1
|
Sivalingam AM, Pandian A. Antihyperglycemic activity of polyphenolic metabolites and biosynthesized silver nanoparticles from Pedalium murex: Characterization and application of antioxidant and uropathogenic antimicrobial activities. Microb Pathog 2025; 205:107620. [PMID: 40287109 DOI: 10.1016/j.micpath.2025.107620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/21/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Pedalium murex commonly known as (large caltrops, bara gokhru) is a medicinal plant with potential therapeutic benefits. Hyperglycemia, a hallmark of diabetes, affects millions worldwide. Research on its leaf ethanol extract demonstrates potential for managing hyperglycemia in vitro and in vivo. Phytochemical analysis revealed secondary metabolites, including tannins, alkaloids, saponins, flavonoids, and polyphenols, with high levels of total flavonoids (287.5 ± 17.3 μg QEq./mg) and polyphenols (327.5 ± 17.2 μg QEq./mg). Scanning electron microscopy (SEM) confirmed the granular nature of synthesized silver nanoparticles (AgNPs) with a size range of 20-40 nm, while transmission electron microscopy (TEM) showed spherical AgNPs (20-50 nm). Energy-dispersive X-ray spectroscopy (EDX) identified silver (66.75 %), carbon (22.02 %), and oxygen (11.23 %) as the primary components. The extract effectively neutralized DPPH-free radicals (39.57 ± 4.77 %), while the AgNPs showed greater efficacy (68.23 ± 5.37 %). Superoxide radical (O2•-) reduction was significant for both the extract (59.33 ± 0.17 %) and AgNPs (38.73 ± 0.21 %), highlighting potent antioxidant properties. Hydroxyl radical (●OH) scavenging was higher for the extract (63.72 ± 0.17 %) than for AgNPs alone (36.71 ± 0.29 %). The AgNPs showed significant antimicrobial activity, with inhibition zones of 16.27 ± 0.18 mm against Staphylococcus aureus and 11.23 ± 0.17 mm against Candida albicans at 80 μg/mL. In toxicity studies, P. murex-AgNPs were well tolerated in mice. In hyperlipidemic mice, treatment with P. murex-AgNPs (350 mg/kg and 700 mg/kg) significantly reduced cholesterol, triglycerides, and LDL-c levels without affecting HDL-c. These findings provide valuable insights into the therapeutic potential of P. murex-AgNPs for the treatment of hyperlipidemia and diabetes.
Collapse
Affiliation(s)
- Azhagu Madhavan Sivalingam
- Natural Products & Nanobiotechnology Research Lab, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), (Saveetha University), Thandalam, Chennai, 602 105, Tamil Nadu, India.
| | - Arjun Pandian
- Centre for Applied Research, Institute of Biotechnology, Saveetha School of Engineering (SSE), Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
2
|
George N, Devi DG. Phytonano silver for cosmetic formulation- synthesis, characterization, and assessment of antimicrobial and antityrosinase potential. DISCOVER NANO 2024; 19:65. [PMID: 38619662 PMCID: PMC11018589 DOI: 10.1186/s11671-024-04008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Novel formulations of silver nanoparticles remain exciting if it is applicable for cosmetic purposes. This study proposes a value-added brand-new nanomaterial for improving skin complexion by inhibiting melanin development. This work aims to develop cost effective, efficient, natural silver nanoparticles phytomediated by aqueous extract of leaf sheath scales of Cocos nucifera (Cn-AgNPs) having potential as tyrosinase inhibitors hindering melanin synthesis. The formation of Cn-AgNPs was assessed spectrophotometrically and confirmed by the sharp SPR spectrum at 425 nm. The chemical composition profiling was characterized by X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. The morphology was confirmed by Field Emission Scanning Electron Microscopy (FESEM) and the thermal stability was assessed by Thermogravimetric analysis (TGA). Pharmacological application studies supported the materialization of Cn-AgNPs with significant antityrosinase potential and considerably improved antibacterial and antioxidant properties. Cn-AgNPs showed potential antibacterial effects against gram-positive and negative strains, including prominent infectious agents of the skin. Antioxidant capacity was confirmed with an IC50 of 57.8 μg/mL by DPPH radical scavenging assay. Furthermore, in vitro melanin content determination was performed using SK-MEL cells. Cell line studies proved that Cn-AgNPs decrease the melanin content of cells. The IC50 value obtained was 84.82 μg/mL. Hence Cn-AgNPs is proposed to be acting as a whitening agent through lessening cellular melanin content and as a significant inhibitor of tyrosinase activity. The antioxidant properties and antibacterial effects can contribute to skin rejuvenation and can prevent skin infections as well. This evidence proposes the development of a new nanostructured pharmaceutical and cosmetic formulation from Cocos nucifera leaf sheath scales.
Collapse
Affiliation(s)
- Neethu George
- Department of Biochemistry, Pazhassiraja College, Pulpally, Wayanad, Kerala, 673579, India
| | - D Gayathri Devi
- Department of Life Sciences, University of Calicut, Malappuram, Kerala, 673635, India.
| |
Collapse
|
3
|
Wang C, Li S, Sun P, Yu Z, Yang X. Vortex-assisted hydrophobic natural deep eutectic solvent liquid-liquid microextraction for the removal of silver ions from environmental water. Anal Bioanal Chem 2024; 416:873-882. [PMID: 38062196 DOI: 10.1007/s00216-023-05073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/23/2024]
Abstract
This study presents a novel approach for the quantification of silver ions in environmental water through the utilization of liquid-liquid microextraction, employing natural deep eutectic solvents in conjunction with inductively coupled plasma emission spectroscopy. The extracted solvent was characterized by Fourier transform infrared spectroscopy (FT-IR). The impact of various extractant types, extractant molar ratio, extractant volume, extraction time, and salt concentration on the efficacy of silver ion extraction was investigated. The findings indicate that the optimal extraction efficiency was attained by utilizing a 5-mL aqueous solution volume, containing 1000 μL thymol/lactic acid NADES 1:3, a salt concentration of 1 mg mL-1, a pH value of 4, and a vortex time of 4 min. Upon implementing the optimized experimental conditions, the recovery of target metal ions was from 96.9 to 101.0%. The relative standard deviations were observed to be within the range of 1.5 to 2.7%. The present study demonstrates the reproducibility, accuracy, and reliability of the method for detecting silver ions in environmental water, with linear range of 5~1000 ng mL-1 and limits of detection (LOD) and limits of quantification (LOQ) of 1.52 ng mL-1 and 5.02 ng mL-1, respectively.
Collapse
Affiliation(s)
- Chao Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, No. 5, Xinfeng Road, Daqing, 163319, China.
| | - Shuo Li
- College of Food Science, Heilongjiang Bayi Agricultural University, No. 5, Xinfeng Road, Daqing, 163319, China
- Agricultural Products and Processed Products Supervision and Testing Center, Ministry of Agriculture, National Coarse Cereals Engineering Research Center, Daqing, 163319, China
- National Coarse Cereals Engineering Research Center, Daqing, 163319, China
| | - Peng Sun
- College of Food Science, Heilongjiang Bayi Agricultural University, No. 5, Xinfeng Road, Daqing, 163319, China.
- Agricultural Products and Processed Products Supervision and Testing Center, Ministry of Agriculture, National Coarse Cereals Engineering Research Center, Daqing, 163319, China.
- National Coarse Cereals Engineering Research Center, Daqing, 163319, China.
| | - Zhao Yu
- College of Food Science, Heilongjiang Bayi Agricultural University, No. 5, Xinfeng Road, Daqing, 163319, China
| | - Xue Yang
- College of Food Science, Heilongjiang Bayi Agricultural University, No. 5, Xinfeng Road, Daqing, 163319, China
- Agricultural Products and Processed Products Supervision and Testing Center, Ministry of Agriculture, National Coarse Cereals Engineering Research Center, Daqing, 163319, China
- National Coarse Cereals Engineering Research Center, Daqing, 163319, China
| |
Collapse
|
4
|
Yang X, Zhao SP, Xi HL. Defense mechanisms of alfalfa against cyclic tetramethylene tetranitramine (HMX) stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165585. [PMID: 37467987 DOI: 10.1016/j.scitotenv.2023.165585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/15/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Much attention has been paid to the environmental toxicity and ecological risk caused by cyclic tetramethylene tetranitramine (HMX) pollution in military activity sites. In this study, the response mechanism of alfalfa plants to HMX was analyzed from the aspects of the photosynthetic system, micromorphology, antioxidant enzyme system, mineral metabolism, and secondary metabolism, in order to improve the efficiency of plant restoration. Exposure to 5 mg·L-1 HMX resulted in a significant increase in leaf N content and a significant increase and drift of the Fourier transform infrared protein peak area. Transmission electron microscopy images revealed damage to the root system subcellular morphology, but the plant leaves effectively resisted HMX pressure, and the photosynthetic parameters essentially maintained steady-state levels. The root proline content decreased significantly by 23.1-47.2 %, and the root reactive oxygen species content increased significantly by 1.66-1.80 fold. The roots regulate the transport/absorption of many elements that impart stress resistance, and Cu, Mn, and Na uptake is significantly associated with secondary metabolism. The metabolism of roots was upregulated in general by HMX exposure, with the main differences appearing in the content of lipids and lipid-like molecules, further confirming damage to the root biofilm structure. HMX causes an imbalance in the energy supply from oxidative phosphorylation in roots and generates important biomarkers in the form of pyrophosphate and dihydrogen phosphate. Interestingly, HMX had no significant effect on basic metabolic networks (i.e., glycolysis/gluconeogenesis and the tricarboxylic acid cycle), confirming that alfalfa has good stress resistance. Alfalfa plants apparently regulate multiple network systems to resist/overcome HMX toxicity. These findings provide a scientific basis for improving plant stress tolerance and understanding the HMX toxicity mechanism.
Collapse
Affiliation(s)
- Xu Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - San-Ping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hai-Ling Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
5
|
Pernas-Pleite C, Conejo-Martínez AM, Fernández Freire P, Hazen MJ, Marín I, Abad JP. Microalga Broths Synthesize Antibacterial and Non-Cytotoxic Silver Nanoparticles Showing Synergy with Antibiotics and Bacterial ROS Induction and Can Be Reused for Successive AgNP Batches. Int J Mol Sci 2023; 24:16183. [PMID: 38003373 PMCID: PMC10670984 DOI: 10.3390/ijms242216183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The era of increasing bacterial antibiotic resistance requires new approaches to fight infections. With this purpose, silver-based nanomaterials are a reality in some fields and promise new developments. We report the green synthesis of silver nanoparticles (AgNPs) using culture broths from a microalga. Broths from two media, with different compositions and pHs and sampled at two growth phases, produced eight AgNP types. Nanoparticles harvested after several synthesis periods showed differences in antibacterial activity and stability. Moreover, an evaluation of the broths for several consecutive syntheses did not find relevant kinetics or activity differences until the third round. Physicochemical characteristics of the AgNPs (core and hydrodynamic sizes, Z-potential, crystallinity, and corona composition) were determined, observing differences depending on the broths used. AgNPs showed good antibacterial activity at concentrations producing no or low cytotoxicity on cultured eukaryotic cells. All the AgNPs had high levels of synergy against Escherichia coli and Staphylococcus aureus with the classic antibiotics streptomycin and kanamycin, but with ampicillin only against S. aureus and tetracycline against E. coli. Differences in the synergy levels were also dependent on the types of AgNPs. We also found that, for some AgNPs, the killing of bacteria started before the massive accumulation of ROS.
Collapse
Affiliation(s)
- Carlos Pernas-Pleite
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Amparo M. Conejo-Martínez
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Paloma Fernández Freire
- Department of Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 29049 Madrid, Spain
| | - María José Hazen
- Department of Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 29049 Madrid, Spain
| | - Irma Marín
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José P. Abad
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
6
|
Ma Z, Zhang K, Guo W, Yu W, Wang J, Li J. Green synthesis of silver nanoparticles using Eucommia ulmoides leaf extract for inhibiting stem end bacteria in cut tree peony flowers. FRONTIERS IN PLANT SCIENCE 2023; 14:1176359. [PMID: 37324696 PMCID: PMC10266105 DOI: 10.3389/fpls.2023.1176359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 06/17/2023]
Abstract
Tree peony ( Paeonia suffruticosa Andr.) is a popular cut flower among ornamental plants. However, its short vase life severely hinders the production and application of cut tree peony flowers. To extend the postharvest longevity and improve the horticultural value, silver nanoparticles (Ag-NPs) was applied for reducing bacterial proliferation and xylem blockage in cut tree peony flowers in vitro and in vivo. Ag-NPs was synthesized with the leaf extract of Eucommia ulmoides and characterized. The Ag-NPs aqueous solution showed inhibitory activity against bacterial populations isolated from stem ends of cut tree peony 'Luoyang Hong' in vitro. The minimum inhibitory concentration (MIC) was 10 mg L-1. Compared with the control, pretreatments with Ag-NPs aqueous solution at 5 and 10 mg L-1 for 24 h increased flower diameter, relative fresh weight (RFW), and water balance of tree peony 'Luoyang Hong' flowers. Additionally, malondialdehyde (MDA) and H2O2 content in pretreated petals were lower than the control during the vase life. The activities of superoxide dismutase (SOD) and catalase (CAT) in pretreated petals were lower than that of the control at the early vase stage and higher at the late vase life. Furthermore, pretreatments with Ag-NPs aqueous solution at 10 mg L-1 for 24 h could reduce bacterial proliferation in the xylem vessels on the stem ends by confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM). Overall, pretreatments with green synthesized Ag-NPs aqueous solution effectively reduced bacteria-induced xylem blockage of cut tree peony, resulting in improved water uptake, extended vase life, and enhanced postharvest quality. Therefore, this technique can be used as a promising postharvest technology in the cut flower industry.
Collapse
Affiliation(s)
- Zhanqiang Ma
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Kaiyue Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Wei Guo
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Weiwei Yu
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Junzhe Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Juan Li
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, China
| |
Collapse
|