the afferent processes of type I auditory nerve fibers. In contrast, the larger somata of the medial (MOC) efferents are distributed in the ventral nucleus of the trapezoid body (VNTB), have myelinated axons, and terminate bilaterally against the base of multiple outer hair cells (OHCs). Using in vivo retrograde cell body marking, anterograde axon tracing, immunohistochemistry, and electron microscopy, we have identified a group of efferent neurons in mouse, whose cell bodies reside in the ventral nucleus of the lateral lemniscus (VNLL). By virtue of their location, we call them dorsal efferent (DE) neurons. Labeled DE cells were immuno-negative for tyrosine hydroxylase, glycine, and GABA, but immuno-positive for choline acetyltransferase. Morphologically, DEs resembled LOC efferents by their small somata, unmyelinated axons, and ipsilateral projection to IHCs. These three classes of efferent neurons all project axons directly to the cochlea and exhibit cholinergic staining characteristics. The challenge is to discover the contributions of this new population of neurons to auditory efferent function.
Collapse
Affiliation(s)
- Kirupa Suthakar
- Hearing Research, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
| | - David K Ryugo
- Hearing Research, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia.,Department of Otolaryngology, Head, Neck & Skull Base Surgery, St. Vincent's Hospital, Sydney, New South Wales, Australia.,The Johns Hopkins University School of Medicine, Otolaryngology-HNS, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Marchetta P, Rüttiger L, Hobbs AJ, Singer W, Knipper M. The role of cGMP signalling in auditory processing in health and disease. Br J Pharmacol 2021; 179:2378-2393. [PMID: 33768519 DOI: 10.1111/bph.15455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 11/29/2022] Open
Abstract
cGMP is generated by the cGMP-forming guanylyl cyclases (GCs), the intracellular nitric oxide (NO)-sensitive (soluble) guanylyl cyclase (sGC) and transmembrane GC (e.g. GC-A and GC-B). In summarizing the particular role of cGMP signalling for hearing, we show that GC generally do not interfere significantly with basic hearing function but rather sustain a healthy state for proper temporal coding, fast discrimination and adjustments during injury. sGC is critical for the integrity of the first synapse in the ascending auditory pathway, the inner hair cell synapse. GC-A promotes hair cell stability under stressful conditions such as acoustic trauma or ageing. GC-B plays a role in the development of efferent feed-back and gain control. Regarding the crucial role hearing has for language development, speech discrimination and cognitive brain functions, differential pharmaceutical targeting of GCs offers therapeutic promise for the restoration of hearing.
Collapse
Affiliation(s)
- Philine Marchetta
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Wibke Singer
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
Auditory Brainstem Deficits from Early Treatment with a CSF1R Inhibitor Largely Recover with Microglial Repopulation. eNeuro 2021; 8:ENEURO.0318-20.2021. [PMID: 33558268 PMCID: PMC8009669 DOI: 10.1523/eneuro.0318-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/10/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022] Open
Abstract
Signaling between neurons and glia is necessary for the formation of functional neural circuits. A role for microglia in the maturation of connections in the medial nucleus of the trapezoid body (MNTB) was previously demonstrated by postnatal microglial elimination using a colony stimulating factor 1 receptor (CSF1R). Defective pruning of calyces of Held and significant reduction of the mature astrocyte marker glial fibrillary acidic protein (GFAP) were observed after hearing onset. Here, we investigated the time course required for microglia to populate the mouse MNTB after cessation of CSF1R inhibitor treatment. We then examined whether defects seen after microglial depletion were rectified by microglial repopulation. We found that microglia returned to control levels at four weeks of age (18 d postcessation of treatment). Calyceal innervation of MNTB neurons was comparable to control levels at four weeks and GFAP expression recovered by seven weeks. We further investigated the effects of microglia elimination and repopulation on auditory function using auditory brainstem recordings (ABRs). Temporary microglial depletion significantly elevated auditory thresholds in response to 4. 8, and 12 kHz at four weeks. Treatment significantly affected latencies, interpeak latencies, and amplitudes of all the ABR peaks in response to many of the frequencies tested. These effects largely recovered by seven weeks. These findings highlight the functions of microglia in the formation of auditory neural circuits early in development. Further, the results suggest that microglia retain their developmental functions beyond the period of circuit refinement.
Collapse
|
21
|
Age-related hearing loss pertaining to potassium ion channels in the cochlea and auditory pathway. Pflugers Arch 2020; 473:823-840. [PMID: 33336302 PMCID: PMC8076138 DOI: 10.1007/s00424-020-02496-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/27/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Age-related hearing loss (ARHL) is the most prevalent sensory deficit in the elderly and constitutes the third highest risk factor for dementia. Lifetime noise exposure, genetic predispositions for degeneration, and metabolic stress are assumed to be the major causes of ARHL. Both noise-induced and hereditary progressive hearing have been linked to decreased cell surface expression and impaired conductance of the potassium ion channel KV7.4 (KCNQ4) in outer hair cells, inspiring future therapies to maintain or prevent the decline of potassium ion channel surface expression to reduce ARHL. In concert with KV7.4 in outer hair cells, KV7.1 (KCNQ1) in the stria vascularis, calcium-activated potassium channels BK (KCNMA1) and SK2 (KCNN2) in hair cells and efferent fiber synapses, and KV3.1 (KCNC1) in the spiral ganglia and ascending auditory circuits share an upregulated expression or subcellular targeting during final differentiation at hearing onset. They also share a distinctive fragility for noise exposure and age-dependent shortfalls in energy supply required for sustained surface expression. Here, we review and discuss the possible contribution of select potassium ion channels in the cochlea and auditory pathway to ARHL. We postulate genes, proteins, or modulators that contribute to sustained ion currents or proper surface expressions of potassium channels under challenging conditions as key for future therapies of ARHL.
Collapse
|
22
|
Kobrina A, Schrode KM, Screven LA, Javaid H, Weinberg MM, Brown G, Board R, Villavisanis DF, Dent ML, Lauer AM. Linking anatomical and physiological markers of auditory system degeneration with behavioral hearing assessments in a mouse (Mus musculus) model of age-related hearing loss. Neurobiol Aging 2020; 96:87-103. [PMID: 32950782 DOI: 10.1016/j.neurobiolaging.2020.08.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 08/03/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022]
Abstract
Age-related hearing loss is a very common sensory disability, affecting one in three older adults. Establishing a link between anatomical, physiological, and behavioral markers of presbycusis in a mouse model can improve the understanding of this disorder in humans. We measured age-related hearing loss for a variety of acoustic signals in quiet and noisy environments using an operant conditioning procedure and investigated the status of peripheral structures in CBA/CaJ mice. Mice showed the greatest degree of hearing loss in the last third of their lifespan, with higher thresholds in noisy than in quiet conditions. Changes in auditory brainstem response thresholds and waveform morphology preceded behavioral hearing loss onset. Loss of hair cells, auditory nerve fibers, and signs of stria vascularis degeneration were observed in old mice. The present work underscores the difficulty in ascribing the primary cause of age-related hearing loss to any particular type of cellular degeneration. Revealing these complex structure-function relationships is critical for establishing successful intervention strategies to restore hearing or prevent presbycusis.
Collapse
Affiliation(s)
| | - Katrina M Schrode
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Laurel A Screven
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Hamad Javaid
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Madison M Weinberg
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Garrett Brown
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Ryleigh Board
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Dillan F Villavisanis
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Micheal L Dent
- Department of Psychology, University at Buffalo SUNY, Buffalo, NY, USA
| | - Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
23
|
Persic D, Thomas ME, Pelekanos V, Ryugo DK, Takesian AE, Krumbholz K, Pyott SJ. Regulation of auditory plasticity during critical periods and following hearing loss. Hear Res 2020; 397:107976. [PMID: 32591097 PMCID: PMC8546402 DOI: 10.1016/j.heares.2020.107976] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/15/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Sensory input has profound effects on neuronal organization and sensory maps in the brain. The mechanisms regulating plasticity of the auditory pathway have been revealed by examining the consequences of altered auditory input during both developmental critical periods—when plasticity facilitates the optimization of neural circuits in concert with the external environment—and in adulthood—when hearing loss is linked to the generation of tinnitus. In this review, we summarize research identifying the molecular, cellular, and circuit-level mechanisms regulating neuronal organization and tonotopic map plasticity during developmental critical periods and in adulthood. These mechanisms are shared in both the juvenile and adult brain and along the length of the auditory pathway, where they serve to regulate disinhibitory networks, synaptic structure and function, as well as structural barriers to plasticity. Regulation of plasticity also involves both neuromodulatory circuits, which link plasticity with learning and attention, as well as ascending and descending auditory circuits, which link the auditory cortex and lower structures. Further work identifying the interplay of molecular and cellular mechanisms associating hearing loss-induced plasticity with tinnitus will continue to advance our understanding of this disorder and lead to new approaches to its treatment. During CPs, brain plasticity is enhanced and sensitive to acoustic experience. Enhanced plasticity can be reinstated in the adult brain following hearing loss. Molecular, cellular, and circuit-level mechanisms regulate CP and adult plasticity. Plasticity resulting from hearing loss may contribute to the emergence of tinnitus. Modifying plasticity in the adult brain may offer new treatments for tinnitus.
Collapse
Affiliation(s)
- Dora Persic
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands
| | - Maryse E Thomas
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Vassilis Pelekanos
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - David K Ryugo
- Hearing Research, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia; School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia; Department of Otolaryngology, Head, Neck & Skull Base Surgery, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Anne E Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Katrin Krumbholz
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - Sonja J Pyott
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
24
|
Heeringa AN, Zhang L, Ashida G, Beutelmann R, Steenken F, Köppl C. Temporal Coding of Single Auditory Nerve Fibers Is Not Degraded in Aging Gerbils. J Neurosci 2020. [PMID: 31719164 DOI: 10.1101/2020.02.10.942011] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
People suffering from age-related hearing loss typically present with deficits in temporal processing tasks. Temporal processing deficits have also been shown in single-unit studies at the level of the auditory brainstem, midbrain, and cortex of aged animals. In this study, we explored whether temporal coding is already affected at the level of the input to the central auditory system. Single-unit auditory nerve fiber recordings were obtained from 41 Mongolian gerbils of either sex, divided between young, middle-aged, and old gerbils. Temporal coding quality was evaluated as vector strength in response to tones at best frequency, and by constructing shuffled and cross-stimulus autocorrelograms, and reverse correlations, from responses to 1 s noise bursts at 10-30 dB sensation level (dB above threshold). At comparable sensation levels, all measures showed that temporal coding was not altered in auditory nerve fibers of aging gerbils. Furthermore, both temporal fine structure and envelope coding remained unaffected. However, spontaneous rates were decreased in aging gerbils. Importantly, despite elevated pure tone thresholds, the frequency tuning of auditory nerve fibers was not affected. These results suggest that age-related temporal coding deficits arise more centrally, possibly due to a loss of auditory nerve fibers (or their peripheral synapses) but not due to qualitative changes in the responses of remaining auditory nerve fibers. The reduced spontaneous rate and elevated thresholds, but normal frequency tuning, of aged auditory nerve fibers can be explained by the well known reduction of endocochlear potential due to strial dysfunction in aged gerbils.SIGNIFICANCE STATEMENT As our society ages, age-related hearing deficits become ever more prevalent. Apart from decreased hearing sensitivity, elderly people often suffer from a reduced ability to communicate in daily settings, which is thought to be caused by known age-related deficits in auditory temporal processing. The current study demonstrated, using several different stimuli and analysis techniques, that these putative temporal processing deficits are not apparent in responses of single-unit auditory nerve fibers of quiet-aged gerbils. This suggests that age-related temporal processing deficits may develop more central to the auditory nerve, possibly due to a reduced population of active auditory nerve fibers, which will be of importance for the development of treatments for age-related hearing disorders.
Collapse
Affiliation(s)
- Amarins N Heeringa
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Lichun Zhang
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Go Ashida
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Rainer Beutelmann
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Friederike Steenken
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Christine Köppl
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
25
|
C Kohrman D, Wan G, Cassinotti L, Corfas G. Hidden Hearing Loss: A Disorder with Multiple Etiologies and Mechanisms. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a035493. [PMID: 30617057 DOI: 10.1101/cshperspect.a035493] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hidden hearing loss (HHL), a recently described auditory disorder, has been proposed to affect auditory neural processing and hearing acuity in subjects with normal audiometric thresholds, particularly in noisy environments. In contrast to central auditory processing disorders, HHL is caused by defects in the cochlea, the peripheral auditory organ. Noise exposure, aging, ototoxic drugs, and peripheral neuropathies are some of the known risk factors for HHL. Our knowledge of the causes and mechanisms of HHL are based primarily on animal models. However, recent clinical studies have also shed light on the etiology and prevalence of this cochlear disorder and how it may affect auditory perception in humans. Here, we review the current knowledge regarding the causes and cellular mechanisms of HHL, summarize information on available noninvasive tests for differential diagnosis, and discuss potential therapeutic approaches for treatment of HHL.
Collapse
Affiliation(s)
- David C Kohrman
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, Jiangsu Province, China.,Institute for Brain Sciences, Nanjing University, Nanjing 210061, Jiangsu Province, China
| | - Luis Cassinotti
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Gabriel Corfas
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
26
|
Temporal Coding of Single Auditory Nerve Fibers Is Not Degraded in Aging Gerbils. J Neurosci 2019; 40:343-354. [PMID: 31719164 DOI: 10.1523/jneurosci.2784-18.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 02/03/2023] Open
Abstract
People suffering from age-related hearing loss typically present with deficits in temporal processing tasks. Temporal processing deficits have also been shown in single-unit studies at the level of the auditory brainstem, midbrain, and cortex of aged animals. In this study, we explored whether temporal coding is already affected at the level of the input to the central auditory system. Single-unit auditory nerve fiber recordings were obtained from 41 Mongolian gerbils of either sex, divided between young, middle-aged, and old gerbils. Temporal coding quality was evaluated as vector strength in response to tones at best frequency, and by constructing shuffled and cross-stimulus autocorrelograms, and reverse correlations, from responses to 1 s noise bursts at 10-30 dB sensation level (dB above threshold). At comparable sensation levels, all measures showed that temporal coding was not altered in auditory nerve fibers of aging gerbils. Furthermore, both temporal fine structure and envelope coding remained unaffected. However, spontaneous rates were decreased in aging gerbils. Importantly, despite elevated pure tone thresholds, the frequency tuning of auditory nerve fibers was not affected. These results suggest that age-related temporal coding deficits arise more centrally, possibly due to a loss of auditory nerve fibers (or their peripheral synapses) but not due to qualitative changes in the responses of remaining auditory nerve fibers. The reduced spontaneous rate and elevated thresholds, but normal frequency tuning, of aged auditory nerve fibers can be explained by the well known reduction of endocochlear potential due to strial dysfunction in aged gerbils.SIGNIFICANCE STATEMENT As our society ages, age-related hearing deficits become ever more prevalent. Apart from decreased hearing sensitivity, elderly people often suffer from a reduced ability to communicate in daily settings, which is thought to be caused by known age-related deficits in auditory temporal processing. The current study demonstrated, using several different stimuli and analysis techniques, that these putative temporal processing deficits are not apparent in responses of single-unit auditory nerve fibers of quiet-aged gerbils. This suggests that age-related temporal processing deficits may develop more central to the auditory nerve, possibly due to a reduced population of active auditory nerve fibers, which will be of importance for the development of treatments for age-related hearing disorders.
Collapse
|
27
|
Fulop DB, Humli V, Szepesy J, Ott V, Reglodi D, Gaszner B, Nemeth A, Szirmai A, Tamas L, Hashimoto H, Zelles T, Tamas A. Hearing impairment and associated morphological changes in pituitary adenylate cyclase activating polypeptide (PACAP)-deficient mice. Sci Rep 2019; 9:14598. [PMID: 31601840 PMCID: PMC6787024 DOI: 10.1038/s41598-019-50775-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a regulatory and cytoprotective neuropeptide, its deficiency implies accelerated aging in mice. It is present in the auditory system having antiapoptotic effects. Expression of Ca2+-binding proteins and its PAC1 receptor differs in the inner ear of PACAP-deficient (KO) and wild-type (WT) mice. Our aim was to elucidate the functional role of PACAP in the auditory system. Auditory brainstem response (ABR) tests found higher hearing thresholds in KO mice at click and low frequency burst stimuli. Hearing impairment at higher frequencies showed as reduced ABR wave amplitudes and latencies in KO animals. Increase in neuronal activity, demonstrated by c-Fos immunolabeling, was lower in KO mice after noise exposure in the ventral and dorsal cochlear nuclei. Noise induced neuronal activation was similar in further relay nuclei of the auditory pathway of WT and KO mice. Based on the similar inflammatory and angiogenic protein profile data from cochlear duct lysates, neither inflammation nor disturbed angiogenesis, as potential pathological components in sensorineural hearing losses, seem to be involved in the pathomechanism of the presented functional and morphological changes in PACAP KO mice. The hearing impairment is probably concomitant with the markedly accelerated aging processes in these animals.
Collapse
Affiliation(s)
- Daniel Balazs Fulop
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Viktoria Humli
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Virag Ott
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Balazs Gaszner
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Adrienn Nemeth
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary.,Department of Otorhinolaryngology, University of Pecs Medical School, Pecs, Hungary
| | - Agnes Szirmai
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary
| | - Laszlo Tamas
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan.,Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, Japan
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary. .,Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary.
| |
Collapse
|
28
|
Zhou Y, Song J, Wang YP, Zhang AM, Tan CY, Liu YH, Zhang ZP, Wang Y, Ma KT, Li L, Si JQ. Age‑associated variation in the expression and function of TMEM16A calcium‑activated chloride channels in the cochlear stria vascularis of guinea pigs. Mol Med Rep 2019; 20:1593-1604. [PMID: 31257512 PMCID: PMC6625423 DOI: 10.3892/mmr.2019.10423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 05/20/2019] [Indexed: 01/08/2023] Open
Abstract
The present study was designed to investigate the expression and function of transmembrane protein 16 (TMEM16A), a calcium‑activated chloride channel (CaCC), in the stria vascularis (SV) of the cochlea of guinea pigs at different ages, and to understand the role of CaCCs in the pathogenesis of presbycusis (age‑related hearing loss), the most common type of sensorineural hearing loss that occurs with natural aging. Guinea pigs were divided into the following groups: 2 weeks (young group), 3 months (youth group), 1 year (adult group), D‑galactose intervention (D‑gal group; aging model induced by subcutaneous injection of D‑galactose) and T16Ainh‑A01 (intraperitoneal injection of 50 µg/kg/day TMEM16A inhibitor T16Ainh‑A01 for 2 weeks). Differences in the hearing of guinea pigs between the various age groups were analyzed using auditory brainstem response (ABR), and immunofluorescence staining was performed to detect TMEM16A expression in the SV and determine the distribution. Reverse transcription‑quantitative PCR and western blot analyses were conducted to detect the mRNA and protein levels of TMEM16A in SV in the different age groups. Morris water maze behavior analysis demonstrated that spatial learning ability and memory were damaged in the D‑gal group. Superoxide dismutase activity and malondialdehyde content assays indicated that there was oxidative stress damage in the D‑gal group. The ABR thresholds gradually increased with age, and the increase in the T16Ainh‑A01 group was pronounced. Immunofluorescence analysis in the cochlear SV of guinea pigs in different groups revealed that expression of TMEM16A increased with increasing age (2 weeks to 1 year); fluorescence intensity was reduced in the D‑gal model of aging. As the guinea pigs continued to mature, the protein and mRNA contents of TMEM16A in the cochlea SV increased gradually, but were decreased in the D‑gal group. The findings indicated that CaCCs in the cochlear SV of guinea pigs were associated with the development of hearing in guinea pigs, and that downregulation of TMEM16A may be associated with age‑associated hearing loss.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Jia Song
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Yan-Ping Wang
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Ai-Mei Zhang
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Chao-Yang Tan
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Yan-Hui Liu
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Zhi-Ping Zhang
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Yang Wang
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Ke-Tao Ma
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Li Li
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|
29
|
Grose JH, Buss E, Elmore H. Age-Related Changes in the Auditory Brainstem Response and Suprathreshold Processing of Temporal and Spectral Modulation. Trends Hear 2019; 23:2331216519839615. [PMID: 30977442 PMCID: PMC6463337 DOI: 10.1177/2331216519839615] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 01/05/2023] Open
Abstract
The purpose of this study was to determine whether cochlear synaptopathy can be shown to be a viable basis for age-related hearing difficulties in humans and whether it manifests as deficient suprathreshold processing of temporal and spectral modulation. Three experiments were undertaken evaluating the effects of age on (a) the auditory brainstem response as a function of level, (b) temporal modulation detection as a function of level and background noise, and (c) spectral modulation as a function of level. Across the three experiments, a total of 21 older listeners with near-normal audiograms and 29 young listeners with audiometrically normal hearing participated. The auditory brainstem response experiment demonstrated reduced Wave I amplitudes and concomitant reductions in the amplitude ratios of Wave I to Wave V in the older listener group. These findings were interpreted as consistent with an electrophysiological profile of cochlear synaptopathy. The temporal and spectral modulation detection experiments, however, provided no support for the hypothesis of compromised suprathreshold processing in these domains. This pattern of results suggests that even if cochlear synaptopathy can be shown to be a viable basis for age-related hearing difficulties, then temporal and spectral modulation detection paradigms are not sensitive to its presence.
Collapse
Affiliation(s)
- John H. Grose
- Department of Otolaryngology – Head and Neck Surgery, University of North Carolina at Chapel Hill, NC, USA
| | - Emily Buss
- Department of Otolaryngology – Head and Neck Surgery, University of North Carolina at Chapel Hill, NC, USA
| | - Hollis Elmore
- Department of Otolaryngology – Head and Neck Surgery, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|