1
|
Ma Y, Liu T, Yuan Z, Guo J. Microbial conversion of methane into single cell protein in a dual-membrane biofilm reactor. WATER RESEARCH 2025; 283:123838. [PMID: 40403554 DOI: 10.1016/j.watres.2025.123838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 05/11/2025] [Accepted: 05/14/2025] [Indexed: 05/24/2025]
Abstract
Single cell protein (SCP, or microbial protein) is a promising alternative food source that could sustainably address the growing demand for proteins. Recently, methane, as the main component of biogas, has been explored as a carbon and energy source for SCP production due to its lower cost and renewability compared to traditional substrates such as carbohydrates. However, a major challenge is how to safely deliver methane and oxygen, and the explosion risk impedes the CH4-based SCP production. This study designed a dual-membrane biofilm reactor (dMBfR) for SCP production from methane, incorporating hollow fiber membranes to enhance the delivery of methane and oxygen. Over a 240-day operation, methane utilization efficiency reached 100 %, achieving the SCP yield of up to 0.49 g SCP/g CH4. The reactor also exhibited competitive protein content of 50.2 % and biomass productivity of 506 mg/L/d. Additionally, we evaluated the reactor performance in response to varying aeration modes (open-end versus dead-end) and weekly protein harvest ratios (20 % versus 50 %). Compared to the dead-end aeration mode, the open-end mode led to 1.5-fold higher SCP production rates, 3.5-fold higher nitrogen-based SCP yields, 3.7-fold higher carbon-based SCP yields, and 1.1-fold higher protein content. Moreover, we applied the freeze-drying approach to produce dry SCP products in the reactor. The final SCP products exhibited higher solubility (17.4 %), water holding capacity (5.0 %), and emulsifying stability (93.3 %, after 24 h incubation) compared to typical fish meals, jointly indicative of the high quality of the produced SCP. This work offers valuable insights into CH4-based SCP production, offering a promising avenue for efficient microbial protein synthesis.
Collapse
Affiliation(s)
- Yicheng Ma
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong, SAR, PR China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
2
|
Atanassova MR, Mildenberger J, Hansen MD, Tamm T. Microstructure of Sea Cucumber Parastichopus tremulus Peptide Hydrogels and Bioactivity in Caco-2 Cell Culture Model. Gels 2025; 11:280. [PMID: 40277716 PMCID: PMC12026874 DOI: 10.3390/gels11040280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Wider availability of marine proteins for the development of food and biomedical applications has a high importance. Sea cucumber body wall proteins have specific functional properties that could be very promising for such product development. However, protein extraction from whole animals is costly and complex, whereas peptide hydrogel production using biotechnological methods can be considered an economically viable approach. Body-wall derived peptides from sea cucumber Parastichopus tremulus have been suggested as a nontraditional source of potentially edible hydrocolloids. In the current work, four peptides were produced through custom synthesis. Scanning electron microscopy (SEM) of the combined mix of the four peptides (1:1 ratio; 15 mM concentration) in a calcium ion-containing buffer confirmed untargeted self-assembly with long, thick fibrillar formations at a microscale (measured mean cross-section 2.78 µm and length sizes of 26.95 µm). The antioxidant activity of the peptides separately, and in combination (1:1 molar ratio), was studied in vitro through ORAC (values in the range from 279 to 543 µmol TE/g peptide), ABTS (from 80.4 to 1215 µmol TE/g peptide), and DPPH (from 5.2 to 19.9 µmol TE/g) assays, and confirmed for protection against oxidation in a Caco-2 cell culture model. Angiotensin-I converting enzyme inhibitory activity was also confirmed for two of the four peptides, with the highest IC 50 of 7.11 ± 0.84 mg/mL.
Collapse
Affiliation(s)
| | | | | | - Tarmo Tamm
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia;
| |
Collapse
|
3
|
Rossi G, Psarianos M, Ojha S, Schlüter OK. Review: Insects as a novel feed ingredient: processing technologies, quality and safety considerations. Animal 2025:101495. [PMID: 40263065 DOI: 10.1016/j.animal.2025.101495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
The current food system is placing significant strain on limited available resources. Novel protein sources have been suggested as a potential solution for ensuring further growth without compromising the natural balance of the planet. In this direction, edible insects appear to be crucial players. Consumers may not always prefer the direct use of insects as human food, indicating that the indirect use of insects as animal feed might be more suitable. Insects are characterised by high nutritional value and similar digestibility compared to more traditional feed such as soybean meal and fishmeal. However, effective introduction of edible insects in animal diets requires one or more processing operations. Processing is paramount for ensuring high microbiological safety while improving the quality, digestibility and palatability of the insect. Additionally, feed processing could allow a combination of insect-based ingredients with other traditional feed ingredients, obtaining a uniform and stable mixture, which can easily and conveniently be provided to the farmed animals. In this review, an overview of the most common processing methods (blanching, grinding, drying, mixing, extrusion) applied to edible insects with the aim of delivering high-quality insect-based feed is presented. Each processing step is carefully evaluated, the pros and cons of each operation are considered and important recommendations are provided. Barriers and opportunities for advancing the use of insects within the feed sector are finally illustrated. A strong emphasis is placed on the need of evaluating the effect of any processing step on the quality and safety of insect-derived products, particularly considering the possibility of replacing traditional feed ingredients with insect-derived materials.
Collapse
Affiliation(s)
- G Rossi
- Department of Systems Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| | - M Psarianos
- Department of Systems Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - S Ojha
- Department of Land Sciences, School of Science and Computing, South East Technological University, Cork Road, X91 K0EK Waterford, Ireland
| | - O K Schlüter
- Department of Systems Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany; Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| |
Collapse
|
4
|
Warwas N, Langeland M, Roques JAC, Montjouridès M, Smeets J, Sundh H, Jönsson E, Sundell K. Fish processing side streams are promising ingredients in diets for rainbow trout (Oncorhynchus mykiss) -Effects on growth physiology, appetite, and intestinal health. JOURNAL OF FISH BIOLOGY 2025; 106:75-92. [PMID: 37843903 PMCID: PMC11758193 DOI: 10.1111/jfb.15589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Due to the growth of aquaculture and the finite supply of fishmeal and oil, alternative marine protein and lipid sources are highly sought after. Particularly promising is the use of side streams from the fish processing industry, allowing for the recovery and retention of otherwise lost nutrients in the food production chain. The aim of the present study was to evaluate the potential of three fish processing side streams as fish feed ingredients. The side streams originated from different stages of the production chain, were used without further processing, and included sprat trimmings (heads, frames, viscera), marinated herring (fillets), and mackerel in tomato sauce (fillets and sauce). The three side streams contained moderate levels of protein (28-32% dry matter) and high levels of lipid (34-43%). The sprat trimmings included ca. 29% ash and 1.5% phosphorous, which may add value due to the high level of essential minerals but needs to be considered in feed formulations. Three diets were formulated to include 50% of each side stream replacing all fishmeal and ca. 80% of the fish oil of the control diet, which contained 35% fishmeal and 10% fish oil. The diets were evaluated in a 12-week feeding trial using rainbow trout (Oncorhynchus mykiss). Fish fed the sprat diet displayed the highest feed intake and growth and showed no negative effects on the intestinal health. The mackerel side stream displayed a good digestibility but resulted in lower growth rates compared to the sprat trimmings. Fish fed the herring diet displayed the lowest performance regarding growth, feed intake, and digestibility. They further exhibited a reduction in nutrient uptake in both proximal and distal intestines, likely contributing to the observed lower digestibility and growth, and a reduction in plasma ghrelin levels. As part of a circular approach to increase marine lipid and protein production for fish feed, the tested sprat and mackerel side streams are promising raw materials; however, additional studies using more commercial-like feed formulations are encouraged.
Collapse
Affiliation(s)
- Niklas Warwas
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
- Swedish Mariculture Research CenterSWEMARC, University of GothenburgGothenburgSweden
- Blue Food, Center for Future SeafoodUniversity of GothenburgGothenburgSweden
| | - Markus Langeland
- Blue Food, Center for Future SeafoodUniversity of GothenburgGothenburgSweden
- RISE Research Institute of SwedenGothenburgSweden
| | - Jonathan A. C. Roques
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
- Swedish Mariculture Research CenterSWEMARC, University of GothenburgGothenburgSweden
| | - Marie Montjouridès
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Jolie Smeets
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Henrik Sundh
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
- Swedish Mariculture Research CenterSWEMARC, University of GothenburgGothenburgSweden
| | - Elisabeth Jönsson
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
- Swedish Mariculture Research CenterSWEMARC, University of GothenburgGothenburgSweden
- Blue Food, Center for Future SeafoodUniversity of GothenburgGothenburgSweden
| | - Kristina Sundell
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
- Swedish Mariculture Research CenterSWEMARC, University of GothenburgGothenburgSweden
- Blue Food, Center for Future SeafoodUniversity of GothenburgGothenburgSweden
| |
Collapse
|
5
|
Meidell LS, Slizyte R, Mozuraityte R, Carvajal AK, Rustad T, Falch E. Valorization of Saithe ( Pollachius virens) Residuals into Protein Hydrolysates-Silaging as Preservation Technology. Foods 2024; 13:2133. [PMID: 38998639 PMCID: PMC11241758 DOI: 10.3390/foods13132133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/18/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
Silaging can be used as preservation technology to valorize currently discarded raw material into protein hydrolysate on board deep-sea vessels. The aim of this study was to investigate the effect of sorting and raw material freshness on the quality and yield of protein hydrolysates obtained through silaging of saithe (Pollachius virens) viscera. Additionally, the effect of using acid-containing antioxidants was tested. Out sorting of the liver prior to silaging resulted in slightly higher hydrolysate yields. The hydrolysates with the highest protein contents were obtained from silages made from fresh raw materials (day 0), and the content decreased significantly after longer storage of the raw material (2-3 days at 4 °C). Storage of the raw material for 1 day did not affect the quality. However, a significantly higher degree of hydrolysis (DH), content of free amino acids (FAA), and total volatile basic nitrogen (TVB-N) were obtained when raw materials were stored for 3 days. The FAA composition was influenced by the raw material's freshness, with increases in free glutamic acid and lysine and a decrease in free glutamine after longer storage. None of the studied parameters were significantly affected by out sorting of liver or the addition of antioxidants. Overall, the results indicate that the whole fraction of the viscera can be utilized without reducing the quality of the hydrolysate and that the raw material should be stored for a maximum of 1 day prior to preservation to optimize the quality.
Collapse
Affiliation(s)
- Line Skontorp Meidell
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7012 Trondheim, Norway
| | - Rasa Slizyte
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, 7010 Trondheim, Norway
| | - Revilija Mozuraityte
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, 7010 Trondheim, Norway
| | - Ana Karina Carvajal
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, 7010 Trondheim, Norway
| | - Turid Rustad
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7012 Trondheim, Norway
| | - Eva Falch
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7012 Trondheim, Norway
| |
Collapse
|
6
|
Suhaimi H, Abdul Rahman MI, Ashaari A, Ikhwanuddin M, Wan Rasdi N. Adaptation and potential culture of wild Amphipods and Mysids as potential live feed in aquaculture: a review. PeerJ 2024; 12:e17092. [PMID: 38563012 PMCID: PMC10984187 DOI: 10.7717/peerj.17092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Live foods such as phytoplankton and zooplankton are essential food sources in aquaculture. Due to their small size, they are suitable for newly hatched larvae. Artemia and rotifer are commonly used live feeds in aquaculture; each feed has a limited dietary value, which is unsuitable for all cultured species. Whereas, copepod and cladocerans species exhibit favorable characteristics that make them viable candidates as sources of essential nutrients for hatchery operations. Due to their jerking movements, it stimulates the feeding response of fish larvae, and their various sizes make them suitable for any fish and crustacean. Even though Artemia is the best live feed due to its proficient nutritional quality, the cost is very expensive, which is about half of the production cost. A recent study suggests the use of amphipods and mysids as alternative live feeds in aquaculture. High nutritional value is present in amphipods and mysids, especially proteins, lipids, and essential fatty acids that are required by fish larvae during early development. Amphipods and mysids are considered abundant in the aquatic ecosystem and have been used by researchers in water toxicity studies. However, the culture of amphipods and mysids has been poorly studied. There is only a small-scale culture under laboratory conditions for scientific research that has been performed. Thus, further research is required to find a way to improve the mass culture of amphipods and mysids that can benefit the aquaculture industry. This review article is intended to provide the available information on amphipods and mysids, including reproductive biology, culture method, nutritional value, feed enhancement, and the importance of them as potential live feed in aquaculture. This article is useful as a guideline for researchers, hatchery operators, and farmers.
Collapse
Affiliation(s)
- Hidayu Suhaimi
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | | | - Aisyah Ashaari
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mhd Ikhwanuddin
- Higher Institute Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Nadiah Wan Rasdi
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
7
|
Alshamsi AAA, Sheteiwy MS, AbuQamar SF, El-Tarabily KA. Enhancement of mangrove growth performance using fish emulsion and halotolerant plant growth-promoting actinobacteria for sustainable management in the UAE. MARINE POLLUTION BULLETIN 2024; 199:115916. [PMID: 38150978 DOI: 10.1016/j.marpolbul.2023.115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
The combination of fish emulsion (FE) and the actinobacterial isolate, Streptomyces griseorubens UAE1 (Sg) capable of producing plant growth regulators (PGRs) and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, was evaluated on mangrove (Avicennia marina) in the United Arab Emirates. Under greenhouse and field conditions, sediments amended with the biostimulant FE effectively enhanced mangrove growth compared to those inoculated with Sg only. Plant growth promotion by Sg was more pronounced in the presence of FE (+FE/+Sg) than in individual applications. Our data showed that Sg appeared to use FE as a source of nutrients and precursors for plant growth promotion. Thus, in planta PGR levels following the combined +FE/+Sg were significantly induced. This is the first report in the field of marine agriculture that uses FE as a nutrient base for soil microorganisms to promote mangrove growth. This study will support mangrove restoration along the Arabian Gulf coastline as a nature-based solution to changing climate and economic activities.
Collapse
Affiliation(s)
- Al Anoud A Alshamsi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt; Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
8
|
Production of small peptides and low molecular weight amino acids by subcritical water hydrolysis from fish meal: effect of pressurization agent and comparison with enzymatic hydrolysis. Food Chem 2023; 418:135925. [PMID: 37003201 DOI: 10.1016/j.foodchem.2023.135925] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023]
Abstract
The hydrolysis of the water-soluble protein (WSP) fraction from tuna fish meal was evaluated by subcritical water (subW) by using N2 and CO2 as different pressurization agents in the temperature range from 140 to 180 °C. For both gases, the amino group release increased by increasing working temperature while the Lowry response decreased due to production of smaller-size peptides and free amino acids. The free amino acid content was higher with CO2 than with N2. At 180 °C, 344 ± 5 and 275 ± 3 mg of free amino acids per g of WSP were released, respectively; although, in both systems the smallest molecular weight amino acids, glycine and alanine, were preferentially released. The free amino acids content obtained by enzymatic hydrolysis with commercial proteases Alcalase and Novozym was much lower with the highest hydrolysis yield determined for histidine. These results have been supported by size exclusion chromatography analysis.
Collapse
|
9
|
Comparison of Commercial Fish Proteins' Chemical and Sensory Properties for Human Consumption. Foods 2023; 12:foods12050966. [PMID: 36900483 PMCID: PMC10000493 DOI: 10.3390/foods12050966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
To stop overfishing and meet the protein needs of a growing population, more information is needed on how to use marine by-catches, by-products, and undervalued fish species for human consumption. Turning them into protein powder is a sustainable and marketable way to add value. However, more knowledge of the chemical and sensory properties of commercial fish proteins is needed to identify the challenges in developing fish derivatives. This study aimed to characterize the sensory and chemical properties of commercial fish proteins to compare their suitability for human consumption. Proximate composition, protein, polypeptide and lipid profiles, lipid oxidation, and functional properties were analyzed. The sensory profile was compiled using generic descriptive analysis, and odor-active compounds were identified with gas-chromatography-mass spectrometry-olfactometry (GC-MS/O). Results indicated significant differences in chemical and sensory properties between processing methods but not between fish species. However, the raw material had some influence in the proteins' proximate composition. Bitterness and fishiness were the main perceived off-flavors. All samples, apart from hydrolyzed collagen, had intense flavor and odor. Differences in odor-active compounds supported the sensory evaluation results. The chemical properties revealed that the lipid oxidation, peptide profile, and raw material degradation are likely affecting the sensory properties of commercial fish proteins. Limiting lipid oxidation during processing is crucial for the development of mild-tasting and -smelling products for human consumption.
Collapse
|
10
|
Pelyuntha W, Yafa A, Charoenwong B, Vongkamjan K. Effectiveness of the Organic Acid-Based Antimicrobial Agent to Prevent Bacterial Contamination in Fish Meal. Animals (Basel) 2022; 12:3367. [PMID: 36496886 PMCID: PMC9741115 DOI: 10.3390/ani12233367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Animal feed production is an important step of the food animal production chain in a farm-to-table model. The contamination of raw ingredients with foodborne pathogens in feed production remains as an important safety issue where pathogens may spread into food animals to cause illnesses in humans when affected food animals are consumed. In the present study, we aimed to examine the quality and microbial contamination of fish meal and to investigate the effectiveness of the organic acid-based antimicrobial agent SALTEC 514TM against Salmonella to prevent bacterial contamination in fish meal. Fish meal samples (n = 4) collected from feed mills at different locations were analyzed for protein and total volatile basic nitrogen (TVBN) content to assess their nutritional value and freshness, and its microbiological quality. The protein and TVBN content ranged from 53.2 ± 3.1 to 67.5 ± 2.3 g/100 g and 73.8 ± 4.5 to 100.4 ± 11.2 mg/100 g meal, respectively. Total plate count of the fish meal samples ranged from 2.0 ± 0.3 to 4.5 ± 0.5 log units, whereas suspected foodborne bacteria, Escherichia coli and Salmonella, were not detected in all samples. Fish meal samples were artificially contaminated (day 0) and re-challenged (day 30 and 90) with Salmonella Enteritidis (3 log CFU/g) to test for the effectiveness of SALTEC 514TM, an organic acid-based antimicrobial formulation, in preventing Salmonella contamination and recontamination during storage. SALTEC 514TM, when applied at three different doses, was found to reduce the number of Salmonella in monitored samples after one day of storage. A low dose of 0.5 kg/ton SALTEC 514TM prevented Salmonella recontamination from occurring in fish meal samples stored for 37 days. In medium (1.0 kg/ton) and high doses (3.0 kg/ton), applications of SALTEC 514TM prevented the Salmonella recontamination for a maximum storage duration of 97 days. The application of SALTEC 514TM in fish meal and/or other feed ingredients may prove to be a safe alternative to reduce the microbial load, especially of foodborne-related microorganisms, to contribute to feed and food safety.
Collapse
Affiliation(s)
- Wattana Pelyuntha
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart Univeristy, Bangkok 10900, Thailand
| | - Ananya Yafa
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart Univeristy, Bangkok 10900, Thailand
| | | | - Kitiya Vongkamjan
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart Univeristy, Bangkok 10900, Thailand
| |
Collapse
|
11
|
Changes in Protein and Non-Protein Nitrogen Compounds during Fishmeal Processing—Identification of Unoptimized Processing Steps. Processes (Basel) 2022. [DOI: 10.3390/pr10040621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Quality changes of protein and non-protein nitrogen compounds during industrial fishmeal processing of fatty pelagic species (mackerel/herring rest material blend, MHB) and lean fish (whole blue whiting, BW) were studied to identify processing steps that require optimization to allow production of products for human consumption. Samples from protein-rich processing streams throughout the fishmeal production were analyzed for proximate composition, salt soluble protein content (SSP), biogenic amines (BA), total volatile basic nitrogen (TVB-N), trimethylamine (TMA), and dimethylamine (DMA). Mass flows throughout processing were balanced based on the total mass and proximate composition data. The quality of the final fishmeal products was highly dependent on the fish species being processed, indicating that the processes require optimization towards each raw material. The chemical composition changed in each processing step, resulting in different properties in each stream. Most of the non-protein nitrogen compounds (including BA, TVB-N, TMA, and DMA) followed the liquid streams. However, the concentrate contributed less than 20% to the produced fishmeal quantity. Mixing of this stream into the fishmeal processing again, as currently carried out, should thus be avoided. Furthermore, the cooking, separating, and drying steps should be optimized to improve the water and lipid separation and avoid the formation of undesired nitrogen compounds to produce higher-value products intended for human consumption.
Collapse
|
12
|
Boyd CE, McNevin AA, Davis RP. The contribution of fisheries and aquaculture to the global protein supply. Food Secur 2022; 14:805-827. [PMID: 35075379 PMCID: PMC8771179 DOI: 10.1007/s12571-021-01246-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/06/2021] [Indexed: 01/15/2023]
Abstract
The contribution of aquatic animal protein to the global, animal-source protein supply and the relative importance of aquaculture to capture fisheries in supplying this protein is relevant in assessments and decisions related to the future of aquatic food production and its security. Meat of terrestrial animals, milk, and eggs resulted in 76,966 Kt crude protein compared with 13,950 Kt or 15.3% from aquatic animals in 2018.While aquaculture produced a greater tonnage of aquatic animals, capture fisheries resulted in 7,135 Kt crude protein while aquaculture yielded 6,815 Kt. Capture fisheries production has not increased in the past two decades, and aquaculture production must increase to assure the growing demand for fisheries products by a larger and more affluent population. We estimated based on status quo consumption, that aquaculture production would need to increase from 82,087 Kt in 2018 to 129,000 Kt by 2050 to meet the demand of the greater population. About two-thirds of finfish and crustacean production by aquaculture is feed-based, and feeds for these species include fishmeal and fish oil as ingredients. Aquaculture feeds require a major portion of the global supply of fishmeal and fish oil. An estimated 71.0% of fishmeal and 73.9% of fish oil are made from the catch with the rest coming from aquatic animal processing waste. The catch of small, pelagic fish from the ocean is not predicted to increase in the future. Aquaculture should reduce its fishmeal and oil use to lessen its dependency on small wild fish important to the integrity of marine food webs and food security for the poor in many coastal areas. Fishmeal and fish oil shortages for use in aquaculture feed will result in a limit on production in the future if goals to lessen their use in feeds are not met.
Collapse
Affiliation(s)
- Claude E. Boyd
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama 36849 USA
| | | | - Robert P. Davis
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama 36849 USA
| |
Collapse
|
13
|
Ultrafiltration of Saithe (Pollachius virens) Protein Hydrolysates and Its Effect on Antioxidative Activity. Catalysts 2021. [DOI: 10.3390/catal11091053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The whitefish industry generates a huge amount of rest raw material, which is currently wasted or underutilized in the production of low-value products such as animal feed. While fish muscle is the primary product of use for human consumption, rest raw material has great potential as a source of protein and bioactive peptides for the production of food ingredients and nutraceuticals. Enzymatic hydrolysis is a biotechnological processing method that can be used to extract protein from fish rest raw material into a protein hydrolysate. This study aimed at investigating the functionality of ultrafiltration as an industrial processing method and its effect on the bioactivity of protein hydrolysates. Protein hydrolysates were produced by enzymatic hydrolysis of saithe (Pollachius virens) head and backbone caught at two separate occasions to investigate the effect of seasonal variations. Ultrafiltration effectively concentrated larger peptides (>4 kDa) and smaller peptides (<4 kDa) in separate fractions, with a protein yield of 31% in the fraction <4 kDa. The unfiltered hydrolysate was found to have a higher antioxidative activity compared to the <4 kDa fraction in ABTS, FRAP, and ORAC assays. These results indicate that ultrafiltration does not effectively increase bioactivity by concentrating small peptides and that bioactivity is dependent on several properties, including interaction with larger peptides.
Collapse
|
14
|
Sobczak M, Panicz R, Eljasik P, Sadowski J, Tórz A, Żochowska-Kujawska J, Barbosa V, Dias J, Marques A. Nutritional value and sensory properties of common carp (Cyprinus carpio L.) fillets enriched with sustainable and natural feed ingredients. Food Chem Toxicol 2021; 152:112197. [PMID: 33864840 DOI: 10.1016/j.fct.2021.112197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 01/21/2023]
Abstract
Declines across global fishery stocks forced aquaculture feed manufacturers to search for new and sustainable components. Therefore, the aim of study was assessing nutritional value and sensory properties of meat of common carp (Cyprinus carpio L.) fed for 116 days with two blends. The control feed contained 5% of fishmeal and vegetable oils (rapeseed and soybean) as sole fat sources. While in the experimental diet half of the fishmeal was replaced with a blend of microalgae (Spirulina sp., Chlorella sp.), macroalgae (Laminaria digitata) and vegetable oil was replaced with salmon oil. Proximate composition, energy value, fatty acid profile of meat, nutritional characteristics of fat and protein as well as culinary properties of fillets were assessed. Fillets of carp fed experimental diet had a higher level of protein, lower level of fat and energy value. Intramuscular fat of fish fed with the experimental diet had a better parameters of quality. Protein in the meat of fish from both groups was characterized by a high quality comparing to the protein standard. Our study showed that meat of carp fed with experimental feed enriched with sustainable and natural feed ingredients can be a sensorily attractive source of nutritious ingredients in the human diet.
Collapse
Affiliation(s)
- M Sobczak
- Department of Meat Science, Faculty of Food Science and Fisheries, West Pomeranian University of Technology, Szczecin, Poland.
| | - R Panicz
- Department of Meat Science, Faculty of Food Science and Fisheries, West Pomeranian University of Technology, Szczecin, Poland
| | - P Eljasik
- Department of Meat Science, Faculty of Food Science and Fisheries, West Pomeranian University of Technology, Szczecin, Poland
| | - J Sadowski
- Department of Aquatic Bioengineering and Aquaculture, Faculty of Food Science and Fisheries, West Pomeranian University of Technology, Szczecin, Poland
| | - A Tórz
- Department of Aquatic Bioengineering and Aquaculture, Faculty of Food Science and Fisheries, West Pomeranian University of Technology, Szczecin, Poland
| | - J Żochowska-Kujawska
- Department of Meat Science, Faculty of Food Science and Fisheries, West Pomeranian University of Technology, Szczecin, Poland
| | - V Barbosa
- Division of Aquaculture, Seafood Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA), Lisboa, Portugal
| | - J Dias
- Sparos Lda, Olhão, Portugal
| | - A Marques
- Division of Aquaculture, Seafood Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA), Lisboa, Portugal
| |
Collapse
|
15
|
Serra CR, Oliva-Teles A, Enes P, Tavares F. Gut microbiota dynamics in carnivorous European seabass (Dicentrarchus labrax) fed plant-based diets. Sci Rep 2021; 11:447. [PMID: 33432059 PMCID: PMC7801451 DOI: 10.1038/s41598-020-80138-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
A healthy gastrointestinal microbiota is essential for host fitness, and strongly modulated by host diet. In aquaculture, a current challenge is to feed carnivorous fish with plant-feedstuffs in substitution of fish meal, an unsustainable commodity. Plants have a limited nutritive value due to the presence of non-starch polysaccharides (NSP) which are not metabolized by fish. In this work we assessed the effects of NSP-enriched diets on European seabass gut microbiota and evaluate the selective pressure of plant feedstuffs towards gut microbes with NSP-hydrolytic potential, i.e. capable to convert indigestible dietary constituents in fish metabolites. Triplicate groups of European seabass juveniles were fed a fish meal-based diet (control) or three plant-based diets (SBM, soybean meal; RSM, rapeseed meal; SFM, sunflower meal) for 6 weeks, before recovering intestinal samples for microbiota analysis, using the Illumina's MiSeq platform. Plant-based diets impacted differently digesta and mucosal microbiota. A decrease (p = 0.020) on species richness, accompanied by a decline on the relative abundance of specific phyla such as Acidobacteria (p = 0.030), was observed in digesta samples of SBM and RSM experimental fish, but no effects were seen in mucosa-associated microbiota. Plant-based diets favored the Firmicutes (p = 0.01), in particular the Bacillaceae (p = 0.017) and Clostridiaceae (p = 0.007), two bacterial families known to harbor carbohydrate active enzymes and thus putatively more prone to grow in high NSP environments. Overall, bacterial gut communities of European seabass respond to plant-feedstuffs with adjustments in the presence of transient microorganisms (allochthonous) with carbohydrolytic potential, while maintaining a balanced core (autochthonous) microbiota.
Collapse
Affiliation(s)
- Cláudia R Serra
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Universidade do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Aires Oliva-Teles
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Universidade do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, Ed. FC4, 4169-007, Porto, Portugal
| | - Paula Enes
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Universidade do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, Ed. FC4, 4169-007, Porto, Portugal
| | - Fernando Tavares
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, Ed. FC4, 4169-007, Porto, Portugal
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| |
Collapse
|
16
|
Chen Y, Liu W, Ma J, Wang Y, Huang H. Comprehensive physiological and transcriptomic analysis revealing the responses of hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂) to the replacement of fish meal with soy protein concentrate. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2037-2053. [PMID: 32767005 DOI: 10.1007/s10695-020-00851-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Plant proteins are suitable and alternative to fish meals (FMs), with less cost compared with that of all other types of fish feeds. In recent years, soy protein concentrate (SPC) has emerged as a cost-effective alternative to FM; however, little is known regarding the effects of dietary SPC on general fish physiology and well-being. This study aimed to perform comprehensive physiological and transcriptomic analysis for testing the applicability of SPC as fish feeds in hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂) [SPC replaced 0% (CK), 30% (SPC30), and 75% (SPC75) of FM protein]. Generally, SPC30 promoted fish survival and had less effects on the phenotype, while SPC75 reduced fish survival, promoted inflammation, and regulated multiple physiological responses. Thousands of differentially expressed genes (DEGs) by SPC were identified in the intestine, liver, and muscle, which were enriched in biological regulation, cellular process, metabolic process, single-organism process, cell, cell part, membrane, binding, and catalytic activity based on RNA-seq. Notably, some DEGs involved in amino acid and lipid metabolism in the digestive system highlighted the modulatory effect of SPC on these metabolic processes, consistent with the physiological responses including enzyme activities. The enriched aspects of these predominant DEGs might be directly related to the different effects of SPC30 and SPC75 on fish growth, digestibility, and underlying enzyme activities and histology. In conclusion, the comprehensive physiological and transcriptomic comparative analysis of CK, SPC30, and SPC75 was also effective in testing the applicability of SPC as fish feeds and in designing a proper diet with the best impact on the growth performance and health of fish in hybrid grouper.
Collapse
Affiliation(s)
- Yan Chen
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, 572022, Hainan province, People's Republic of China
- College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022, Hainan Province, People's Republic of China
| | - Wenkan Liu
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, 572022, Hainan province, People's Republic of China
- College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022, Hainan Province, People's Republic of China
| | - Jun Ma
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, 572022, Hainan province, People's Republic of China.
- College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022, Hainan Province, People's Republic of China.
| | - Yaorong Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, Guangdong Province, People's Republic of China
| | - Hai Huang
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, 572022, Hainan province, People's Republic of China
- College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022, Hainan Province, People's Republic of China
| |
Collapse
|
17
|
Dou X, Wang YQ, Wu YY, Hu X, Yang SL, Li CS, Cen JW. Analysis and evaluation of nutritional components in liver of large yellow croaker ( Pseudosciaena crocea). CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1800824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Xin Dou
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
- Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Guangzhou, Guangdong Province, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yue Qi Wang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
| | - Yan Yan Wu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
| | - Xiao Hu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
| | - Shao Ling Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
| | - Chun Sheng Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
| | - Jian Wei Cen
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
| |
Collapse
|
18
|
Gasco L, Acuti G, Bani P, Dalle Zotte A, Danieli PP, De Angelis A, Fortina R, Marino R, Parisi G, Piccolo G, Pinotti L, Prandini A, Schiavone A, Terova G, Tulli F, Roncarati A. Insect and fish by-products as sustainable alternatives to conventional animal proteins in animal nutrition. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1743209] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Laura Gasco
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco, Torino, Italy
| | - Gabriele Acuti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, Italy
| | - Paolo Bani
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Antonella Dalle Zotte
- Dipartimento di Medicina Animale, Produzioni e Salute, Università degli Studi di Padova, Legnaro, PD, Italy
| | - Pier Paolo Danieli
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Viterbo, Italy
| | - Anna De Angelis
- Dipartimento di Agraria, Alimentazione e Ambiente, Università degli Studi di Catania, Catania, Italy
| | - Riccardo Fortina
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco, Torino, Italy
| | - Rosaria Marino
- Dipartimento di Scienze Agrarie, degli Alimenti e dell’Ambiente, Università degli Studi di Foggia, Foggia, Italy
| | - Giuliana Parisi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università degli Studi di Firenze, Firenze, Italy
| | - Giovanni Piccolo
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Luciano Pinotti
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Università degli Studi di Milano, Milano, Italy
| | - Aldo Prandini
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Achille Schiavone
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Grugliasco, Torino, Italy
| | - Genciana Terova
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, Varese, Italy
| | - Francesca Tulli
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Alessandra Roncarati
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Matelica, MC, Italy
| |
Collapse
|
19
|
Madende M, Hayes M. Fish By-Product Use as Biostimulants: An Overview of the Current State of the Art, Including Relevant Legislation and Regulations within the EU and USA. Molecules 2020; 25:molecules25051122. [PMID: 32138206 PMCID: PMC7179184 DOI: 10.3390/molecules25051122] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/26/2022] Open
Abstract
Crop production systems have adopted cost-effective, sustainable and environmentally friendly agricultural practices to improve crop yields and the quality of food derived from plants. Approaches such as genetic selection and the creation of varieties displaying favorable traits such as disease and drought resistance have been used in the past and continue to be used. However, the use of biostimulants to promote plant growth has increasingly gained attention, and the market size for biostimulants is estimated to reach USD 4.14 billion by 2025. Plant biostimulants are products obtained from different inorganic or organic substances and microorganisms that can improve plant growth and productivity and abate the negative effects of abiotic stresses. They include materials such as protein hydrolysates, amino acids, humic substances, seaweed extracts and food or industrial waste-derived compounds. Fish processing waste products have potential applications as plant biostimulants. This review gives an overview of plant biostimulants with a focus on fish protein hydrolysates and legislation governing the use of plant biostimulants in agriculture.
Collapse
|
20
|
Hua K, Cobcroft JM, Cole A, Condon K, Jerry DR, Mangott A, Praeger C, Vucko MJ, Zeng C, Zenger K, Strugnell JM. The Future of Aquatic Protein: Implications for Protein Sources in Aquaculture Diets. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.oneear.2019.10.018] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Magnusson M, Glasson CR, Vucko MJ, Angell A, Neoh TL, de Nys R. Enrichment processes for the production of high-protein feed from the green seaweed Ulva ohnoi. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101555] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Fungi-based treatment of real brewery waste streams and its effects on water quality. Bioprocess Biosyst Eng 2019; 42:1317-1324. [PMID: 31025175 PMCID: PMC6647373 DOI: 10.1007/s00449-019-02130-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/12/2019] [Indexed: 12/21/2022]
Abstract
Nutrient-rich liquid waste streams generated during the beer brewing were treated by submerged fungal growth. Among five filamentous fungal strains tested, Pleurotus ostreatus and Trichoderma harzianum were selected for treatment of run-off from spent grain and hot trub, respectively. In both waste streams, nitrogen was well removed by fungal treatment, with a maximum reduction of 91.5 ± 0.5% of total nitrogen in run-off from spent grain treated with P. ostreatus and 77.0 ± 3.1% in hot trub treated with T. harzianum. Removal of phosphorus was considerably lower, with maximum removal of total phosphorus of 30.8 ± 11.1% for the P. ostreatus treatment and 16.6 ± 7.8% for the T. harzianum treatment. Considering the high concentration of phosphorus in the waste sources (320–600 mg L−1), additional techniques for its removal are needed. In the P. ostreatus treatment, a total amount of 13.2 ± 2.2 g L−1 dwt of biomass with a protein concentration of 11.6 ± 2.1% was produced.
Collapse
|
23
|
Vildmyren I, Halstensen A, Oterhals Å, Gudbrandsen OA. Cod protein powder lowered serum nonesterified fatty acids and increased total bile acid concentrations in healthy, lean, physically active adults: a randomized double-blind study. Food Nutr Res 2019; 63:3437. [PMID: 30890903 PMCID: PMC6416186 DOI: 10.29219/fnr.v63.3437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022] Open
Abstract
Background Fish fillet consumption is associated with beneficial health effects; however, little is known about whether consuming other parts of the fish such as head, backbone, skin, cut-offs, and entrails (collectively known as residuals) will provide comparable effects. Objective The aim of the study was to investigate if daily supplementation with cod residual protein powder would impact lipid metabolism in healthy adults. Methods Forty healthy, lean, physically active participants (18 women, 22 men) with normal body mass index consumed 8.1 g of proteins daily from cod residual protein powder (Cod-RP) or placebo (control) for 8 weeks. Results Cod residual protein powder supplementation lowered fasting serum nonesterified fatty acids and increased serum total bile acid concentrations significantly when compared with control supplementation. Fasting serum low-density lipoprotein cholesterol and apolipoprotein (Apo) B concentrations, as well as the total cholesterol:high-density lipoprotein (HDL) cholesterol and ApoB:ApoA1 ratios, were significantly decreased within the Cod-RP group, but these changes were not different from the control group. Fasting serum concentrations of triacylglycerol, total cholesterol, HDL cholesterol, and ApoA1 were not changed within or between groups. Conclusion Eight weeks of daily supplementation with 8.1 g Cod-RP seems to be sufficient to affect lipid metabolism in healthy, lean, physically active adults.
Collapse
Affiliation(s)
- Iselin Vildmyren
- Dietary Protein Research Group, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,K. Halstensen AS, Bekkjarvik, Norway
| | - Alfred Halstensen
- K. Halstensen AS, Bekkjarvik, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Oddrun A Gudbrandsen
- Dietary Protein Research Group, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|