1
|
Niemczyk W, Matys J, Wiench R, Żurek J, Dominiak M. The Use of Hyaluronic Acid in the Non-Surgical Treatment of Periodontitis-An Umbrella Review. Biomedicines 2025; 13:998. [PMID: 40299636 PMCID: PMC12024567 DOI: 10.3390/biomedicines13040998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 05/01/2025] Open
Abstract
Background: Periodontitis is a prevalent inflammatory condition that destroys periodontal tissues. Scaling and root planing (SRP) is the gold standard for non-surgical treatment; however, its efficacy may be limited in cases with complex dental issues. This umbrella review aims to evaluate the effectiveness of hyaluronic acid (HA) as an adjunct to scaling and root planing (SRP) in enhancing clinical outcomes for periodontitis management. Methods: A comprehensive review of five systematic reviews, including meta-analyses where available, was conducted to synthesize evidence on the adjunctive use of HA with SRP. The studies were evaluated using the AMSTAR-2 quality assessment tool to determine methodological rigor. Data on clinical parameters such as probing depth (PD), clinical attachment level (CAL), bleeding on probing (BOP), gingival index (GI), and plaque index (PI) were extracted and analyzed. Results: The findings indicate that HA supplementation leads to moderate improvements in PD, CAL, BOP, GI, and PI compared to SRP alone. Notable reductions in PD and gains in CAL were observed, with some meta-analyses showing statistically significant benefits. However, the heterogeneity in HA concentrations (0.2-1.4%), application methods, treatment frequencies, and follow-up durations (1 week to 12 months) limits definitive conclusions. Additionally, HA did not significantly affect the reduction in P. gingivalis prevalence. Conclusions: The use of HA in conjunction with SRP shows promise in enhancing the efficacy of non-surgical periodontal therapy. However, the heterogeneity in the quality and methodologies of the studies indicates the necessity for high-quality, standardized randomized controlled trials to establish clear clinical guidelines for the application of HA in the treatment of periodontitis.
Collapse
Affiliation(s)
- Wojciech Niemczyk
- Medical Center of Innovation, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Jacek Matys
- Department of Dental Surgery Medical, University of Wroclaw, Krakowska 26, 50-425 Wroclaw, Poland;
| | - Rafał Wiench
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Pl. Traugutta 2, 41-800 Zabrze, Poland;
| | - Jacek Żurek
- Specialist Medical Practice, Polne Wzgórze 11 Street, 32-300 Olkusz, Poland
| | - Marzena Dominiak
- Department of Dental Surgery Medical, University of Wroclaw, Krakowska 26, 50-425 Wroclaw, Poland;
| |
Collapse
|
2
|
Górski B, Skierska IM, Gelemanović A, Roguljić M, Bozic D. Multiple Recessions Coverage Using the Modified Tunnel Technique and Connective Tissue Graft with or Without Cross-Linked Hyaluronic Acid: 2-Year Outcomes of RCT. J Funct Biomater 2025; 16:87. [PMID: 40137366 PMCID: PMC11943361 DOI: 10.3390/jfb16030087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025] Open
Abstract
There is continuing interest in using biologics in root coverage procedures. The aim of the present study was to explore the 2-year outcomes following multiple gingival recessions (GRs) coverage using the application of cross-linked hyaluronic acid (HA) in combination with modified coronally advanced tunnel (MCAT) together with subepithelial connective tissue graft (SCTG). Adopting a split-mouth design, 266 GRs were randomly allocated to either a test (MCAT + SCTG + HA) or control group (MCAT + SCTG). The main outcome variable was the stability of the obtained mean root coverage from 6 months to 24 months. Twenty-four patients were evaluated at the 2-year follow-up. Comparisons between test and control sides at the same time points were evaluated using the t-test for independent variables. The changes in time were compared by one-way analysis of variance with the Tukey post hoc test separately for the test and control groups. The study protocol was registered at ClinicalTrials.gov (NCT05045586). At 2 years, around ninety percent of recessions showed complete root coverage (87.02% of the test group and 91.90% of the control group). Mean root coverage did not differ between the two sides, with 81.37 ± 37.17% (test) and 84.63 ± 35.33% (control), respectively. Significant improvements in the reduction of gingival recession height, clinical attachment level gain, gingival thickness increase, and the root esthetic score were found in both groups after 2 years, but no statistically significant difference was observed between the groups. The adjunctive application of HA significantly improved soft tissue texture (STT, 0.94 ± 0.23 for the test group vs. 0.71 ± 0.46 for the control group). Treatment of multiple gingival recessions with MCAT + SCTG with or without HA yielded marked and comparable 2-year clinical outcomes, which could be maintained over a period of 24 months. The clinical relevance of the demonstrated significant difference in STT between groups may be minimal.
Collapse
Affiliation(s)
- Bartłomiej Górski
- Department of Periodontal and Oral Mucosa Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Izabela Maria Skierska
- Department of Periodontal and Oral Mucosa Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Andrea Gelemanović
- Mediterranean Institute for Life Sciences, University of Split, Šetalište Ivana Meštrovića 45, 21000 Split, Croatia
| | - Marija Roguljić
- Department of Periodontology, School of Medicine, University of Split, Šoltanska ulica 2A, 21000 Split, Croatia
| | - Darko Bozic
- Department of Periodontology, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia;
| |
Collapse
|
3
|
Talebi Ardakani M, Moscowchi A, Talebi A, Talebi MH. Hyaluronic acid efficacy in root coverage procedures: a systematic review and meta-analysis. BMC Oral Health 2025; 25:119. [PMID: 39844152 PMCID: PMC11755931 DOI: 10.1186/s12903-025-05526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/20/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Treatment of gingival recessions through surgical approaches is a common periodontal intervention. There is a rise in using biologics in root coverage procedures. As it has been shown that hyaluronic acid (HA) promotes wound healing, this review aimed to assess its efficacy in the treatment of gingival recessions. METHODS An electronic search was conducted across several databases (Medline/ PubMed, Embase, Scopus, Web of Science) supplemented by manual searching. The effectiveness of using HA was evaluated using various outcome measures, with the primary indicators being complete and mean coverage, recession depth, and recession width. Meta-analysis was performed to estimate the differences between test and control sites. RESULTS A total of 9 studies were eligible for inclusion. The overall analysis showed no significant difference between coronally advanced flap (CAF) + HA and control groups (CAF alone or CAF + sub-epithelial connective tissue graft) in terms of mean root coverage with a mean difference of 8.23 (95% confidence interval -3.06 to 19.53) and p = 0.12. CONCLUSIONS The current evidence suggests that the local application of HA may have some slight benefits over CAF alone in certain parameters. Nevertheless, its application does not add significant benefits to connective tissue graft. Given the high heterogeneity among the studies, further research with extended follow-up periods is necessary to better understand the clinical implications of using hyaluronic acid in this context. TRIAL REGISTRATION CRD42024580649.
Collapse
Affiliation(s)
- Mohammadreza Talebi Ardakani
- Dental Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 1983963113, Daneshjoo Blvd., Evin, Shahid Chamran Highway, Tehran, Iran
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anahita Moscowchi
- Dental Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 1983963113, Daneshjoo Blvd., Evin, Shahid Chamran Highway, Tehran, Iran.
| | - Amir Talebi
- Dental School, Universidad Europea de Madrid, Madrid, Spain
| | | |
Collapse
|
4
|
Olszewska-Czyz I, Michalak E, Dudzik A. A Three-Month Clinical Trial on the Efficacy of Hyaluronic Acid Adjunctive Non-Surgical Therapy for Periodontitis in Patients with Type 2 Diabetes Mellitus. Biomedicines 2024; 12:2516. [PMID: 39595081 PMCID: PMC11591565 DOI: 10.3390/biomedicines12112516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Conventional periodontal treatment for patients with diabetes has shown promising results, primarily focusing on glycated hemoglobin (HbA1c) levels as an endpoint measure. The properties of hyaluronic acid (HA) have been harnessed in various periodontal therapies, and it is a promising agent also in a non-surgical approach. The aim of this clinical trial was to assess the efficacy of hyaluronic acid in a local adjunctive non-surgical treatment for periodontitis in patients with type 2 diabetes. Methods: Eighty adult participants with well-controlled type 2 diabetes (HbA1c 7% (53 mmol/mol) or less) took part in the trial. The clinical parameters of periodontitis as well as the glycated hemoglobin (HbA1c) levels were evaluated, and an analysis of the potential differences between the control (placebo) and intervention (HA) groups was performed. Results/Conclusions: A decrease in all the clinical values of periodontitis after treatment was observed in the vast majority of patients in both groups. Differences in the clinical parameters were observed 12 weeks after the intervention between the patients in the placebo and HA therapy groups. Bleeding on probing (BoP) was reduced in the control group to 15-25% and was approximately 5.5% more in the intervention group (9.5-18.25%). The clinical attachment level (CAL) decreased 1 mm more in the HA therapy group (1-2 mm) than in the no adjunctive treatment group (2-3 mm). The probing depth (PD) was reduced similarly in both groups (3-3.75 mm). Due to the bilateral relationship between diabetes and periodontitis, healthcare professionals seek advancements in managing periodontal inflammation. The results of this study indicate that non-surgical periodontal treatment with HA as an adjunctive agent is worth considering in the therapy for patients with diabetes.
Collapse
Affiliation(s)
- Iwona Olszewska-Czyz
- Department of Prophylaxis, Periodontology and Oral Pathology, Dental Institute, Medical Faculty, Jagielonian University, 30002 Krakow, Poland; (E.M.); (A.D.)
| | | | | |
Collapse
|
5
|
Munar-Bestard M, Vargas-Alfredo N, Ramis JM, Monjo M. Mangostanin hyaluronic acid hydrogel as an effective biocompatible alternative to chlorhexidine. Int J Biol Macromol 2024; 279:135187. [PMID: 39216568 DOI: 10.1016/j.ijbiomac.2024.135187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Periodontal disease (PD) prevention and treatment products typically demonstrate excellent antibacterial activity, but recent studies have raised concerns about their toxicity on oral tissues. Therefore, finding a biocompatible alternative that retains antimicrobial properties is imperative. In this study, a chemically modified hyaluronic acid (HA) hydrogel containing mangostanin (MGTN) was developed. Native HA was chemically modified, incorporating amino and aldehyde groups in different batches of HA, allowing spontaneous crosslinking and gelation when combined at room temperature. MGTN at different concentrations was incorporated before gelation. The structure, swelling characteristics MGTN release, rheological parameters, and in vitro degradation performance of the loaded hydrogel were first evaluated in the study. Then, antimicrobial properties were tested on Porphyromonas gingivalis and its biocompatibility in 3D-engineered human gingiva. HA hydrogel was very stable and showed a sustained release for MGTN for at least 7 days. MGTN-loaded HA hydrogel showed equivalent antimicrobial activity compared to a commercial gel of HA containing 0.2 % chlorhexidine (CHX). In contrast, while MGTN HA hydrogel was biocompatible, CHX gel showed high cytotoxicity, causing cell death and tissue damage. Modified HA hydrogel allows controlled release of MGTN, resulting in a highly biocompatible hydrogel with antibacterial properties. This hydrogel is a suitable alternative therapy to prevent and treat PD.
Collapse
Affiliation(s)
- Marta Munar-Bestard
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa km 7.5, 07122 Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain.
| | - Nelson Vargas-Alfredo
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa km 7.5, 07122 Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Joana Maria Ramis
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa km 7.5, 07122 Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain; Department of Fundamental Biology and Health Sciences Fundamental Biology, UIB, Spain.
| | - Marta Monjo
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa km 7.5, 07122 Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain; Department of Fundamental Biology and Health Sciences Fundamental Biology, UIB, Spain.
| |
Collapse
|
6
|
Liang X, Huang C, Liu H, Chen H, Shou J, Cheng H, Liu G. Natural hydrogel dressings in wound care: Design, advances, and perspectives. CHINESE CHEM LETT 2024; 35:109442. [DOI: 10.1016/j.cclet.2023.109442] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
|
7
|
Lorenzi C, Leggeri A, Cammarota I, Carosi P, Mazzetti V, Arcuri C. Hyaluronic Acid in Bone Regeneration: Systematic Review and Meta-Analysis. Dent J (Basel) 2024; 12:263. [PMID: 39195107 DOI: 10.3390/dj12080263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/20/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
AIM The aim of this systematic review and meta-analysis was to assess possible histomorphometric differences in new bone formation and in remaining graft particles when hyaluronic acid (HA) was added and mixed with graft materials in bone regeneration. MATERIALS AND METHODS This review was registered at the International Prospective Register of Systematic Reviews (PROSPERO) of the National Institute of Health Research (registration number CRD42024530030). Electronic research was performed, and involved studies published up to 29 February 2024 using a specific word combination. The primary outcome was to assess possible histomorphometric differences in new bone formation and in remaining graft particles when HA was added and mixed with graft materials in bone regeneration. The search resulted in 138 potential studies. Meta-analyses were performed using the fixed and random effects model to identify significant changes in new bone formation and in the remaining graft particles. RESULTS After screening procedures, only three randomized controlled trials fulfilled the inclusion criteria and were selected for qualitative and quantitative analysis. The effect size of HA in the new bone formation was not statistically significant at 95% CI (Z = 1.734, p-value = 0.083, 95 % CI -,399; 6516). The effect size of HA in the remaining graft particles was not statistically significant at 95% CI (Z = -1.042, p-value = 0.297, CI -,835; 255). CONCLUSIONS Within the limitations of the present systematic review and meta-analysis, the addition of HA to bone graft did not result in significant changes in bone regeneration procedures in terms of new bone formation and residues, even if the included studies showed encouraging and promising results.
Collapse
Affiliation(s)
- Claudia Lorenzi
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Andrea Leggeri
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ilaria Cammarota
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Paolo Carosi
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vincenzo Mazzetti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Claudio Arcuri
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
8
|
Fok MR, Jin L. Learn, unlearn, and relearn post-extraction alveolar socket healing: Evolving knowledge and practices. J Dent 2024; 145:104986. [PMID: 38574844 DOI: 10.1016/j.jdent.2024.104986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVE This review was to offer a comprehensive analysis of currently available evidence on post-extraction alveolar socket healing, including i) the histological and molecular events during alveolar socket healing, ii) the dimensional ridge alterations after socket healing and controversies relating to sinus pneumatisation, iii) the patient-specific factors, procedural elements, and site-related variables influencing socket healing, iv) techniques and effectiveness of alveolar ridge preservation (ARP) procedure, and v) the philosophies and cost-effectiveness of ARP in clinical practice. SOURCES AND STUDY SELECTION To investigate the dimensional profiles of the alveolar ridge following unassisted healing, an overview of systematic reviews was conducted in February 2024 by two independent reviewers. Four electronic databases were searched in Pubmed, Embase, Web of science and Cochrane Library between 2004 and 2024 to identify all relevant systematic reviews on post-extraction healing. A further manual search of reviews was also conducted. The articles were further reviewed in full text for relevance. The AMSTAR-2 appraisal tool was adopted to assess methodological quality. Current research pertaining to other listed objectives was objectively analysed in narration. DATA 11 out of 459 retrieved studies were selected and ultimately covered in this review on the dimensional changes of alveolar ridge following natural healing: Seven systematic reviews and four systematic reviews with meta-analyses. The methodological quality of all included reviews was critically low. CONCLUSION This review thoroughly examines the healing profiles of post-extraction alveolar sockets and highlights the dynamic process with overlapping phases and the inter-individual variability in outcomes. ARP procedure is a potential strategy for facilitating prosthetic site development, while the current evidence is limited. Herein, an individualised and prosthetically driven approach is crucial. Further well sized and designed trials with novel biomaterials need to be undertaken, and the role of artificial intelligence in predicting healing and assisting clinical decision-making could be explored. CLINICAL SIGNIFICANCE By advancing our understanding of alveolar socket healing and its management strategies, clinicians can make more informed decisions regarding patient and site level assessment and selection, surgical techniques, and biomaterial choices, ultimately contributing to the enhanced healing process with reduced complications and improved quality of life for patients undergoing tooth extraction and dental implant treatments.
Collapse
Affiliation(s)
- Melissa Rachel Fok
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China.
| | - Lijian Jin
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
9
|
Munar-Bestard M, Rodríguez-Fernández A, Ramis JM, Monjo M. In Vitro Evaluation of Mangostanin as an Antimicrobial and Biocompatible Topical Antiseptic for Skin and Oral Tissues. ACS Pharmacol Transl Sci 2024; 7:1507-1517. [PMID: 38751630 PMCID: PMC11091975 DOI: 10.1021/acsptsci.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 05/18/2024]
Abstract
Skin and oral tissue infections pose significant health challenges worldwide, necessitating the exploration of new antiseptic agents that are both effective and biocompatible. This study evaluated the antibacterial efficacy and biocompatibility of mangostanin (MGTN), a xanthone derived from Garcinia mangostana L., against commercial antiseptics across various bacterial strains (Porphyromonas gingivalis, Streptococcus mutans, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pyogenes, and Cutibacterium acnes) and in vitro models of skin and oral tissues. MGTN demonstrated significant antimicrobial activity against all tested pathogens concurrently exhibiting negligible cytotoxic effects on human gingival fibroblasts as well as on three-dimensional (3D) models of human epidermis and oral epithelium. Furthermore, using pooled human saliva, MGTN effectively inhibited plaque biofilm formation, suggesting its potential as a natural, biocompatible antiseptic for skin and oral health applications. These findings position MGTN as a promising candidate for further development into antiseptic formulations, offering a natural alternative to current synthetic options.
Collapse
Affiliation(s)
- Marta Munar-Bestard
- Cell
Therapy and Tissue Engineering Group, Department of Fundamental Biology
and Health Sciences, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Ctra Valldemossa km 7.5, 07122 Palma, Spain
- Health
Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Ana Rodríguez-Fernández
- Cell
Therapy and Tissue Engineering Group, Department of Fundamental Biology
and Health Sciences, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Ctra Valldemossa km 7.5, 07122 Palma, Spain
- Health
Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Joana Maria Ramis
- Cell
Therapy and Tissue Engineering Group, Department of Fundamental Biology
and Health Sciences, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Ctra Valldemossa km 7.5, 07122 Palma, Spain
- Health
Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Department
of Fundamental Biology and Health Sciences, University of the Balearic Islands, Ctra Valldemossa km 7.5, 07122 Palma, Spain
| | - Marta Monjo
- Cell
Therapy and Tissue Engineering Group, Department of Fundamental Biology
and Health Sciences, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Ctra Valldemossa km 7.5, 07122 Palma, Spain
- Health
Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Department
of Fundamental Biology and Health Sciences, University of the Balearic Islands, Ctra Valldemossa km 7.5, 07122 Palma, Spain
| |
Collapse
|
10
|
Kämmerer PW, Heimes D, Zaage F, Ganz C, Frerich B, Gerber T, Dau M. Improving material properties of a poloxamer P407 hydrogel-based hydroxyapatite bone substitute material by adding silica-A comparative in vivo study. J Biomed Mater Res B Appl Biomater 2024; 112:e35405. [PMID: 38701384 DOI: 10.1002/jbm.b.35405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
The structure and handling properties of a P407 hydrogel-based bone substitute material (BSM) might be affected by different poloxamer P407 and silicon dioxide (SiO2) concentrations. The study aimed to compare the mechanical properties and biological parameters (bone remodeling, BSM degradation) of a hydroxyapatite: silica (HA)-based BSM with various P407 hydrogels in vitro and in an in vivo rat model. Rheological analyses for mechanical properties were performed on one BSM with an SiO2-enriched hydrogel (SPH25) as well on two BSMs with unaltered hydrogels in different gel concentrations (PH25 and PH30). Furthermore, the solubility of all BSMs were tested. In addition, 30 male Wistar rats underwent surgical creation of a well-defined bone defect in the tibia. Defects were filled randomly with PH30 (n = 15) or SPH25 (n = 15). Animals were sacrificed after 12 (n = 5 each), 21 (n = 5 each), and 63 days (n = 5 each). Histological evaluation and histomorphometrical quantification of new bone formation (NB;%), residual BSM (rBSM;%), and soft tissue (ST;%) was conducted. Rheological tests showed an increased viscosity and lower solubility of SPH when compared with the other hydrogels. Histomorphometric analyses in cancellous bone showed a decrease of ST in PH30 (p = .003) and an increase of NB (PH30: p = .001; SPH: p = .014) over time. A comparison of both BSMs revealed no significant differences. The addition of SiO2 to a P407 hydrogel-based hydroxyapatite BSM improves its mechanical stability (viscosity, solubility) while showing similar in vivo healing properties compared to PH30. Additionally, the SiO2-enrichment allows a reduction of poloxamer ratio in the hydrogel without impairing the material properties.
Collapse
Affiliation(s)
- Peer W Kämmerer
- Department of Oral, Maxillofacial Plastic Surgery, University Medical Center Mainz, Mainz, Germany
- Department of Oral, Maxillofacial Plastic Surgery, University Medical Center Rostock, Rostock, Germany
| | - Diana Heimes
- Department of Oral, Maxillofacial Plastic Surgery, University Medical Center Mainz, Mainz, Germany
| | | | - Cornelia Ganz
- Institute of Physics, Rostock University, Rostock, Germany
| | - Bernhard Frerich
- Department of Oral, Maxillofacial Plastic Surgery, University Medical Center Rostock, Rostock, Germany
| | - Thomas Gerber
- Institute of Physics, Rostock University, Rostock, Germany
| | - Michael Dau
- Department of Oral, Maxillofacial Plastic Surgery, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
11
|
Alsalhi A. Applications of selected polysaccharides and proteins in dentistry: A review. Int J Biol Macromol 2024; 260:129215. [PMID: 38185301 DOI: 10.1016/j.ijbiomac.2024.129215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
In the last ten years, remarkable characteristics and a variety of functionalities have been created in biopolymeric materials for clinical dental applications. This review gives an overview of current knowledge of natural biopolymers (biological macromolecules) in terms of structural, functional, and property interactions. Natural biopolymers such as polysaccharides (chitosan, bacterial cellulose, hyaluronic acid, and alginate) and polypeptides (collagen and silk fibroin) have been discussed for dental uses. These biopolymers exhibit excellent properties alone and when employed with other composite molecules making them ideal for treatment of periodontitis, endodontics, dental pulp regeneration and oral wound healing. These biopolymers together with the composite materials exhibit better biocompatibility, inertness, elasticity and flexibility which makes them a leading candidate to be used for other dental applications like caries management, oral appliances, dentures, dental implants and oral surgeries.
Collapse
Affiliation(s)
- Abdullah Alsalhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia.
| |
Collapse
|
12
|
Axe A, Patel N, Qaqish J, Ling MR, Araga M, Parkinson C, Goyal CR. Efficacy of an experimental toothpaste containing sodium bicarbonate, sodium hyaluronate and sodium fluoride on gingivitis. BMC Oral Health 2024; 24:209. [PMID: 38336635 PMCID: PMC10858478 DOI: 10.1186/s12903-024-03981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Gingivitis is driven by plaque accumulation and, if left untreated, can progress to irreversible periodontitis. For many, the mechanical action of toothbrushing does not achieve adequate plaque control. The aim of this study was to investigate whether twice-daily use of a toothpaste containing 0.2% high molecular weight (HMW) sodium hyaluronate with 67% sodium bicarbonate and 0.221% sodium fluoride (experimental toothpaste) could improve gingival health compared with a regular fluoride toothpaste (negative control). The study also assessed whether the experimental toothpaste could provide additive gingival health benefit over a toothpaste containing only 67% sodium bicarbonate and 0.221% sodium fluoride (positive control). METHODS This was a single-center, examiner-blinded, randomized, clinical study in healthy adults with mild-to-moderate gingivitis. At baseline, after abstaining from toothbrushing for 12 h, prospective participants underwent oral soft tissue (OST) and oral hard tissue examination followed by assessments for gingival inflammation (Modified Gingival Index [MGI]), gingival bleeding (Bleeding Index [BI]), and supra-gingival plaque (Turesky Plaque Index [TPI]). Eligible participants were stratified by gender and baseline number of bleeding sites (low: <45; high: ≥45 bleeding sites). Following randomization, participants underwent prophylactic dental treatment. Participants received a full OST examination, MGI, BI and TPI assessments after 3 days, 1, 2 and 6 weeks of product use. RESULTS In total, 110 participants were screened for study entry and all were randomized to receive one of three toothpastes (experimental: sodium hyaluronate, sodium bicarbonate, sodium fluoride; positive control: sodium bicarbonate, sodium fluoride; negative control: regular fluoride toothpaste). For all measures, significant improvements were observed in participants receiving either sodium bicarbonate-containing toothpaste (experimental or positive control) compared with the regular fluoride toothpaste (negative control) at week 6. No significant difference was observed in any assessment or visit comparing the experimental toothpaste with the positive control. CONCLUSIONS Both the experimental and the positive control toothpastes demonstrated clinically relevant improvements in gingival health compared with a regular fluoride toothpaste (negative control). However, no additional gingival health improvement was observed for the experimental toothpaste compared with the positive control, therefore, no additional gingival health benefit can be attributed to the inclusion of sodium hyaluronate in this formulation. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04737538 (04/02/2021).
Collapse
Affiliation(s)
- Alyson Axe
- Haleon, St George's Avenue Weybridge, Surrey, ODE, KT13, UK.
| | - Nisha Patel
- Haleon, St George's Avenue Weybridge, Surrey, ODE, KT13, UK
| | | | - Martin R Ling
- Haleon, St George's Avenue Weybridge, Surrey, ODE, KT13, UK
| | | | | | | |
Collapse
|
13
|
Sunakawa Y, Kondo M, Yamamoto Y, Inomata T, Inoue Y, Mori D, Mizuno T. Design of Cell-Adhesive Shellac Derivatives and Endowment of Photoswitchable Cell-Adhesion Properties. ACS APPLIED BIO MATERIALS 2023; 6:5493-5501. [PMID: 37978057 DOI: 10.1021/acsabm.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The emergence of new biodegradable cell-adhesion materials is an attractive topic in biomaterial chemistry, particularly for the development of cell incubation scaffolds and drug encapsulation materials used in in situ regenerative therapy. Shellac is a natural resin with unique film-forming properties and high miscibility with various chemicals, in addition to being biodegradable and nontoxic to biological systems. However, since native shellac does not adhere to mammalian cells, there have been no reports of using shellac to develop cell-adhesive biomaterials. In this study, we report on the development of cell-adhesive shellac derivatives through slight chemical modification. Shellac is a mixture of oligoesters that consists of hydroxyl fatty acids and resin acids, and therefore, all oligomers have one carboxylic acid group at the terminal. We discovered that a simple modification of hydrophobic chemical groups, particularly those containing aromatic groups in the ester form, could dramatically improve cell-adhesion properties for mammalian cells. Furthermore, by using photocleavable esters containing aromatic groups, we successfully endowed photoswitchable properties in cell adhesion. Given that shellac is a low-cost, biodegradable, and nontoxic natural resin, the modified shellacs have the potential to become new and attractive biomaterials applicable to in situ regenerative therapy.
Collapse
Affiliation(s)
- Yurino Sunakawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Mai Kondo
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasushi Yamamoto
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Tomohiko Inomata
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasumichi Inoue
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Daisuke Mori
- Gifu Shellac Manufacturing Co., Ltd., 1-41, Higashiuzura, Gifu-shi, Gifu 500-8618, Japan
| | - Toshihisa Mizuno
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
14
|
Ivanov AA, Kuznetsova AV, Popova OP, Danilova TI, Latyshev AV, Yanushevich OO. Influence of Extracellular Matrix Components on the Differentiation of Periodontal Ligament Stem Cells in Collagen I Hydrogel. Cells 2023; 12:2335. [PMID: 37830549 PMCID: PMC10571948 DOI: 10.3390/cells12192335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Regeneration of periodontal tissues requires an integrated approach to the restoration of the periodontal ligament, cementum, and alveolar bone surrounding the teeth. Current strategies in endogenous regenerative dentistry widely use biomaterials, in particular the decellularized extracellular matrix (dECM), to facilitate the recruitment of populations of resident cells into damaged tissues and stimulate their proliferation and differentiation. The purpose of our study was to evaluate the effect of the exogenous components of the extracellular matrix (hyaluronic acid, laminin, fibronectin) on the differentiation of periodontal ligament stem cells (PDLSCs) cultured with dECM (combinations of decellularized tooth matrices and periodontal ligament) in a 3D collagen I hydrogel. The immunohistochemical expression of various markers in PDLSCs was assessed quantitatively and semi-quantitatively on paraffin sections. The results showed that PDLSCs cultured under these conditions for 14 days exhibited phenotypic characteristics consistent with osteoblast-like and odontoblast-like cells. This potential has been demonstrated by the expression of osteogenic differentiation markers (OC, OPN, ALP) and odontogenic markers (DSPP). This phenomenon corresponds to the in vivo state of the periodontal ligament, in which cells at the interface between bone and cementum tend to differentiate into osteoblasts or cementoblasts. The addition of fibronectin to the dECM most effectively induces the differentiation of PDLSCs into osteoblast-like and odontoblast-like cells under 3D culture conditions. Therefore, this bioengineered construct has a high potential for future use in periodontal tissue regeneration.
Collapse
Affiliation(s)
- Alexey A. Ivanov
- Laboratory of Molecular and Cellular Pathology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (A.V.K.); (O.P.P.); (T.I.D.); (A.V.L.)
| | - Alla V. Kuznetsova
- Laboratory of Molecular and Cellular Pathology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (A.V.K.); (O.P.P.); (T.I.D.); (A.V.L.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Str., 119334 Moscow, Russia
| | - Olga P. Popova
- Laboratory of Molecular and Cellular Pathology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (A.V.K.); (O.P.P.); (T.I.D.); (A.V.L.)
| | - Tamara I. Danilova
- Laboratory of Molecular and Cellular Pathology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (A.V.K.); (O.P.P.); (T.I.D.); (A.V.L.)
| | - Andrey V. Latyshev
- Laboratory of Molecular and Cellular Pathology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (A.V.K.); (O.P.P.); (T.I.D.); (A.V.L.)
| | - Oleg O. Yanushevich
- Department of Periodontology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia;
| |
Collapse
|
15
|
Husseini B, Friedmann A, Wak R, Ghosn N, Khoury G, El Ghoul T, Abboud CK, Younes R. Clinical and radiographic assessment of cross-linked hyaluronic acid addition in demineralized bovine bone based alveolar ridge preservation: A human randomized split-mouth pilot study. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101426. [PMID: 36801259 DOI: 10.1016/j.jormas.2023.101426] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
PURPOSE To investigate clinically and radiographically at 4 months post-operatively the outcomes of mixing demineralized bovine bone material (DBBM) with cross-linked hyaluronic acid in alveolar ridge preservation. MATERIAL AND METHODS Seven patients presenting bilateral hopeless teeth (14 teeth) were enrolled in the study, the test site contained demineralized bovine bone material (DBBM) mixed with cross-linked hyaluronic acid (xHyA) while the control site contained only DBBM. 4 months post-operatively prior to implant placement a Cone beam computed tomography (CBCT) scan was recorded and compared to the initial scan to assess the volumetric and linear bone resorption that occurred in both sites. Clinically, sites that needed further bone grafting at the implant placement stage were recorded. Differences in volumetric and linear bone resorption between both groups were assessed using Wilcoxon signed rank test. McNemar test was also used to evaluate difference in bone grafting need between both groups. RESULTS All sites healed uneventfully, volumetric and linear resorption differences between the baseline and 4 months post-operatively were obtained for each site. The mean volumetric and linear bone resorption were respectively 36.56 ± 1.69%, 1.42 ± 0.16 mm in the controls sites and 26.96 ± 1.83%; 0.73 ± 0.052 mm in the tests sites. The values were significantly higher among controls sites (P=0.018). No significant differences were observed in the need for bone grafting between both groups. CONCLUSION Cross-linked hyaluronic acid (xHyA) appears to limit the post-extractional alveolar bone resorption when mixed with DBBM.
Collapse
Affiliation(s)
- Bachar Husseini
- Cranio-Facial Research Laboratory, Faculty of Dental Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon.
| | - Anton Friedmann
- Department of Periodontology, Faculty of Health, Witten/Herdecke University, Witten 58455, Germany
| | - Ralph Wak
- Cranio-Facial Research Laboratory, Faculty of Dental Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Nabil Ghosn
- Cranio-Facial Research Laboratory, Faculty of Dental Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Georges Khoury
- Department of Advanced Surgical Implantology, Service of Odontology, U.F.R. of Odontology, Rothschild Hospital, AP-HP, University Denis Diderot, Paris, France
| | - Tala El Ghoul
- Public Health Department, American University of Beirut, Beirut,Lebanon
| | - Chloe Karen Abboud
- Department of Advanced Surgical Implantology, Service of Odontology, U.F.R. of Odontology, Rothschild Hospital, AP-HP, University Denis Diderot, Paris, France
| | - Ronald Younes
- Cranio-Facial Research Laboratory, Faculty of Dental Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon; Department of Oral Surgery, Faculty of Dental Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
| |
Collapse
|
16
|
Dechojarassri D, Okada T, Tamura H, Furuike T. Evaluation of Cytotoxicity of Hyaluronic Acid/Chitosan/Bacterial Cellulose-Based Membrane. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5189. [PMID: 37512462 PMCID: PMC10383227 DOI: 10.3390/ma16145189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
Novel wound dressing materials are required to non-cytotoxic with a viable cell ratio of above 92%. Herein, the cytotoxicity of hyaluronic acid/chitosan/bacterial cellulose-based (BC(CS/HA)) membranes are evaluated and compared to that of alginate/chitosan/bacterial cellulose-based (BC(CS/Alg)) membranes was investigated. Multilayer membranes with up to ten CS/HA or CS/Alg layers were prepared using the layer-by-layer (LBL) method. Scanning electron microscopy showed that the diameters of the fibers in the BC(CS/Alg) and BC(CS/HA) membranes were larger than those in a BC membrane. The cytotoxicity was analyzed using BALB-3T3 clone A31 cells (mouse fibroblasts, 1 × 104 cells/well). The BC(CS/HA)5 and BC(CS/HA)10 membranes exhibited high biocompatibility, with the cell viabilities of 94% and 87% at 5 d, respectively, compared to just 82% for the BC(CS/Alg)5 and BC(CS/Alg)10 membranes with same numbers of layers. These results suggested that BC(CS/HA)5 is a promising material for wound dressings.
Collapse
Affiliation(s)
- Duangkamol Dechojarassri
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Tomoki Okada
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan
| | - Hiroshi Tamura
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Tetsuya Furuike
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| |
Collapse
|
17
|
Mohan SP, Palaniappan A, Nawaz MKK, Kripamol R, Seenuvasan R, Kumar PRA. In vitro Cytotoxicity Evaluation of Flowable Hyaluronic Acid-Acellular Stromal Vascular Fraction (HA-aSVF) Mixture for Tissue Engineering Applications. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:S677-S682. [PMID: 37654256 PMCID: PMC10466569 DOI: 10.4103/jpbs.jpbs_13_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 09/02/2023] Open
Abstract
Background The stromal vascular fraction (SVF) is an aqueous fraction isolated from the adipose tissue that constitutes different kinds of cells and extracellular matrix components. Hyaluronic acid (HA) is a linear polysaccharide in vertebrate tissues and is considered a potential tissue engineering scaffold due to its biocompatible nature. In this study, we have evaluated the cytotoxicity of xenofree HA in combination with an acellular component of adipose SVF (HA-aSVF) to propose it as a candidate biomaterial for future applications. Materials and Methods 3-(4,5-dimethyl thiazolyl-2)-2,5-diphenyltetrazolium bromide assay of L-929 cells treated with HA-aSVF was used in our study. Data were normalized to cell control (untreated) and extracts of copper and ultra-high molecular weight polyethylene were used as positive (PC) and negative controls (NC). Results Fibroblast cells retained the morphology after 24 h of treatment with HA-aSVF mixture and exhibited a similar percentage of cell activity compared to NC. PC showed a positive cytotoxic response as expected. The cells incubated with HA-aSVF showed a linear increase in cell activity indicating proliferation. Conclusion The mixture of HA and acellular SVF in its flowable form is non-cytotoxic and showed improved cell proliferation. Hence the mixture can be proposed as a biomaterial and can be further explored for specific tissue engineering applications.
Collapse
Affiliation(s)
- Sunil Paramel Mohan
- Department of Oral and Maxillofacial Pathology, Sree Anjaneya Institute of Dental Sciences, Kozhikode, Kerala, India
- Centre of Stem Cells and Regenerative Medicine, Malabar Medical College Hospital and Research Centre, Kozhikode, Kerala, India
| | - Arunkumar Palaniappan
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - M. Khaja Khalid Nawaz
- Centre of Stem Cells and Regenerative Medicine, Malabar Medical College Hospital and Research Centre, Kozhikode, Kerala, India
| | - R. Kripamol
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - R. Seenuvasan
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - P. R. Anil Kumar
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
18
|
Vaquero Martinez P, Guarro Marzoa I, de Pablo Cuenca-Garcia A, Bescos Atin C. Unilateral hard palate necrosis following gingival injections with hyaluronic acid. BMJ Case Rep 2023; 16:e254599. [PMID: 36792144 PMCID: PMC9933658 DOI: 10.1136/bcr-2023-254599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2023] [Indexed: 02/17/2023] Open
Abstract
Hyaluronic acid (HA) injections into the oral mucosa have proven to be effective as a non-invasive method for the reconstruction of interproximal papillary defects in aesthetic areas. Despite being a minimally invasive and safe technique, certain side effects may occur after treatment.We report the first case of a patient with unilateral necrosis of the mucosa of the hard palate after HA filling in the maxillary anterior gingiva. Familiarity with these events and competent knowledge of the anatomy is essential to avoid complications, achieve and offer adequate treatment and good results to our patients.
Collapse
Affiliation(s)
| | | | | | - Coro Bescos Atin
- Oral and Maxillofacial Surgery, Vall d'Hebron Hospital Campus, Barcelona, Spain
| |
Collapse
|
19
|
Waingade M, Medikeri RS, Gaikwad S. Effectiveness of hyaluronic acid in the management of oral lichen planus: a systematic review and meta-analysis. J Dent Anesth Pain Med 2022; 22:405-417. [PMID: 36601134 PMCID: PMC9763825 DOI: 10.17245/jdapm.2022.22.6.405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
Oral lichen planus (OLP) is a chronic inflammatory immune-mediated condition that has been identified as a potentially malignant oral disorder. Various therapies have been proposed for its management as alternative to corticosteroids. However, no definitive treatment has been identified that can result in complete remission or minimal recurrence. Hyaluronic acid has recently been used as an alternative therapy for the management of OLP. This study aimed to systematically review the effectiveness of Hyaluronic acid in the management of symptomatic OLP. Online electronic databases and manual searches were performed for randomized controlled trials (RCTs) published in English between January 2010 and April 2022. RCTs were identified that compared the efficacy of hyaluronic acid and other interventional therapies at baseline and during follow-up. The Cochrane Risk of Bias tool was used to assess the quality of the included studies. Visual analog scale (VAS) scores, Thongprasom sign scores, lesion size, degree of erythema, clinical severity, and disease severity were assessed both quantitatively and qualitatively. Seven studies were analyzed. Five studies reported a high risk of bias while the remaining two studies reported an unclear risk of bias. The overall quantitative assessment of size, symptoms, degree of erythema, and sign score in OLP lesions treated with HA was not statistically significant compared to that in the control group (P > 0.05). In addition, subgroup analysis comparing HA with placebo or corticosteroids did not yield statistically significant (P > 0.05) results. Qualitatively, both HA and tacrolimus resulted in an effective reduction in signs and symptoms. Clinical/disease severity index/scores were inconsistent. A high degree of heterogeneity was observed among the included studies. None of the included studies reported the side effects of HA. These findings suggest that corticosteroids, tacrolimus, placebo, and HA could be equally effective in OLP management. The clinical/disease severity index or score reduction cannot be determined with certainty. Thus, OLP can be treated with HA as an alternative therapy. Owing to limited clinical trials on HA, high heterogeneity, and high risk of bias in the included studies, definitive conclusions cannot be derived.
Collapse
Affiliation(s)
- Manjushri Waingade
- Department of Oral Medicine and Radiology, Sinhgad Dental College and Hospital, Pune, Maharashtra, India
| | - Raghavendra S Medikeri
- Department of Periodontology, Sinhgad Dental College and Hospital, Pune, Maharashtra, India
| | - Shamali Gaikwad
- Department of Oral Medicine and Radiology, Sinhgad Dental College and Hospital, Pune, Maharashtra, India
| |
Collapse
|
20
|
Macroporous Hyaluronic Acid/Chitosan Polyelectrolyte Complex-Based Hydrogels Loaded with Hydroxyapatite Nanoparticles: Preparation, Characterization and In Vitro Evaluation. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of the study was to fabricate and characterize composite macroporous hydrogels based on a hyaluronic acid/chitosan (Hyal/Ch) polyelectrolyte complex (PEC) loaded with homogeneously distributed hydroxyapatite nanoparticles (nHAp), and to evaluate them in vitro using mouse fibroblasts (L929), osteoblast-like cells (HOS) and human mesenchymal stromal cells (hMSC). Hydrogel morphology as a function of the hydroxyapatite nanoparticle content was studied using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The mean pore size in the Hyal/Ch hydrogel was 204 ± 25 μm. The entrapment of nHAp (1 and 5 wt. %) into the Hyal/Ch hydrogel led to a mean pore size decrease (94 ± 2 and 77 ± 9 μm, relatively). Swelling ratio and weight loss of the hydrogels in various aqueous media were found to increase with an enhancement of a medium ionic strength. Cell morphology and localization within the hydrogels was studied by CLSM. Cell viability depended upon the nHAp content and was evaluated by MTT-assay after 7 days of cultivation in the hydrogels. An increase of the hydroxyapatite nanoparticles loading in a range of 1–10 wt. % resulted in an enhancement of cell growth and proliferation for all hydrogels. Maximum cell viability was obtained in case of the Hyal/Ch/nHAp-10 sample (10 wt. % nHAp), while a minimal cell number was found for the Hyal/Ch/nHAp-1 hydrogel (1 wt. % nHAp). Thus, the proposed simple original technique and the design of PEC hydrogels could be promising for tissue engineering, in particular for bone tissue repair.
Collapse
|
21
|
Grafted Microparticles Based on Glycidyl Methacrylate, Hydroxyethyl Methacrylate and Sodium Hyaluronate: Synthesis, Characterization, Adsorption and Release Studies of Metronidazole. Polymers (Basel) 2022; 14:polym14194151. [PMID: 36236098 PMCID: PMC9572090 DOI: 10.3390/polym14194151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 11/22/2022] Open
Abstract
Three types of precursor microparticles based on glycidyl methacrylate, hydroxyethyl methacrylate and one of the following three crosslinking agents (mono-, di- or triethylene glycol dimethacrylate) were prepared using the suspension polymerization technique. The precursor microparticles were subsequently used to obtain three types of hybrid microparticles. Their synthesis took place by grafting sodium hyaluronate, in a basic medium, to the epoxy groups located on the surface of the precursor microparticles. Both types of the microparticles were characterized by: FTIR spectroscopy, epoxy groups content, thermogravimetric analysis, dimensional analysis, grafting degree of sodium hyaluronate, SEM and AFM analyses, and specific parameters of porous structures (specific surface area, pore volume, porosity). The results showed that the hybrid microparticles present higher specific surface areas, higher swelling capacities as well as higher adsorption capacities of antimicrobial drugs (metronidazole). To examine the interactions between metronidazole and the precursor/hybrid microparticles the adsorption equilibrium, kinetic and thermodynamic studies were carried out. Thus, it was determined the performance of the polymer systems in order to select a polymer-drug system with a high efficiency. The release kinetics reflect that the release mechanism of metronidazole in the case of hybrid microparticles is a complex mechanism characteristic of anomalous or non-Fickian diffusion.
Collapse
|
22
|
D'Albis G, D'Albis V, Palma M, Plantamura M, Nizar AK. Use of hyaluronic acid for regeneration of maxillofacial bones. Genesis 2022; 60:e23497. [PMID: 35950678 DOI: 10.1002/dvg.23497] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 11/09/2022]
Abstract
Hyaluronic acid (HA) has been widely used in medicine and is currently of particular interest to maxillofacial surgeons. Several applications have been introduced, including those in which HA is used as a scaffold for bone regeneration, either alone or in combination with other grafting materials, to enhance bone growth. This review aims to analyze the available literature on the use of HA for maxillofacial bone regenerative procedures including socket preservation, sinus augmentation, and ridge augmentation. Medline and PubMed databases were searched for relevant reports published between January 2000 and April 2021. Nine publications describing the use of HA to augment bone volume were identified. Although further studies are needed, these findings are encouraging as they suggest that HA could be used effectively used, in combination with graft materials, in maxillofacial bone regenerative procedures. HA facilitates manipulation of bone grafts, improves handling characteristics and promotes osteoblast activity that stimulates bone regeneration and repair.
Collapse
Affiliation(s)
| | - Vincenzo D'Albis
- Postgraduate Program, Orthodontics, Tor Vergata University of Rome, Rome, Italy
| | - Micol Palma
- Preceptorship, Interdisciplinary Department of Medicine, Polyclinic of Bari, University of Bari, Bari, Italy
| | | | - Al Krenawi Nizar
- Postgraduate Program, Periodontology and Implantology, University Federico II of Naples, Naples, Italy
| |
Collapse
|
23
|
|
24
|
Siddiqui Z, Acevedo-Jake AM, Griffith A, Kadincesme N, Dabek K, Hindi D, Kim KK, Kobayashi Y, Shimizu E, Kumar V. Cells and material-based strategies for regenerative endodontics. Bioact Mater 2022; 14:234-249. [PMID: 35310358 PMCID: PMC8897646 DOI: 10.1016/j.bioactmat.2021.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022] Open
Abstract
The carious process leads to inflammation of pulp tissue. Current care options include root canal treatment or apexification. These procedures, however, result in the loss of tooth vitality, sensitivity, and healing. Pulp capping and dental pulp regeneration are continually evolving techniques to regenerate pulp tissue, avoiding necrosis and loss of vitality. Many studies have successfully employed stem/progenitor cell populations, revascularization approaches, scaffolds or material-based strategies for pulp regeneration. Here we outline advantages and disadvantages of different methods and techniques which are currently being used in the field of regenerative endodontics. We also summarize recent findings on efficacious peptide-based materials which target the dental niche. .
Collapse
Affiliation(s)
- Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Amanda M. Acevedo-Jake
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Alexandra Griffith
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Nurten Kadincesme
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Kinga Dabek
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Dana Hindi
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Ka Kyung Kim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Yoshifumi Kobayashi
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | - Emi Shimizu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | - Vivek Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
- Department of Chemicals and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
- Department of Biology, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
25
|
Liu S, Wang T, Li S, Wang X. Application Status of Sacrificial Biomaterials in 3D Bioprinting. Polymers (Basel) 2022; 14:2182. [PMID: 35683853 PMCID: PMC9182955 DOI: 10.3390/polym14112182] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Additive manufacturing, also known as three-dimensional (3D) printing, relates to several rapid prototyping (RP) technologies, and has shown great potential in the manufacture of organoids and even complex bioartificial organs. A major challenge for 3D bioprinting complex org unit ans is the competitive requirements with respect to structural biomimeticability, material integrability, and functional manufacturability. Over the past several years, 3D bioprinting based on sacrificial templates has shown its unique advantages in building hierarchical vascular networks in complex organs. Sacrificial biomaterials as supporting structures have been used widely in the construction of tubular tissues. The advent of suspension printing has enabled the precise printing of some soft biomaterials (e.g., collagen and fibrinogen), which were previously considered unprintable singly with cells. In addition, the introduction of sacrificial biomaterials can improve the porosity of biomaterials, making the printed structures more favorable for cell proliferation, migration and connection. In this review, we mainly consider the latest developments and applications of 3D bioprinting based on the strategy of sacrificial biomaterials, discuss the basic principles of sacrificial templates, and look forward to the broad prospects of this approach for complex organ engineering or manufacturing.
Collapse
Affiliation(s)
- Siyu Liu
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (T.W.); (S.L.)
| | - Tianlin Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (T.W.); (S.L.)
| | - Shenglong Li
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (T.W.); (S.L.)
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (T.W.); (S.L.)
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
26
|
Recent developments of biomaterial scaffolds and regenerative approaches for craniomaxillofacial bone tissue engineering. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02928-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Olszewska-Czyz I, Kralik K, Prpic J. Biomolecules in Dental Applications: Randomized, Controlled Clinical Trial Evaluating the Influence of Hyaluronic Acid Adjunctive Therapy on Clinical Parameters of Moderate Periodontitis. Biomolecules 2021; 11:biom11101491. [PMID: 34680123 PMCID: PMC8533205 DOI: 10.3390/biom11101491] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/04/2023] Open
Abstract
The biological activity of hyaluronic acid (HA) has been well-researched during the past decades; however, there are few randomized, controlled trials of its clinical effects in periodontal therapy. The purpose of this study was to evaluate the effect of hyaluronic acid on the principal parameters of periodontal healing. A specific, commercially available formulation designed and registered for professional dental application, composed of 16 mg/mL of cross-linked and 2 mg/mL of non-cross-linked HA, was used as an adjunctive to non-surgical periodontal therapy, and clinical parameters were evaluated after 3 months. The addition of HA to periodontal therapy demonstrated more favorable clinical results regarding reduction in inflammation, measured by bleeding on probing (-6% compared to the control group) and gain in periodontal attachment (1 mm more than control group), while it had no effect on probing depth reduction. No side effects were reported. Our study demonstrated that HA is a safe and easy-to-use biological agent; due to its wide array of properties, it may significantly improve the results of periodontal therapy. However, more long-term studies are needed to investigate whether these favorable effects remain over time.
Collapse
Affiliation(s)
- Iwona Olszewska-Czyz
- Department of Periodontology and Oral Pathology, Dental Institute, Medical Faculty, Jagielonian University, 31155 Krakow, Poland
- Correspondence:
| | - Kristina Kralik
- Department of Medical Statistics and Medical Informatics, Medical Faculty Osijek, University Josip Juraj Strossmayer of Osijek, 31000 Osijek, Croatia;
| | - Jelena Prpic
- Department of Oral Medicine and Periodontology, Faculty of Dental Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| |
Collapse
|
28
|
Natural Polymers for the Maintenance of Oral Health: Review of Recent Advances and Perspectives. Int J Mol Sci 2021; 22:ijms221910337. [PMID: 34638678 PMCID: PMC8508910 DOI: 10.3390/ijms221910337] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
The success of modern dental treatment is strongly dependent on the materials used both temporarily and permanently. Among all dental materials, polymers are a very important class with a wide spectrum of applications. This review aims to provide a state-of-the-art overview of the recent advances in the field of natural polymers used to maintain or restore oral health. It focuses on the properties of the most common proteins and polysaccharides of natural origin in terms of meeting the specific biological requirements in the increasingly demanding field of modern dentistry. The use of naturally derived polymers in different dental specialties for preventive and therapeutic purposes has been discussed. The major fields of application cover caries and the management of periodontal diseases, the fabrication of membranes and scaffolds for the regeneration of dental structures, the manufacturing of oral appliances and dentures as well as providing systems for oral drug delivery. This paper also includes a comparative characteristic of natural and synthetic dental polymers. Finally, the current review highlights new perspectives, possible future advancements, as well as challenges that may be encountered by researchers in the field of dental applications of polymers of natural origin.
Collapse
|
29
|
Juncan AM, Moisă DG, Santini A, Morgovan C, Rus LL, Vonica-Țincu AL, Loghin F. Advantages of Hyaluronic Acid and Its Combination with Other Bioactive Ingredients in Cosmeceuticals. Molecules 2021; 26:molecules26154429. [PMID: 34361586 PMCID: PMC8347214 DOI: 10.3390/molecules26154429] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
This study proposes a review on hyaluronic acid (HA) known as hyaluronan or hyaluronate and its derivates and their application in cosmetic formulations. HA is a glycosaminoglycan constituted from two disaccharides (N-acetylglucosamine and D-glucuronic acid), isolated initially from the vitreous humour of the eye, and subsequently discovered in different tissues or fluids (especially in the articular cartilage and the synovial fluid). It is ubiquitous in vertebrates, including humans, and it is involved in diverse biological processes, such as cell differentiation, embryological development, inflammation, wound healing, etc. HA has many qualities that recommend it over other substances used in skin regeneration, with moisturizing and anti-ageing effects. HA molecular weight influences its penetration into the skin and its biological activity. Considering that, nowadays, hyaluronic acid has a wide use and a multitude of applications (in ophthalmology, arthrology, pneumology, rhinology, aesthetic medicine, oncology, nutrition, and cosmetics), the present study describes the main aspects related to its use in cosmetology. The biological effect of HA on the skin level and its potential adverse effects are discussed. Some available cosmetic products containing HA have been identified from the brand portfolio of most known manufacturers and their composition was evaluated. Further, additional biological effects due to the other active ingredients (plant extracts, vitamins, amino acids, peptides, proteins, saccharides, probiotics, etc.) are presented, as well as a description of their possible toxic effects.
Collapse
Affiliation(s)
- Anca Maria Juncan
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Str., 400349 Cluj-Napoca, Romania;
- SC Aviva Cosmetics SRL, 71A Kövari Str., 400217 Cluj-Napoca, Romania
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Dana Georgiana Moisă
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Luca-Liviu Rus
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
| | - Andreea Loredana Vonica-Țincu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Str., 400349 Cluj-Napoca, Romania;
| |
Collapse
|
30
|
Prasathkumar M, Sadhasivam S. Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing-Know-how. Int J Biol Macromol 2021; 186:656-685. [PMID: 34271047 DOI: 10.1016/j.ijbiomac.2021.07.067] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
Biomaterials are being extensively used in regenerative medicine including tissue engineering applications, as these enhance tissue development, repair, and help in the process of angiogenesis. Wound healing is a crucial biological process of regeneration of ruptured tissue after getting injury to the skin and other soft tissue in humans and animals. Besides, the accumulation of microbial biofilms around the wound surface can increase the risk and physically obstruct the wound healing activity, and may even lead to amputation. Hence, in both acute and chronic wounds, prominent biomaterials are required for wound healing along with antimicrobial agents. This review comprehensively addresses the antimicrobial and wound healing effects of chitosan, chitin, cellulose acetate, hyaluronic acid, pullulan, bacterial cellulose, fibrin, alginate, etc. based wound dressing biomaterials fabricated with natural resources such as honey, plant bioactive compounds, and marine-based polymers. Due to their excellent biocompatibility and biodegradability, bioactive compounds derived from honey, plants, and marine resources are commonly used in biomedical and tissue engineering applications. Different types of polymer-based biomaterials including hydrogel, film, scaffold, nanofiber, and sponge dressings fabricated with bioactive agents including honey, curcumin, tannin, quercetin, andrographolide, gelatin, carrageenan, etc., can exhibit significant wound healing process in, diabetic wounds, diabetic ulcers, and burns, and help in cartilage repair along with good biocompatibility and antimicrobial effects. Among the reviewed biomaterials, carbohydrate polymers such as chitosan-based biomaterials are prominent and widely used for wound healing applications followed by hyaluronic acid and alginate-based biomaterials loaded with honey, plant, and marine compounds. This review first provides an overview of the vast natural resources used to formulate different biomaterials for the treatment of antimicrobial, acute, and chronic wound healing processes.
Collapse
Affiliation(s)
- Murugan Prasathkumar
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India
| | - Subramaniam Sadhasivam
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India; Department of Extension and Career Guidance, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
31
|
Kida D, Zakrzewska A, Zborowski J, Szulc M, Karolewicz B. Polymer-Based Carriers in Dental Local Healing-Review and Future Challenges. MATERIALS 2021; 14:ma14143948. [PMID: 34300865 PMCID: PMC8308048 DOI: 10.3390/ma14143948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 02/01/2023]
Abstract
Polymers in drug formulation technology and the engineering of biomaterials for the treatment of oral diseases constitute a group of excipients that often possess additional properties in addition to their primary function, i.e., biological activity, sensitivity to stimuli, mucoadhesive properties, improved penetration of the active pharmaceutical ingredient (API) across biological barriers, and effects on wound healing or gingival and bone tissue regeneration. Through the use of multifunctional polymers, it has become possible to design carriers and materials tailored to the specific conditions and site of application, to deliver the active substance directly to the affected tissue, including intra-periodontal pocket delivery, and to release the active substance in a timed manner, allowing for the improvement of the form of application and further development of therapeutic strategies. The scope of this review is polymeric drug carriers and materials developed from selected multifunctional groups of natural, semi-synthetic, and synthetic polymers for topical therapeutic applications. Moreover, the characteristics of the topical application and the needs for the properties of carriers for topical administration of an active substance in the treatment of oral diseases are presented to more understand the difficulties associated with the design of optimal active substance carriers and materials for the treatment of lesions located in the oral cavity.
Collapse
Affiliation(s)
- Dorota Kida
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-784-0315
| | - Aneta Zakrzewska
- Department of Periodontology, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (A.Z.); (J.Z.); (M.S.)
| | - Jacek Zborowski
- Department of Periodontology, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (A.Z.); (J.Z.); (M.S.)
| | - Małgorzata Szulc
- Department of Periodontology, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (A.Z.); (J.Z.); (M.S.)
| | - Bożena Karolewicz
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland;
| |
Collapse
|
32
|
Valachová K, Šoltés L. Hyaluronan as a Prominent Biomolecule with Numerous Applications in Medicine. Int J Mol Sci 2021; 22:7077. [PMID: 34209222 PMCID: PMC8269271 DOI: 10.3390/ijms22137077] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022] Open
Abstract
Hyaluronan (HA) is a natural glycosaminoglycan present in many tissues of all vertebrates. HA has various biological functions, which are dependent on its molar mass. High-molar-mass HA has anti-angiogenic, immunosuppressive and anti-inflammatory properties, while low-molar-mass HA has opposite effects. HA has also antioxidative properties, however on the other hand it can be readily degraded by reactive oxygen species. For many years it has been used in treatment of osteoarthritis, cosmetics and in ophthalmology. In the last years there has been a growing interest of HA to also be applied in other fields of medicine such as skin wound healing, tissue engineering, dentistry and gene delivery. In this review we summarize information on modes of HA administration, properties and effects of HA in various fields of medicine including recent progress in the investigation of HA.
Collapse
Affiliation(s)
- Katarína Valachová
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 84104 Bratislava, Slovakia;
| | | |
Collapse
|
33
|
Ni J, Zhong Z, Wu Y, Shu R, Wu Y, Li C. Hyaluronic acid vs. physiological saline for enlarging deficient gingival papillae: a randomized controlled clinical trial and an in vitro study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:759. [PMID: 34268372 PMCID: PMC8246166 DOI: 10.21037/atm-20-7599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022]
Abstract
Background loss of the interdental papillae leads to the formation of a black triangle, which compromises smile esthetics and contributes to food impaction and plaque accumulation. The aim of this study was to evaluate the efficacy of the injection of hyaluronic acid (HA) and compare it to that of physiological saline solution in the restoration of deficient gingival papillae in vivo and in vitro. Methods Twenty-four patients with 68 deficient gingival papillae were recruited for this clinical trial with a split-mouth design. The deficient gingival papillae on one side of the anterior maxilla were injected with HA, and those on the other side were injected with physiological saline solution. The heights of the gingival papillae and the areas of the black triangles were measured from clinical photographs obtained before and 6 and 12 months after treatment. Additionally, the proliferation and migration of gingival fibroblasts were evaluated after HA and physiological saline treatment by an in vitro study. Results the results revealed that the injection of HA yielded 0.198 and 0.28 mm gingival papilla increasement at 6 and 12 months, respectively, relative to the baseline (P<0.05). However, deficient gingival papillae also grew by 0.278 mm at 12 months in the group that received physiological saline solution (P<0.05). The injection of HA significantly improved deficient gingival papillae 6 months earlier than the injection of physiological saline solution. HA also significantly accelerated the proliferation and migration of gingival fibroblasts in vitro. Conclusions The present study confirms that the injection of HA could increase the height of gingival papillae for improving gingival papilla defects. However, the effect is not superior to that of physiological saline solution. This trial was registered in the Chinese Clinical Trial Registry (ChiCTR-ONC-17011781) (28/06/2017). http://www.chictr.org.cn/showproj.aspx?proj=19931
Collapse
Affiliation(s)
- Jing Ni
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhe Zhong
- Center for Dental Research, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - Yifan Wu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Rong Shu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yiqun Wu
- 2nd Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Chaolun Li
- 2nd Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| |
Collapse
|
34
|
Chen IH, Lee TM, Huang CL. Biopolymers Hybrid Particles Used in Dentistry. Gels 2021; 7:gels7010031. [PMID: 33809903 PMCID: PMC8005972 DOI: 10.3390/gels7010031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
This literature review provides an overview of the fabrication and application of biopolymer hybrid particles in dentistry. A total of 95 articles have been included in this review. In the review paper, the common inorganic particles and biopolymers used in dentistry are discussed in general, and detailed examples of inorganic particles (i.e., hydroxyapatite, calcium phosphate, and bioactive glass) and biopolymers such as collagen, gelatin, and chitosan have been drawn from the scientific literature and practical work. Among the included studies, calcium phosphate including hydroxyapatite is the most widely applied for inorganic particles used in dentistry, but bioactive glass is more applicable and multifunctional than hydroxyapatite and is currently used in clinical practice. Today, biopolymer hybrid particles are receiving more attention as novel materials for several applications in dentistry, such as drug delivery systems, bone repair, and periodontal regeneration surgery. The literature published on the biopolymer gel-assisted synthesis of inorganic particles for dentistry is somewhat limited, and therefore, this article focuses on reviewing and discussing the biopolymer hybrid particles used in dentistry.
Collapse
Affiliation(s)
- I-Hao Chen
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Tzer-Min Lee
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- School of Dentistry, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: (T.-M.L.); (C.-L.H.); Tel.: +886-6-275-7575 (ext. 5972) (T.-M.L.); +886-7-312-1101 (ext. 2245#12) (C.-L.H.)
| | - Chih-Ling Huang
- Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (T.-M.L.); (C.-L.H.); Tel.: +886-6-275-7575 (ext. 5972) (T.-M.L.); +886-7-312-1101 (ext. 2245#12) (C.-L.H.)
| |
Collapse
|
35
|
Bayer IS. Hyaluronic Acid and Controlled Release: A Review. Molecules 2020; 25:molecules25112649. [PMID: 32517278 PMCID: PMC7321085 DOI: 10.3390/molecules25112649] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Hyaluronic acid (HA) also known as hyaluronan, is a natural polysaccharide—an anionic, non-sulfated glycosaminoglycan—commonly found in our bodies. It occurs in the highest concentrations in the eyes and joints. Today HA is used during certain eye surgeries and in the treatment of dry eye disease. It is a remarkable natural lubricant that can be injected into the knee for patients with knee osteoarthritis. HA has also excellent gelling properties due to its capability to bind water very quickly. As such, it is one the most attractive controlled drug release matrices and as such, it is frequently used in various biomedical applications. Due to its reactivity, HA can be cross-linked or conjugated with assorted bio-macromolecules and it can effectively encapsulate several different types of drugs, even at nanoscale. Moreover, the physiological significance of the interactions between HA and its main membrane receptor, CD44 (a cell-surface glycoprotein that modulates cell–cell interactions, cell adhesion and migration), in pathological processes, e.g., cancer, is well recognized and this has resulted in an extensive amount of studies on cancer drug delivery and tumor targeting. HA acts as a therapeutic but also as a tunable matrix for drug release. Thus, this review focuses on controlled or sustained drug release systems assembled from HA and its derivatives. More specifically, recent advances in controlled release of proteins, antiseptics, antibiotics and cancer targeting drugs from HA and its derivatives were reviewed. It was shown that controlled release from HA has many benefits such as optimum drug concentration maintenance, enhanced therapeutic effects, improved efficiency of treatment with less drug, very low or insignificant toxicity and prolonged in vivo release rates.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
36
|
Zhao J, He N. A mini-review of embedded 3D printing: supporting media and strategies. J Mater Chem B 2020; 8:10474-10486. [DOI: 10.1039/d0tb01819h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Embedded 3D printing is an additive manufacturing method based on a material extrusion strategy.
Collapse
Affiliation(s)
- Jingzhou Zhao
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Jiangsu 210096
- China
| | - Nongyue He
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Jiangsu 210096
- China
| |
Collapse
|