1
|
Kavya P, Gayathri M. Phytochemical Composition and Inhibitory Effects of Curcuma angustifolia Leaves Extracts Against α-Amylase and α-Glucosidase Enzymes Associated With Hyperglycaemia: In Vitro and In Silico Analysis. Chem Biodivers 2025:e00173. [PMID: 40424639 DOI: 10.1002/cbdv.202500173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025]
Abstract
Curcuma angustifolia Roxb. is a plant known for its therapeutic properties and has been employed conventionally to treat various ailments. The current research aimed to determine the phytochemical compounds and to explore the antihyperglycemic effects of C. angustifolia leaves through in vitro and in silico methods. The phytochemicals in the methanolic extract of leaves of C. angustifolia were detected using Fourier-transform infrared, gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry techniques. The antihyperglycemic potential of the different solvent extracts was evaluated using in vitro assays. The methanolic extract demonstrated comparatively higher inhibitory effects on both α-amylase and α-glucosidase enzymes, with the effects varying according to the concentration, and the half maximal inhibitory concentration values were 592.57 ± 0.64 and 267.11 ± 0.82 µg/ml, respectively. 2-p-Nitrophenyl-oxadiazol-1,3,4-one-5 was identified as a potential compound that could exhibit antihyperglycemic effects via molecular docking. 2-p-Nitrophenyl-oxadiazol-1,3,4-one-5 was found to have optimal physicochemical characteristics needed for drug-likeness based on in silico absorption, distribution, metabolism, excretion, and toxicity assessment. The prediction of activity spectra for substances prediction findings suggested that 2-p-nitrophenyl-oxadiazol-1,3,4-one-5 displays potent anti-diabetic activity, which aligns with the docking results. The findings suggested that the methanol extract of the leaves of C. angustifolia exhibits notable antihyperglycemic properties. Therefore, it could also be investigated to purify the active compound with antihyperglycemic effects.
Collapse
Affiliation(s)
- P Kavya
- Department of Bio Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - M Gayathri
- Department of Bio Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
2
|
Kaur M, Singh K, Kumar V. Green Synthesis of Silver Nanoparticles Using Penicillium camemberti and its Biological Applications. BIONANOSCIENCE 2024; 14:5179-5193. [DOI: 10.1007/s12668-024-01507-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2024] [Indexed: 01/12/2025]
|
3
|
Thakur M, Verma R, Kumar D, Manickam S, Ullah R, Ibrahim MA, Bari A, Lalhenmawia H, Kumar D. Hypoglycemic and antioxidant activities of Jasminum officinale L. with identification and characterization of phytocompounds. Heliyon 2024; 10:e39165. [PMID: 39524716 PMCID: PMC11547964 DOI: 10.1016/j.heliyon.2024.e39165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
The utilization of plant-derived chemicals with anti-diabetic properties is widely promoted for its advantageous tactics in managing diabetes, as they are cost-effective and have minimal or no adverse effects. Therefore, this work investigates the medicinal plant Jasminum officinale L. leaves by extraction and bio-guided fractionation. The ethyl acetate fraction showed a higher yield of 36.4 %. A phytochemical test on Jasminum officinale confirmed flavonoids, saponins, phenols, and tannins. The highest total phenol and flavonoid contents in the ethyl acetate fraction of J. officinale are 103.01 ± 1.1 mg GAE/g and 80.29 ± 1.03 mg QUE/ value found in methanol crude extract. Furthermore, HPTLC analysis of the ethyl acetate fraction detected the existence of flavonoids (kaempferol) and phenols (gallic acid, quercetin, and rutin). The compounds detected at the greatest concentrations in the LC-M/MS analysis of the ethyl acetate fraction were cirsiliol, kaempferol, and 2-tridecanone. Additionally, J. officinale (IC50 33.845 ± 1.09 μg/mL) demonstrated the highest DPPH scavenging activity in EAF like that of ascorbic acid (IC50 22.27 ± 0.96 μg/mL). Also, in the FRAP assay, the IC50 of this fraction is 15.14 ± 0.25 μM Fe equivalents. In the range of alpha-amylase deactivating action, from 13.25 % to 74.51 %, and IC50 value (47.40 ± 0.29 μg/mL) was significantly higher in the ethyl acetate fraction of J. officinale leaf extract. Moreover, J. officinale leaf extract had a substantially higher retention of glucose level (23.92 ± 0.85 % to 87.21 ± 0.6 %), significantly higher anti-inflammatory activity with the lowest IC50 value (66.00 ± 1.84), and lipid peroxidation (IC50 value 34.67 ± 1.69) by utilizing egg yolk as a substrate for lipids. Overall, the study revealed that J. officinale has considerable anti-diabetic characteristics. However, further comprehensive research is necessary to ascertain the medicinal purposes of J. officinale and its chemical components, pharmacological effects, and clinical uses.
Collapse
Affiliation(s)
- Mehak Thakur
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP, 173212, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP, 173212, India
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech republic
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, HP, 173229, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering Department, Faculty of Engineering, University Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Riaz Ullah
- Department of Pharmaceutics, College of Pharmacy King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A. Ibrahim
- Department of Pharmaceutics, College of Pharmacy King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy King Saud University, Riyadh, Saudi Arabia
| | - H. Lalhenmawia
- Department of Pharmacy, Regional Institute of Paramedical and Nursing Sciences, Aizawl, 796017, Mizoram, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, HP, 173229, India
| |
Collapse
|
4
|
Lei H, Liu F, Jia M, Ni H, Han Y, Chen J, Wang H, Gu H, Chen Y, Lin Y, Wang P, Yang Z, Cai Y. An overview of the direct interaction of synthesized silver nanostructures and enzymes. Int J Biol Macromol 2024; 279:135154. [PMID: 39214212 DOI: 10.1016/j.ijbiomac.2024.135154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Silver nanoparticles (AgNPs) have drawn a lot of attention from a variety of fields, particularly the biological and biomedical sciences. As a result, it is acknowledged that AgNPs' direct interactions with macromolecules such as DNA, proteins, and enzymes are essential for both therapeutic and nanotoxicological applications. Enzymes as important catalysts may interact with AgNP surfaces in a variety of ways. Therefore, mechanistic investigation into the molecular effects of AgNPs on enzyme conformation and function is necessary for a comprehensive assessment of their interactions. In this overview, we aimed to overview the various strategies for producing AgNPs. We then discussed the enzyme activity inhibition (EAI) mechanism by nanostructured particles, followed by an in-depth survey of the interaction of AgNPs with different enzymes. Furthermore, various parameters influencing the interaction of NPs and enzymes, as well as the antibacterial and anticancer effects of AgNPs in the context of the enzyme inhibitors, were discussed. In summary, useful information regarding the biological safety and possible therapeutic applications of AgNPs-enzyme conjugates may be obtained from this review.
Collapse
Affiliation(s)
- Haoqiang Lei
- Huangpu People's Hospital of Zhongshan, Zhongshan 528429, China
| | - Fengjie Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Informatization / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Meng Jia
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Huanhuan Ni
- Huangpu People's Hospital of Zhongshan, Zhongshan 528429, China
| | - Yanfeng Han
- Huangpu People's Hospital of Zhongshan, Zhongshan 528429, China
| | - Junyuan Chen
- Huangpu People's Hospital of Zhongshan, Zhongshan 528429, China
| | - Huan Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Informatization / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Honghui Gu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Yiqi Chen
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Yixuan Lin
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Panpan Wang
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Zhenjiang Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China.
| | - Yu Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Informatization / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Rani J, Singh S, Beniwal A, Kakkar S, Moond M, Sangwan S, Kumari S. Pomegranate peel mediated silver nanoparticles: antimicrobial action against crop pathogens, antioxidant potential and cytotoxicity assay. DISCOVER NANO 2024; 19:160. [PMID: 39356395 PMCID: PMC11447186 DOI: 10.1186/s11671-024-04103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024]
Abstract
Biologically produced silver nanoparticles are becoming a more appealing option than chemically produced antioxidants and antimicrobial agents, because they are safer, easier to manufacture and have medicinal properties at lower concentrations. In this work, we employed the aqueous pomegranate peel extract (PPE) to synthesize silver nanoparticles (PPE-AgNPs), as peel extract is a rich source of phytochemicals which functions as reducing agent for the synthesis of PPE-AgNPs. Additionally, the PPE was examined quantitatively for total phenolics and total flavonoids content. PPE-AgNPs were characterized using analytical techniques including UV-Vis spectroscopy, DLS, FTIR, XRD, HRTEM and FESEM, evaluated in vitro against the plant pathogenic microbes and also for antioxidant activities. Analytical techniques (HRTEM and FESEM) confirmed the spherical shape and XRD technique revealed the crystalline nature of synthesized PPE-AgNPs. Quantitative analysis revealed the presence of total phenolics (269.93 ± 1.01 mg GAE/g) and total flavonoids (119.70 ± 0.83 mg CE/g). Biosynthesized PPE-AgNPs exhibited significant antibacterial activity against Klebsiella aerogenes and Xanthomonas axonopodis, antifungal activity against Colletotrichum graminicola and Colletotrichum gloesporioides at 50 µg/mL concentration. The antioxidant potential of biosynthesized PPE-AgNPs was analysed via ABTS (IC50 4.25 µg/mL), DPPH (IC50 5.22 µg/mL), total antioxidant (86.68 g AAE/mL at 10 µg/mL) and FRAP (1.93 mM Fe(II)/mL at 10 µg/mL) assays. Cytotoxicity of PPE-AgNPs was valuated using MTT assay and cell viability of 83.32% was determined at 100 µg/mL concentration. These investigations suggest that synthesized PPE-AgNPs might prove useful for agricultural and medicinal purposes in the future.
Collapse
Affiliation(s)
- Jyoti Rani
- Department of Chemistry, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Sushila Singh
- Department of Chemistry, CCS Haryana Agricultural University, Hisar, 125004, India.
| | - Anuradha Beniwal
- Department of Chemistry, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Simran Kakkar
- Department of Chemistry, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Monika Moond
- Department of Chemistry, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Seema Sangwan
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Sachin Kumari
- Department of Chemistry, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
6
|
Kavya P, Theijeswini RC, Gayathri M. Phytochemical analysis, identification of bioactive compounds using GC-MS, in vitro and in silico hypoglycemic potential, in vitro antioxidant potential, and in silico ADME analysis of Chlorophytum comosum root and leaf. Front Chem 2024; 12:1458505. [PMID: 39345858 PMCID: PMC11427758 DOI: 10.3389/fchem.2024.1458505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Chlorophytum comosum is a plant with medicinal potential traditionally used to treat different diseases. The present study aimed to determine the bioactive compounds, hypoglycemic and antioxidant potential of C. comosum root and leaf. The ethyl acetate extracts of C. comosum root and leaf were analyzed by GC-MS to determine the bioactive compounds. The hypoglycemic potential of the extracts was evaluated by α-amylase, α-glucosidase, glucose diffusion inhibitory assays, and glucose adsorption assay. The ethyl acetate extract of C. comosum root inhibited α-amylase, α-glucosidase, and glucose diffusion in a concentration-dependent manner with IC50 values of 205.39 ± 0.15, 179.34 ± 0.3 and 535.248 μg/mL, respectively, and the leaf extract inhibited α-amylase and α-glucosidase enzymes with IC50 values of 547.99 ± 0.09, and 198.18 ± 0.25 μg/mL respectively. C. comosum root and leaf extracts also improved glucose adsorption. Heptadecanoic acid and dodecanoic acid were identified as potential compounds with hypoglycemic properties through molecular docking. The extracts were also assessed for their antioxidant activity using DPPH, ABTS, and FRAP assays. C. comosum root and leaf extracts were also able to scavenge DPPH radicals with IC50 values of 108.37 ± 0.06 and 181.79 ± 0.09 µM and ABTS radicals with IC50 values of 126.24 ± 0.13 and 264.409 ± 0.08 µM, respectively. The root and leaf extracts also reduced the ferricyanide complex to ferrocyanide with higher reducing powers of 2.24 ± 0.02 and 1.65 ± 0.03, respectively. The results showed that the ethyl acetate extract of C. comosum root has significant antioxidant and hypoglycemic potential compared to the leaf extract. Thus, it can also be studied to isolate the potential compounds with antihyperglycemic activities.
Collapse
Affiliation(s)
- P Kavya
- Department of Bio Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - R C Theijeswini
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - M Gayathri
- Department of Bio Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
7
|
Kavya P, Gayathri M. Phytochemical Profiling and Assessment of Antidiabetic Activity of Curcuma Angustifolia Rhizome Methanolic Extract: An In Vitro and In Silico Analysis. Chem Biodivers 2024; 21:e202301788. [PMID: 38484132 DOI: 10.1002/cbdv.202301788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/13/2024] [Indexed: 04/18/2024]
Abstract
Curcuma angustifolia Roxb. is a plant with medicinal potential, traditionally used to treat different diseases. The present study aimed to determine the antidiabetic activity of C. angustifolia rhizome in vitro and in silico. The methanolic extract of C. angustifolia rhizome was analyzed by FTIR and GC-MS to determine the phytochemicals present. The antidiabetic potential of the extract was evaluated by different assays in vitro. The extract inhibited both α-amylase and α-glucosidase enzymes and the glucose diffusion through the dialysis membrane in a concentration-dependent manner with IC50 values of 530.39±0.09, 293.75±0.11, and 551.74±0.3 μg/ml respectively. The methanolic extract also improved yeast cell's ability to take up glucose across plasma membranes and the adsorption of glucose. The findings were supported by molecular docking studies. The results showed that the methanol extract of C. angustifolia rhizome has significant antidiabetic activity and thus can be also studied to isolate the potential compound with antidiabetic activities.
Collapse
Affiliation(s)
- P Kavya
- Department of Bio Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - M Gayathri
- Department of Bio Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
8
|
Ali MY, Mahmoud AS, Abdalla M, Hamouda HI, Aloufi AS, Almubaddil NS, Modafer Y, Hassan AMS, Eissa MAM, Zhu D. Green synthesis of bio-mediated silver nanoparticles from Persea americana peels extract and evaluation of their biological activities: In vitro and in silico insights. JOURNAL OF SAUDI CHEMICAL SOCIETY 2024; 28:101863. [DOI: 10.1016/j.jscs.2024.101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
9
|
Royapuram Parthasarathy P, E IV, Shanmugam R. In Vitro Anti-diabetic Activity of Pomegranate Peel Extract-Mediated Strontium Nanoparticles. Cureus 2023; 15:e51356. [PMID: 38292989 PMCID: PMC10824705 DOI: 10.7759/cureus.51356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/30/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction Type 2 diabetes mellitus and its associated health complications represent a significant public health issue due to its wide prevalence. The primary disadvantages of current oral anti-diabetic drugs are their limited bio-availability and their quick release, which necessitates more frequent dosing. Similar limitations are encountered when using natural products for the management of type 2 diabetes. Consequently, nanoparticles have been developed with the goal of enhancing the physicochemical stability of the drugs, thereby improving their bio-availability. In view of the given background, the present study aimed to explore the efficacy of strontium nanoparticles derived from pomegranate peel extract in managing type 2 diabetes mellitus. Materials and methods The aqueous extract of pomegranate peel was prepared using standard protocol and the strontium nanoparticles were prepared by green synthesis method using pomegranate peel extract. The prepared aqueous extract of pomegranate peel and the nanoparticles were assessed for their inhibitory potential against α-amylase and α-glucosidase enzymes activity by 3,5-dinitrosalicylic acid (DNSA) and p-nitro-phenyl-ɑ-D glucopyranoside (p-NPG) assays, respectively. Results The pomegranate peel-mediated strontium nanoparticles (PP-Sr NPs) and standard acarbose were assessed for their inhibitory effect against diabetic enzymes, α-amylase, and α-glucosidase at different concentrations range of 5-160 μg/ml. The results showed that PP-Sr NPs exhibited a maximum inhibition of 79.28% and 76.17% against α-amylase and α-glucosidase respectively at the highest concentration of 160 μg/ml. Acarbose showed a maximum inhibition of 88.02% and 84.47% against α-amylase and α-glucosidase respectively at 160 μg/ml. The inhibitory effect of the PP-Sr NPs and standard acarbose was found to be concentration-dependent. Conclusion From the results, it is concluded that the PP-Sr NPs may be useful for decreasing postprandial glucose levels. Further studies using in vitro cell lines and in vivo diabetic models may substantiate the antidiabetic potential of PP-Sr NPs.
Collapse
Affiliation(s)
- Parameswari Royapuram Parthasarathy
- Pharmacology, Centre for Transdisciplinary Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
- Pharmacology, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Ilammaran Varshan E
- Dentistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Rajeshkumar Shanmugam
- Pharmacology, Centre for Transdisciplinary Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
10
|
Rehman G, Umar M, Shah N, Hamayun M, Ali A, Khan W, Khan A, Ahmad S, Alrefaei AF, Almutairi MH, Moon YS, Ali S. Green Synthesis and Characterization of Silver Nanoparticles Using Azadirachta indica Seeds Extract: In Vitro and In Vivo Evaluation of Anti-Diabetic Activity. Pharmaceuticals (Basel) 2023; 16:1677. [PMID: 38139804 PMCID: PMC10748007 DOI: 10.3390/ph16121677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a non-communicable, life-threatening syndrome that is present all over the world. The use of eco-friendly, cost-effective, and green-synthesised nanoparticles as a medicinal therapy in the treatment of DM is an attractive option. OBJECTIVE In the present study, silver nanoparticles (AI-AgNPs) were biosynthesized through the green synthesis method using Azadirachta indica seed extract to evaluate their anti-diabetic potentials. METHODS These nanoparticles were characterized by using UV-visible spectroscopy, Fourier transform infrared spectrophotometers (FTIR), scanning electron microscopy (SEM), DLS, and X-ray diffraction (XRD). The biosynthesized AI-AgNPs and crude extracts of Azadirachta indica seeds were evaluated for anti-diabetic potentials using glucose adsorption assays, glucose uptake by yeast cells assays, and alpha-amylase inhibitory assays. RESULTS Al-AgNPs showed the highest activity (75 ± 1.528%), while crude extract showed (63 ± 2.5%) glucose uptake by yeast at 80 µg/mL. In the glucose adsorption assay, the highest activity of Al-AgNPs was 10.65 ± 1.58%, while crude extract showed 8.32 ± 0.258% at 30 mM, whereas in the alpha-amylase assay, Al-AgNPs exhibited the maximum activity of 73.85 ± 1.114% and crude extract 65.85 ± 2.101% at 100 µg/mL. The assay results of AI-AgNPs and crude showed substantial dose-dependent activities. Further, anti-diabetic potentials were also investigated in streptozotocin-induced diabetic mice. Mice were administered with AI-AgNPs (10 to 40 mg/kg b.w) for 30 days. CONCLUSIONS The results showed a considerable drop in blood sugar levels, including pancreatic and liver cell regeneration, demonstrating that AI-AgNPs have strong anti-diabetic potential.
Collapse
Affiliation(s)
- Gauhar Rehman
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (M.U.); (A.A.); (A.K.); (S.A.)
| | - Muhammad Umar
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (M.U.); (A.A.); (A.K.); (S.A.)
| | - Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (N.S.); (W.K.)
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (M.U.); (A.A.); (A.K.); (S.A.)
| | - Waliullah Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (N.S.); (W.K.)
| | - Arif Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (M.U.); (A.A.); (A.K.); (S.A.)
| | - Sajjad Ahmad
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (M.U.); (A.A.); (A.K.); (S.A.)
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.A.); (M.H.A.)
| | - Mikhlid H. Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.A.); (M.H.A.)
| | - Yong-Sun Moon
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
11
|
Ali MH, Azad MAK, Khan KA, Rahman MO, Chakma U, Kumer A. Analysis of Crystallographic Structures and Properties of Silver Nanoparticles Synthesized Using PKL Extract and Nanoscale Characterization Techniques. ACS OMEGA 2023; 8:28133-28142. [PMID: 37576647 PMCID: PMC10413482 DOI: 10.1021/acsomega.3c01261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023]
Abstract
In this cutting-edge research era, silver nanoparticles impose a substantial impact because of their wide applicability in the field of engineering, science, and industry. Regarding the vast applications of silver nanoparticles, in this study, the crystallographic characteristics and nanostructures of silver nanoparticles extracted from natural resources have been studied. First, biosynthetic silver nanoparticles were synthesized using the Pathor Kuchi leaf (PKL) extract as a mediator, and their crystal structures and characteristics were analyzed by UV-visible absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and energy-dispersive X-ray (EDX) analysis. The average crystallite size of the synthesized silver nanoparticle was determined to be 20.26 nm, and also the lattice strain, intrinsic stress, and dislocation density were measured to be 2.19 × 10-3, 0.08235 GPa, and 3.062045 × 10-3/nm2, respectively. Further, the prepared sample of silver nanoparticles shows four peaks in the X-ray diffraction pattern, which correspond to the (111), (200), (220), and (311) face-centered cubic (FCC) crystalline planes. The outstanding finding of this work was that when the lattice parameters of the precursor were increased, the volume of the material did not considerably change, but the particle size decreased. Second, it was clearly demonstrated that this straightforward method is a clean, cost-effective, environmentally sustainable, nontoxic, and efficient route for the synthesis of silver nanoparticles (Ag NPs) using PKL leaf at ambient temperature, which also satisfies the green chemistry requirements. Finally, this study demonstrates the scope for the production of silver nanoparticles using low-cost natural resources.
Collapse
Affiliation(s)
- Md. Hazrat Ali
- Department
of Electrical and Electronic Engineering, European University of Bangladesh (EUB), 2/4, Gabtoli, Mirpur, Dhaka 1216, Bangladesh
| | - Md. Abul Kalam Azad
- Department
of Civil Engineering, European University
of Bangladesh (EUB), 2/4, Gabtoli, Mirpur, Dhaka 1216, Bangladesh
| | - K. A. Khan
- Department
of Physics, Jagannath University, Dhaka 1100, Bangladesh
| | - Md. Obaidur Rahman
- Department
of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Unesco Chakma
- School
of Electronic Science and Engineering, Southeast
University, Nanjing 210096, P. R. China
- Laboratory
of Computational Research for Drug Design and Material Science, Department
of Chemistry, European University of Bangladesh, Dhaka 1216, Bangladesh
| | - Ajoy Kumer
- Laboratory
of Computational Research for Drug Design and Material Science, Department
of Chemistry, European University of Bangladesh, Dhaka 1216, Bangladesh
| |
Collapse
|
12
|
Azeez L, Lateef A, Olabode O. An overview of biogenic metallic nanoparticles for water treatment and purification: the state of the art. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:851-873. [PMID: 37651325 PMCID: wst_2023_255 DOI: 10.2166/wst.2023.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The environment is fundamental to human existence, and protecting it from dangerous contaminants should be a top priority for all stakeholders. Reducing garbage output has helped, but as the world's population grows, more waste will be generated. Tons of waste inadvertently and advertently received by environmental matrixes adversely affect the sustainable environment. The pollution caused by these activities affects the environment and human health. Conventional remediation processes ranging from chemical, physical, and biological procedures use macroaggregated materials and microorganisms to degrade or remove pollutants. Undesirable limitations of expensiveness, disposal challenges, maintenance, and formation of secondary contaminants abound. Additionally, multiple stages of treatments to remove different contaminants are time-consuming. The need to avoid these limitations and shift towards sustainable approaches brought up nanotechnology options. Currently, nanomaterials are being used for environmental rejuvenation that involves the total degradation of pollutants without secondary pollution. As nanoparticles are primed with vast and modifiable reactive sites for adsorption, photocatalysis, and disinfection, they are more useful in remediating pollutants. Review articles on metallic nanoparticles usually focus on chemically synthesized ones, with a particular focus on their adsorption capacity and toxicities. Therefore, this review evaluates the current status of biogenic metallic nanoparticles for water treatment and purification.
Collapse
Affiliation(s)
- Luqmon Azeez
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria E-mail:
| | - Agbaje Lateef
- Nanotechnology Research Group (NANO+), Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
| | - Olalekan Olabode
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria; Department of Chemistry, Mississippi State University, MS 39762-9573, USA
| |
Collapse
|
13
|
Pekkoh J, Ruangrit K, Kaewkod T, Tragoolpua Y, Hoijang S, Srisombat L, Wichapein A, Pathom-Aree W, Kato Y, Wang G, Srinuanpan S. Innovative Eco-Friendly Microwave-Assisted Rapid Biosynthesis of Ag/AgCl-NPs Coated with Algae Bloom Extract as Multi-Functional Biomaterials with Non-Toxic Effects on Normal Human Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2141. [PMID: 37513152 PMCID: PMC10383740 DOI: 10.3390/nano13142141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Harmful algal blooms impact human welfare and are a global concern. Sargassum spp., a type of algae or seaweed that can potentially bloom in certain regions of the sea around Thailand, exhibits a noteworthy electron capacity as the sole reducing and stabilizing agent, which suggests its potential for mediating nanoparticle composites. This study proposes an eco-friendly microwave-assisted biosynthesis (MAS) method to fabricate silver nanoparticles coated with Sargassum aqueous extract (Ag/AgCl-NPs-ME). Ag/AgCl-NPs-ME were successfully synthesized in 1 min using a 20 mM AgNO3 solution without additional hazardous chemicals. UV-visible spectroscopy confirmed their formation through a surface plasmon resonance band at 400-500 nm. XRD and FTIR analyses verified their crystalline nature and involvement of organic molecules. TEM and SEM characterization showed well-dispersed Ag/AgCl-NPs-ME with an average size of 36.43 nm. The EDS results confirmed the presence of metallic Ag+ and Cl- ions. Ag/AgCl-NPs-ME exhibited significant antioxidant activity against free radicals (DPPH, ABTS, and FRAP), suggesting their effectiveness. They also inhibited enzymes (tyrosinase and ACE) linked to diseases, indicating therapeutic potential. Importantly, the Ag/AgCl-NPs-ME displayed remarkable cytotoxicity against cancer cells (A375, A549, and Caco-2) while remaining non-toxic to normal cells. DNA ladder and TUNEL assays confirmed the activation of apoptosis mechanisms in cancer cells after a 48 h treatment. These findings highlight the versatile applications of Ag/AgCl-NPs-ME in food, cosmetics, pharmaceuticals, and nutraceuticals.
Collapse
Affiliation(s)
- Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khomsan Ruangrit
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thida Kaewkod
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supawitch Hoijang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Laongnuan Srisombat
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Antira Wichapein
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yasuo Kato
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Guangce Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
14
|
Maduraimuthu V, Ranishree JK, Gopalakrishnan RM, Ayyadurai B, Raja R, Heese K. Antioxidant Activities of Photoinduced Phycogenic Silver Nanoparticles and Their Potential Applications. Antioxidants (Basel) 2023; 12:1298. [PMID: 37372028 DOI: 10.3390/antiox12061298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
While various methods exist for synthesizing silver nanoparticles (AgNPs), green synthesis has emerged as a promising approach due to its affordability, sustainability, and suitability for biomedical purposes. However, green synthesis is time-consuming, necessitating the development of efficient and cost-effective techniques to minimize reaction time. Consequently, researchers have turned their attention to photo-driven processes. In this study, we present the photoinduced bioreduction of silver nitrate (AgNO3) to AgNPs using an aqueous extract of Ulva lactuca, an edible green seaweed. The phytochemicals found in the seaweed functioned as both reducing and capping agents, while light served as a catalyst for biosynthesis. We explored the effects of different light intensities and wavelengths, the initial pH of the reaction mixture, and the exposure time on the biosynthesis of AgNPs. Confirmation of AgNP formation was achieved through the observation of a surface plasmon resonance band at 428 nm using an ultraviolet-visible (UV-vis) spectrophotometer. Fourier transform infrared spectroscopy (FTIR) revealed the presence of algae-derived phytochemicals bound to the outer surface of the synthesized AgNPs. Additionally, high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM) images demonstrated that the NPs possessed a nearly spherical shape, ranging in size from 5 nm to 40 nm. The crystalline nature of the NPs was confirmed by selected area electron diffraction (SAED) and X-ray diffraction (XRD), with Bragg's diffraction pattern revealing peaks at 2θ = 38°, 44°, 64°, and 77°, corresponding to the planes of silver 111, 200, 220, and 311 in the face-centered cubic crystal lattice of metallic silver. Energy-dispersive X-ray spectroscopy (EDX) results exhibited a prominent peak at 3 keV, indicating an Ag elemental configuration. The highly negative zeta potential values provided further confirmation of the stability of AgNPs. Moreover, the reduction kinetics observed via UV-vis spectrophotometry demonstrated superior photocatalytic activity in the degradation of hazardous pollutant dyes, such as rhodamine B, methylene orange, Congo red, acridine orange, and Coomassie brilliant blue G-250. Consequently, our biosynthesized AgNPs hold great potential for various biomedical redox reaction applications.
Collapse
Affiliation(s)
- Vijayakumar Maduraimuthu
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | | | - Raja Mohan Gopalakrishnan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - Brabakaran Ayyadurai
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - Rathinam Raja
- Research and Development Wing, Bharath Institute of Higher Education and Research (BIHER), Sree Balaji Medical College and Hospital (SBMCH), Chennai 600044, Tamil Nadu, India
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| |
Collapse
|
15
|
Santos IL, Rodrigues AMDC, Amante ER, Silva LHMD. Soursop ( Annona muricata) Properties and Perspectives for Integral Valorization. Foods 2023; 12:foods12071448. [PMID: 37048268 PMCID: PMC10093693 DOI: 10.3390/foods12071448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 04/14/2023] Open
Abstract
The increased international interest in the properties of soursop (Annona muricata) alerts us to the sustainability of productive chain by-products, which are rich in phytochemicals and other properties justifying their industrial application in addition to reducing the environmental impact and generating income. Chemical characteristics of soursop by-products are widely known in the scientific community; this fruit has several therapeutic effects, especially its leaves, enabling it to be used by the pharmaceutical industry. Damaged and non-standard fruits (due to falling and crushing) (30-50%), seeds (3-8.5%), peels (7-20%), and leaves, although they constitute discarded waste, can be considered as by-products. There are other less cited parts of the plant that also have phytochemical components, such as the columella and the epidermis of the stem and root. Tropical countries are examples of producers where soursop is marketed as fresh fruit or frozen pulp, and the valorization of all parts of the fruit could represent important environmental and economic perspectives. Based on the chemical composition of the fruit as well as its by-products and leaves, this work discusses proposals for the valorization of these materials. Soursop powder, bioactive compounds, oil, biochar, biodiesel, bio-oil, and other products based on published studies are presented in this work, offering new ideas for opportunities for the regions and consumers that produce soursop.
Collapse
Affiliation(s)
- Ivone Lima Santos
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Universidade Federal do Pará (UFPA), Belém 66075-110, Pará, Brazil
| | - Antonio Manoel da Cruz Rodrigues
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Universidade Federal do Pará (UFPA), Belém 66075-110, Pará, Brazil
| | - Edna Regina Amante
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Universidade Federal do Pará (UFPA), Belém 66075-110, Pará, Brazil
| | - Luiza Helena Meller da Silva
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Universidade Federal do Pará (UFPA), Belém 66075-110, Pará, Brazil
| |
Collapse
|
16
|
Antidiabetic potential of Gymnemic acid mediated gold nanoparticles (Gym@AuNPs) on Streptozotocin-induced diabetic rats-An implication on in vivo approach. Int J Pharm 2023; 636:122843. [PMID: 36921739 DOI: 10.1016/j.ijpharm.2023.122843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023]
Abstract
Gymnemic acid is glycosides of triterpene with recognized and valuable applications for several chronic diseases, mainly diabetics. Despite this, it requires a delivery system in order to range its therapeutic target due to its limited solubility and bioavailability. Therefore, the Gymnemic acid mediated gold nanoparticles (Gym@AuNPs) was synthesised by eco-friendly approach. The synthesised Gym@AuNPs was confirmed by the colour change from light yellow to a deep ruby red. UV - visible spectroscopy results showed a strong narrow peak at 530 nm, confirming the controlled synthesis of monodispersed Gym@AuNPs. The reduction potential of standard Gymnemic acid (Gym) on synthesis of Gym@AuNPs was confirmed by using HPLC analysis. The spherical shaped Gym@AuNPs was observed by FESEM and HR-TEM studies with average size of 48.52 ± 5.53 nm. The XRD analysis exhibited a face-centered cubic (FCC) crystalline nature of Gym@AuNPs. The in vivo antidiabetic activity of Gym and Gym@AuNPs were validated using Streptozotocin induced diabetic Albino wistar rats. The Gym@AuNPs and Gym were regulates the glucose and lipid levels in experimental animals. The histopathology outcomes shown that the Gym@AuNPs were restoration of pancreatic islets cells in the animals. This investigation demonstrated that the Gym@AuNPs had the potential anti-diabetic properties.
Collapse
|
17
|
Green decorated gold nanoparticles on magnetic nanoparticles mediated by Calendula extract for the study of preventive effects in streptozotocin-induced gestational diabetes mellitus rats. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
18
|
Biogeneration of silver nanoparticles from Cuphea procumbens for biomedical and environmental applications. Sci Rep 2023; 13:790. [PMID: 36646714 PMCID: PMC9842608 DOI: 10.1038/s41598-022-26818-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Nanotechnology is one of the most important and relevant disciplines today due to the specific electrical, optical, magnetic, chemical, mechanical and biomedical properties of nanoparticles. In the present study we demonstrate the efficacy of Cuphea procumbens to biogenerate silver nanoparticles (AgNPs) with antibacterial and antitumor activity. These nanoparticles were synthesized using the aqueous extract of C. procumbens as reducing agent and silver nitrate as oxidizing agent. The Transmission Electron Microscopy demonstrated that the biogenic AgNPs were predominantly quasi-spherical with an average particle size of 23.45 nm. The surface plasmonic resonance was analyzed by ultraviolet visible spectroscopy (UV-Vis) observing a maximum absorption band at 441 nm and Infrared Spectroscopy (FT IR) was used in order to structurally identify the functional groups of some compounds involved in the formation of nanoparticles. The AgNPs demonstrated to have antibacterial activity against the pathogenic bacteria Escherichia coli and Staphylococcus aureus, identifying the maximum zone of inhibition at the concentration of 0.225 and 0.158 µg/mL respectively. Moreover, compared to the extract, AgNPs exhibited better antitumor activity and higher therapeutic index (TI) against several tumor cell lines such as human breast carcinoma MCF-7 (IC50 of 2.56 µg/mL, TI of 27.65 µg/mL), MDA-MB-468 (IC50 of 2.25 µg/mL, TI of 31.53 µg/mL), human colon carcinoma HCT-116 (IC50 of 1.38 µg/mL, TI of 51.07 µg/mL) and melanoma A-375 (IC50 of 6.51 µg/mL, TI of 10.89 µg/mL). This fact is of great since it will reduce the side effects derived from the treatment. In addition, AgNPs revealed to have a photocatalytic activity of the dyes congo red (10-3 M) in 5 min and malachite green (10-3 M) in 7 min. Additionally, the degradation percentages were obtained, which were 86.61% for congo red and 82.11% for malachite green. Overall, our results demonstrated for the first time that C. procumbens biogenerated nanoparticles are excellent candidates for several biomedical and environmental applications.
Collapse
|
19
|
Vindhya PS, Kavitha VT. Leaf extract-mediated synthesis of Mn-doped CuO nanoparticles for antimicrobial, antioxidant and photocatalytic applications. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Khuda F, Jamil M, Ali Khan Khalil A, Ullah R, Ullah N, Naureen F, Abbas M, Shafiq Khan M, Ali S, Muhammad Umer Farooqi H, Ahn MJ. Assessment of antioxidant and cytotoxic potential of silver nanoparticles synthesized from root extract of Reynoutria japonica Houtt. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
21
|
Hasan KF, Xiaoyi L, Shaoqin Z, Horváth PG, Bak M, Bejó L, Sipos G, Alpár T. Functional silver nanoparticles synthesis from sustainable point of view: 2000 to 2023 ‒ A review on game changing materials. Heliyon 2022; 8:e12322. [PMID: 36590481 PMCID: PMC9800342 DOI: 10.1016/j.heliyon.2022.e12322] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/13/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The green and facile synthesis of metallic silver nanoparticles (AgNPs) is getting tremendous attention for exploring superior applications because of their small dimensions and shape. AgNPs are already proven materials for superior coloration, biocidal, thermal, UV-protection, and mechanical performance. Originally, some conventional chemical-based reducing agents were used to synthesize AgNPs, but these posed potential risks, especially for enhanced toxicity. This became a driving force to innovate plant-based sustainable and green metallic nanoparticles (NPs). Moreover, the synthesized NPs using plant-based derivatives could be tuned and regulated to achieve the required shape and size of the AgNPs. AgNPs synthesized from naturally derived materials are safe, economical, eco-friendly, facile, and convenient, which is also motivating researchers to find greener routes and viable options, utilizing various parts of plants like flowers, stems, heartwood, leaves and carbohydrates like chitosan to meet the demands. This article intends to provide a comprehensive review of all aspects of AgNP materials, including green synthesis methodology and mechanism, incorporation of advanced technologies, morphological and elemental study, functional properties (coloration, UV-protection, biocidal, thermal, and mechanical properties), marketing value, future prospects and application, especially for the last 20 years or more. The article also includes a SWOT (Strengths, weaknesses, opportunities, and threats) analysis regarding the use of AgNPs. This report would facilitate the industries and consumers associated with AgNP synthesis and application through fulfilling the demand for sustainable, feasible, and low-cost product manufacturing protocols and their future prospects.
Collapse
Affiliation(s)
- K.M. Faridul Hasan
- Fiber and Nanotechnology Program, University of Sopron, 9400, Sopron, Hungary
- Faculty of Wood Engineering and Creative Industry, University of Sopron, 9400, Sopron, Hungary
| | - Liu Xiaoyi
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, 550025, Guizhou, PR China
| | - Zhou Shaoqin
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, 550025, Guizhou, PR China
- Center of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, 6525 GA Nijmegen, The Netherlands
| | - Péter György Horváth
- Faculty of Wood Engineering and Creative Industry, University of Sopron, 9400, Sopron, Hungary
| | - Miklós Bak
- Faculty of Wood Engineering and Creative Industry, University of Sopron, 9400, Sopron, Hungary
| | - László Bejó
- Faculty of Wood Engineering and Creative Industry, University of Sopron, 9400, Sopron, Hungary
| | - György Sipos
- Functional Genomics and Bioinformatics Group, Faculty of Forestry, University of Sopron, 9400, Sopron, Hungary
| | - Tibor Alpár
- Fiber and Nanotechnology Program, University of Sopron, 9400, Sopron, Hungary
- Faculty of Wood Engineering and Creative Industry, University of Sopron, 9400, Sopron, Hungary
| |
Collapse
|
22
|
Deivanathan SK, Prakash JTJ. Bio-synthesis of silver nanoparticles using leaf extract of Rhaphidophora pertusa and its characterization, antimicrobial, antioxidant and cytotoxicity activities. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Antifungal Activity of Biosynthesized Silver Nanoparticles (AgNPs) against Aspergilli Causing Aspergillosis: Ultrastructure Study. J Funct Biomater 2022; 13:jfb13040242. [PMID: 36412883 PMCID: PMC9680418 DOI: 10.3390/jfb13040242] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Currently, nanoparticles and nanomaterials are widely used for biomedical applications. In the present study, silver nanoparticles (AgNPs) were successfully biosynthesized using a cell-free extract (CFE) of Bacillus thuringiensis MAE 6 through a green and ecofriendly method. The size of the biosynthesized AgNPs was 32.7 nm, and their crystalline nature was confirmed by XRD, according to characterization results. A surface plasmon resonance spectrum of AgNPs was obtained at 420 nm. Nanoparticles were further characterized using DLS and FTIR analyses, which provided information on their size, stability, and functional groups. AgNPs revealed less cytotoxicity against normal Vero cell line [IC50 = 155 μg/mL]. Moreover, the biosynthesized AgNPs exhibited promising antifungal activity against four most common Aspergillus, including Aspergillus niger, A. terreus, A. flavus, and A. fumigatus at concentrations of 500 μg/mL where inhibition zones were 16, 20, 26, and 19 mm, respectively. In addition, MICs of AgNPs against A. niger, A. terreus, A. flavus, and A. fumigatus were 125, 62.5, 15.62, and 62.5 μg/mL, respectively. Furthermore, the ultrastructural study confirmed the antifungal effect of AgNPs, where the cell wall's integrity and homogeneity were lost; the cell membrane had separated from the cell wall and had intruded into the cytoplasm. In conclusion, the biosynthesized AgNPs using a CFE of B. thuringiensis can be used as a promising antifungal agent against Aspergillus species causing Aspergillosis.
Collapse
|
24
|
Geremew A, Carson L, Woldesenbet S. Biosynthesis of silver nanoparticles using extract of Rumex nepalensis for bactericidal effect against food-borne pathogens and antioxidant activity. Front Mol Biosci 2022; 9:991669. [PMID: 36203876 PMCID: PMC9530741 DOI: 10.3389/fmolb.2022.991669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
The evolution and incidence of multidrug-resistant food-borne pathogens still become a critical public health global issue. To avert this challenge there is great interest in medical applications of silver nanoparticles. Thus, this study aimed to synthesize silver nanoparticles (Rn-AgNPs) using aqueous leaf extract of Nepal Dock (Rumex nepalensis Spreng) and evaluate their antibacterial potential against food-borne pathogens and antioxidant activity. The Rn-AgNPs were characterized by UV-Vis spectrophotometry, Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Fourier Transform Infra-Red Spectroscopy (FTIR). The antibacterial activities of the Rn-AgNPs were evaluated using agar well diffusion (zone of inhibition, ZOI) and microdilution (minimum inhibitory concentration, MIC and minimum bactericidal concentration, MBC) methods. The antioxidant property of the Rn-AgNPs was investigated using radical scavenging (DPPH and hydroxyl) assays. The UV-Vis spectra of Rn-AgNPs elucidated the absorption maxima at 425 nm and FTIR detected numerous functional groups of biological compounds that are responsible for capping and stabilizing Rn-AgNPs. DLS analysis displayed monodispersed Rn-AgNPs of 86.7 nm size and highly negative zeta potential (-32.5 mV). Overall results showed that Escherichia coli was the most sensitive organism, whereas Staphylococcus aureus was the least sensitive against Rn-AgNPs. In the antioxidant tests, the AgNPs radical scavenging activity reached 95.44% at 100 μg/ml. This study indicates that Rn-AgNPs exhibit a strong antimicrobial on L. monocytogenes, S. aureus, S. typhimurium, and E. coli and antioxidant and thus might be developed as a new type of antimicrobial agent for the treatment of multidrug-resistant foodborne pathogens and extensible applications in nanomaterial food- and nanocomposite-based antimicrobial packaging and/or as an antioxidant.
Collapse
|
25
|
Kirubakaran D, Selvam K, Prakash P, Manimegalai P, Shivakumar MS, SenthilNathan S. Preparation and characterization of biogenic silver nanoparticles using Strobilanthes cordifolia (Vahl) J.R.I.Wood leaves and its Biological applications. Biotechnol Appl Biochem 2022; 70:870-884. [PMID: 36122650 DOI: 10.1002/bab.2406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/10/2022] [Indexed: 11/09/2022]
Abstract
In the present study aqueous leaf extract of Strobilanthes cordifolia J.R.I.Wood was combined with silver nitrate to synthesis silver nanoparticles (AgNPs).The AgNPs was Characterized using visible spectroscopy (UV), X-ray diffraction(XRD), fourier transform infrared spectrophotometer (FTIR), scanning electron microscope (SEM), energy dispersive X-ray (EDaX), particle size analysis and transmission electron microscope (TEM).The UV spectrum absorption peak occurred at 438nm. The FTIR analysis of the AgNPs indicated the presence of functional groups such as aldehyde, alkenes and carboxylic acids.The crystalline structure of AgNPs was confirmed by XRD. The AgNPs have a spherical shape according to SEM. The AgNPs components composition was confirmed by EDaX.The particle size distribution of AgNPs is monodispersion in the range at 42.54nm.TEM demonstrated that the AgNPs size to be between 11.35-34.90nm.The AgNPs exhibited good antibacterial against Escherichia coli and Staphylococcus aureus. The antioxidant activity of the AgNPs was represented by increased DPPH, ABTS and H2 O2 activities.The antidiabetic activity of the AgNPs was indicated by the inhibition of α-amylase and α-glycosidase and anti-inflammatory highest albumin denaturation and HRBC membrane stabilization properties. Further, the AgNPs also significantly inhibited the MCF-7 cell lines. These results clearly suggest that the synthesized AgNPs using S. cordifolia leaves could have several potential biomedical applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dharmalingam Kirubakaran
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem-636 011, Tamil Nadu, India
| | - Kuppusamy Selvam
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem-636 011, Tamil Nadu, India
| | - Palanisamy Prakash
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem-636 011, Tamil Nadu, India
| | - Peraman Manimegalai
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem-636 011, Tamil Nadu, India
| | | | - Sengottayan SenthilNathan
- Sri Paramakalyani Centre for Excellence and Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu, 627 412, India
| |
Collapse
|
26
|
Thakur R, Arora V. Comprehensive review on polymeric and metal nanoparticles: possible therapeutic avenues. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2105331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Raneev Thakur
- UIPS, Chandigarh University Mohali, Mohali, Punjab, India
- Government College of Pharmacy Rohru, Shimla, HP, India
| | - Vimal Arora
- UIPS, Chandigarh University Mohali, Mohali, Punjab, India
| |
Collapse
|
27
|
Kumar B, Smita K, Awasthi SK, Debut A, Cumbal L. Capsicum baccatum (Andean Chilli)-assisted phytosynthesis of silver nanoparticles and their H 2O 2 sensing ability. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2021.2006381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Brajesh Kumar
- Department of Chemistry, TATA College, Kolhan University, Chaibasa, Jharkhand, India
- Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas -ESPE, Sangolqui, Ecuador
| | - Kumari Smita
- Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas -ESPE, Sangolqui, Ecuador
| | - Satish Kumar Awasthi
- Department of Chemistry, Chemical Biology Laboratory, University of Delhi, Delhi, India
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas -ESPE, Sangolqui, Ecuador
| | - Luis Cumbal
- Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas -ESPE, Sangolqui, Ecuador
| |
Collapse
|
28
|
Apocynin loaded silver nanoparticles displays potent in vitro biological activities and mitigates pyrogallol-induced hepatotoxicity. Chem Biol Interact 2022; 365:110069. [DOI: 10.1016/j.cbi.2022.110069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/24/2023]
|
29
|
Alfryyan N, Kordy MGM, Abdel-Gabbar M, Soliman HA, Shaban M. Characterization of the biosynthesized intracellular and extracellular plasmonic silver nanoparticles using Bacillus cereus and their catalytic reduction of methylene blue. Sci Rep 2022; 12:12495. [PMID: 35864132 PMCID: PMC9304349 DOI: 10.1038/s41598-022-16029-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
The biosynthesis of silver nanoparticles (Ag NPs) has been studied in detail using two different approaches. For the first time, Bacillus cereus is used for one-pot biosynthesis of capsulated Ag NPs, using both intracellular and extracellular approaches. To discriminate between the produced nanostructures by these two approaches, their structures, nanomorphologies, optical properties, hydrodynamic sizes and zeta potentials are studied using different techniques. Fourier-transform infrared spectroscopy was used to identify the bioactive components responsible for the reduction of Ag+ ions into Ag and the growth of stable Ag NPs. Scanning and transmission electron microscopy images displayed spherical and polygon nanomorphology for the intracellular and extracellular biosynthesized Ag NPs. For intracellular and extracellular biosynthesized Ag NPs, a face-centred cubic structure was observed, with average crystallite sizes of 45.4 and 90.8 nm, respectively. In comparison to the noncatalytic reduction test, the catalytic activities of intracellular and extracellular biosynthesized Ag NPs were explored for the reduction of highly concentrated MB dye solution. Extracellular Ag NPs achieved 100% MB reduction efficacy after around 80 min, compared to 50.6% and 24.1% in the presence and absence of intracellular Ag NPs, respectively. The rate of MB reduction was boosted by 22 times with the extracellular catalyst, and by 3 times with the intracellular catalyst. Therefore, the extracellular production process of Ag NPs utilizing Bacillus cereus bacteria might be applied in the industry as a cost-effective way for eliminating the toxic MB dye.
Collapse
Affiliation(s)
- Nada Alfryyan
- Department of Physics, College of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Mohamed G M Kordy
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt.
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Mohammed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hanan A Soliman
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Mohamed Shaban
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
- Department of Physics, Faculty of Science, Islamic University of Madinah, P.O. Box: 170, Al-Madinah Al-Munawarah, 42351, Saudi Arabia
| |
Collapse
|
30
|
Aguda O, Lateef A. Recent advances in functionalization of nanotextiles: A strategy to combat harmful microorganisms and emerging pathogens in the 21 st century. Heliyon 2022; 8:e09761. [PMID: 35789866 PMCID: PMC9249839 DOI: 10.1016/j.heliyon.2022.e09761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/15/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
The textile industry can benefit from nanotechnology as new properties are conferred on functionalized nanotextiles beyond what a fabric can traditionally offer. These properties include extermination of microorganisms by nanotextiles to curtail their growth and dissemination in the environment and in healthcare facilities. The emergence and thriving of multi-drug resistance (MDR) phenomenon among microbes are threats at achieving good health and well-being (goal 3) of sustainable development goals (SDG) of UN. In addition, MDR strains emerge at a higher rate than the frequency of discovery and production of potent antimicrobial drugs. Therefore, there is need for innovative approach to tackle MDR. Among recent innovations is functionalization of textiles with metal nanoparticles to kill microorganisms. This paper explores strategies in nanotextile production to combat emerging diseases in the 21st century. We discussed different nanotextiles with proven antimicrobial activities, and their applications as air filters, sportswear, personal wears, nose masks, health care and medical fabrics. This compendium highlights frontiers of applications of antimicrobial nanotextiles that can extend multidisciplinary research endeavours towards achieving good health and well-being. Until now, there exists no review on exploitation of nanotextiles to combat MDR pathogens as included in this report.
Collapse
Affiliation(s)
- O.N. Aguda
- Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, PMB 4000, Ogbomoso, Nigeria
| | - A. Lateef
- Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, PMB 4000, Ogbomoso, Nigeria
- Nanotechnology Research Group (NANO), Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
| |
Collapse
|
31
|
Madhu C, Balaji K, Shankar J, Sunil Gowda S, Sharada A. Biofabrication of silver nanoparticles using Praecitrullus fistulosus fruit extract exhibits in vitro antibacterial and anticancer activity. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Lan Chi NT, Narayanan M, Chinnathambi A, Govindasamy C, Subramani B, Brindhadevi K, Pimpimon T, Pikulkaew S. Fabrication, characterization, anti-inflammatory, and anti-diabetic activity of silver nanoparticles synthesized from Azadirachta indica kernel aqueous extract. ENVIRONMENTAL RESEARCH 2022; 208:112684. [PMID: 34995544 DOI: 10.1016/j.envres.2022.112684] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
The Azadirachta indica is an excellent and pharmaceutically valuable phytochemicals enriched traditional medicinal plant. The purpose of the research was to assess the ability of A. indica aqueous kernel extract to synthesize silver nanoparticles as well as their anti-inflammatory and anti-diabetic activity in vitro. The obtained results state that the aqueous kernel extract of A. indica can fabricate the silver nanoparticles and be confirmed by standard analytical techniques. Under UV-visible spectrophotometer analysis, the absorbance peak was found at 430 nm was related to the surface plasmon resonance of silver nanoparticles. The FTIR (Fourier-transform infrared spectroscopy) analysis revealed that numbers of functional groups belong to the pharmaceutically valuable phytochemicals, which act as reducing, capping, and stabilizing agent on silver nanoparticles synthesis. The size and shape of the silver nanoparticles were examined as 19.27-22.15 nm and spherical in shape. Interestingly, this kernel fabricated silver nanoparticles possess a reasonable anti-inflammatory (69.77%) and anti-diabetic (73.5%) activity at 100 μg mL-1 and these were partially comparable with standards (anti-inflammatory: 81.15%; anti-diabetic: 87.9%). Thus, the aqueous kernel extract fabricated silver nanoparticles can be considered for further in-vivo study to assess the practical possibility to promote as a pharmaceutical agent.
Collapse
Affiliation(s)
- Nguyen Thuy Lan Chi
- Van Lang School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Mathiyazhagan Narayanan
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Krishnagiri, Hosur, Tamil Nadu, 635130, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Baskaran Subramani
- Division of Hematology and Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health, San Antonio, TX, USA
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Tipsukon Pimpimon
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, 50290, Thailand
| | - Surachai Pikulkaew
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
33
|
Das G, Shin HS, Patra JK. Multitherapeutic Efficacy of Curly Kale Extract Fabricated Biogenic Silver Nanoparticles. Int J Nanomedicine 2022; 17:1125-1137. [PMID: 35313460 PMCID: PMC8934171 DOI: 10.2147/ijn.s308478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/25/2021] [Indexed: 01/02/2023] Open
Abstract
Purpose Due to the biomedical applications universally, the Ag nanoparticles are one of the most commonly investigated nanoparticles (NPs). Curly kale (BroL) leaves contain numerous beneficial nutrients and phytochemicals. The aim of the current study is the fabrication of the Ag nanoparticles using the extracts of curly kale and to investigate their biological potentials. Methods The characterization of the generated BroLAgNPs was done through UV-Vis spectro study, Fourier-transform infrared spectro study, scanning electron microscope analysis, energy-dispersive X-ray study, distribution of size and zeta potential investigation, and X-ray powder diffraction study, and their biological effects were evaluated by antidiabetic, antioxidant, antibacterial and cytotoxicity effect. Results BroL-Ag nanoparticle displayed surface plasmon resonance at 432 nm. The Zeta potential of BroL (-26.6) AgNPs displayed a highly negative charge. In antidiabetic assay, BroL-AgNPs was highly effective with IC50 value 2.29 µg/mL at 1.0 µg/mL concentration. In cytotoxicity assay, BroL-AgNPs displayed strong activity at 10.0 µg/mL concentration. It showed inhibitory action against three food-borne pathogenic bacteria (9.29-11.44 mm inhibition zone) and displayed moderate antioxidant potential. Conclusion This study as a whole report an eco-friendly green synthesis of AgNPs using leafy vegetable aqueous extract and its multi-biological effects which could serve as a promising candidate in pharmacological and related industries.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University‐Seoul, Gyeonggi‐do, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| |
Collapse
|
34
|
Microwave-assisted green synthesis of silver nanoparticles using Annona squamosa peels extract: characterization, antioxidant, and amylase inhibition activities. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2022. [DOI: 10.1007/s12210-022-01049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Hu F, Sun DS, Wang KL, Shang DY. Nanomedicine of Plant Origin for the Treatment of Metabolic Disorders. Front Bioeng Biotechnol 2022; 9:811917. [PMID: 35223819 PMCID: PMC8873594 DOI: 10.3389/fbioe.2021.811917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolic disorders are major clinical challenges of health that are progressing globally. A concurrence of metabolic disorders such as obesity, insulin resistance, atherogenic dyslipidemia, and systematic hypertension leads to metabolic syndrome. Over the past years, the metabolic syndrome leads to a five- and two-fold rise in diabetes mellitus type II and cardiovascular diseases. Natural products specifically plant extracts have insulin-sensitizing, anti-inflammatory, and antioxidant properties and are also considered as an alternative option due to few adverse effects. Nanotechnology is one of the promising strategies, which improves the effectiveness of treatment and limits side effects. This review mainly focuses on plant extract-based nanosystems in the management of the metabolic syndrome. Numerous nano-drug delivery systems, i.e., liposomes, hydrogel nanocomposites, nanoemulsions, micelles, solid lipid, and core–shell nanoparticles, have been designed using plant extracts. It has been found that most of the nano-formulations successfully reduced oxidative stress, insulin resistance, chronic inflammation, and lipid profile in in vitro and in vivo studies as plant extracts interfere with the pathways of metabolic syndrome. Thus, these novel plant-based nanosystems could act as a promising candidate for clinical applications.
Collapse
Affiliation(s)
- Fang Hu
- Medical Department, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Dong-Sheng Sun
- Department of Geriatric Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Kai-Li Wang
- Department of Cardiology, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Dan-Ying Shang
- Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
- *Correspondence: Dan-Ying Shang,
| |
Collapse
|
36
|
Vijayakumar S, Chen J, Amarnath M, Tungare K, Bhori M, Divya M, González-Sánchez ZI, Durán-Lara EF, Vaseeharan B. Cytotoxicity, phytotoxicity, and photocatalytic assessment of biopolymer cellulose-mediated silver nanoparticles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Pakdaman Goli P, Bikhof Torbati M, Parivar K, Akbarzadeh Khiavi A, Yousefi M. Preparation and evaluation of gemcitabin and cisplatin-entrapped Folate-PEGylated liposomes as targeting co-drug delivery system in cancer therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Curcumin and Its New Derivatives: Correlation between Cytotoxicity against Breast Cancer Cell Lines, Degradation of PTP1B Phosphatase and ROS Generation. Int J Mol Sci 2021; 22:ijms221910368. [PMID: 34638706 PMCID: PMC8508995 DOI: 10.3390/ijms221910368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/08/2023] Open
Abstract
Breast cancer is the most common cancer of women—it affects more than 2 million women worldwide. PTP1B phosphatase can be one of the possible targets for new drugs in breast cancer therapy. In this paper, we present new curcumin derivatives featuring a 4-piperidone ring as PTP1B inhibitors and ROS inducers. We performed cytotoxicity analysis for twelve curcumin derivatives against breast cancer MCF-7 and MDA-MB-231 cell lines and the human keratinocyte HaCaT cell line. Furthermore, because curcumin is a known antioxidant, we assessed antioxidant effects in its derivatives. For the most potent cytotoxic compounds, we determined intracellular ROS and PTP1B phosphatase levels. Moreover, for curcumin and its derivatives, we performed real-time microscopy to observe the photosensitizing effect. Finally, computational analysis was performed for the curcumin derivatives with an inhibitory effect against PTP1B phosphatase to assess the potential binding mode of new inhibitors within the allosteric site of the enzyme. We observed that two tested compounds are better anticancer agents than curcumin. Moreover, we suggest that blocking the -OH group in phenolic compounds causes an increase in the cytotoxicity effect, even at a low concentration. Furthermore, due to this modification, a higher level of ROS is induced, which correlates with a lower level of PTP1B.
Collapse
|
39
|
Simsek A, Pehlivanoglu S, Aydin Acar C. Anti-proliferative and apoptotic effects of green synthesized silver nanoparticles using Lavandula angustifolia on human glioblastoma cells. 3 Biotech 2021; 11:374. [PMID: 34367866 DOI: 10.1007/s13205-021-02923-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022] Open
Abstract
In this study, we aimed at the green synthesis of silver nanoparticles (AgNPs) using Lavandula angustifolia extract and the investigation of the anti-proliferative and apoptotic inducing effects of these nanoparticles in the U87MG glioblastoma cancer cell line. Green synthesized silver nanoparticles were characterized by various analytical techniques such as UV-Visible Spectrophotometer (UV-Vis), scanning electron microscopy (SEM) and Energy Dispersive X-ray (EDX). UV-Vis spectroscopy displayed a specific silver plasmon peak at 430 nm. U87MG cells were treated at increased concentrations with Lavandula angustifolia-AgNPs (La-AgNPs) (0-20 µg/mL) for 72 h and the anti-proliferative effects of green synthesized silver nanoparticles on U87MG cells were evaluated by MTT assay. The La- AgNPs induced a statistically significant dose-dependent decrease in proliferation and increased cytotoxicity in U87MG cells. The IC50 value is 7.536 µg/mL. Furthermore, the expression of apoptosis proteins caspase-3, caspase-8 and caspase-9 was analyzed using ELISA and caspase-3 and p53 using western blotting. The results suggest that La-AgNPs induce cell death in U87MG cells through the p53 mediated intrinsic apoptotic pathway. Together, the present findings suggest that La-AgNPs could be considered as a potential option for the treatment of glioblastoma.
Collapse
|
40
|
Plants-derived bioactives: Novel utilization as antimicrobial, antioxidant and phytoreducing agents for the biosynthesis of metallic nanoparticles. Microb Pathog 2021; 158:105107. [PMID: 34303810 DOI: 10.1016/j.micpath.2021.105107] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022]
Abstract
Medicinal and aromatic higher plants are sustainable resources for natural product compounds, including essential oils, phenolics, flavonoids, alkaloids, glycosides, and saponins. Extractives and essential oils as well as their bioactive compounds have many uses due to their antimicrobial, anticancer, and antioxidant properties as well as application in food preservation. These natural compounds have been reported in many works, for instance biofungicide with phenolic and flavonoid compounds being effective against mold that causes discoloration of wood. Additionally, the natural extracts from higher plants can be used to mediate the synthesis of nanoparticle materials. Therefore, in this review, we aim to promote and declare the use of natural products as environmentally eco-friendly bio-agents against certain pathogenic microbes and make recommendations to overcome the extensive uses of conventional pesticides and other preservatives.
Collapse
|
41
|
Wang D, Xue B, Wang L, Zhang Y, Liu L, Zhou Y. Fungus-mediated green synthesis of nano-silver using Aspergillus sydowii and its antifungal/antiproliferative activities. Sci Rep 2021; 11:10356. [PMID: 33990673 PMCID: PMC8121924 DOI: 10.1038/s41598-021-89854-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/28/2021] [Indexed: 02/04/2023] Open
Abstract
Due to the increasing demand for eco-friendly, cost-effective and safe technologies, biosynthetic metal nanoparticles have attracted worldwide attention. In this study, silver nanoparticles (AgNPs) were extracellularly biosynthesized using the culture supernatants of Aspergillus sydowii. During synthesis, color change was preliminarily judge of the generation of AgNPs, and the UV absorption peak at 420 nm further confirms the production of AgNPs. Transmission electron microscopy and X-ray diffraction were also used to identify the AgNPs. The results shows that AgNPs has crystalline cubic feature and is a polydisperse spherical particle with size between 1 and 24 nm. Three main synthesis factors (temperature, pH and substrate concentration) were optimized, the best synthesis conditions were as follows 50 °C, 8.0 and 1.5 mM. In the biological application of AgNPs, it shows effective antifungal activity against many clinical pathogenic fungi and antiproliferative activity to HeLa cells and MCF-7 cells in vitro. Our research finds a new path to biosynthesis of AgNPs in an eco-friendly manner, and bring opportunity for biomedical applications in clinic.
Collapse
Affiliation(s)
- Dongyang Wang
- grid.64924.3d0000 0004 1760 5735Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021 China
| | - Baiji Xue
- School of Basic Medical Sciences, Baicheng Medical College, Baicheng, 137000 China
| | - Lin Wang
- grid.64924.3d0000 0004 1760 5735Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021 China
| | - Yidi Zhang
- grid.64924.3d0000 0004 1760 5735Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021 China
| | - Lijun Liu
- grid.64924.3d0000 0004 1760 5735Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021 China
| | - Yanmin Zhou
- grid.64924.3d0000 0004 1760 5735Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021 China
| |
Collapse
|
42
|
Patra JK, Shin HS, Das G. Characterization and Evaluation of Multiple Biological Activities of Silver Nanoparticles Fabricated from Dragon Tongue Bean Outer Peel Extract. Int J Nanomedicine 2021; 16:977-987. [PMID: 33603363 PMCID: PMC7886385 DOI: 10.2147/ijn.s290037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The dragon tongue beans are a legume belonging to the Fabaceae family, are rich in protein, starch, fiber, and other micronutrients that have numerous health-promoting benefits. Its peel commonly the waste parts also contains lots of bioactive compounds. MATERIALS AND METHODS In the current research, dragon tongue bean peels (DtbP) extract is tested for the existence of phytochemicals. Ag nanoparticles are biosynthesized using DtbP extract. The generated DtbP silver nanoparticle characterization was accomplished using UV-Vis spectral analysis, FTIR spectral analysis, SEM analysis, EDX analysis, XRD analysis, zeta potential, and DLS study. Furthermore, comparative assessment on multi-biological activities of the biosynthesized Ag nanoparticles was accomplished by employing cytotoxicity (inhibition against HepG2 cancer cells), antidiabetic (α-glucosidase inhibition assay), and antioxidant (free-radical scavenging) analysis. RESULTS The characterization result of the DtbP-AgNPs demonstrated that the AgNPs synthesized within 24 h. The AgNPs are nearly spherical. The biological effect assay of AgNPs displayed that DtbP-AgNPs is having significant cytotoxicity, antidiabetic, and moderate antioxidant effect. This study results as a whole report the biosynthesis of DtbP-AgNPs utilizing the legume dragon tongue bean waste peel and assessment of their multiple biological activities. The synthesized DtbP-AgNPs could serve as a potential candidate in the pharmaceutical industries in the formulation of drugs for the treatment of several medical ailments concerning cancer, diabetes, etc.
Collapse
Affiliation(s)
- Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, 10326, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University‐Seoul, Gyeonggi‐do, 10326, Republic of Korea
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, 10326, Republic of Korea
| |
Collapse
|
43
|
Mkhize Z, Seboletswe PS, Paumo HK, Boniface PK, Katata-Seru LM. Enhanced Antioxidant Efficacy of Nano-Encapsulated Protorhus Longifolia Methanol Extract Stabilized with Eudragit. INTERNATIONAL JOURNAL OF NANOSCIENCE 2021. [DOI: 10.1142/s0219581x21500174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study describes the synthesis of Protorhus longifolia methanolic leaf extract-loaded Eudragit nanoparticles (NPs) and assessment of their antioxidant activity comparative to the free methanolic extract. The latter was also analyzed for its total phenolic content (TPC) and total flavonoid content (TFC). The extract-loaded NPs were obtained through the emulsification solvent evaporation process and systematically characterized using the dynamic light scattering, entrapment efficiency, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The antioxidant power was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing ability of plasma (FRAP) in vitro model systems. Screening of the different classes of secondary metabolites was carried out through chemical reaction tests. Identification of the potential antioxidants was performed using the gas chromatography-mass spectrometry (GC-MS) technique and the database of National Institute Standard and Technology (NIST). The characterization techniques showed spherical-like particles having an average size of 150[Formula: see text]nm and zeta potential of [Formula: see text]22[Formula: see text]mV. The percentage of entrapped methanolic extract was determined to be 83%. The antioxidant assay demonstrated that this methodology persuaded an efficient concentration-dependent potential. This study indicates that nanoformulation of the Protorhus longifolia extracts leads to a suitable system for the enhancement of antioxidant activity. The appraisal of other pharmacological activities of the nano-encapsulated Protorhus longifolia methanol extract is under process.
Collapse
Affiliation(s)
- Zimbili Mkhize
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng 2735, South Africa
| | - Pule Silent Seboletswe
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng 2735, South Africa
| | - Hugues Kamdem Paumo
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng 2735, South Africa
| | - Pone Kamdem Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Brazil
| | - Lebogang Maureen Katata-Seru
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng 2735, South Africa
| |
Collapse
|