1
|
Du J, Xu J, Luo Y, Li X, Zhao L, Liu S, Jia X, Wang Z, Ge L, Cui K, Ga Y, Zhu M, Ji T, Huang Z, Xia X. High-Throughput Monitoring of 323 Pharmaceuticals and Personal Care Products (PPCPs) and Pesticides in Surface Water for Environmental Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40425320 DOI: 10.1021/acs.est.5c05363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
The ubiquity of pharmaceuticals and personal care products (PPCPs) and pesticides in aquatic environments has raised significant ecological concerns due to their potential to disrupt aquatic ecosystems. This study presents a high-throughput ultraperformance liquid chromatography-tandem mass spectrometry method without sample enrichment to monitor 323 PPCPs and pesticides in the surface water of the Jingmi Water Diversion Canal in Beijing, China. One hundred and three PPCPs and pesticides were detected, with the highest detection frequency observed for antibiotics, which constituted 25.2% of the total detections. Notably, the average concentrations of detected PPCPs and pesticides were significantly higher in the winter (69.0 ng/L) than in the summer (42.1 ng/L). Spatial characterization indicated higher concentrations of PPCPs and pesticides in urban areas compared with suburban areas, with carbendazim, caffeine, atrazine, and diazepam being the most frequently detected compounds. The ecological risk assessment based on risk quotient values identified moderate to high risks for aquatic organisms, particularly in urban areas and during winter. These findings highlight the necessity for improved wastewater treatment technologies and continuous environmental monitoring to protect aquatic ecosystems from the adverse effects of PPCPs and pesticides.
Collapse
Affiliation(s)
- Jingjing Du
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jian Xu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuanyuan Luo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaowei Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Liang Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Saiwa Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xi Jia
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhinan Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lirui Ge
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kexin Cui
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yu Ga
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mengxuan Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Tianrun Ji
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zelong Huang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xi Xia
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Gao Y, Yuan C, Cheng S, Sun J, Ouyang S, Xue W, Zhang W, Zhou L, Wang J, Sun S. Potential risks and hazards posed by the pressure of pharmaceuticals and personal care products on water treatment plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 378:126344. [PMID: 40320128 DOI: 10.1016/j.envpol.2025.126344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/13/2025] [Accepted: 04/28/2025] [Indexed: 05/26/2025]
Abstract
Pharmaceuticals and personal care products (PPCPs) are widely used in various industrial and commercial products, contributing to their substantial presence in the environment. In recent years, numerous studies have focused on the environmental behavior, toxicity, and removal approaches of PPCPs. Nevertheless, few studies systematically summarized the current understanding of these issues and provided suggestions and comments for future research directions. In this review, the classification and detection of PPCPs that are useful for their source, distribution, and occurrence are discussed. Moreover, this review highlights the environmental behavior, biological toxicity, and potential risk of PPCPs after entering the environment. Furthermore, we summarized the removal methods and efficiency of PPCPs and evaluated the inadequacies of current sewage treatment facilities in addressing emerging pollutants. Given the widespread application and complex component of PPCPs, they can potentially threaten water resource safety and human health risks, future research should focus on the following: (1) establishing advanced artificial intelligence statistical analysis and the detection and quantification technologies of PPCPs to more precisely predict their behavior and fate in the environment; (2) evaluating the long-term biological toxicity and human risk effect of PPCPs in terrestrial and aqueous system; and (3) developing new sewage treatment facilities and technologies to remove PPCPs from multiple environmental media.
Collapse
Affiliation(s)
- Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Chenhui Yuan
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Shenghua Cheng
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Jing Sun
- Center of Eco-environmental Monitoring and Scientific Research, Administration of Ecology and Environment of Haihe River Basin and Beihai Sea Area, Ministry of Ecology and Environment of People's Republic of China, Tianjin, 300170, China.
| | - Shaohu Ouyang
- MOE Key Laboratory of Western China's Environmental Systems, Lanzhou University, Lanzhou, 73000, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Wei Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Lean Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Jinting Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| |
Collapse
|
3
|
Ezeonyejiaku CD, Okoye CO, Ogbonnaya D, Ezeonyejiaku NJ, Offorbuike II, Okoye KC. Entomophagy and chemical element residues: Noncarcinogenic risk assessment for human consumption. PLOS GLOBAL PUBLIC HEALTH 2025; 5:e0003462. [PMID: 40279342 PMCID: PMC12027056 DOI: 10.1371/journal.pgph.0003462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 03/26/2025] [Indexed: 04/27/2025]
Abstract
Entomophagy has received considerable attention due to its vulnerability to toxic chemical elements, thus requiring safety assessment. In this study, edible insects Rhyncophorus phoenics larvae (palm weevil) and Macrotermes bellicosus (termite) commonly found and sold in Anambra State, Nigeria, were collected from market vendors and identified. The concentration of chemical elements was determined by Varian AA240 Atomic Absorption Spectrometer, and levels were compared with recommended standards. Noncarcinogenic risk assessment via oral exposure was evaluated following the procedure of the United State Environmental Protection Agency (USEPA). In palm weevils, zinc (Zn) had the highest concentration, whereas manganese (Mn) concentration was highest in termites. Both insects had arsenic (As) as the lowest chemical element measured, indicating low metalloid contamination. There was no difference (P > 0.05) compared with standard permissible daily intakes. Noncarcinogenic risk assessment showed no potential risk to consumers, demonstrating that, under the conditions of the current study, public health risk appears negligible.
Collapse
Affiliation(s)
| | - Charles Obinwanne Okoye
- Department of Zoology & Environmental Biology, University of Nigeria, Nsukka, Nigeria
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Daniel Ogbonnaya
- Department of Zoology, Nnamdi Azikiwe University Awka, Awka, Anambra State, Nigeria
| | | | | | | |
Collapse
|
4
|
Novaes Matilde ME, da Silva LM, Santos TAC, Magalhães ME, Palmieri MJ, Andrade-Vieira LF. Cyto-genotoxic effects predict ecotoxicity in plant bioassays and the aquatic organism Artemia salina L.: a case study from a sewage treatment plant. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2025; 60:29-45. [PMID: 40025697 DOI: 10.1080/10934529.2025.2473832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
This study evaluated the toxicological and mutagenic potential of water samples from a Wastewater Treatment Plant (WWTP) in Lavras, Minas Gerais, Brazil. Samples were taken from four sites: upstream in the stream (P1), downstream (P2), at the entrance of the treatment station (P3), and at the exit (P4). We conducted physicochemical analyses in water, phytotoxicity tests on plants (Triticum aestivum, Pennisetum glaucum, Lactuca sativa, Raphanus sativus), cytogenotoxicity tests using onion roots (Allium cepa), and Artemia salina immobilization tests. Elevated Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), anionic surfactants, and ammoniacal nitrogen were found at P3 and P4. While germination rates were generally unaffected, P4 inhibited the germination speed of R. sativus. The growth of L. sativa increased in P3 and P4, and of R. sativus in P2, due to more nitrogen and phosphorus. T. aestivum and P. glaucum, however, had their growth inhibited at P4 due to surfactant toxicity. Cytogenotoxicity tests revealed the highest frequencies of micronuclei and nuclear buds in cells exposed to P3 and P4. Additionally, P3 caused 87.5% immobilization of A. salina. These findings suggest that the WWTP is not fully efficient, and its effluent discharge may contribute to eutrophication and genetic mutations in exposed organisms.
Collapse
Affiliation(s)
| | | | | | | | - Marcel José Palmieri
- Department of Ecology and Conservation, Federal University of Lavras, Lavras, MG, Brazil
| | | |
Collapse
|
5
|
Byers EN, Messer TL, Unrine J, Barton C, Agouridis C, Miller DN. The occurrence and persistence of surface water contaminants across different landscapes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177837. [PMID: 39637467 PMCID: PMC11837770 DOI: 10.1016/j.scitotenv.2024.177837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Surface water contaminants, including both conventional contaminants (e.g., nutrients, trace elements) and emerging contaminants (e.g., pesticides, pharmaceuticals) are heavily influenced by urban and rural land use practices. The goal of the study was to characterize the influence of watershed land use practices on surface water quality. Specific objectives were to (1) identify and quantify the type and concentration of nutrients, trace elements, pesticides, pharmaceuticals and personal care products in four watersheds and (2) understand potential sources of contamination based on the watershed's land cover and land use characteristics (i.e., oil and gas, urban, mining, agriculture). Monthly polar organic chemical integrative samples and water grab samples were collected from March-October 2022. The results showed that surface water quality varied by location, season, and flood condition Specifically, aluminum (mean = 758 μg L-1) and iron (mean = 1130 μg L-1) exceeded chronic aquatic life water quality criteria in the agricultural watershed, while imidacloprid exceeded the chronic criteria limit for freshwater invertebrates in both the urban (mean = 5.96 ng L-1) and agricultural (mean = 4.72 ng L-1) watersheds. Sulfate concentrations (mean = 666 mg L-1) also exceeded ambient water quality criteria in the watershed with a high activity of mining. This study provides important steps for developing a comprehensive understanding of land use impacts on contaminant presence and concentration in surface waters, improved understanding of the implications to non-target species, and necessary water treatment processes to ensure a safe water supply.
Collapse
Affiliation(s)
- Emily Nottingham Byers
- Department of Biosystems and Agricultural Engineering, University of Kentucky, 128 CE Barnhart, Lexington, KY 40506, USA.
| | - Tiffany L Messer
- Department of Biosystems and Agricultural Engineering, University of Kentucky, 128 CE Barnhart, Lexington, KY 40506, USA
| | - Jason Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA; Kentucky Water Research Institute, University of Kentucky, Lexington, KY, USA
| | - Christopher Barton
- Department of Forestry and Natural Resources, University of Kentucky, Lexington, KY, USA
| | - Carmen Agouridis
- Department of Biosystems and Agricultural Engineering, University of Kentucky, 128 CE Barnhart, Lexington, KY 40506, USA
| | - Daniel N Miller
- United States Department of Agriculture, Agriculture Research Service, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
6
|
Ashraf M, Siddiqui MT, Galodha A, Anees S, Lall B, Chakma S, Ahammad SZ. Pharmaceuticals and personal care product modelling: Unleashing artificial intelligence and machine learning capabilities and impact on one health and sustainable development goals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176999. [PMID: 39427916 DOI: 10.1016/j.scitotenv.2024.176999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
The presence of pharmaceutical and personal care products (PPCPs) in the environment poses a significant threat to environmental resources, given their potential risks to ecosystems and human health, even in trace amounts. While mathematical modelling offers a comprehensive approach to understanding the fate and transport of PPCPs in the environment, such studies have garnered less attention compared to field and laboratory investigations. This review examines the current state of modelling PPCPs, focusing on their sources, fate and transport mechanisms, and interactions within the whole ecosystem. Emphasis is placed on critically evaluating and discussing the underlying principles, ongoing advancements, and applications of diverse multimedia models across geographically distinct regions. Furthermore, the review underscores the imperative of ensuring data quality, strategically planning monitoring initiatives, and leveraging cutting-edge modelling techniques in the quest for a more holistic understanding of PPCP dynamics. It also ventures into prospective developments, particularly the integration of Artificial Intelligence (AI) and Machine Learning (ML) methodologies, to enhance the precision and predictive capabilities of PPCP models. In addition, the broader implications of PPCP modelling on sustainability development goals (SDG) and the One Health approach are also discussed. GIS-based modelling offers a cost-effective approach for incorporating time-variable parameters, enabling a spatially explicit analysis of contaminant fate. Swin-Transformer model enhanced with Normalization Attention Modules demonstrated strong groundwater level estimation with an R2 of 82 %. Meanwhile, integrating Interferometric Synthetic Aperture Radar (InSAR) time-series with gravity recovery and climate experiment (GRACE) data has been pivotal for assessing water-mass changes in the Indo-Gangetic basin, enhancing PPCP fate and transport modelling accuracy, though ongoing refinement is necessary for a comprehensive understanding of PPCP dynamics. The review aims to establish a framework for the future development of a comprehensive PPCP modelling approach, aiding researchers and policymakers in effectively managing water resources impacted by increasing PPCP levels.
Collapse
Affiliation(s)
- Maliha Ashraf
- School of Interdisciplinary Research, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Mohammad Tahir Siddiqui
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Abhinav Galodha
- School of Interdisciplinary Research, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Sanya Anees
- Department of Electronics and Communication Engineering, Netaji Subash University of Technology (NSUT), New Delhi 110078, India.
| | - Brejesh Lall
- Bharti School of Telecommunication Technology and Management, Indian Institute of Technology, Delhi, New Delhi e110016, India
| | - Sumedha Chakma
- Department of Civil Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India.
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India.
| |
Collapse
|
7
|
Karki BK. Amended biochar in constructed wetlands: Roles, challenges, and future directions removing pharmaceuticals and personal care products. Heliyon 2024; 10:e39848. [PMID: 39524858 PMCID: PMC11550652 DOI: 10.1016/j.heliyon.2024.e39848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Pharmaceuticals and personal care products (PPCPs) in wastewater pose significant threats to both human health and aquatic ecosystems. Wastewater discharge from various sources is the primary cause of these contaminants, and proper treatment is essential for protecting the environment. Traditional treatment technologies are often too expensive and ineffective in removing PPCPs. Constructed wetlands (CWs) offer a sustainable, cost-efficient alternative for wastewater treatment, though their capability to eliminate PPCPs can vary based on multiple aspects. Recent studies highlight biochar-a carbon-rich material resultant from biomass pyrolysis-as a promising amendment to improve CW performance. However, there is a deficiency of proper literature reviews on using biochar in CWs specifically for PPCP removal. This review focuses on biochar's role in CWs and its effectiveness in removing PPCPs and enhancing microbial activity and nutrient cycling. A bibliometric analysis using Vosviewer software was used to assess the current research trends in the biochar-amended CWs to attenuate PPCPs. While biochar shows potential in eliminating PPCPs, challenges, such as optimizing its application and addressing long-term operational concerns for treating emerging pollutants like PPCPs. Future research should enhance biochar production and low-cost techniques for diverse groups of PPCPs and perform field trials to validate laboratory results under actual conditions exploring microbial-biochar and plant-biochar interactions. Addressing these challenges is crucial to advancing biochar-amended CWs and enhancing wastewater treatment on a global scale.
Collapse
Affiliation(s)
- Bhesh Kumar Karki
- Tribhuvan University, Institute of Engineering, Thapathali Campus, Department of Civil Engineering Kathmandu, 44600, Nepal
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
8
|
Sharma M, Bains A, Sridhar K, Chawla P, Sharma M. Environmental impact and source-controlled approaches for emerging micropollutants: Current status and future prospects. Food Chem Toxicol 2024; 193:115038. [PMID: 39384093 DOI: 10.1016/j.fct.2024.115038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Emerging micropollutants, originating from diverse sources, including pharmaceutical, pesticides, and industrial effluents, are a serious environmental concern. Their presence in natural water bodies has negative effects on ecosystems and human health. To address this issue, the importance of a source-controlled approach has grown, highlighting the use of advanced technologies such as oxidation processes, membrane filtration, and adsorption to prevent micropollutants from entering the environment. Therefore, this review provides a comprehensive overview of emerging micropollutants, their analytical detection methods, and their environmental impacts, with a focus on aquatic ecosystems, human health, and terrestrial environments. It also highlights the importance of using a source-controlled approach and provides insights into the benefits and drawbacks of this strategy. The primary micropollutants identified in this review were erythromycin, ibuprofen, and triclocarban, originating from the pharmaceutical industries for their use as antibiotics, analgesic, and antibacterial drugs. The primary analytical methods used for detection involved hybrid techniques that integrate chromatography with spectroscopy. Thus, this review emphasizes the source-controlled approach's benefits and drawbacks, focusing on emerging micropollutants, their detection, and impacts on ecosystems and health.
Collapse
Affiliation(s)
- Madhu Sharma
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara, 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, 641021, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, 144411, India.
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo, 315000, China.
| |
Collapse
|
9
|
Shafiq M, Obinwanne Okoye C, Nazar M, Ali Khattak W, Algammal AM. Ecological consequences of antimicrobial residues and bioactive chemicals on antimicrobial resistance in agroecosystems. J Adv Res 2024:S2090-1232(24)00467-3. [PMID: 39414225 DOI: 10.1016/j.jare.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/30/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The widespread use of antimicrobials in agriculture, coupled with bioactive chemicals like pesticides and growth-promoting agents, has accelerated the global crisis of antimicrobial resistance (AMR). Agroecosystems provides a platform in the evolution and dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which pose significant threats to both environmental and public health. AIM OF REVIEW This review explores the ecological consequences of antimicrobial residues and bioactive chemicals in agroecosystems, with a focus on their role in shaping AMR. It delves into the mechanisms by which these substances enter agricultural environments, their interactions with soil microbiomes, and the subsequent impacts on microbial community structure. KEY SCIENTIFIC CONCEPTS OF REVIEW Evidence indicates that the accumulation of antimicrobials promotes resistance gene transfer among microorganisms, potentially compromising ecosystem health and agricultural productivity. By synthesizing current research, we identify critical gaps in knowledge and propose strategies for mitigating the ecological risks associated with antimicrobial residues. Moreover, this review highlights the urgent need for integrated management approaches to preserve ecosystem health and combat the spread of AMR in agricultural settings.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China.
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Mudasir Nazar
- Institute of Animal Science, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Wajid Ali Khattak
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Abdelazeem M Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
10
|
Yakubu S, Miao B, Hou M, Zhao Y. A review of the ecotoxicological status of microplastic pollution in African freshwater systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174092. [PMID: 38942312 DOI: 10.1016/j.scitotenv.2024.174092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/21/2024] [Accepted: 06/16/2024] [Indexed: 06/30/2024]
Abstract
Microplastics (MPs) have found extensive application globally due to their low cost, flexibility and light weight. Microplastic pollution is a growing environmental concern that poses significant threats to aquatic ecosystems worldwide, including African freshwater systems. Nevertheless, although Africa houses some of the deepest and largest freshwater rivers and lakes in the world such as Lake Tanganyika and Victoria, River Congo and the Nile, there is limited information available regarding the presence of MPs in these inland waters. Selected published data on MPs in African freshwater systems, including sediments, biota, rivers, and lakes, were incorporated in this review. The study discovered that the sampling technique employed has a major impact on the morphological characteristics and abundance of MPs in African freshwater systems. Fibers and fragments were the most common shapes; black, white, and transparent were the most prevalent colors; and polyethene terephthalate, polystyrene, and polypropylene were the frequently dominant polymers. As the distance between the sampling sites increased geographically, the polymer similarities declined. MPs have been found to translocate into body cells and tissues where they are capable of causing genetic mutations, cytotoxicity, oxidative stress and neurotoxicity. In Africa, MPs are poorly managed and monitored, and there has been insufficient research done on the possibility that they could be present in drinking water. Considering the fact that humans in the continent are exposed to freshwater and aquatic organisms, the risk assessment routes are currently unvalidated, therefore it was recommended that African nations should strengthen their capacity for plastic management and environmental monitoring. This review provides up to date information on the occurrence, prevalence, ecotoxicity and management of MPs across African freshwater systems.
Collapse
Affiliation(s)
- Salome Yakubu
- Henan International Joint Laboratory of Nano-photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Baoji Miao
- Henan International Joint Laboratory of Nano-photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Mengyao Hou
- Henan International Joint Laboratory of Nano-photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yao Zhao
- Henan International Joint Laboratory of Nano-photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| |
Collapse
|
11
|
Karayi M, Yazhini C, Mukhopadhyay M, Neppolian B, Kanmani S, Chakraborty P. Pharmaceuticals and personal care products contamination in the rivers of Chennai city during the COVID-19 pandemic. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:462. [PMID: 39352591 DOI: 10.1007/s10653-024-02241-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/16/2024] [Indexed: 11/20/2024]
Abstract
Pharmaceuticals and personal care products (PPCPs) monitoring in surface water is crucial to address the escalating threat of antimicrobial resistance and safeguard public health. This study aimed to investigate the occurrence of 21 different PPCPs, including wastewater chemical markers, antibiotics, and parabens in the surface water of Chennai city using Ultra Performance Liquid Chromatography-Triple Quadrupole Mass Spectrometry (UPLC-MS/MS) analysis. It is noteworthy that chemical markers viz., carbamazepine (CBZ) and caffeine (CAF) were detected in all the sites and contributed to more than 95% of the total PPCPs load indicating a significant intrusion of wastewater. Among the antibiotics, fluoroquinolones were dominant in this study. Interestingly, a significant and strong correlation was seen between fluoroquinolones, CBZ and CAF (R2 = 0.880-0.928, p < 0.05), suggesting similarities in their sources. More than 50% of the sites exhibited a risk for antimicrobial resistance (RQAMR) with RQAMR > 1 for ciprofloxacin, indicating a significant public health concern. The ecotoxicological risk assessment of PPCPs showed no risk to any organisms, except for triclosan, which posed a risk to fish and daphnids at one site near an open drain in Buckingham canal.
Collapse
Affiliation(s)
- Mithun Karayi
- Department of Chemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Crescentia Yazhini
- Department of Chemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Moitraiyee Mukhopadhyay
- Environmental Science and Technology Lab, Centre for Research in Environment, Sustainability Advocacy and Climate Change, Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
- Neuvo Chakra (OPC) Pvt. Ltd, Vasai, India
| | - Bernaurdshaw Neppolian
- Department of Chemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - S Kanmani
- Centre for Environmental Studies, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, 600 025, India
| | - Paromita Chakraborty
- Environmental Science and Technology Lab, Centre for Research in Environment, Sustainability Advocacy and Climate Change, Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
12
|
Sharjeel M, Ali S, Summer M, Noor S, Nazakat L. Recent advancements of nanotechnology in fish aquaculture: an updated mechanistic insight from disease management, growth to toxicity. AQUACULTURE INTERNATIONAL 2024; 32:6449-6486. [DOI: 10.1007/s10499-024-01473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/16/2024] [Indexed: 08/04/2024]
|
13
|
Dolkar P, Sharma M, Modeel S, Yadav S, Siwach S, Bharti M, Yadav P, Lata P, Negi T, Negi RK. Challenges and effective tracking down strategies of antibiotic contamination in aquatic ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55935-55957. [PMID: 39254807 DOI: 10.1007/s11356-024-34806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
A growing environmental concern revolves around the widespread use of medicines, particularly antibiotics, which adversely impact water quality and various life forms. The unregulated production and utilization of antibiotics not only affect non-targeted organisms but also exert significant evolutionary pressures, leading to the rapid development of antimicrobial resistance (AMR) in bacterial communities. To address this issue, global studies have been conducted to assess the prevalence and quantities of antibiotics in various environmental components including freshwater, ocean, local sewage, and fish. These studies aim to establish effective analytical methods for identifying and measuring antibiotic residues in environmental matrices that might enable authorities to establish norms for the containment and disposal of antibiotics. This article offers a comprehensive overview of methods used to extract antibiotics from environmental matrices exploring purification techniques such as liquid-liquid extraction, solid-phase extraction, green extraction techniques, and concentration methods like lyophilization and rotary evaporation. It further highlights qualitative and quantitative analysis methods, high-performance liquid chromatography, ultra-high-performance liquid chromatography, and liquid chromatography-tandem along with analytical methods such as UV-Vis and tandem mass spectrometry for detecting and measuring antibiotics. Urgency is underscored for proactive strategies to curb antibiotic contamination, safeguarding the integrity of aquatic ecosystems and public health on a global scale.
Collapse
Affiliation(s)
- Padma Dolkar
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Monika Sharma
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
- Present Address: Gargi College, University of Delhi, Delhi, 110049, India
| | - Sonakshi Modeel
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Sheetal Yadav
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Sneha Siwach
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Meghali Bharti
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Pankaj Yadav
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Pushp Lata
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Tarana Negi
- Government College, Dujana, Jhajjar, Haryana, 124102, India
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India.
| |
Collapse
|
14
|
Eze CG, Okeke ES, Nwankwo CE, Nyaruaba R, Anand U, Okoro OJ, Bontempi E. Emerging contaminants in food matrices: An overview of the occurrence, pathways, impacts and detection techniques of per- and polyfluoroalkyl substances. Toxicol Rep 2024; 12:436-447. [PMID: 38645434 PMCID: PMC11033125 DOI: 10.1016/j.toxrep.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/02/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been used in industrial and consumer applications for ages. The pervasive and persistent nature of PFAS in the environment is a universal concern due to public health risks. Experts acknowledge that exposure to high levels of certain PFAS have consequences, including reduced vaccine efficacy, elevated cholesterol, and increased risk of high blood pressure. While considerable research has been conducted to investigate the presence of PFAS in the environment, the pathways for human exposure through food and food packaging/contact materials (FCM) remain unclear. In this review, we present an exhaustive overview of dietary exposure pathways to PFAS. Also, the mechanism of PFAS migration from FCMs into food and the occurrence of PFAS in certain foods were considered. Further, we present the analytical techniques for PFAS in food and food matrices as well as exposure pathways and human health impacts. Further, recent regulatory actions working to set standards and guidelines for PFAS in food packaging materials were highlighted. Alternative materials being developed and evaluated for their safety and efficacy in food contact applications, offering promising alternatives to PFAS were also considered. Finally, we reported on general considerations and perspectives presently considered.
Collapse
Affiliation(s)
- Chukwuebuka Gabriel Eze
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
- Institute of Biological Environmental and Rural Science Aberystwyth University, Wales, United Kingdom
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Chidiebele Emmanuel Nwankwo
- Department of Microbiology, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Raphael Nyaruaba
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Uttpal Anand
- CytoGene Research & Development LLP, K-51, UPSIDA Industrial Area, Kursi Road (Lucknow), Dist.– Barabanki, 225001, Uttar Pradesh, India
| | - Onyekwere Joseph Okoro
- Department of Zoology and Environment Biology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Elza Bontempi
- INSTM and INSTM and Chemistry for Technologies Laboratory, University of Brescia, via Branze 38, Brescia 25123, Italy
| |
Collapse
|
15
|
Khalifa HO, Shikoray L, Mohamed MYI, Habib I, Matsumoto T. Veterinary Drug Residues in the Food Chain as an Emerging Public Health Threat: Sources, Analytical Methods, Health Impacts, and Preventive Measures. Foods 2024; 13:1629. [PMID: 38890858 PMCID: PMC11172309 DOI: 10.3390/foods13111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Veterinary medications are necessary for both contemporary animal husbandry and food production, but their residues can linger in foods obtained from animals and pose a dangerous human risk. In this review, we aim to highlight the sources, occurrence, human exposure pathways, and human health effects of drug residues in food-animal products. Following the usage of veterinary medications, pharmacologically active compounds known as drug residues can be found in food, the environment, or animals. They can cause major health concerns to people, including antibiotic resistance development, the development of cancer, teratogenic effects, hypersensitivity, and disruption of normal intestinal flora. Drug residues in animal products can originate from variety of sources, including water or food contamination, extra-label drug use, and ignoring drug withdrawal periods. This review also examines how humans can be exposed to drug residues through drinking water, food, air, and dust, and discusses various analytical techniques for identifying these residues in food. Furthermore, we suggest some potential solutions to prevent or reduce drug residues in animal products and human exposure pathways, such as implementing withdrawal periods, monitoring programs, education campaigns, and new technologies that are crucial for safeguarding public health. This review underscores the urgency of addressing veterinary drug residues as a significant and emerging public health threat, calling for collaborative efforts from researchers, policymakers, and industry stakeholders to develop sustainable solutions that ensure the safety of the global food supply chain.
Collapse
Affiliation(s)
- Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (L.S.); (M.-Y.I.M.); (I.H.)
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 3351, Egypt
| | - Lamek Shikoray
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (L.S.); (M.-Y.I.M.); (I.H.)
| | - Mohamed-Yousif Ibrahim Mohamed
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (L.S.); (M.-Y.I.M.); (I.H.)
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
| | - Ihab Habib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (L.S.); (M.-Y.I.M.); (I.H.)
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita 286-0048, Japan
| |
Collapse
|
16
|
Saravanan A, Thamarai P, Deivayanai VC, Karishma S, Shaji A, Yaashikaa PR. Current strategies on bioremediation of personal care products and detergents: Sustainability and life cycle assessment. CHEMOSPHERE 2024; 354:141698. [PMID: 38490608 DOI: 10.1016/j.chemosphere.2024.141698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
The increased use of personal care products and detergents in modern society has raised concerns about their potential adverse effects on the environment. These products contain various chemical compounds that can persist in water bodies, leading to water pollution and ecological disturbances. Bioremediation has emerged as a promising approach to address these challenges, utilizing the natural capabilities of microorganisms to degrade or remove these contaminants. This review examines the current strategies employed in the bioremediation of personal care products and detergents, with a specific focus on their sustainability and environmental impact. This bioremediation is essential for environmental rejuvenation, as it uses living organisms to detergents and other daily used products. Its distinctiveness stems from sustainable, nature-centric ways that provide eco-friendly solutions for pollution eradication and nurturing a healthy planet, all while avoiding copying. Explores the use of microbial consortia, enzyme-based treatments, and novel biotechnological approaches in the context of environmental remediation. Additionally, the ecological implications and long-term sustainability of these strategies are assessed. Understanding the strengths and limitations of these bioremediation techniques is essential for developing effective and environmentally friendly solutions to mitigate the impact of personal care products and detergents on ecosystems.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - V C Deivayanai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Alan Shaji
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
17
|
P Rayaroth M, Aubry O, Rabat H, Marilleau E, Gru Y, Hong D, Brault P. Degradation and transformation of carbamazepine in aqueous medium under non-thermal plasma oxidation process. CHEMOSPHERE 2024; 352:141449. [PMID: 38354864 DOI: 10.1016/j.chemosphere.2024.141449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/22/2023] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Carbamazepine (CBZ) is a pharmaceutical compound detected in various water resources. With a view to removing this contaminant, the applicability of non-thermal plasma (NTP) oxidation process has been widely tested in recent years. This study utilized NTP from a dielectric barrier discharge reactor in the treatment of CBZ. NTP on the surface of a water sample containing 25 mg.L-1 of CBZ resulted in a removal efficiency of over 90% with an energy yield of 0.19 g. (kWh)-1. On the other hand, a rapid reduction in pH and an increase of conductivity and nitrate/nitrite ions concentration were observed during the degradation. The applied voltage amplitude significantly affected the removal efficiency and the energy yield as the degradation efficiency was 55%, 70%, and 72% respectively with an applied voltage of 8, 10, and 12 kV. The water matrices containing inorganic anions such as chloride and carbonate ions reduced the removal efficiency by scavenging the reactive species. Accordingly, a reduction in the removal efficiency was observed in tap water. The high-resolution mass spectrometry (HRMS) results revealed that both reactive oxygen and nitrogen species take part in the reaction process which yields many intermediate products including aromatic nitro-products. This study concluded that NTP can effectively degrade CBZ in both pure and tap water, but special attention must be paid to changes in the water quality parameters (pH, conductivity, and nitrate/nitrite ions) and the fate of nitro products.
Collapse
Affiliation(s)
- Manoj P Rayaroth
- GREMI, UMR 7344, CNRS, Université d'Orléans, 45067 Orléans, France; Department of Environmental Science, School of Science, GITAM (Deemed to be) University, Visakhapatnam, 530045, India.
| | - Olivier Aubry
- GREMI, UMR 7344, CNRS, Université d'Orléans, 45067 Orléans, France.
| | - Hervé Rabat
- GREMI, UMR 7344, CNRS, Université d'Orléans, 45067 Orléans, France
| | - Eloi Marilleau
- INOVALYS Vannes, 5 rue Denis Papin CS 20080, 56892 Saint-Avé, France
| | - Yvan Gru
- INOVALYS Nantes, Route de Gachet BP52703, 44327 Nantes Cedex 3, France; INOVALYS Tours, 3 rue de l'Aviation BP67357, 37073 Tours Cedex, France
| | - Dunpin Hong
- GREMI, UMR 7344, CNRS, Université d'Orléans, 45067 Orléans, France
| | - Pascal Brault
- GREMI, UMR 7344, CNRS, Université d'Orléans, 45067 Orléans, France
| |
Collapse
|
18
|
Weber-Theen A, Dören L. Chronic toxicity of pharmaceuticals to the benthic green alga Closterium ehrenbergii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116025. [PMID: 38290309 DOI: 10.1016/j.ecoenv.2024.116025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/30/2023] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
Pharmaceuticals in the environment have emerged to a topic of global concern. Since these substances are designed to be biologically active, hazardous effects on non-target organisms are frequently reported. Here, the effects of five pharmaceuticals, one radiocontrast agent, and one degradation product on the freshwater green alga Closterium ehrenbergii were evaluated after chronic exposure of 168 h. Growth and maximum quantum yield (FV/FM) were used as endpoints and complemented by the assessment of morphology and chlorophyll fluorescence. We found that the tested antibiotics Ciprofloxacin and Ofloxacin impaired chloroplast integrity, resulting in a reduction of FV/FM from 0.1 mg/L. The disintegration of chloroplasts at higher concentrations (c = 0.3 and 0.8 mg/L, respectively) was visualized by brightfield and fluorescence microscopy. In contrast, Sulfamethoxazole interfered with cell division, leading to malformation of cells from 0.8 mg/L. Furthermore, the antibiotics exhibited a latency period of 72 h after which they started to reveal their true effects. Therefore, the importance of long-term toxicity testing is outlined in order to avoid underestimation of toxic effects of pharmaceuticals. Based on the EC10 values obtained, the antibiotics were considered to meet the criteria for classification as toxic to aquatic life with long lasting effects. The other test substances were found to exert no effects on C. ehrenbergii or only at very high concentrations and were classified as nontoxic.
Collapse
Affiliation(s)
- Andreas Weber-Theen
- Department of Environmental Engineering, Laboratories of Ecotoxicology and Analytical Chemistry, RheinMain University of Applied Sciences, P.O. Box 3251, 65022 Wiesbaden, Germany; Department of Experimental Phycology and Culture Collection of Algae, Georg-August-University, Göttingen, Germany.
| | - László Dören
- Department of Environmental Engineering, Laboratories of Ecotoxicology and Analytical Chemistry, RheinMain University of Applied Sciences, P.O. Box 3251, 65022 Wiesbaden, Germany
| |
Collapse
|
19
|
Gaidhani PM, Chakraborty S, Ramesh K, Velayudhaperumal Chellam P, van Hullebusch ED. Molecular interactions of paraben family of pollutants with embryonic neuronal proteins of Danio rerio: A step ahead in computational toxicity towards adverse outcome pathway. CHEMOSPHERE 2024; 351:141155. [PMID: 38211790 DOI: 10.1016/j.chemosphere.2024.141155] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
The paraben family of endocrine disruptors exhibit persistent behaviours in aquatic matrices, having bio-accumulative effects and necessitating toxicity analysis and safe use, as well as prevention of food web penetration. In this study, the toxicity effects of 9 different parabens (Methyl, Ethyl, Propyl, Butyl, Heptyl, Isopropyl, Isobutyl, benzyl parabens and p-hydroxybenzoic acid) were studied against 17 neuronal proteins (Neurog1, Ascl1a, DLA, Syn2a, Ntn1a, Pitx2, and SoxB1, Her/Hes, Zic family) expressed during the early embryonic developmental stage of Danio rerio. The neuronal genes were selected as a biomarker to study the inhibitory effects on the cascade of genes expressed in the early developmental stage. The study uses trRossetta software to predict protein structures of neuronal genes, followed by structural refinement, energy minimisation, and active site prediction, evaluated using energy value, RC plot and ERRAT scores of PROCHECK and ERRAT programs. Compared to raw structures, highly confident predicted structures and quality scores were observed for refined protein with few exceptions. Based on the polarity and charge of the aminoacids, the probable pockets were identified using active site prediction, which were then used for molecular docking analysis. Further, the ADMET analysis, ligand likeliness and toxicological test revealed the paraben family of compounds as one of the most susceptible toxic and mutagenic compounds. The molecular docking results showed an interesting pattern of increasing binding affinity with increase in the carbon chains of paraben molecules. Benzyl Paraben showed higher binding affinities across all 17 neuronal proteins. Finally, gene co-occurrence/co-expression and protein-protein interaction studies using the STRING database depict that all proteins are functionally related and play essential roles in standard biological processes or pathways, conserved and expressed in diverse organisms. The interaction between paraben compounds and neuronal genes indicates high risks of inhibiting reactions in embryonic stages, emphasising the need for effective treatment measures and strict regulations.
Collapse
Affiliation(s)
- Prerna Mahesh Gaidhani
- Water Research Group, Department of Bioengineering, National Institute of Technology Agartala, India
| | - Swastik Chakraborty
- Water Research Group, Department of Bioengineering, National Institute of Technology Agartala, India
| | - Kheerthana Ramesh
- Water Research Group, Department of Bioengineering, National Institute of Technology Agartala, India
| | | | | |
Collapse
|
20
|
Kumar S, Pant M, Prashar C, Pandey KC, Roy S, Pande V, Dandapat A. Myco-synthesis of multi-twinned silver nanoparticles as potential antibacterial and antimalarial agents. RSC Adv 2024; 14:1114-1122. [PMID: 38174259 PMCID: PMC10759804 DOI: 10.1039/d3ra07752g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
In recent days, biogenic and green approaches for synthesizing nanostructures have gained much attention in biological and biomedical applications. Endophytic fungi have been recognized to produce several important biomolecules for use in various fields. The present work describes the use of endophytic fungi isolated from Berberis aristata for the synthesis of multi-twinned silver nanoparticles (MT-AgNPs) and their successful applications in antimicrobial and antimalarial studies. TEM images reveal the formation of multi-twined structures in the synthesized silver nanoparticles. The synthesized MT-AgNPs have shown excellent antibacterial activities against five opportunistic bacteria, viz. Bacillus subtilis (MTCC 441), Pseudomonas aeruginosa (MTCC 424), Escherichia coli (MTCC 443), Klebsiella pneumonia (MTCC 3384), and Aeromonas salmonicida (MTCC 1522). The synthesized MT-AgNPs also exhibit interesting antimalarial activities against Plasmodium falciparum parasites (3D7 strain) by displaying 100% inhibition at a concentration of 1 μg mL-1 against the malaria parasite P. falciparum 3D7. Overall, the results describe a green method for the production of twinned-structured nanoparticles and their potential to be applied in the biomedical, pharmaceutical, food preservation, and packaging industries.
Collapse
Affiliation(s)
- Suresh Kumar
- Department of Biotechnology, Kumaun University Sir J. C. Bose Technical Campus, Bhimtal Nainital Uttarakhand 263136 India
| | - Megha Pant
- Department of Biotechnology, Kumaun University Sir J. C. Bose Technical Campus, Bhimtal Nainital Uttarakhand 263136 India
| | - Cherish Prashar
- ICMR-National Institute of Malaria Research (NIMR) Delhi 110077 New Delhi India
- Academic of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Kailash C Pandey
- ICMR-National Institute of Malaria Research (NIMR) Delhi 110077 New Delhi India
- Academic of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Subhasish Roy
- Department of Chemistry, Birla Institute of Technology and Science K K Birla Goa Campus, Pilani Goa 403726 India
| | - Veena Pande
- Department of Biotechnology, Kumaun University Sir J. C. Bose Technical Campus, Bhimtal Nainital Uttarakhand 263136 India
| | - Anirban Dandapat
- University School of Automation and Robotics, Guru Gobind Singh Indraprastha University East Delhi Campus, SurajmalVihar Delhi 110092 India
| |
Collapse
|
21
|
Okeke ES, Enochoghene A, Ezeudoka BC, Kaka SD, Chen Y, Mao G, ThankGod Eze C, Feng W, Wu X. A review of heavy metal risks around e-waste sites and comparable municipal dumpsites in major African cities: Recommendations and future perspectives. Toxicology 2024; 501:153711. [PMID: 38123013 DOI: 10.1016/j.tox.2023.153711] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
In Africa, the effects of informal e-waste recycling on the environment are escalating. It is regularly transported from developed to developing nations, where it is disassembled informally in search of precious metals, thus increasing human exposure to harmful compounds. Africa has a serious problem with e-waste, as there are significant facilities in Ghana and Nigeria where imported e-waste is unsafely dismantled. however, because they are in high demand and less expensive than new ones, old electronic and electrical items are imported in large quantities, just like in many developing nations. After that, these objects are frequently scavenged to recover important metals through heating, burning, incubation in acids, and other techniques. Serious health hazards are associated with these activities for workers and individuals close to recycling plants. At e-waste sites in Africa, there have been documented instances of elevated concentrations of hazardous elements, persistent organic pollutants, and heavy metals in dust, soils, and vegetation, including plants consumed as food. Individuals who handle and dispose of e-waste are exposed to highly hazardous chemical substances. This paper examines heavy metal risks around e-waste sites and comparable municipal dumpsites in major African cities. Elevated concentrations of these heavy metals metal in downstream aquatic and marine habitats have resulted in additional environmental impacts. These effects have been associated with unfavourable outcomes in marine ecosystems, such as reduced fish stocks characterized by smaller sizes, increased susceptibility to illness, and decreased population densities. The evidence from the examined studies shows how much e-waste affects human health and the environment in Africa. Sub-Saharan African nations require a regulatory framework that includes specialized laws, facilities, and procedures for the safe recycling and disposal of e-waste.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Safety, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China; Department of Biochemistry, Faculty of Biological Science & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | | | | | - Steve Dokpo Kaka
- Institute of Environmental Health and Ecological Safety, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China
| | - Yao Chen
- Institute of Environmental Health and Ecological Safety, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Safety, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China
| | | | - Weiwei Feng
- Institute of Environmental Health and Ecological Safety, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China.
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Safety, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China.
| |
Collapse
|
22
|
Kyomuhimbo HD, Feleni U, Haneklaus NH, Brink H. Recent Advances in Applications of Oxidases and Peroxidases Polymer-Based Enzyme Biocatalysts in Sensing and Wastewater Treatment: A Review. Polymers (Basel) 2023; 15:3492. [PMID: 37631549 PMCID: PMC10460086 DOI: 10.3390/polym15163492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidase and peroxidase enzymes have attracted attention in various biotechnological industries due to their ease of synthesis, wide range of applications, and operation under mild conditions. Their applicability, however, is limited by their poor stability in harsher conditions and their non-reusability. As a result, several approaches such as enzyme engineering, medium engineering, and enzyme immobilization have been used to improve the enzyme properties. Several materials have been used as supports for these enzymes to increase their stability and reusability. This review focusses on the immobilization of oxidase and peroxidase enzymes on metal and metal oxide nanoparticle-polymer composite supports and the different methods used to achieve the immobilization. The application of the enzyme-metal/metal oxide-polymer biocatalysts in biosensing of hydrogen peroxide, glucose, pesticides, and herbicides as well as blood components such as cholesterol, urea, dopamine, and xanthine have been extensively reviewed. The application of the biocatalysts in wastewater treatment through degradation of dyes, pesticides, and other organic compounds has also been discussed.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Roodepoort, Johannesburg 1710, South Africa;
| | - Nils H. Haneklaus
- Transdisciplinarity Laboratory Sustainable Mineral Resources, University for Continuing Education Krems, 3500 Krems, Austria;
| | - Hendrik Brink
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| |
Collapse
|
23
|
Molnarova L, Halesova T, Vaclavikova M, Bosakova Z. Monitoring Pharmaceuticals and Personal Care Products in Drinking Water Samples by the LC-MS/MS Method to Estimate Their Potential Health Risk. Molecules 2023; 28:5899. [PMID: 37570870 PMCID: PMC10421426 DOI: 10.3390/molecules28155899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
(1) The occurrence and accumulation of pharmaceuticals and personal care products in the environment are recognized scientific concerns. Many of these compounds are disposed of in an unchanged or metabolized form through sewage systems and wastewater treatment plants (WWTP). WWTP processes do not completely eliminate all active substances or their metabolites. Therefore, they systematically leach into the water system and are increasingly contaminating ground, surface, and drinking water, representing a health risk largely ignored by legislative bodies. Especially during the COVID-19 pandemic, a significantly larger amount of medicines and protective products were consumed. It is therefore likely that contamination of water sources has increased, and in the case of groundwater with a delayed effect. As a result, it is necessary to develop an accurate, rapid, and easily available method applicable to routine screening analyses of potable water to monitor and estimate their potential health risk. (2) A multi-residue UHPLC-MS/MS analytical method designed for the identification of 52 pharmaceutical products was developed and used to monitor their presence in drinking water. (3) The optimized method achieved good validation parameters, with recovery of 70-120% of most analytes and repeatability achieving results within 20%. In real samples of drinking water, at least one analyte above the limit of determination was detected in each of the 15 tap water and groundwater samples analyzed. (4) These findings highlight the need for legislation to address pharmaceutical contamination in the environment.
Collapse
Affiliation(s)
- Lucia Molnarova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic;
| | - Tatana Halesova
- ALS Czech Republic, Na Harfe 223/9, 190 00 Prague, Czech Republic; (T.H.); (M.V.)
| | - Marta Vaclavikova
- ALS Czech Republic, Na Harfe 223/9, 190 00 Prague, Czech Republic; (T.H.); (M.V.)
| | - Zuzana Bosakova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic;
| |
Collapse
|
24
|
Lou F, Okoye CO, Gao L, Jiang H, Wu Y, Wang Y, Li X, Jiang J. Whole-genome sequence analysis reveals phenanthrene and pyrene degradation pathways in newly isolated bacteria Klebsiella michiganensis EF4 and Klebsiella oxytoca ETN19. Microbiol Res 2023; 273:127410. [PMID: 37178499 DOI: 10.1016/j.micres.2023.127410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are diverse pollutants of significant environmental concerns, requiring effective biodegradation. This study used different bioinformatics tools to conduct whole-genome sequencing of two novel bacterial strains, Klebsiella michiganensis EF4 and K. oxytoca ETN19, to improve our understanding of their many genomic functions and degradation pathways of phenanthrene and pyrene. After 28 days of cultivation, strain EF4 degraded approximately 80% and 60% of phenanthrene and pyrene, respectively. However, their combinations (EF4 +ETN19) showed tremendous phenanthrene degradation efficiency, supposed to be at the first-level kinetic model with a t1/2 value of approximately 6 days. In addition, the two bacterial genomes contained carbohydrate-active enzymes and secondary metabolites biosynthetic gene clusters associated with PAHs degradation. The two genomes contained the bZIP superfamily of transcription factors, primarily the cAMP-response element-binding protein (CREB), which could regulate the expression of several PAHs degradation genes and enzymes. Interestingly, the two genomes were found to uniquely degrade phenanthrene through a putative pathway that catabolizes 2-carboxybenzalpyruvate into the TCA cycle. An operon containing multicomponent proteins, including a novel gene (JYK05_14550) that could initiate the beginning step of phenanthrene and pyrene degradation, was found in the EF4 genome. However, the degradation pathway of ETN19 showed that the yhfP gene encoding putative quinone oxidoreductase was associated with phenanthrene and pyrene catabolic processes. Furthermore, the significant expression of catechol 1,2-dioxygenase and quinone oxidoreductase genes in EF4 +ETN19 and ETN19 following the quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis confirmed the ability of the bacteria combination to degrade pyrene and phenanthrene effectively. These findings present new insight into the possible co-metabolism of the two bacterial species in the rapid biodegradation of phenanthrene and pyrene in soil environments.
Collapse
Affiliation(s)
- Feiyue Lou
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Charles Obinwanne Okoye
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Lu Gao
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huifang Jiang
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanfang Wu
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yongli Wang
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xia Li
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianxiong Jiang
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
25
|
Sandre F, Huynh N, Caupos E, El-Mrabet L, Partibane C, Lachaise I, Pommier C, Rivard M, Morin C, Moilleron R, Le Roux J, Garrigue-Antar L. Occurrence and fate of an emerging drug pollutant and its by-products during conventional and advanced wastewater treatment: Case study of furosemide. CHEMOSPHERE 2023; 322:138212. [PMID: 36822517 DOI: 10.1016/j.chemosphere.2023.138212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Conventional wastewater treatment systems are not designed to remove pharmaceutical compounds from wastewater. These compounds can be degraded into many other transformation products which are hardly, if at all, studied. In this context, we studied the occurrence and degradation of furosemide, a very frequently detected diuretic, along with its known degradation products in several types of wastewater. Influent and effluent from the Seine-Centre Wastewater Treatment Plant (WWTP) (Paris, France) as well as outlet of residential care homes (Dordogne, France) were analyzed by Ultra-Performance Liquid Chromatography-tandem Mass Spectrometry (UPLC-MS/MS) to quantify furosemide and its known degradation products, saluamine and pyridinium of furosemide. Oxidation experiments (chlorination, ozonation and UV photolysis with hydrogen peroxide) were then performed on furosemide solutions and on water from residential care facilities to study the degradation of furosemide by potential advanced processes, and also to identify unknown oxidation products by high-resolution mass spectrometry. Furosemide was well degraded in Seine-Centre WWTP (>75%) but did not increase the concentrations of its main degradation products. Saluamine and pyridinium of furosemide were already present at similar concentrations to furosemide in the raw wastewater (∼2.5-3.5 μg.L-1), and their removal in the WWTPs were very high (>80%). Despite their removal, the three compounds remained present in treated wastewater effluents at concentrations of hundreds of nanograms per liter. Chlorination degraded furosemide without pyridinium production unlike the other two processes. Chlorination and ozonation were also effective for the removal of furosemide and pyridinium in residential care home water, but they resulted in the production of saluamine. To our knowledge this is the first evidence of saluamine and pyridinium of furosemide in real water samples in either the particulate or dissolved phase.
Collapse
Affiliation(s)
- Fidji Sandre
- Leesu - Univ Paris Est Creteil, Ecole des Ponts, Creteil, F-94010, France
| | - Nina Huynh
- Leesu - Univ Paris Est Creteil, Ecole des Ponts, Creteil, F-94010, France
| | - Emilie Caupos
- Leesu - Univ Paris Est Creteil, Ecole des Ponts, Creteil, F-94010, France; Univ Paris Est Creteil, CNRS, OSU-EFLUVE, F-94010, Creteil, France
| | - Lamyae El-Mrabet
- Leesu - Univ Paris Est Creteil, Ecole des Ponts, Creteil, F-94010, France
| | | | - Isabelle Lachaise
- ICMPE - Univ Paris Est Creteil, CNRS, UMR, 7182, 2 Rue Henri Dunant, F-94320, Thiais, France
| | - Christophe Pommier
- LDAR 24 - Laboratoire Départemental D'analyses et de Recherche, Coulounieix Chamiers, France
| | - Michael Rivard
- ICMPE - Univ Paris Est Creteil, CNRS, UMR, 7182, 2 Rue Henri Dunant, F-94320, Thiais, France
| | - Christophe Morin
- IUT - Sénart Fontainebleau, 36 Rue Georges Charpak, 77567, Lieusaint, France
| | - Régis Moilleron
- Leesu - Univ Paris Est Creteil, Ecole des Ponts, Creteil, F-94010, France
| | - Julien Le Roux
- Leesu - Univ Paris Est Creteil, Ecole des Ponts, Creteil, F-94010, France
| | | |
Collapse
|
26
|
Medkova D, Hollerova A, Riesova B, Blahova J, Hodkovicova N, Marsalek P, Doubkova V, Weiserova Z, Mares J, Faldyna M, Tichy F, Svobodova Z, Lakdawala P. Pesticides and Parabens Contaminating Aquatic Environment: Acute and Sub-Chronic Toxicity towards Early-Life Stages of Freshwater Fish and Amphibians. TOXICS 2023; 11:333. [PMID: 37112561 PMCID: PMC10141211 DOI: 10.3390/toxics11040333] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Pesticides and personal care products are two very important groups of contaminants posing a threat to the aquatic environment and the organisms living in it.. Therefore, this study aimed to describe the effects of widely used pesticides and parabens on aquatic non-target biota such as fish (using model organisms Danio rerio and Cyprinus carpio) and amphibians (using model organism Xenopus laevis) using a wide range of endpoints. The first part of the experiment was focused on the embryonal toxicity of three widely used pesticides (metazachlor, prochloraz, and 4-chloro-2-methyl phenoxy acetic acid) and three parabens (methylparaben, propylparaben, and butylparaben) with D. rerio, C. carpio, and X. laevis embryos. An emphasis was placed on using mostly sub-lethal concentrations that are partially relevant to the environmental concentrations of the substances studied. In the second part of the study, an embryo-larval toxicity test with C. carpio was carried out with prochloraz using concentrations 0.1, 1, 10, 100, and 1000 µg/L. The results of both parts of the study show that even the low, environmentally relevant concentrations of the chemicals tested are often able to affect the expression of genes that play either a prominent role in detoxification and sex hormone production or indicate cell stress or, in case of prochloraz, to induce genotoxicity.
Collapse
Affiliation(s)
- Denisa Medkova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agrisciences, Mendel University in Brno, 613 00 Brno, Czech Republic
- Department of Animal Breeding, Animal Nutrition and Biochemistry, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Aneta Hollerova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Barbora Riesova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Jana Blahova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Petr Marsalek
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Veronika Doubkova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Zuzana Weiserova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Jan Mares
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agrisciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Martin Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Frantisek Tichy
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary medicine, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Zdenka Svobodova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Pavla Lakdawala
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| |
Collapse
|
27
|
Hossein M, Asha R, Bakari R, Islam NF, Jiang G, Sarma H. Exploring eco-friendly approaches for mitigating pharmaceutical and personal care products in aquatic ecosystems: A sustainability assessment. CHEMOSPHERE 2023; 316:137715. [PMID: 36621687 DOI: 10.1016/j.chemosphere.2022.137715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Global water scarcity is exacerbated by climate change, population growth, and water pollution. Over half of the world's population will be affected by water shortages for at least a month annually by 2050 due toa lack of clean water sources. Even though recycling wastewater helps meet the growing demand, new pollutants, including pharmaceuticals and personal care products (PPCPs), pose a health threat since conventional methods cannot remove them and their environmental monitoring regulations are yet in place. Therefore, the current review aims to investigate and propose eco-friendly technologies for removing PPCPs from wastewater and their implementation strategies for ecosystem safety. Findings indicated the absence of a single wastewater treatment technology that can remove all PPCPs in a single operation. Instead, biotechnological methods are one of the alternatives that can remove PPCPs from aquatic environments. In this context, community involvement and knowledge transfer are identified keys to clean water resources' long-term sustainability.
Collapse
Affiliation(s)
- Miraji Hossein
- Department' of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P. O. Box 338, Dodoma, Tanzania
| | - Ripanda Asha
- Department' of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P. O. Box 338, Dodoma, Tanzania
| | - Ramadhani Bakari
- Department of Petroleum and Energy Engineering, The University of Dodoma, Dodoma, 41000, Tanzania
| | - Nazim Forid Islam
- Institutional Biotech Hub (IBT Hub), Department of Botany, Nanda Nath Saikia College, Titabar, Assam, 785630, India
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| | - Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India.
| |
Collapse
|
28
|
Archer E, Holton E, Fidal J, Kasprzyk-Hordern B, Carstens A, Brocker L, Kjeldsen TR, Wolfaardt GM. Occurrence of contaminants of emerging concern in the Eerste River, South Africa: Towards the optimisation of an urban water profiling approach for public- and ecological health risk characterisation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160254. [PMID: 36402343 DOI: 10.1016/j.scitotenv.2022.160254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The study evaluated the presence and fate of various contaminants of emerging concern (CECs) from a South African wastewater treatment works (WWTW) and surface waters located around an urban setting. A total of 45 CECs were quantified from nine sampling locations over an 11-month period. Daily loads (g/day) of the target analytes in the WWTW showed persistence of some CECs, along with population-normalised daily loads (mg/day/1000inh) of pharmaceuticals and drugs of abuse (DOA) that were estimated for the first time in the study area. Multiple chemical markers were recorded in river water located upstream of the WWTW discharge throughout the study period, suggesting a high degree of diffuse pollution from urban communities in the study area that are not connected to sewage networks or where sanitation services are limited. The potential of using defined surface water locations to perform community-wide substance use profiling for non-sewered communities was also explored. Environmental risk characterisation for the WWTW effluent and surface waters throughout the study period provided multiple risk quotients (RQ) for the target list of CECs spanning over various sentinel trophic levels. High risk profiles (RQ > 1.0) with a frequency of exceedance (FoE) larger than 75 % were recorded for several CECs in both WWTW effluent and surface water locations that suggest potential long-term ecological health risk impacts of pollution hotspot areas in the river catchment situated around the urban area. We present challenges in surface water quality within the study area that is relatable, or may even present more challenging, in other low- or middle-income country (LMICs) settings. The study also highlighted some challenges and limitations associated with the much-needed application of wastewater-based epidemiology (WBE) intervention in non-sewered communities that can inform on public health and communal substance use profiles of the entire urban setting.
Collapse
Affiliation(s)
- E Archer
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa.
| | - E Holton
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - J Fidal
- Department of Architecture and Civil Engineering, University of Bath, Bath BA2 7AY, UK
| | | | - A Carstens
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - L Brocker
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - T R Kjeldsen
- Department of Architecture and Civil Engineering, University of Bath, Bath BA2 7AY, UK
| | - G M Wolfaardt
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa; Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
29
|
Okeke ES, Chukwudozie KI, Addey CI, Okoro JO, Chidike Ezeorba TP, Atakpa EO, Okoye CO, Nwuche CO. Micro and nanoplastics ravaging our agroecosystem: A review of occurrence, fate, ecological impacts, detection, remediation, and prospects. Heliyon 2023; 9:e13296. [PMID: 36816258 PMCID: PMC9929314 DOI: 10.1016/j.heliyon.2023.e13296] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Micro-and nanoplastics (MNPs) are particles that are smaller than a millimeter in size and have infiltrated both terrestrial and aquatic ecosystems. MNPs pollution have become a widespread problem causing severe adverse effects on human health and the environment worldwide. Once in the environment, these polymers are not easily degradable due to their recalcitrant nature and small size and are easily consumed by aquatic organisms and transported through the food chain, at great risk to human health. Substantial evidence demonstrates the negative effects of MNPs residues on aquatic organisms' reproductive and developmental defects. Similarly, soil flora, soil quality, and plant height have been severely impacted by their presence in the agroecosystem. This is evident in the inhibition of water absorption by blocked seed pores, delayed germination, and the dramatic decline in transpiration rates and growth of plant roots, inevitably leading to drop in biomass and crop production, posing an overall threat to global food security. In this review, we present the impact of MNPs in agroecosystems around the globe, including their sources, occurrence, distribution, transport, and ultimate fate. We recommend using bio-based plastics, eco-friendly remediation strategies, reformed agricultural practices, non-single-use synthetic plastic legislation, and increased plastic waste disposal awareness campaigns as effective tools to mitigate this problem.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 41000, Enugu State, Nigeria
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka 41000, Enugu State, Nigeria
- Institute of Environmental Health and Ecological Security, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi Kenya. China
| | - Kingsley Ikechukwu Chukwudozie
- Department of Microbiology, University of Nigeria, Nsukka 410001, Nigeria
- Department of Clinical Medicine, School of Medicine, Jiangsu University, China
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi Kenya. China
| | - Charles Izuma Addey
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- School of Ocean and Earth Science and Technology, University of Hawaiʻi at Mānoa, USA
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi Kenya. China
| | - Joseph Onyekwere Okoro
- Department of Zoology & Environmental Biology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi Kenya. China
| | | | - Edidiong Okokon Atakpa
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
- Department of Animal & Environmental Biology, University of Uyo, Akwa Ibom State, 1017, Nigeria
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi Kenya. China
| | - Charles Obinwanne Okoye
- Department of Zoology & Environmental Biology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi Kenya. China
| | | |
Collapse
|
30
|
Okeke ES, Feng W, Song C, Mao G, Chen Y, Xu H, Qian X, Luo M, Wu X, Yang L. Transcriptomic profiling reveals the neuroendocrine-disrupting effect and toxicity mechanism of TBBPA-DHEE exposure in zebrafish (Danio rerio) during sexual development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160089. [PMID: 36370800 DOI: 10.1016/j.scitotenv.2022.160089] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/06/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
TBBPA bis(2-hydroxyethyl) ether (TBBPA-DHEE) pollution in the environment has raised serious public health concerns due to its potential neuroendocrine-disrupting effects. The neuroendocrine-disrupting effects of TBBPA-DHEE on marine spices, on the other hand, have received little attention. The behavioral, neuroendocrine-disrupting, and possible reproductive toxicity of TBBPA-DHEE were assessed in sexual developing zebrafish treated for 40 days by examining locomotor activity, Gonadotrophin releasing hormone (GnRH), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) levels, and quantifying gene expression. In addition, transcriptome profiling was carried out to explore the possible mechanisms. According to our findings, TBBPA-DHEE treated zebrafish showed altered locomotor activity, a potential neuroendocrine-disrupting effect via the toxic effect on the hypothalamus and pituitary gland, which is evident in decreased levels of GnRH, FSH, and LH, according to our findings. The transcriptomic profiling reveals that a total of 216 DEGs were detected (5 upregulated and 211 down-regulated). Transcriptomic analysis shows that TBBPA-DHEE exposure caused decreased transcript levels of genes (cyp11a1, ccna1, ccnb2, ccnb1, cpeb1b, wee2) involved in cell cycle oocyte meiosis, progesterone mediated oocyte maturation, and ovarian steroidogenesis, which are known reproduction-related pathways. Overall, these findings add to our understanding of the impact of TBBPA-DHEE and biomonitoring in the maritime environment.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Chang Song
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xian Qian
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Mengna Luo
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, China.
| |
Collapse
|
31
|
Okeke ES, Feng W, Mao G, Chen Y, Qian X, Luo M, Xu H, Qiu X, Wu X, Yang L. A transcriptomic-based analysis predicts the neuroendocrine disrupting effect on adult male and female zebrafish (Danio rerio) following long-term exposure to tetrabromobisphenol A bis(2-hydroxyethyl) ether. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109527. [PMID: 36442598 DOI: 10.1016/j.cbpc.2022.109527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) are now ubiquitously distributed in the environment. Tetrabromobisphenol A bis(2-hydroxyethyl) ether (TBBPA-DHEE) pollution in environment media poses a significant threat to humans and aquatic organisms as a result of its potential neurotoxicity and endocrine-disrupting effect. The endocrine-disrupting effects of TBBPA-DHEE on aquatic organisms, however, have received limited attention. In this study, the neurotoxicity and reproductive endocrine-disruptive effect of TBBPA-DHEE was evaluated by observing the neurobehavioral changes, vitellogenin (VTG), testosterone, 17β-estradiol and gene expression levels in adult male and female zebrafish exposed to TBBPA-DHEE (0.05, 0.2 and 0.3 mg/L) for 100 days. Furthermore, transcriptomic analysis was conducted to unravel other potential neuroendocrine-disrupting mechanism. Our result showed TBBPA-DHEE significantly (p < 0.05) altered the locomotor behavior and motor coordination abilities in both sexes. Steroid hormone and VTG levels were also altered indicating the neuroendocrine-disrupting effect of TBBPA-DHEE on the hypothalamic-pituitary-gonadal-axis. A total of 1568 genes were upregulated and 542 genes downregulated in males, whereas, 1265 upregulated and 535 downregulated genes were observed in females. The KEGG enrichment analysis showed that cell cycle and p55 signaling pathways were significantly enriched due to TBBPA-DHEE exposure. These pathways and its component genes are potential target of EDCs. The significant upregulation of genes in these pathways could partly explain the neuroendocrine disrupting effect of TBBPA-DHEE. The observed toxic effects of TBBPA-DHEE observed in this study is confirmation of the endocrine-disrupting toxicity of this chemical which would be valuable in biosafety evaluation and biomonitoring of TBBPA-DHEE for public health purposes.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria. https://twitter.com/Okeke
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xian Qian
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Mengna Luo
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, China
| |
Collapse
|
32
|
[Determination of 107 typical pesticides and metabolites in raw water and drinking water by online-solid phase extraction coupled with ultra performance liquid chromatography-triple quadrupole mass spectrometry]. Se Pu 2022; 40:1064-1075. [PMID: 36450346 PMCID: PMC9727740 DOI: 10.3724/sp.j.1123.2022.07011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In order to monitor the risk of pesticide pollutants in drinking water, an analytical method based on online-solid phase extraction coupled with ultra performance liquid chromatography-triple quadrupole mass spectrometry (online-SPE-UPLC-MS/MS) was established for the simultaneous rapid screening and determination of 107 pesticides and metabolites (organophosphorus, organic nitrogen, organic heterocycle, carbamate, amide, benzoyl urea, neonicotinoid, etc.) in raw water and drinking water. Different injection volumes (5, 10, and 15 mL) were compared. The detection response increased with an increase in the injection volume, but the matrix effect also became more pronounced. Under the premise of ensuring the sensitivity of the method and meeting the detection requirements, the injection volume was selected as 5 mL. Accordingly, the samples were filtered through a 0.22-μm hydrophilic polytetrafluoroethylene filter, and then, 5 mL samples were injected into the online-SPE system by the automatic sampler. After adsorption on an X Bridge C18 online-SPE column, the samples were washed with pure water and eluted by gradient elution using acetonitrile and 0.1% formic acid aqueous solution as the mobile phases, with separation on an ACQUITY HSS T3 column. The samples were detected by multiple reaction monitoring with electrospray ionization in positive and negative ion modes, and quantified by an external standard method. Using raw water and drinking water as the sample matrices, the accuracy and precision of the method were verified. The 107 pesticides and metabolites showed good linear relationships in different ranges with correlation coefficients (r2)>0.995. The limits of detection (LODs, S/N=3) of the method were 0.03-1.5 ng/L, and the limits of quantification (LOQs, S/N=10) were 0.1-5.0 ng/L. The target pesticides were spiked at concentration levels of 1, 20, and 50 ng/L. The spiked recoveries of the 107 targets in raw water and drinking water samples were 60.6%-119.8% and 61.2%-119.0%, respectively. The corresponding relative standard deviations (RSDs, n=6) were 0.3%-18.6% and 0.4%-17.1%. The pesticide residues in raw water and drinking water were determined by this method. Amide herbicides, triazine herbicides, triazole insecticides, carbamate insecticides, and neonicotinoid insecticides had high detection rates. The detected concentrations ranged from 0.1 to 97.1 ng/L in raw water and from 0.1 to 93.6 ng/L in drinking water. The sample consumption of online-SPE method was lower than that in the traditional off-line SPE methods, which greatly improved the convenience of sample collection, storage, and transportation. The samples only need to be filtered before injection and analysis. The method is simple to operate and shows good reproducibility. With this online-SPE method, only 23 min were required from online enrichment to detection completion. The developed method has the advantages of high analytical speed and high sensitivity. The method is suitable for the trace analysis and determination of 107 typical pesticides in raw water and drinking water, which effectively improves the detection efficiency of pesticides in water and has high potential for practical application. It can extend technical support for the pollution-level analysis of typical pesticides and metabolites in drinking water and provide an objective basis for human health risk assessment.
Collapse
|
33
|
Panacea for the nanoplastic surge in Africa: A state-of-the-art review. Heliyon 2022; 8:e11562. [DOI: 10.1016/j.heliyon.2022.e11562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/09/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
|
34
|
Okoye CO, Nyaruaba R, Ita RE, Okon SU, Addey CI, Ebido CC, Opabunmi AO, Okeke ES, Chukwudozie KI. Antibiotic resistance in the aquatic environment: Analytical techniques and interactive impact of emerging contaminants. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103995. [PMID: 36210048 DOI: 10.1016/j.etap.2022.103995] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic pollution is becoming an increasingly severe threat globally. Antibiotics have emerged as a new class of environmental pollutants due to their expanding usage and indiscriminate application in animal husbandry as growth boosters. Contamination of aquatic ecosystems by antibiotics can have a variety of negative impacts on the microbial flora of these water bodies, as well as lead to the development and spread of antibiotic-resistant genes. Various strategies for removing antibiotics from aqueous systems and environments have been developed. Many of these approaches, however, are constrained by their high operating costs and the generation of secondary pollutants. This review aims to summarize research on the distribution and effects of antibiotics in aquatic environments, their interaction with other emerging contaminants, and their remediation strategy. The ecological risks associated with antibiotics in aquatic ecosystems and the need for more effective monitoring and detection system are also highlighted.
Collapse
Affiliation(s)
- Charles Obinwanne Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya
| | - Raphael Nyaruaba
- Center for Biosafety Megascience, Wuhan Institute of Virology, CAS, Wuhan, PR China; Organization of African Academic Doctor, Nairobi, Kenya
| | - Richard Ekeng Ita
- Department of Biological Sciences Ritman University, Ikot Ekpene, Akwa Ibom State, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya
| | - Samuel Ukpong Okon
- Department of Marine Science, Akwa Ibom State University, Mkpat Enin, P.M.B. 1167, Nigeria; Department of Ocean Engineering, Ocean College, Zhejiang University, Zhoushan 316021, PR China; Organization of African Academic Doctor, Nairobi, Kenya
| | - Charles Izuma Addey
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, PR China; Organization of African Academic Doctor, Nairobi, Kenya
| | - Chike C Ebido
- Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya
| | | | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China; Organization of African Academic Doctor, Nairobi, Kenya.
| | - Kingsley Ikechukwu Chukwudozie
- Department of Microbiology, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya; Department of Clinical Medicine, School of Medicine, Jiangsu University 212013, PR China.
| |
Collapse
|
35
|
Okeke ES, Ezeorba TPC, Chen Y, Mao G, Feng W, Wu X. Ecotoxicological and health implications of microplastic-associated biofilms: a recent review and prospect for turning the hazards into benefits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70611-70634. [PMID: 35994149 DOI: 10.1007/s11356-022-22612-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs), over the years, have been regarded as a severe environmental nuisance with adverse effects on our ecosystem as well as human health globally. In recent times, microplastics have been reported to support biofouling by genetically diverse organisms resulting in the formation of biofilms. Biofilms, however, could result in changes in the physicochemical properties of microplastics, such as their buoyancy and roughness. Many scholars perceived the microplastic-biofilm association as having more severe consequences, providing evidence of its effects on the environment, aquatic life, and nutrient cycles. Furthermore, other researchers have shown that microplastic-associated biofilms have severe consequences on human health as they serve as vectors of heavy metals, toxic chemicals, and antibiotic resistance genes. Despite what is already known about their adverse effects, other interesting avenues are yet to be fully explored or developed to turn the perceived negative microplastic-biofilm association to our advantage. The major inclusion criteria for relevant literature were that it must focus on microplastic association biofilms, while we excluded papers solely on biofilms or microplastics. A total of 242 scientific records were obtained. More than 90% focused on explaining the environmental and health impacts of microplastic-biofilm association, whereas only very few studies have reported the possibilities and opportunities in turning the microplastic biofilms association into benefits. In summary, this paper concisely reviews the current knowledge of microplastic-associated biofilms and their adverse consequences and further proposes some approaches that can be developed to turn the negative association into positive.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 41000, Nigeria
- Natural Science Unit, SGS, University of Nigeria, Nsukka, Enugu State, 41000, Nigeria
| | | | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China.
| |
Collapse
|
36
|
Gray AD, Miller JA, Weinstein JE. Are Green Household Consumer Products Less Toxic than Conventional Products? An Assessment Involving Grass Shrimp (Palaemon pugio) and Daphnia magna. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2444-2453. [PMID: 36073187 PMCID: PMC9826148 DOI: 10.1002/etc.5435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/16/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Although it is generally assumed that green household consumer products (HCPs) contain individual compounds that are less toxic and/or more degradable than conventional HCPs, little research on this topic has been conducted. In our assessments, larval grass shrimp (Palaemon pugio) were used in a biodegradation study and juvenile freshwater cladocerans, Daphnia magna, were used in a photodegradation study. In each study, organisms were exposed to nondegraded and degraded treatments consisting of one green HCP and two conventional HCPs in six different categories (laundry detergent, dish detergent, mouthwash, insecticide, dishwasher gel, and all-purpose cleaner). Sensitivity to these products were assessed using 48-h static acute toxicity tests, and the median lethal concentrations (LC50s) then compared using an LC50 ratio test. For grass shrimp, only one green HCP (insecticide) was less toxic than both conventional HCPs. In one category (laundry detergent), the green HCP was the more toxic than either conventional HCP. Following a biodegradation treatment, none of the green product formulations became less toxic, whereas 44.4% of the conventional HCPs demonstrated decreased toxicity. For daphnids, green HCPs in three categories (dish detergent, insecticide, and all-purpose cleaner) were less toxic than both conventional products tested. Following a photodegradation treatment, two green product formulations (dish detergent and dishwasher gel) became less toxic (33.3%), whereas 87.5% of the conventional HCPs demonstrated decreased toxicity. The present study demonstrates that green HCPs are not necessarily less toxic and/or more degradable than their conventional counterparts. These results also suggest that the toxicity and degradability of end-product formulations need to be considered in the overall framework for green product evaluation. Environ Toxicol Chem 2022;41:2444-2453. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Austin D. Gray
- Department of Biological ScienceVirginia Polytechnical Institute and State UniversityBlacksburgVirginiaUSA
- Department of BiologyThe Citadel, Military College of South CarolinaCharlestonSouth CarolinaUSA
| | - Jonté A. Miller
- Department of BiologyThe Citadel, Military College of South CarolinaCharlestonSouth CarolinaUSA
| | - John E. Weinstein
- Department of BiologyThe Citadel, Military College of South CarolinaCharlestonSouth CarolinaUSA
| |
Collapse
|
37
|
Okeke ES, Chukwudozie KI, Nyaruaba R, Ita RE, Oladipo A, Ejeromedoghene O, Atakpa EO, Agu CV, Okoye CO. Antibiotic resistance in aquaculture and aquatic organisms: a review of current nanotechnology applications for sustainable management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69241-69274. [PMID: 35969340 PMCID: PMC9376131 DOI: 10.1007/s11356-022-22319-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/27/2022] [Indexed: 05/13/2023]
Abstract
Aquaculture has emerged as one of the world's fastest-growing food industries in recent years, helping food security and boosting global economic status. The indiscriminate disposal of untreated or improperly managed waste and effluents from different sources including production plants, food processing sectors, and healthcare sectors release various contaminants such as bioactive compounds and unmetabolized antibiotics, and antibiotic-resistant organisms into the environment. These emerging contaminants (ECs), especially antibiotics, have the potential to pollute the environment, particularly the aquatic ecosystem due to their widespread use in aquaculture, leading to various toxicological effects on aquatic organisms as well as long-term persistence in the environment. However, various forms of nanotechnology-based technologies are now being explored to assist other remediation technologies to boost productivity, efficiency, and sustainability. In this review, we critically highlighted several ecofriendly nanotechnological methods including nanodrug and vaccine delivery, nanoformulations, and nanosensor for their antimicrobial effects in aquaculture and aquatic organisms, potential public health risks associated with nanoparticles, and their mitigation measures for sustainable management.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 41000, Enugu State, Nigeria
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, 41000, Enugu State, Nigeria
- Institute of Environmental Health and Ecological Security, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
| | - Kingsley Ikechukwu Chukwudozie
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
- Department of Clinical Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Raphael Nyaruaba
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- Center for Biosafety Megascience, Wuhan Institute of Virology, CAS, Wuhan, China
| | - Richard Ekeng Ita
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- Ritman University, Ikot Ekpene, Akwa Ibom State, Nigeria
| | - Abiodun Oladipo
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China
| | - Onome Ejeromedoghene
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province, 211189, People's Republic of China
| | - Edidiong Okokon Atakpa
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
- Department of Animal & Environmental Biology, University of Uyo, Uyo, 1017, Akwa Ibom State, Nigeria
| | | | - Charles Obinwanne Okoye
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya.
- Department of Zoology & Environmental Biology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria.
- School of Environment & Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, China.
- Key Laboratory of Intelligent Agricultural Machinery Equipment, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|