1
|
Aiduang W, Jatuwong K, Kiatsiriroat T, Kamopas W, Tiyayon P, Jawana R, Xayyavong O, Lumyong S. Spent Mushroom Substrate-Derived Biochar and Its Applications in Modern Agricultural Systems: An Extensive Overview. Life (Basel) 2025; 15:317. [PMID: 40003725 PMCID: PMC11857507 DOI: 10.3390/life15020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Spent mushroom substrate (SMS), a nutrient-dense byproduct of mushroom cultivation, has emerged as a promising feedstock for biochar production, offering a sustainable solution to modern agricultural and environmental challenges. This review explores SMS properties, its conversion into biochar, and its various applications. Due to its lignocellulosic structure, high organic matter (OM), and essential nutrients, SMS is ideal for pyrolysis, a process that enhances biochar's porosity, nutrient retention, and carbon stability. These properties improve soil fertility, water retention, microbial activity, and plant growth while also contributing to climate change mitigation through carbon sequestration. SMS-derived biochar stands out for its superior benefits, including a balanced pH, a rich nutrient profile, and the ability to adsorb heavy metals, which mitigates soil and water contamination and minimizes toxic risks in the food chain. By enhancing soil structure, nutrient cycling, and moisture retention, SMS-derived biochar supports sustainable farming practices that reduce chemical fertilizer use and boost climate resilience. Beyond soil applications, SMS-derived biochar is effective in wastewater treatment, mitigating plant diseases, and improving mushroom cultivation substrates, thereby enhancing mycelial growth and productivity. Economically, it is a cost-effective alternative due to the abundant availability and inexpensive nature of SMS. Nevertheless, challenges still exist, particularly in optimizing production methods and ensuring consistency in biochar properties, influenced by variations in pyrolysis conditions and SMS types. Advances in production technology and sustainable practices are vital for scaling up SMS-derived biochar production. This paper emphasizes the transformative potential of SMS-derived biochar, advocating for its integration into circular economy frameworks and sustainable agricultural systems. Recommendations for future research and policy support are provided to maximize the ecological and economic benefits of SMS-derived biochar, fostering its widespread adoption in global agricultural and environmental strategies.
Collapse
Affiliation(s)
- Worawoot Aiduang
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (W.A.); (K.J.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kritsana Jatuwong
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (W.A.); (K.J.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Tanongkiat Kiatsiriroat
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Wassana Kamopas
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pimsiri Tiyayon
- School of Agricultural Resources, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Rotsukon Jawana
- Energy Research and Development Institute-Nakornping, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Orlavanh Xayyavong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
2
|
Raczkiewicz M, Bogusz A, Pan B, Xing B, Oleszczuk P. Contrasting environmental impacts of nano-biochar and conventional biochar on various organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177629. [PMID: 39566638 DOI: 10.1016/j.scitotenv.2024.177629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/16/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
The environmental hazards of nanobiochar (n-BC) require attention due to limited knowledge. This study is the first to explore the effects of biochar size reduction across various organisms, including bacteria (Allivibrio fischeri), plants (Lemna minor, Lepidium sativum), and invertebrates (Daphnia magna, Folsomia candida). Bulk biochar (b-BC) and n-BC were applied in both liquid and solid-phase tests to assess their ecotoxicity. The resulting leachates were tested at concentrations of 2, 10, and 100 mg/L on organisms such as Daphnia magna and Lemna minor. In the solid-phase tests, b-BC and n-BC were added to the OECD soil at concentrations of 1 % and 5 % to evaluate toxicity in Folsomia candida and at concentrations of 1 % to evaluate toxicity in Lepidium sativum. We found n-BC to be significantly more toxic (by 18 % to 2886 %) to A. fischeri than b-BC, with toxicity increasing over time. Low doses (1 %) of both b-BC and n-BC did not cause mortality or inhibit reproduction in F. candida, though b-BC enhanced reproduction (by 30 % to 56 %) compared to n-BC. At a 5 % dose, both b-BC and n-BC inhibited reproduction F. candida, with n-BC being 0.5 to 1.8 times more toxic. Neither b-BC nor n-BC immobilized D. magna, but both inhibited reproduction (by 28 % to 35 %). The nanoscale dimensions of n-BC facilitated bioaccumulation in D. magna, leading to adhesion on the organism's body. The n-BC had a greater impact on plants, both b-BC and n-BC were non-toxic to L. minor, but all n-BC inhibited root growth in L. sativum. These findings highlight the importance of considering biochar size, feedstock, and pyrolysis conditions when evaluating environmental risks, ensuring safe use in sustainable agriculture.
Collapse
Affiliation(s)
- Monika Raczkiewicz
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Aleksandra Bogusz
- Department of Ecotoxicology, Institute of Environmental Protection - National Research Institute, Ks. Troszynskiego St. 9, Warsaw 01-693, Poland
| | - Bo Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland.
| |
Collapse
|
3
|
Vadakkan K, Sathishkumar K, Raphael R, Mapranathukaran VO, Mathew J, Jose B. Review on biochar as a sustainable green resource for the rehabilitation of petroleum hydrocarbon-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173679. [PMID: 38844221 DOI: 10.1016/j.scitotenv.2024.173679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Petroleum pollution is one of the primary threats to the environment and public health. Therefore, it is essential to create new strategies and enhance current ones. The process of biological reclamation, which utilizes a biological agent to eliminate harmful substances from polluted soil, has drawn much interest. Biochars are inexpensive, environmentally beneficial carbon compounds extensively employed to remove petroleum hydrocarbons from the environment. Biochar has demonstrated an excellent capability to remediate soil pollutants because of its abundant supply of the required raw materials, sustainability, affordability, high efficacy, substantial specific surface area, and desired physical-chemical surface characteristics. This paper reviews biochar's methods, effectiveness, and possible toxic effects on the natural environment, amended biochar, and their integration with other remediating materials towards sustainable remediation of petroleum-polluted soil environments. Efforts are being undertaken to enhance the effectiveness of biochar in the hydrocarbon-based rehabilitation approach by altering its characteristics. Additionally, the adsorption, biodegradability, chemical breakdown, and regenerative facets of biochar amendment and combined usage culminated in augmenting the remedial effectiveness. Lastly, several shortcomings of the prevailing methods and prospective directions were provided to overcome the constraints in tailored biochar studies for long-term performance stability and ecological sustainability towards restoring petroleum hydrocarbon adultered soil environments.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| | - Rini Raphael
- Department of Zoology, Carmel College (Autonomous), Mala, Kerala 680732, India
| | | | - Jennees Mathew
- Department of Chemistry, Morning Star Home Science College, Angamaly, Kerala 683589, India
| | - Beena Jose
- Department of Chemistry, Vimala College (Autonomous), Thrissur 680009, Kerala, India
| |
Collapse
|
4
|
Śniatała B, Al-Hazmi HE, Sobotka D, Zhai J, Mąkinia J. Advancing sustainable wastewater management: A comprehensive review of nutrient recovery products and their applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173446. [PMID: 38788940 DOI: 10.1016/j.scitotenv.2024.173446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Wastewater serves as a vital resource for sustainable fertilizer production, particularly in the recovery of nitrogen (N) and phosphorus (P). This comprehensive study explores the recovery chain, from technology to final product reuse. Biomass growth is the most cost-effective method, valorizing up to 95 % of nutrients, although facing safety concerns. Various techniques enable the recovery of 100 % P and up to 99 % N, but challenges arise during the final product crystallization due to the high solubility of ammonium salts. Among these techniques, chemical precipitation and ammonia stripping/ absorption have achieved full commercialization, with estimated recovery costs of 6.0-10.0 EUR kgP-1 and 4.4-4.8 £ kgN-1, respectively. Multiple technologies integrating biomass thermo-chemical processing and P and/or N have also reached technology readiness level TRL = 9. However, due to maturing regulatory of waste-derived products, not all of their products are commercially available. The non-homogenous nature of wastewater introduces impurities into nutrient recovery products. While calcium and iron impurities may impact product bioavailability, some full-scale P recovery technologies deliver products containing this admixture. Recovered mineral nutrient forms have shown up to 60 % higher yield biomass growth compared to synthetic fertilizers. Life cycle assessment studies confirm the positive environmental outcomes of nutrient recycling from wastewater to agricultural applications. Integration of novel technologies may increase wastewater treatment costs by a few percent, but this can be offset through renewable energy utilization and the sale of recovered products. Moreover, simultaneous nutrient recovery and energy production via bio-electrochemical processes contributes to carbon neutrality achieving. Interdisciplinary cooperation is essential to offset both energy and chemicals inputs, increase their cos-efficiency and optimize technologies and understand the nutrient release patterns of wastewater-derived products on various crops. Addressing non-technological factors, such as legal and financial support, infrastructure redesign, and market-readiness, is crucial for successfully implementation and securing the global food production.
Collapse
Affiliation(s)
- Bogna Śniatała
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdańsk, Poland.
| | - Hussein E Al-Hazmi
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdańsk, Poland
| | - Dominika Sobotka
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdańsk, Poland
| | - Jun Zhai
- Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu 213300, China
| | - Jacek Mąkinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdańsk, Poland.
| |
Collapse
|
5
|
Villada E, Velasquez M, Gómez AM, Correa JD, Saldarriaga JF, López JE, Tamayo A. Combining anaerobic digestion slurry and different biochars to develop a biochar-based slow-release NPK fertilizer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171982. [PMID: 38575013 DOI: 10.1016/j.scitotenv.2024.171982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
In this research, we developed a biochar-based fertilizer using biogas slurry and biochar derived from lignocellulosic agro-residues. Biogas slurry was obtained through the anaerobic digestion of the organic fraction of municipal solid waste (fresh vegetable biomass and/or prepared food), while biochars were derived from residues from quinoa, maize, rice, and sugarcane. The biochar-based fertilizers were prepared using an impregnation process, where the biogas slurry was mixed with each of the raw biochars. Subsequently, we characterized the N, P and K concentrations of the obtained biochar-based fertilizers. Additionally, we analyzed their surface properties using SEM/EDS and FTIR and conducted a slow-release test on these biochar-based fertilizers to assess their capability to gradually release nutrients. Lastly, a bioassay using cucumber plants was conducted to determine the N, P, and K bioavailability. Our findings revealed a significant correlation (r > 0.67) between the atomic O/C ratio, H/C ratio, cation exchange capacity, surface area, and the base cations concentration with N, P, and/or K adsorption on biochar. These properties, in turn, were linked to the capability of the biochar-based fertilizer to release nutrients in a controlled manner. The biochar-based fertilizer derived from corn residues showed <15 % release of N, P and K at 24 h. Utilization of these biochar-based fertilizers had a positive impact on the mineral nutrition of cucumber plants, resulting in an average increase of 61 % in N, 32 % in P, and 19 % in K concentrations. Our results underscore the potential of biochar-based fertilizers in controlled nutrient release and enhanced plant nutrition. Integration of biochar and biogas slurry offers a promising and sustainable approach for NPK recovery and fertilizer production in agriculture. This study presents an innovative and sustainable approach combining the use of biochar for NPK recovery from biogas slurry and its use as a biochar-based fertilizer in agriculture.
Collapse
Affiliation(s)
- Esteban Villada
- Faculty of Architecture and Engineering, Environmental Engineering Program, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, 050034 Medellín, Colombia
| | - Manuela Velasquez
- Faculty of Architecture and Engineering, Environmental Engineering Program, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, 050034 Medellín, Colombia
| | - Ana M Gómez
- Faculty of Architecture and Engineering, Environmental Engineering Program, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, 050034 Medellín, Colombia
| | - Juan D Correa
- Faculty of Architecture and Engineering, Environmental Engineering Program, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, 050034 Medellín, Colombia
| | - Juan F Saldarriaga
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711 Bogotá, Colombia
| | - Julián E López
- Faculty of Architecture and Engineering, Environmental Engineering Program, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, 050034 Medellín, Colombia
| | - Andrea Tamayo
- Faculty of Architecture and Engineering, Environmental Engineering Program, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, 050034 Medellín, Colombia.
| |
Collapse
|
6
|
Wystalska K, Kowalczyk M, Kamizela T, Worwąg M, Zabochnicka M. Properties and Possibilities of Using Biochar Composites Made on the Basis of Biomass and Waste Residues Ferryferrohydrosol Sorbent. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2646. [PMID: 38893909 PMCID: PMC11173671 DOI: 10.3390/ma17112646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Biochar enriched with metals has an increased potential for sorption of organic and inorganic pollutants. The aim of the research was to identify the possibility of using biochar composites produced on the basis of waste plant biomass and waste FFH (ferryferrohydrosol) containing iron atoms, after CO2 capture. The composites were produced in a one-stage or two-stage pyrolysis process. Their selected properties were determined as follows: pH, ash content, C, H, N, O, specific surface area, microstructure and the presence of surface functional groups. The produced biochar and composites had different properties resulting from the production method and the additive used. The results of experiments on the removal of methylene blue (MB) from solutions allowed us to rank the adsorbents used according to the maximum dye removal value achieved as follows: BC1 (94.99%), B (84.61%), BC2 (84.09%), BC3 (83.23%) and BC4 (83.23%). In terms of maximum amoxicillin removal efficiency, the ranking is as follows: BC1 (55.49%), BC3 (23.51%), BC2 (18.13%), B (13.50%) and BC4 (5.98%). The maximum efficiency of diclofenac removal was demonstrated by adsorbents BC1 (98.71), BC3 (87.08%), BC4 (74.20%), B (36.70%) and BC2 (30.40%). The most effective removal of metals Zn, Pb and Cd from the solution was demonstrated by BC1 and BC3 composites. The final concentration of the tested metals after sorption using these composites was less than 1% of the initial concentration. The highest increase in biomass on prepared substrates was recorded for the BC5 composite. It was higher by 90% and 54% (for doses of 30 g and 15 g, respectively) in relation to the biomass growth in the soil without additives. The BC1 composite can be used in pollutant sorption processes. However, BC5 has great potential as a soil additive in crop yield and plant growth.
Collapse
Affiliation(s)
- Katarzyna Wystalska
- Faculty of Infrastructure and Environment, Czestochowa University of Technology, Brzeźnicka 60A, 42-200 Częstochowa, Poland; (M.K.); (T.K.); (M.W.); (M.Z.)
| | | | | | | | | |
Collapse
|
7
|
Yang X, Zhang K, Qi Z, Shaghaleh H, Gao C, Chang T, Zhang J, Hamoud YA. Field Examinations on the Application of Novel Biochar-Based Microbial Fertilizer on Degraded Soils and Growth Response of Flue-Cured Tobacco ( Nicotiana tabacum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1328. [PMID: 38794400 PMCID: PMC11125685 DOI: 10.3390/plants13101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Southwestern China is receiving excessive chemical fertilizers to meet the challenges of continuous cropping. These practices are deteriorating the soil environment and affecting tobacco (Nicotiana tabacum L.) yield and quality adversely. A novel microbially enriched biochar-based fertilizer was synthesized using effective microorganisms, tobacco stalk biochar and basal fertilizer. A field-scale study was conducted to evaluate the yield response of tobacco grown on degraded soil amended with our novel biochar-based microbial fertilizer (BF). Four treatments of BF (0%, 1.5%, 2.5% and 5%) were applied in the contaminated field to grow tobacco. The application of BF1.5, BF2.5 and BF5.0 increased the available water contents by 9.47%, 1.18% and 2.19% compared to that with BF0 respectively. Maximum growth of tobacco in terms of plant height and leaf area was recorded for BF1.5 compared to BF0. BF1.5, BF2.5 and BF5.0 increased SPAD by 13.18-40.53%, net photosynthetic rate by 5.44-60.42%, stomatal conductance by 8.33-44.44%, instantaneous water use efficiency by 55.41-93.24% and intrinsic water use efficiency by 0.09-24.11%, while they decreased the intercellular CO2 concentration and transpiration rate by 3.85-6.84% and 0.29-47.18% relative to BF0, respectively (p < 0.05). The maximum increase in tobacco yield was recorded with BF1.5 (23.81%) compared to that with BF0. The present study concludes that the application of BF1.5 improves and restores the degraded soil by improving the hydraulic conductivity and by increasing the tobacco yield.
Collapse
Affiliation(s)
- Xu Yang
- College of Hydrology and Water Resources, Hohai University, Nanjing 210024, China; (X.Y.); (Y.A.H.)
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210024, China
- China Meteorological Administration Hydro-Meteorology Key Laboratory, Hohai University, Nanjing 210024, China
| | - Ke Zhang
- College of Hydrology and Water Resources, Hohai University, Nanjing 210024, China; (X.Y.); (Y.A.H.)
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210024, China
- China Meteorological Administration Hydro-Meteorology Key Laboratory, Hohai University, Nanjing 210024, China
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210024, China
- Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing 210024, China
| | - Zhiming Qi
- Department of Bioresource Engineering, McGill University, Montreal, QC H9X 3V9, Canada;
| | - Hiba Shaghaleh
- College of Environment, Hohai University, Nanjing 210024, China;
| | - Chao Gao
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou 450052, China;
| | - Tingting Chang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; (T.C.); (J.Z.)
| | - Jie Zhang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; (T.C.); (J.Z.)
| | - Yousef Alhaj Hamoud
- College of Hydrology and Water Resources, Hohai University, Nanjing 210024, China; (X.Y.); (Y.A.H.)
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210024, China
| |
Collapse
|
8
|
Rosa D, Petruccelli V, Iacobbi MC, Brasili E, Badiali C, Pasqua G, Di Palma L. Functionalized biochar from waste as a slow-release nutrient source: Application on tomato plants. Heliyon 2024; 10:e29455. [PMID: 38644827 PMCID: PMC11033143 DOI: 10.1016/j.heliyon.2024.e29455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024] Open
Abstract
Licorice processing waste was pyrolyzed at different temperatures (500 and 700 °C) to obtain biochar (BC500 and BC700) for use as a slow-release fertilizer on Solanum lycopersicum. The materials were characterized through BET analysis, SEM, elemental analysis, pHzc, and pyrolysis temperature effect was evaluated. The biochars were functionalized by the impregnation method to enrich them with nitrogen, phosphorus, and potassium (NPK), and desorption tests were performed in aqueous solution at different pHs (5 and 7). The pseudo-second-order model described well the release of all 3 macronutrients tested, BC500 was found to have slower release kinetics due to smaller pore size, reaching adsorption/desorption equilibrium after 14 days, compared with 10 for BC700, Kdes were lower in all 3 cases and NPK content was higher, initial pH did not change the release kinetics. BC500 was selected as an agricultural soil conditioner by testing at both different dosages of BC (0-25 %) and different NPK ratios (3:1:4 and 4:1:3). The treatment significance was evaluated. The best treatment resulted in BC dosage of 25 % nutrient ratio 4:1:3 which increased, compared to the control, total chlorophyll content (+38 %) and carotenoids (+15 %).
Collapse
Affiliation(s)
- Domenico Rosa
- Department of Chemical Engineering Materials Environment & UdR INSTM, Sapienza-Università di Roma, Via Eudossiana 18, 00184, Roma, Italy
| | - Valerio Petruccelli
- Department of Environmental Biology, Sapienza-Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Maria Cristina Iacobbi
- Department of Chemical Engineering Materials Environment & UdR INSTM, Sapienza-Università di Roma, Via Eudossiana 18, 00184, Roma, Italy
| | - Elisa Brasili
- Department of Environmental Biology, Sapienza-Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Camilla Badiali
- Department of Environmental Biology, Sapienza-Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza-Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Luca Di Palma
- Department of Chemical Engineering Materials Environment & UdR INSTM, Sapienza-Università di Roma, Via Eudossiana 18, 00184, Roma, Italy
| |
Collapse
|
9
|
Che N, Qu J, Wang J, Liu N, Li C, Liu Y. Adsorption of phosphate onto agricultural waste biochars with ferrite/manganese modified-ball-milled treatment and its reuse in saline soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169841. [PMID: 38215841 DOI: 10.1016/j.scitotenv.2023.169841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 01/14/2024]
Abstract
Agricultural waste biochar was widely used to absorb phosphorus (P) from eutrophicated water and soil remediation. However, the research on the reuse of the sorbed P on biochar in infertile saline soil is insufficient. Biochars derived from four kinds of agricultural wastes (cotton straws from two origins, maize stalk, and rice husk) were modified and applied to adsorb phosphate in waste water and then be reused in saline soil in this study. The co-modified method combining ball milling and metal coated treatment obtained the higher specific surface area (SSA) of ferrite/manganese modified-ball-milled biochars (Fe/Mn-BMBCs) (226.5-331.5 m2 g-1) than that of pristine biochars (14.02-30.35 m2 g-1) and ferrite/manganese modified biochar (Fe/Mn-BC) (223.7 m2 g-1), which could improve the pore structure of metal modified biochar. The phosphate adsorption capacity (qmax) of Fe/Mn-BMBCs with rich functional groups and high SSA were 44.0-53.8 mg g-1, which was 4.47-5.82 times higher than that of pristine biochars. Fe/Mn-BMBCs showed efficiently adsorption performance at low pH and high temperature. The application of BC to saline soil could promote the availability of P in saline soil. P-loaded biochars could afford P as a nutrient to promote the growth of lettuce (Lactuca sativa L.) in saline soil. The lettuce fresh weight in Fe/Mn-BMBC-P2 treated soil was 8.21 times higher than that grew in control check (CK) treatment. As a P element provider, P-loaded biochars not only improve saline soil fertility and crop productivity, but also convert the agricultural wastes and P in eutrophicated waters to the sustainable resource.
Collapse
Affiliation(s)
- Naiju Che
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Tai'an 271018, China; College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Jie Qu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Tai'an 271018, China; College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Jiaqi Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Tai'an 271018, China; College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Na Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Tai'an 271018, China; College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Chengliang Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Tai'an 271018, China; College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Yanli Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Tai'an 271018, China; College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
10
|
Amalina F, Krishnan S, Zularisam AW, Nasrullah M. Pristine and modified biochar applications as multifunctional component towards sustainable future: Recent advances and new insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169608. [PMID: 38157898 DOI: 10.1016/j.scitotenv.2023.169608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Employing biomass for environmental conservation is regarded as a successful and environmentally friendly technique since they are cost-effective, renewable, and abundant. Biochar (BC), a thermochemically converted biomass, has a considerably lower production cost than the other conventional activated carbons. This material's distinctive properties, including a high carbon content, good electrical conductivity (EC), high stability, and a large surface area, can be utilized in various research fields. BC is feasible as a renewable source for potential applications that may achieve a comprehensive economic niche. Despite being an inexpensive and environmentally sustainable product, research has indicated that pristine BC possesses restricted properties that prevent it from fulfilling the intended remediation objectives. Consequently, modifications must be made to BC to strengthen its physicochemical properties and, thereby, its efficacy in decontaminating the environment. Modified BC, an enhanced iteration of BC, has garnered considerable interest within academia. Many modification techniques have been suggested to augment BC's functionality, including its adsorption and immobilization reliability. Modified BC is overviewed in its production, functionality, applications, and regeneration. This work provides a holistic review of the recent advances in synthesizing modified BC through physical, chemical, or biological methods to achieve enhanced performance in a specific application, which has generated considerable research interest. Surface chemistry modifications require the initiation of surface functional groups, which can be accomplished through various techniques. Therefore, the fundamental objective of these modification techniques is to improve the efficacy of BC contaminant removal, typically through adjustments in its physical or chemical characteristics, including surface area or functionality. In addition, this article summarized and discussed the applications and related mechanisms of modified BC in environmental decontamination, focusing on applying it as an ideal adsorbent, soil amendment, catalyst, electrochemical device, and anaerobic digestion (AD) promoter. Current research trends, future directions, and academic demands were available in this study.
Collapse
Affiliation(s)
- Farah Amalina
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Santhana Krishnan
- Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Songkhla 90110, Thailand
| | - A W Zularisam
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Mohd Nasrullah
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia.
| |
Collapse
|
11
|
Pagliaccia D, Ortiz M, Rodriguez MV, Abbott S, De Francesco A, Amador M, Lavagi V, Maki B, Hopkins F, Kaplan J, Ying S, Vidalakis G. Enhancing soil health and nutrient availability for Carrizo citrange (X Citroncirus sp.) through bokashi and biochar amendments: An exploration into indoor sustainable soil ecosystem management. SCIENTIA HORTICULTURAE 2024; 326:112661. [PMID: 39308799 PMCID: PMC11415263 DOI: 10.1016/j.scienta.2023.112661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
This study investigated the efficacy of organic soil amendments: bokashi (Bok), biochar (BC), and their combination (Bok_BC) in promoting soil health, nutrient availability, and growth of Carrizo citrange (X Citroncirus sp. Rutaceae, Parentage Citrus sinensis × Poncirus trifoliata) under indoor greenhouse settings. Results indicate significant alterations in soil parameters like total carbon (C), total nitrogen (N), and C:N ratio due to Bok, BC, and Bok_BC treatments. BC treatments boosted total C, while Bok increased total N, compared to controls. A note-worthy 25 % average decrease in C:N ratio was observed with Bok and Bok_BC, nearing the optimal 24:1 C:N for microbial growth. This highlights the potential of waste by-products in balancing nutrient release to benefit soil health and plant development. Analysis of nitrite (NO2-), nitrate (NO3-), and ammonium (NH4-N) levels revealed a dynamic relationship between soil treatments and time. Bok and Bok_BC amendments combined with both fertilizer doses [700 and 1400 Electrical Conductivity, EC] showed an initial NH4-N spike (averaging 1513 and 1288 μg N/g dry, respectively), outperforming control soils (average 503 μg N/g dry). Other key elements like phosphorus, potassium, calcium, and chlorine also experienced initial surges in Bok and Bok_BC soils before declining, suggesting a gradual nutrient release. The concentration of potentially toxic elements remained mostly stable or inconclusive, warranting further exploration. Bok, BC, and Bok_BC treatments considerably influenced germination rate and plant growth. The germination rate averaged 24.2 %, 23 %, and 22.5 % for Bok, BC, and Bok_BC, compared to the 15.9 % control. Plant height increased with Bok, BC, and Bok_BC to 18.4 cm, 18.7 cm, and 16.4 cm, respectively, from the 14.8 cm control. The results remained consistent across fertilizer doses, emphasizing the soil amendments' role in bolstering soil and plant health. In summary, the research underscores the potential of carbon-based amendments like bokashi and biochar in enhancing soil health, reducing reliance on synthetic fertilizers, and fostering sustainable soil ecosystems. The insights are pivotal for advancing sustainable agriculture in indoor greenhouse settings for nursery plant production.
Collapse
Affiliation(s)
- Deborah Pagliaccia
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
- California Agriculture and Food Enterprise (CAFÉ), University of California, Riverside, Riverside, CA, United States
| | - Michelle Ortiz
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Michael V Rodriguez
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, United States
| | - Sophia Abbott
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, United States
| | - Agustina De Francesco
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) — Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Madison Amador
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, United States
| | - Valeria Lavagi
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Benjamin Maki
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Francesca Hopkins
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, United States
| | - Jonathan Kaplan
- Department of Economics, Sacramento State University, Sacramento CA, United States
| | - Samantha Ying
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Georgios Vidalakis
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
12
|
Maqbool Z, Shahbaz Farooq M, Rafiq A, Uzair M, Yousuf M, Ramzan Khan M, Huo S. Unlocking the potential of biochar in the remediation of soils contaminated with heavy metals for sustainable agriculture. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23257. [PMID: 38310926 DOI: 10.1071/fp23257] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024]
Abstract
Agricultural soils contaminated with heavy metals (HMs) impose a threat to the environmental and to human health. Amendment with biochar could be an eco-friendly and cost-effective option to decrease HMs in contaminated soil. This paper reviews the application of biochar as a soil amendment to immobilise HMs in contaminated soil. We discuss the technologies of its preparation, their specific properties, and effect on the bioavailability of HMs. Biochar stabilises HMs in contaminated soil, enhance the overall quality of the contaminated soil, and significantly reduce HM uptake by plants, making it an option in soil remediation for HM contamination. Biochar enhances the physical (e.g. bulk density, soil structure, water holding capacity), chemical (e.g. cation exchange capacity, pH, nutrient availability, ion exchange, complexes), and biological properties (e.g. microbial abundance, enzymatic activities) of contaminated soil. Biochar also enhances soil fertility, improves plant growth, and reduces the plant availability of HMs. Various field studies have shown that biochar application reduces the bioavailability of HMs from contaminated soil while increasing crop yield. The review highlights the positive effects of biochar by reducing HM bioavailability in contaminated soils. Future work is recommended to ensure that biochars offer a safe and sustainable solution to remediate soils contaminated with HMs.
Collapse
Affiliation(s)
- Zubaira Maqbool
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Department of Soil Science and Environmental Science, Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Shahbaz Farooq
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Rice Research Program, Crop Sciences Institute (CSI), National Agricultural Research Centre (NARC), Park Road, Islamabad 44000, Pakistan
| | - Anum Rafiq
- Institute Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Muhammad Uzair
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Muhammad Yousuf
- Pakistan Agriculture Research Council (PARC), G5, Islamabad, Pakistan
| | - Muhammad Ramzan Khan
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Shuhao Huo
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
13
|
Liu R, Hu Y, Zhan X, Zhong J, Zhao P, Feng H, Dong Q, Siddique KHM. The response of crop yield, carbon sequestration, and global warming potential to straw and biochar applications: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167884. [PMID: 37858816 DOI: 10.1016/j.scitotenv.2023.167884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Organic materials play an important role in improving crop yield. However, due to variations in natural and field management practices, the impact of straw incorporation (NS) and biochar addition (NB) on soil organic carbon (SOC) sequestration and global warming potential (GWP) remains uncertain. This meta-analysis synthesizes the findings from 112 published studies, encompassing 897 samples, to assess the effects of NS and NB on crop yield, SOC, and GWP. The results reveal that Northeast China has the highest SOC stocks (40.80 Mg ha-1) and annual SOC sequestration (4.27 Mg ha-1 yr-1) compared to other regions. Notably, the NS and NB differ in their effect sizes on improving crop yield (7.68 % and 8.23 %, respectively) and SOC (6.92 % and 30.72 %, respectively), with opposing effects on GWP (increasing by 37.69 % in NS and decreasing by 23.94 % in NB). Following organic material application, climatic conditions, crop and field type, and soil properties affected SOC content and GWP. The main factors influencing variations in crop yield, SOC, and GWP were mean annual temperature and precipitation, initial SOC content, and soil pH, accounting for 57.46 %-60.29 %, 54.75 %-58.52 %, and 61.81 %-65.11 %, respectively. Considering the need to balance food demand, soil fertility and environmental benefits, biochar emerges as a recommended strategy for advancing future agriculture goals. In summary, this study quantitatively assessed the impact of organic material on crop yield, SOC, and greenhouse gas emissions, offering a scientific foundation for optimizing these factors under diverse regional conditions.
Collapse
Affiliation(s)
- Rong Liu
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Yiyun Hu
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Xiangsheng Zhan
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Jiawang Zhong
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Peng Zhao
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Hao Feng
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qin'ge Dong
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
14
|
Ndoung OCN, Souza LRD, Fachini J, Leão TP, Sandri D, Figueiredo CCD. Dynamics of potassium released from sewage sludge biochar fertilizers in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:119057. [PMID: 37742559 DOI: 10.1016/j.jenvman.2023.119057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
The solid product of sewage sludge (SS) pyrolysis, called SS biochar (SSB), is rich in carbon and nutrients, such as phosphorus (P), nitrogen (N), calcium (Ca), and zinc (Zn). However, SSB has a low potassium (K) concentration because it is released with water during the final stage of sewage treatment. The enrichment of SSB with mineral sources of K can solve the low supply of K in SSB and produce an organomineral fertilizer with a slow release of K. However, the dynamics of K release from these enriched fertilizers in different soil types remain unclear. This study investigated the dynamics of K release from biochar-based fertilizer (BBF) in the form of pellets and granules in two soil types (clayey and sandy) and natural silica. An incubation experiment was conducted for 60 days, and replicates were evaluated at prescribed time intervals. After the incubation period, the levels of K available in the solid fraction were determined, and the dynamics of K release were evaluated using four nonlinear regression models. BBFs achieved a slower release of K than the mineral KCl. The dynamics of K release were affected by the physical form of BBF, such that the pelleted BBF exhibited the slowest K release. Furthermore, regarding the concentration detected in the solid phase, the total released was highest in clayey soil, followed by sandy soil and natural silica. The enriched BBFs reduced K release throughout the experimental period, behaving as slow-release fertilizers with the potential to optimize K uptake by plants throughout the growth cycle. Further studies are required to evaluate K leaching and retention in the soil profile when biochar-based fertilizers are applied.
Collapse
Affiliation(s)
| | - Ludmila Raulino de Souza
- Faculty of Agronomy and Veterinary Medicine, University of Brasilia, 70910-970, Brasilia, DF, Brazil
| | - Joisman Fachini
- Faculty of Agronomy and Veterinary Medicine, University of Brasilia, 70910-970, Brasilia, DF, Brazil
| | - Tairone Paiva Leão
- Faculty of Agronomy and Veterinary Medicine, University of Brasilia, 70910-970, Brasilia, DF, Brazil
| | - Delvio Sandri
- Faculty of Agronomy and Veterinary Medicine, University of Brasilia, 70910-970, Brasilia, DF, Brazil
| | | |
Collapse
|
15
|
Yuan J, Liu Q, Chen Z, Wen Z, Liu Y, Huang L, Yu C, Feng Y. Organic amendments perform better than inorganic amendments in reducing the absorption and accumulation of cadmium in lettuce. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117277-117287. [PMID: 37864699 DOI: 10.1007/s11356-023-30449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023]
Abstract
The main purpose of applying organic or inorganic amendments is to guarantee crop safe production in heavy metal contaminated soil. However, previous studies showed that the effects of organic or inorganic composite amendments on the cadmium (Cd) concentration of lettuce (Lactuca sativa var. ramosa Hort) were inconsistent. Accordingly, a sixty-day pot experiment was carried out to examine the impacts of the inorganic materials (lime, L and zeolite, Z), organic materials (biochar, B and compost, C), and their combination on the immobilization of Cd in soil and its uptake by lettuce. The objective was to identify the most suitable soil amendment combination that promotes safe lettuce production. The results revealed that the combined application of BC, LZC, and LBC significantly increased the plant height by 11.09-28.04% and fresh weight by 183.47-207.67%. This improvement can be attributed to enhanced soil quality, such as increased dissolved organic carbon (DOC) by 70.19-80.42%, soil respiration (SR) by 29.04-38.46%, and soil microbial carbon content (SMC) by 36.94-46.63%. Compared to inorganic fertilizers and their combination with organic amendments, organic amendments had a significant impact on reducing shoot Cd concentration by 33.93%-56.55%, while increasing the activity of catalase by 138.87-186.86%. And soil available Cd measured by diffusive gradients in thin-films (DGT-Cd) decreased 24.73-88.13% in all treatments. Correlation analysis showed that plant Cd concentration was significantly correlated with soil pH, SR, cation exchange capacity (CEC), DOC and SMC. These results demonstrated that organic amendments, especially the combination of biochar and compost, have greater potential than inorganic amendments and inorganic-organic combinations for realizing safe production of lettuce and improving soil quality in the Cd moderately contaminated acid farmland.
Collapse
Affiliation(s)
- Jie Yuan
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qizhen Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhiqin Chen
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zheyu Wen
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yaru Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lukuan Huang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chao Yu
- Livestock industrial development Center of Shengzhou, Zhejiang, 312400, China
| | - Ying Feng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Islam MS, Zhu J, Xiao L, Khan ZH, Saqib HSA, Gao M, Song Z. Enhancing rice quality and productivity: Multifunctional biochar for arsenic, cadmium, and bacterial control in paddy soil. CHEMOSPHERE 2023; 342:140157. [PMID: 37716553 DOI: 10.1016/j.chemosphere.2023.140157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
The perilousness of arsenic and cadmium (As-Cd) toxicity in water and soil presents a substantial hazard to the ecosystem and human well-being. Additionally, this metal (loids) (MLs) can have a deleterious effect on rice quality and yield, owing to the existence of toxic stress. In response to the pressing concern of reducing the MLs accumulation in rice grain, this study has prepared magnesium-manganese-modified corn-stover biochar (MMCB), magnesium-manganese-modified eggshell char (MMEB), and a combination of both (MMCEB). To test the effectiveness of these amendments, several pot trials were conducted, utilizing 1% and 2% application rates. The research discovered that the MMEB followed by MMCEB treatment at a 2% rate yielded the most significant paddy and rice quality, compared to the untreated control (CON) and MMCB. MMEB and MMCEB also extensively decreased the MLs content in the grain than CON, thereby demonstrating the potential to enrich food security and human healthiness. In addition, MMEB and MMCEB augmented the microbial community configuration in the paddy soil, including As-Cd detoxifying bacteria, and decreased bioavailable form of the MLs in the soil compared to the CON. The amendments also augmented Fe/Mn-plaque which captured a considerable quantity of As-Cd in comparison to the CON. In conclusion, the utilization of multifunctional biochar, such as MMEB and MMCEB, is an encouraging approach to diminish MLs aggregation in rice grain and increase rice yield for the reparation of paddy soils via transforming microbiota especially enhancing As-Cd detoxifying taxa, thereby improving agroecology, food security, and human and animal health.
Collapse
Affiliation(s)
- Md Shafiqul Islam
- Department of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, China
| | - Junhua Zhu
- Department of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, China
| | - Ling Xiao
- Department of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, China
| | - Zulqarnain Haider Khan
- Department of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, China
| | - Hafiz Sohaib Ahmed Saqib
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Minling Gao
- Department of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, China.
| | - Zhengguo Song
- Department of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, China.
| |
Collapse
|
17
|
Wu D, Feng Z, Gu W, Wang Y, Liu Z, Wang W, Zhang Y, Zhang W, Chen W. Could continuous rice cropping increase soil fertility and rice productivity by rice straw carbonized utilization in cold areas? - A 6-year field-located trial. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110674-110686. [PMID: 37792197 DOI: 10.1007/s11356-023-30097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
Biochar amendment can benefit rice growth, but the long-term effects of rice straw carbonized utilization (RSCU, biochar, and biochar-based fertilizer) on rice production in cold areas are still unclear. Herein, we conducted a field experiment over 6 years with four treatments: F (conventional fertilization) as the control, RB1 (biochar, 3 t·ha-1), RB2 (biochar, 6 t·ha-1), and RBF (biochar-based fertilizer, 0.75 t·ha-1). We found that rice straw biochar significantly improved soil physical properties by reducing soil bulk density, increasing soil porosity and liquid and gas phases ratio, and enhancing soil aggregate stability. RSCU also increased soil fertility by improving soil organic carbon (SOC), active organic carbon, and soil nutrients (N, P, K) and their availability, as indicated by an increase in soil C:N and a decrease in soil N:P. Moreover, biochar increased soil microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and enzyme activities. As a result, RSCU increased rice yield, which was positively correlated with soil total porosity, total phosphorus, available potassium, dissolved organic carbon (DOC), easily oxidizable carbon (EOC), labile fraction of organic carbon (LFOC), and urease activity. RB2 had the highest rice yield (5.94% higher than F). Our study suggests that RSCU can synergistically improve the rice straw utilization rate, soil fertility, and rice productivity in cold areas.
Collapse
Affiliation(s)
- Di Wu
- Biochar Engineering & Technology Research Center of Liaoning Province, Agronomy College, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning Province, China
| | - Zhibo Feng
- Biochar Engineering & Technology Research Center of Liaoning Province, Agronomy College, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning Province, China
| | - Wenqi Gu
- Biochar Engineering & Technology Research Center of Liaoning Province, Agronomy College, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning Province, China
| | - Yuning Wang
- Biochar Engineering & Technology Research Center of Liaoning Province, Agronomy College, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning Province, China
| | - Zifan Liu
- Biochar Engineering & Technology Research Center of Liaoning Province, Agronomy College, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning Province, China
| | - Wenjia Wang
- Biochar Engineering & Technology Research Center of Liaoning Province, Agronomy College, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning Province, China
| | - Yuxue Zhang
- Biochar Engineering & Technology Research Center of Liaoning Province, Agronomy College, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning Province, China
| | - Weiming Zhang
- Biochar Engineering & Technology Research Center of Liaoning Province, Agronomy College, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning Province, China.
| | - Wenfu Chen
- Biochar Engineering & Technology Research Center of Liaoning Province, Agronomy College, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning Province, China
| |
Collapse
|
18
|
Rahimzadeh S, Ghassemi-Golezani K. The biochar-based nanocomposites improve seedling emergence and growth of dill by changing phytohormones and sugar signaling under salinity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67458-67471. [PMID: 37115437 DOI: 10.1007/s11356-023-27164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/18/2023] [Indexed: 05/25/2023]
Abstract
Biochar-based nanocomposites (BNCs) with a high level of sodium sorption capacity may improve salinity tolerance and seedling establishment of dill. Thus, a pot experiment was conducted to evaluate the effects of solid biochar (30 g solid biochar kg-1 soil) and biochar-based nanocomposites of iron (BNC-FeO) and zinc (BNC-ZnO) in individual (30 g BNC kg-1 soil) and a combined form (15 g BNC-FeO + 15 g BNC-ZnO kg-1 soil) on dill seedling growth in different levels of salt stress (non-saline, 6 and 12 dSm-1). Salinity caused a decrease in emergence percentage and emergence rate of seedlings. Increasing salinity of soil up to 12 dSm-1 decreased the biomass of dill seedlings by about 77%. Application of biochar and particularly BNCs increased the content of potassium, calcium, magnesium, iron, and zinc, reducing and non-reducing sugars, total sugars, invertase and sucrose synthase activities, leaf water content, gibberellic acid, and indole-3-acetic acid in dill plants, leading to an improvement in seedling growth (shoot length, root length, and dry weight) under saline conditions. Sodium content was noticeably decreased by BNC treatments (9-21%), which reduced mean emergence rate and stress phytohormones such as abscisic acid (31-43%), jasmonic acid (21-42%), and salicylic acid (16-23%). Therefore, BNCs especially in combined form can potentially improve emergence and growth of dill seedlings under salt stress, through reducing sodium content and endogenous stress hormones, and enhancing sugars and growth promoting hormones.
Collapse
Affiliation(s)
- Saeedeh Rahimzadeh
- Department of Plant Eco-physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Kazem Ghassemi-Golezani
- Department of Plant Eco-physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
19
|
Kavitha R, Latifah O, Ahmed OH, Charles PW, Susilawati K. Potential of Rejected Sago Starch as a Coating Material for Urea Encapsulation. Polymers (Basel) 2023; 15:polym15081863. [PMID: 37112010 PMCID: PMC10146585 DOI: 10.3390/polym15081863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Increases in food production to meet global food requirements lead to an increase in the demand for nitrogen (N) fertilizers, especially urea, for soil productivity, crop yield, and food security improvement. To achieve a high yield of food crops, the excessive use of urea has resulted in low urea-N use efficiency and environmental pollution. One promising alternative to increase urea-N use efficiency, improve soil N availability, and lessen the potential environmental effects of the excessive use of urea is to encapsulate urea granules with appropriate coating materials to synchronize the N release with crop assimilation. Chemical additives, such as sulfur-based coatings, mineral-based coatings, and several polymers with different action principles, have been explored and used for coating the urea granule. However, their high material cost, limited resources, and adverse effects on the soil ecosystem limit the widespread application of urea coated with these materials. This paper documents a review of issues related to the materials used for urea coating and the potential of natural polymers, such as rejected sago starch, as a coating material for urea encapsulation. The aim of the review is to unravel an understanding of the potential of rejected sago starch as a coating material for the slow release of N from urea. Rejected sago starch from sago flour processing is a natural polymer that could be used to coat urea because the starch enables a gradual, water-driven mechanism of N release from the urea-polymer interface to the polymer-soil interface. The advantages of rejected sago starch for urea encapsulation over other polymers are that rejected sago starch is one of the most abundant polysaccharide polymers, the cheapest biopolymer, and is fully biodegradable, renewable, and environmentally friendly. This review provides information on the potential of rejected sago starch as a coating material, the advantages of using rejected sago starch as coating material over other polymer materials, a simple coating method, and the mechanisms of N release from urea coated with rejected sago starch.
Collapse
Affiliation(s)
- Rajan Kavitha
- Department of Crop Science, Faculty of Agricultural Science and Forestry, Universiti Putra Malaysia, Bintulu Sarawak Campus, Bintulu 97008, Malaysia
| | - Omar Latifah
- Department of Crop Science, Faculty of Agricultural Science and Forestry, Universiti Putra Malaysia, Bintulu Sarawak Campus, Bintulu 97008, Malaysia
- Institute of Ecosystem Science Borneo, Universiti Putra Malaysia, Bintulu Sarawak Campus, Bintulu 97008, Malaysia
| | - Osumanu Haruna Ahmed
- Faculty of Agriculture, University Sultan Sharif Ali Brunei, Kampus Sinaut, Km 33, Jalan Tutong, Kampung Sinaut, Tutong TB1741, Brunei
| | - Primus Walter Charles
- Department of Science and Technology, Faculty of Humanities, Management and Science, Universiti Putra Malaysia, Bintulu Sarawak Campus, Bintulu 97008, Malaysia
| | - Kasim Susilawati
- Department of Land Management, Faculty of Agriculture, Serdang 43400, Malaysia
| |
Collapse
|
20
|
Castejón-Del Pino R, Cayuela ML, Sánchez-García M, Sánchez-Monedero MA. Nitrogen availability in biochar-based fertilizers depending on activation treatment and nitrogen source. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 158:76-83. [PMID: 36641823 DOI: 10.1016/j.wasman.2023.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Different activation and N-doping treatments were used to produce biochar-based fertilizers (BBFs) with increased N concentration and slow N release. Pristine biochars were produced by pyrolysis of olive tree pruning feedstock at low and high temperatures (400 and 800 °C). These biochars were activated either by ultrasonication, or oxidation with hydrogen peroxide (H2O2) or nitric acid (HNO3) to increase their N retention potential. Subsequently biochars were enriched with N with either urea or ammonium sulfate. The activation of low-temperature biochars with HNO3 was the most effective treatment leading to new surface carboxylic groups that facilitated the later enrichment with N. When treated with urea, BBFs reached 7.0 N%, whereas the H2O2 activation only allowed an increase up to 2.0 N%. The use of urea as the external N source was the most efficient for incorporating N. Urea treated biochars had a water-soluble fraction that represented up to 14.5 % of the total N. The hydrolyzable N fraction, composed by amides and simple N heterocycles originated by the N-doping treatments, and nitro groups generated from HNO3 activation, represented up to 60 % of the total N. This study relates the N chemical forms in the new BBFs to potential N availability in soil. The presence of water-soluble, hydrolyzable and non-hydrolyzable N implied that these BBFs may supply N that would be progressively available for plants, acting as slow-release fertilizers.
Collapse
Affiliation(s)
- Raúl Castejón-Del Pino
- Department of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain.
| | - María L Cayuela
- Department of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - María Sánchez-García
- Department of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Miguel A Sánchez-Monedero
- Department of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
21
|
Sachdeva S, Kumar R, Sahoo PK, Nadda AK. Recent advances in biochar amendments for immobilization of heavy metals in an agricultural ecosystem: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120937. [PMID: 36608723 DOI: 10.1016/j.envpol.2022.120937] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Over the last several decades, extensive and inefficient use of contemporary technologies has resulted in substantial environmental pollution, predominantly caused by potentially hazardous elements (PTEs), like heavy metals that severely harm living species. To combat the presence of heavy metals (HMs) in the agrarian system, biochar becomes an attractive approach for stabilizing and limiting availability of HMs in soils due to its high surface area, porosity, pH, aromatic structure as well as several functional groups, which mostly rely on the feedstock and pyrolysis temperature. Additionally, agricultural waste-derived biochar is an effective management option to ensure carbon neutrality and circular economy while also addressing social and environmental concerns. Given these diverse parameters, the present systematic evaluation seeks to (i) ascertain the effectiveness of heavy metal immobilization by agro waste-derived biochar; (ii) examine the presence of biochar on soil physico-chemical, and thermal properties, along with microbial diversity; (iii) explore the underlying mechanisms responsible for the reduction in heavy metal concentration; and (iv) possibility of biochar implications to advance circular economy approach. The collection of more than 200 papers catalogues the immobilization efficiency of biochar in agricultural soil and its impacts on soil from multi-angle perspectives. The data gathered suggests that pristine biochar effectively reduced cationic heavy metals (Pb, Cd, Cu, Ni) and Cr mobilization and uptake by plants, whereas modified biochar effectively reduced As in soil and plant systems. However, the exact mechanism underlying is a complex biochar-soil interaction. In addition to successfully immobilizing heavy metals in the soil, the application of biochar improved soil fertility and increased agricultural productivity. However, the lack of knowledge on unfavorable impacts on the agricultural systems, along with discrepancies between the use of biochar and experimental conditions, impeded a thorough understanding on a deeper level.
Collapse
Affiliation(s)
- Saloni Sachdeva
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10 Sector 62, Noida, 201309, Uttar Pradesh, India
| | - Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| | - Prafulla Kumar Sahoo
- Department of Environmental Science and Technology, Central University of Punjab, V.P.O. Ghudda, Bathinda, 151401, Punjab, India; Instituto Tecnológico Vale (ITV), Rua Boaventura da Silva, 955, Belém, 66055-090, PA, Brazil.
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| |
Collapse
|
22
|
Marcińczyk M, Krasucka P, Bogusz A, Tomczyk B, Duan W, Pan B, Oleszczuk P. Ecotoxicological characteristics and properties of zinc-modified biochar produced by different methods. CHEMOSPHERE 2023; 315:137690. [PMID: 36584820 DOI: 10.1016/j.chemosphere.2022.137690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Despite the dynamic progress of BC engineering, there is a lack of knowledge on the toxicity and environmental impact of modified BC. The aim of this study was the ecotoxicological evaluation of BC modified with zinc (Zn) using different methods: impregnation of feedstock with Zn before pyrolysis (PR), impregnation with Zn after pyrolysis (PS) and impregnation with Zn after pyrolysis with an additional calcination step (PST). The ecotoxicological assessment was based on tests with invertebrates (Folsomia candida, Daphnia magna) and bacteria (Aliivibrio fischeri). The post-treated and calcined composites had a higher content of total (Ctot) PAHs (144-276 μg kg-1) than pre-treated BC-Zn (68-157 μg kg-1). All BC-Zn treatments stimulated the reproduction of F. candida at the lowest BC dose (0.5%) by 4-24%. Increasing the biochar dose to 1% and 3% retained the stimulating effect of the pre-modified biochars (from 19 to 41%). Pre-modified BC-Zn reduced the luminescence of A. fischeri from 40% to 80%. Post-treated BCs reduced bacterial luminescence by 99%, but the calcination step limited the toxic effects to the level observed for the control. Post-treated BCs had a toxic effect on D. magna, with EC50 values ranging from 433 to 783 mg L-1. The ecotoxicity of composites depends on modification methods, BC dose and pyrolysis temperature. The application of limiting conditions for HM leaching (i.e., pre-modification, calcination) increased the safety of using Zn-biochar composites.
Collapse
Affiliation(s)
- Marta Marcińczyk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Patrycja Krasucka
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Aleksandra Bogusz
- Department of Ecotoxicology, Institute of Environmental Protection - National Research Institute, Ul. Krucza 5/11D, 00-548 Warszawa, Poland
| | - Beata Tomczyk
- Department of Ecotoxicology, Institute of Environmental Protection - National Research Institute, Ul. Krucza 5/11D, 00-548 Warszawa, Poland
| | - Wenyan Duan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Bo Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland.
| |
Collapse
|
23
|
Potential of Biochar-Based Organic Fertilizers on Increasing Soil Fertility, Available Nutrients, and Okra Productivity in Slightly Acidic Sandy Loam Soil. NITROGEN 2022. [DOI: 10.3390/nitrogen4010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Reducing chemical fertilizers is critical for maintaining soil health and minimizing environmental damage. Biochar-based organic fertilizers reduce fertilizer inputs, improve soil fertility, increase crop productivity, and reduce environmental risks. In this study, a pot experiment was conducted in a greenhouse to assess the potential of biochar-based organic and inorganic fertilizers to improve soil fertility and Okra yield. Seven treatments with three replicates were arranged in a completely randomized design (CRD). Three treatments included biochar-blended formulations (i) biochar mixed with mineral NPK fertilizer (BF), (ii) biochar mixed with vermicompost (BV), and (iii) biochar mixed with goat manure (BM); two treatments included biochar enrichment formulations (iv) biochar enriched with cow urine (BCU) and (v) biochar enriched with mineral NPK fertilizer in aqueous solution (BFW), and the remaining two included control treatments; (vi) control (CK: no biochar and no fertilizers) and (vii) fertilized control (F: only recommended NPK fertilizer and no biochar). Mineral NPK fertilizers in BF, BFW, and F were applied at the recommended rate as urea, di-ammonium phosphate (DAP), and muriate of potash (MOP). Organic fertilizers in BV, BM, and BCU treatments were applied in equal quantities. All biochar-amended treatments showed improved soil chemical properties with higher pH, organic carbon, total N, and available P and K compared to the two non-biochar control plots (CK and F). Biochar blended with goat manure (BM) showed the highest effect on soil fertility and fruit yield. BM (51.8 t ha−1) increased fruit yield by 89% over CK (27.4 t ha−1) and by 88% over F (27 t ha−1). Similarly, cow urine-enriched biochar (BCU) (35 t ha−1) increased fruit yield by 29% and 28% compared to CK and F, respectively. Soil pH, OC, and nutrient availability (total N, available P, and available K) showed a significantly positive relationship with fruit yield. The study suggests that using biochar-based organic fertilizers, such as BCU and BM, could outperform recommended mineral fertilizers (F) and produce higher yields and healthy soils, thereby contributing to mitigating the current food security and environmental concerns of the country.
Collapse
|
24
|
Murugesan P, Raja V, Dutta S, Moses JA, Anandharamakrishnan C. Food waste valorisation via gasification - A review on emerging concepts, prospects and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157955. [PMID: 35964752 DOI: 10.1016/j.scitotenv.2022.157955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/27/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Disposing of the enormous amounts of food waste (FW) produced worldwide remains a great challenge, promoting worldwide research on the utilization of FW for the generation of value-added products. Gasification is a significant approach for decomposing and converting organic waste materials into biochar, bio-oil, and syngas, which could be adapted for energy (hydrogen (H2) and heat) generation and environmental (removal of pollutants and improving the soil quality) applications. Employment of FW matrices for syngas production through gasification is one of the effective methods of energy recovery. This review explains different gasification processes (catalytic and non-catalytic) used for the decomposition of unutilized food wastes and the effect of operating parameters on H2-rich syngas generation. Also, potential applications of gasification byproducts such as biochar and bio-oil for effective valorization have been discussed. Besides, the scope of simulation to optimize the gasification conditions for the effective valorization of FW is elaborated, along with the current progress and challenges in the research to identify the feasibility of gasification technology for FW. Overall, this review concludes the sustainable route for conversion of unutilized food into hydrogen-enriched syngas production.
Collapse
Affiliation(s)
- Pramila Murugesan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India
| | - Vijayakumar Raja
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India
| | - Sayantani Dutta
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India.
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India.
| |
Collapse
|
25
|
Mustafa A, Brtnicky M, Hammerschmiedt T, Kucerik J, Kintl A, Chorazy T, Naveed M, Skarpa P, Baltazar T, Malicek O, Holatko J. Food and agricultural wastes-derived biochars in combination with mineral fertilizer as sustainable soil amendments to enhance soil microbiological activity, nutrient cycling and crop production. FRONTIERS IN PLANT SCIENCE 2022; 13:1028101. [PMID: 36275592 PMCID: PMC9583007 DOI: 10.3389/fpls.2022.1028101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The ever-increasing human population associated with high rate of waste generation may pose serious threats to soil ecosystem. Nevertheless, conversion of agricultural and food wastes to biochar has been shown as a beneficial approach in sustainable soil management. However, our understanding on how integration of biochar obtained from different wastes and mineral fertilizers impact soil microbiological indicators is limited. Therefore, in the present study the effects of agricultural (AB) and food waste derived (FWB) biochars with and without mineral fertilizer (MF) on crop growth and soil health indicators were compared in a pot experiment. In particular, the impacts of applied amendments on soil microbiological health indicators those related to microbial extracellular (C, N and P acquiring) enzymes, soil basal as well as different substrate induced respirations along with crop's agronomic performance were explored. The results showed that compared to the control, the amendment with AB combined with MF enhanced the crop growth as revealed by higher above and below ground biomass accumulation. Moreover, both the biochars (FWB and AB) modified soil chemical properties (pH and electric conductivity) in the presence or absence of MF as compared to control. However, with the sole application of MF was most influential strategy to improve soil basal and arginin-induced respiration as well as most of the soil extracellular enzymes, those related to C, N and P cycling. Use of FWB resulted in enhanced urease activity. This suggested the role of MF and FWB in nutrient cycling and plant nutrition. Thus, integration of biochar and mineral fertilizers is recommended as an efficient and climate smart package for sustainable soil management and crop production.
Collapse
Affiliation(s)
- Adnan Mustafa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Praha, Czechia
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| | - Tereza Hammerschmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jiri Kucerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Agricultural Research, Ltd., Troubsko, Czechia
| | - Tomas Chorazy
- AdMaS Research Centre, Faculty of Civil Engineering, Brno University of Technology, Brno, Czechia
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Petr Skarpa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Tivadar Baltazar
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Ondrej Malicek
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Agrovyzkum Rapotin, Ltd., Rapotin, Czechia
| |
Collapse
|
26
|
Marmiroli M, Caldara M, Pantalone S, Malcevschi A, Maestri E, Keller AA, Marmiroli N. Building a risk matrix for the safety assessment of wood derived biochars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156265. [PMID: 35643132 DOI: 10.1016/j.scitotenv.2022.156265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Biochar is recognized as an efficient amendment and soil improver. However, environmental and quality assessments are needed to ensure the sustainability of its use in agriculture. This work considers the biochar's chemical-physical characterization and its potential phyto- and geno-toxicity, assessed with germination and Ames tests, obtaining valuable information for a safe field application. Three biochar types, obtained from gasification at different temperatures of green biomasses from the Tuscan-Emilian Apennines (in Italy), were compared through a broad chemical, physical and biological evaluation. The results obtained showed the relevance of temperature in determining the chemical and morphological properties of biochar, which was shown with several analytical techniques such as the elemental composition, water holding capacity, ash content, but also with FTIR and X-ray spectroscopies. These techniques showed the presence of different relevant surface aliphatic and aromatic groups. The procedures for evaluating the potential toxicity using seeds germination and Ames genotoxicity assay highlights that biochar does not cause detrimental effects when it enters in contact with soil, micro- and macro-organisms, and plants. The genotoxicity test provided a new highlight in evaluating biochar environmental safety.
Collapse
Affiliation(s)
- Marta Marmiroli
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Marina Caldara
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Serena Pantalone
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Alessio Malcevschi
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Elena Maestri
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Arturo A Keller
- Bren School of Environmental Science & Management, University of California Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA 93106-5131, USA
| | - Nelson Marmiroli
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; National Interuniversity Consortium for Environmental Sciences (CINSA), Parco Area delle Scienze, 43124 Parma, Italy.
| |
Collapse
|
27
|
Zahed MA, Salehi S, Tabari Y, Farraji H, Ataei-Kachooei S, Zinatizadeh AA, Kamali N, Mahjouri M. Phosphorus removal and recovery: state of the science and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58561-58589. [PMID: 35780273 DOI: 10.1007/s11356-022-21637-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus is one of the main nutrients required for all life. Phosphorus as phosphate form plays an important role in different cellular processes. Entrance of phosphorus in the environment leads to serious ecological problems including water quality problems and soil pollution. Furthermore, it may cause eutrophication as well as harmful algae blooms (HABs) in aquatic environments. Several physical, chemical, and biological methods have been presented for phosphorus removal and recovery. In this review, there is an overview of phosphorus role in nature provided, available removal processes are discussed, and each of them is explained in detail. Chemical precipitation, ion exchange, membrane separation, and adsorption can be listed as the most used methods. Identifying advantages of these technologies will allow the performance of phosphorus removal systems to be updated, optimized, evaluate the treatment cost and benefits, and support select directions for further action. Two main applications of biochar and nanoscale materials are recommended.
Collapse
Affiliation(s)
| | - Samira Salehi
- Department of Health, Safety and Environment, Petropars Company, Tehran, Iran.
| | - Yasaman Tabari
- Faculty of Sciences and Advanced Technologies, Science and Culture University, Tehran, Iran
| | - Hossein Farraji
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | - Ali Akbar Zinatizadeh
- Faculty of Chemistry, Department of Applied Chemistry, Environmental Research Center (ERC), Razi University, Kermanshah, 67144-14971, Iran
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa, P.O. Box 392, Florida, 1710, South Africa
| | - Nima Kamali
- Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mahjouri
- Department of Environmental Engineering, University of Tehran, Kish International Campus, Tehran, Iran
| |
Collapse
|
28
|
Osman AI, Fawzy S, Farghali M, El-Azazy M, Elgarahy AM, Fahim RA, Maksoud MIAA, Ajlan AA, Yousry M, Saleem Y, Rooney DW. Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:2385-2485. [PMID: 35571983 PMCID: PMC9077033 DOI: 10.1007/s10311-022-01424-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/22/2022] [Indexed: 05/06/2023]
Abstract
In the context of climate change and the circular economy, biochar has recently found many applications in various sectors as a versatile and recycled material. Here, we review application of biochar-based for carbon sink, covering agronomy, animal farming, anaerobic digestion, composting, environmental remediation, construction, and energy storage. The ultimate storage reservoirs for biochar are soils, civil infrastructure, and landfills. Biochar-based fertilisers, which combine traditional fertilisers with biochar as a nutrient carrier, are promising in agronomy. The use of biochar as a feed additive for animals shows benefits in terms of animal growth, gut microbiota, reduced enteric methane production, egg yield, and endo-toxicant mitigation. Biochar enhances anaerobic digestion operations, primarily for biogas generation and upgrading, performance and sustainability, and the mitigation of inhibitory impurities. In composts, biochar controls the release of greenhouse gases and enhances microbial activity. Co-composted biochar improves soil properties and enhances crop productivity. Pristine and engineered biochar can also be employed for water and soil remediation to remove pollutants. In construction, biochar can be added to cement or asphalt, thus conferring structural and functional advantages. Incorporating biochar in biocomposites improves insulation, electromagnetic radiation protection and moisture control. Finally, synthesising biochar-based materials for energy storage applications requires additional functionalisation.
Collapse
Affiliation(s)
- Ahmed I. Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG Northern Ireland UK
| | - Samer Fawzy
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG Northern Ireland UK
| | - Mohamed Farghali
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
- Department of Animal and Poultry Hygiene and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Marwa El-Azazy
- Department of Chemistry, Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Ahmed M. Elgarahy
- Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
| | - Ramy Amer Fahim
- National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - M. I. A. Abdel Maksoud
- National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Abbas Abdullah Ajlan
- Department of Chemistry -Faculty of Applied Science, Taiz University, P.O.Box 6803, Taiz, Yemen
| | - Mahmoud Yousry
- Faculty of Engineering, Al-Azhar University, Cairo, 11651 Egypt
- Cemart for Building Materials and Insulation, postcode 11765, Cairo, Egypt
| | - Yasmeen Saleem
- Institute of Food and Agricultural Sciences, Soil and Water Science, The University of Florida, Gainesville, FL 32611 USA
| | - David W. Rooney
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG Northern Ireland UK
| |
Collapse
|