1
|
Wei N, Diekman CO. Dosing Time of Day Impacts the Safety of Antiarrhythmic Drugs in a Computational Model of Cardiac Electrophysiology. J Biol Rhythms 2025:7487304251326628. [PMID: 40269490 DOI: 10.1177/07487304251326628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Circadian clocks regulate many aspects of human physiology, including cardiovascular function and drug metabolism. Administering drugs at optimal times of the day may enhance effectiveness and reduce side effects. Certain cardiac antiarrhythmic drugs have been withdrawn from the market due to unexpected proarrhythmic effects such as fatal Torsade de Pointes (TdP) ventricular tachycardia. The Comprehensive in vitro Proarrhythmia Assay (CiPA) is a recent global initiative to create guidelines for the assessment of drug-induced arrhythmias that recommends a central role for computational modeling of ion channels and in silico evaluation of compounds for TdP risk. We simulated circadian regulation of cardiac excitability and explored how dosing time of day affects TdP risk for 11 drugs previously classified into risk categories by CiPA. The model predicts that a high-risk drug taken at the most optimal time of day may actually be safer than a low-risk drug taken at the least optimal time of day. Based on these proof-of-concept results, we advocate for the incorporation of circadian clock modeling into the CiPA paradigm for assessing drug-induced TdP risk. Since cardiotoxicity is the leading cause of drug discontinuation, modeling cardiac-related chronopharmacology has significant potential to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Ning Wei
- Department of Mathematics, Purdue University, West Lafayette, Indiana
| | - Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey
| |
Collapse
|
2
|
Zhu C, Li S, Zhang H. Heart Failure and Arrhythmias: Circadian and Epigenetic Interplay in Myocardial Electrophysiology. Int J Mol Sci 2025; 26:2728. [PMID: 40141370 PMCID: PMC11943068 DOI: 10.3390/ijms26062728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
Emerging evidence underscores the impact of circadian rhythms on cardiovascular processes, particularly in conditions such as hypertension, myocardial infarction, and heart failure, where circadian rhythm disruptions are linked to disease progression and adverse clinical outcomes. Circadian clock proteins are intricately linked to myocardial electrophysiological remodeling and epigenetic pathways associated with arrhythmias in heart failure. In the context of heart failure, circadian clock dysregulation leads to electrophysiological remodeling in the cardiomyocytes, which can precipitate life-threatening arrhythmias such as ventricular tachycardia (VT) and ventricular fibrillation (VF). This dysregulation may be influenced by environmental factors, such as diet and exercise, as well as genetic factors. Moreover, epigenetic modifications in heart failure have been implicated in the regulation of genes involved in cardiac hypertrophy, fibrosis, and inflammation. The interplay between circadian clock proteins, myocardial electrophysiological remodeling, and epigenetic pathways in heart failure-related arrhythmias is complex and multifaceted. Further research is needed to elucidate how these processes interact and contribute to the development of arrhythmias in heart failure patients. This review aims to explore the connections between circadian rhythms, myocardial electrophysiology, and arrhythmias related to heart failure, with the goal of identifying potential therapeutic targets and interventions that may counteract the adverse effects of circadian disruptions on cardiovascular health.
Collapse
Affiliation(s)
- Chen Zhu
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646099, China; (C.Z.); (S.L.)
| | - Shuang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646099, China; (C.Z.); (S.L.)
| | - Henggui Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646099, China; (C.Z.); (S.L.)
- Beijing Academy of Artificial Intelligence, Beijing 100084, China
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
3
|
Velásquez JR, Ramírez López LJ, Torres SG. New Predictive Diagnostic Method for Cardiac Dynamics Based on Probability Distributions. Diagnostics (Basel) 2025; 15:650. [PMID: 40149993 PMCID: PMC11941314 DOI: 10.3390/diagnostics15060650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Probability theory and dynamic systems have enabled the development of diagnostic support tools that simplify Holter evaluation. Method: A study was conducted on 80 Holter tests over 21 h with patients over 21 years old. Four prototypes were selected based on normal, chronic, acute, and pacemaker diagnoses. An induction was created using the heart rate ranges of the prototypes, from 55 to 105, as the general probability space. Probability theory was applied to the frequency repetition ranges of 1000 to 2000 and 2001 to 3000. A blinded study was conducted with the remaining Holter tests, applying the same methodology used for the prototypes. A physical/mathematical induction was performed for the prototypes, and the other Holter tests were analyzed in a blinded study. Results: The results were compared to the predictions of the prototypes, and sensitivity, specificity, and the kappa coefficient were calculated. In the 1000-2000 range, the repetition counts for normal dynamics were 14 to 11, for chronic cases 31 to 21, for acute cases 11 to 9, and for pacemaker dynamics 5 to 4. In the 2001-3000 range, the repetitions for normal dynamics were 3 to 0, for chronic cases 14 to 10, for acute cases 6 to 3, and for pacemaker dynamics 2. The cumulative probabilities loaded for the 1000-2000 range were as follows: normal dynamics, 0.46 to 0.35; chronic dynamics, 0.48 to 0.35; acute cases, 0.6 to 0.5; and pacemaker dynamics, 0.6 to 0.5. In the 2001-3000 range, the cumulative probabilities loaded for normal dynamics were 1 to 0; for chronic cases, 0.7 to 0.54; for acute cases, 0.75 to 0.46; and for pacemaker dynamics, 1. The frequencies observed in the repetition ranges for 1000-2000 were normal, 95 to 55; chronic, 105 to 65; acute, 100 to 75; and pacemaker, 75 to 60. For the 2001-3000 range, the frequencies were normal, 95 to 65; chronic, 85 to 65; acute, 100 to 80; and pacemaker, 65 to 60. The probabilities were less than 0.3 for normal dynamics and greater than 0.3 for chronic, acute, and pacemaker dynamics across different frequency ranges, differentiating the dynamics. Conclusions: The epidemiological study results for sensitivity, specificity, and kappa coefficient were all 1. To conclude, a diagnostic support tool was developed for cardiac dynamics with clinical applications based on the appearance of frequency ranges and probability theory, enabling differentiation of normal, chronic, acute, and pacemaker dynamics.
Collapse
Affiliation(s)
- Javier Rodríguez Velásquez
- Harmonyk Research Group, Bogota 110861569, Colombia
- TIGUM Research Group, Universidad Militar Nueva Granada, Bogotá 110111481, Colombia
| | | | | |
Collapse
|
4
|
Long T, Wu X, Chen Y, Fu B, Cheng S, Huang H, Niu H, Hua W. Association of Life's Essential 8 and Incident Cardiac Conduction Disorder: a prospective cohort study. Eur J Prev Cardiol 2025:zwaf089. [PMID: 39977239 DOI: 10.1093/eurjpc/zwaf089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/02/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
AIMS To evaluate the effect of Life's Essential 8 (LE8), a comprehensive cardiovascular health (CVH) metric from the American Heart Association, on the risk of cardiac conduction disorders (CCD). METHODS AND RESULTS We conducted a prospective cohort study of 112,160 adults from the UK Biobank, free of cardiovascular disease at baseline, to examine the association between LE8 scores and the risk of CCD. LE8 scores were categorized into low (0-49), moderate (50-79), and high (80-100) CVH groups. Cox proportional hazards models were used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) for CCD incidence during a median follow-up of 11.6 years. A total of 2,760 CCD cases were identified. After adjustment for confounders, the high CVH group exhibited a significantly lower risk of CCD compared to the low CVH group (HR: 0.48, 95% CI: 0.40-0.56). Further analyses showed reduced risks for both severe conduction block (HR: 0.63, 95% CI: 0.52-0.78) and left bundle branch or fascicular block (HR: 0.35, 95% CI: 0.25-0.49) in the high CVH group. Restricted cubic spline regression revealed an L-shaped association between LE8 score and CCD risk. Among individual LE8 metrics, WQS analysis revealed that BMI and sleep health were the major contributors to reduced CCD risk. CONCLUSIONS Higher LE8 scores were associated with a lower risk of CCD, including severe conduction block requiring pacemaker implantation and left bundle branch or fascicular block. Comprehensive strategies targeting optimal CVH, especially BMI and sleep health, may be beneficial for preventing CCD.
Collapse
Affiliation(s)
- Tianxin Long
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoying Wu
- Peking University Fifth School of Clinical Medicine, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Yongming Chen
- Beijing Hospital National Center of Gerontology Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bingqi Fu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sijing Cheng
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Huang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongxia Niu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Hua
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Shusterman V, Swenne CA, Hoffman S, Strollo PJ, London B. Tracking autonomic nervous system activity using surface ECG: Personalized, multiparametric evaluation. J Electrocardiol 2025; 88:153837. [PMID: 39615267 PMCID: PMC11717603 DOI: 10.1016/j.jelectrocard.2024.153837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/18/2024] [Accepted: 11/12/2024] [Indexed: 01/11/2025]
Abstract
We present a concise review of the background, pitfalls, and potential solutions for the noninvasive evaluation and continuous tracking of cardiac autonomic nervous system activity (ANSA), using surface-ECG-accessible parameters, including heart rate (HR), heart-rate variability (HRV), and cardiac repolarization. These parameters have provided insights into the dynamics of cardiac ANSA in controlled experiments and have proved useful in risk assessment with respect to sudden cardiac death and all-cause mortality in some patient populations, as well as in implantable device programming. Yet attempts to translate these parameters from the laboratory environment to ambulatory settings have been hampered by the presence of multiple uncontrolled factors, including changes in blood pressure, body position, physical activity, and respiration frequency. We show that a single-parameter-based, simplified cardiac ANSA evaluation in an uncontrolled ambulatory setting could be inaccurate, and we discuss several approaches to improve accuracy. Discerning cardiac ANSA effects in uncontrolled ambulatory environments requires tracking multiple physiological processes, preferably using multisensor, multiparametric monitoring and controlling some physiological variables (e.g., respiration frequency); data fusion and machine-learning-based analytics are instrumental for developing more accurate personalized ANSA evaluation.
Collapse
Affiliation(s)
- Vladimir Shusterman
- Division of Cardiovascular Medicine, The University of Iowa, Iowa City, IA, United States of America; PinMed, Inc., Pittsburgh, PA, United States of America.
| | - Cees A Swenne
- Leiden University Medical Center, Leiden, The Netherlands
| | - Stacy Hoffman
- PinMed, Inc., Pittsburgh, PA, United States of America
| | | | - Barry London
- Division of Cardiovascular Medicine, The University of Iowa, Iowa City, IA, United States of America
| |
Collapse
|
6
|
Nyamugenda E, Rosensweig C, Allada R. Circadian Clocks, Daily Stress, and Neurodegenerative Disease. ANNUAL REVIEW OF PATHOLOGY 2025; 20:355-374. [PMID: 39423424 DOI: 10.1146/annurev-pathmechdis-031521-033828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Disrupted circadian or 24-h rhythms are among the most common early findings in a wide range of neurodegenerative disorders. Once thought to be a mere consequence of the disease process, increasing evidence points toward a causal or contributory role of the circadian clock in neurodegenerative disease. Circadian clocks control many aspects of cellular biochemistry, including stress pathways implicated in neuronal survival and death. Given the dearth of disease-modifying therapies for these increasingly prevalent disorders, this understanding may lead to breakthroughs in the development of new treatments. In this review, we provide a background on circadian clocks and focus on some potential mechanisms that may be pivotal in neurodegeneration.
Collapse
Affiliation(s)
- Eugene Nyamugenda
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA;
| | - Clark Rosensweig
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA;
| | - Ravi Allada
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA;
| |
Collapse
|
7
|
Kokhabi P, Mollazadeh R, Hejazi SF, Nezhad AH, Pazoki-Toroudi H. Importance of Zinc Homeostasis for Normal Cardiac Rhythm. Curr Cardiol Rev 2025; 21:1-18. [PMID: 39301907 DOI: 10.2174/011573403x299868240904120621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/07/2024] [Accepted: 07/23/2024] [Indexed: 09/22/2024] Open
Abstract
Current arrhythmia therapies such as ion channel blockers, catheter ablation, or implantable cardioverter defibrillators have limitations and side effects, and given the proarrhythmic risk associated with conventional, ion channel-targeted anti-arrhythmic drug therapies, a new approach to arrhythmias may be warranted. Measuring and adjusting the level of specific ions that impact heart rhythm can be a simple and low-complication strategy for preventing or treating specific arrhythmias. In addition, new medicines targeting these ions may effectively treat arrhythmias. Numerous studies have shown that intracellular and extracellular zinc concentrations impact the heart's electrical activity. Zinc has been observed to affect cardiac rhythm through a range of mechanisms. These mechanisms encompass the modulation of sodium, calcium, and potassium ion channels, as well as the influence on beta-adrenergic receptors and the enzyme adenylate cyclase. Moreover, zinc can either counteract or induce oxidative stress, hinder calmodulin or the enzyme Ca (2+)/calmodulin-dependent protein kinase II (CaMKII), regulate cellular ATP levels, affect the processes of aging and autophagy, influence calcium ryanodine receptors, and control cellular inflammation. Additionally, zinc has been implicated in the modulation of circadian rhythm. In all the aforementioned cases, the effect of zinc on heart rhythm is largely influenced by its intracellular and extracellular concentrations. Optimal zinc levels are essential for maintaining a normal heart rhythm, while imbalances-whether deficiencies or excesses-can disrupt electrical activity and contribute to arrhythmias.
Collapse
Affiliation(s)
- Pejman Kokhabi
- School of Advanced Medical Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Reza Mollazadeh
- Department of Cardiology, School of Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Fatemeh Hejazi
- School of Advanced Medical Sciences, Tonekabon Medical Branch, Islamic Azad University, Tonekabon, Iran
| | - Aida Hossein Nezhad
- School of Advanced Medical Sciences, Tonekabon Medical Branch, Islamic Azad University, Tonekabon, Iran
| | - Hamidreza Pazoki-Toroudi
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
van den Brink WJ, Oosterman JE, Smid DJ, de Vries HJ, Atsma DE, Overeem S, Wopereis S. Sleep as a window of cardiometabolic health: The potential of digital sleep and circadian biomarkers. Digit Health 2025; 11:20552076241288724. [PMID: 39980570 PMCID: PMC11840856 DOI: 10.1177/20552076241288724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 09/13/2024] [Indexed: 02/22/2025] Open
Abstract
Digital biomarkers are quantifiable and objective indicators of a person's physiological function, behavioral state or treatment response, that can be captured using connected sensor technologies such as wearable devices and mobile apps. We envision that continuous and 24-h monitoring of the underlying physiological and behavioral processes through digital biomarkers can enhance early diagnostics, disease management, and self-care of cardiometabolic diseases. Cardiometabolic diseases, which include a combination of cardiovascular and metabolic disorders, represent an emerging global health threat. The prevention potential of cardiometabolic diseases is around 80%, indicating a promising role for interventions in the lifestyle and/or the environmental context. Disruption of sleep and circadian rhythms are increasingly recognized as risk factors for cardiometabolic disease. Digital biomarkers can be used to measure around the clock, that is, day and night, to quantify not only sleep patterns but also diurnal fluctuations of certain biomarkers and processes. In this way, digital biomarkers can support the delivery of optimal timed medical care. Night-time cardiometabolic patterns, such as blood pressure dipping, are predictive of cardiometabolic health outcomes. In addition, the sleep period provides an opportunity for digital cardiometabolic health monitoring with relatively low influence of artifacts, such as physical activity and eating. Digital biomarkers that utilize sleep as a window of health can be used during daily life to enable early diagnosis of cardiometabolic diseases, facilitate remote patient monitoring, and support self-management in people with cardiometabolic diseases. This review describes the influence of sleep and circadian rhythms on cardiometabolic disease and highlights the state-of-the-art sleep and circadian digital biomarkers which could be of benefit in the prevention of cardiometabolic disease.
Collapse
Affiliation(s)
- Willem J van den Brink
- Research Group Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Johanneke E Oosterman
- Research Group Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Dagmar J Smid
- Research Group Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Herman J de Vries
- Research Group Learning & Workforce Development, Netherlands Organisation for Applied Scientific Research (TNO), Soesterberg, The Netherlands
| | - Douwe E Atsma
- Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sebastiaan Overeem
- Sleep Medicine Center Kempenhaeghe, Heeze, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Suzan Wopereis
- Research Group Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| |
Collapse
|
9
|
Young MJ, Heanue S, Kanki M, Moneghetti KJ. Circadian disruption and its impact on the cardiovascular system. Trends Endocrinol Metab 2024:S1043-2760(24)00316-3. [PMID: 39706759 DOI: 10.1016/j.tem.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
Circadian rhythms are highly conserved biorhythms of ~24 h that govern many fundamental biological processes, including cardiovascular (CV) homeostasis. Disrupting the timing of cellular oscillators promotes cellular stress, and induction of pathogenic pathways underpins the pathogenesis of many CV diseases (CVDs). Thus, shift work, late eating, sleep disturbances, and other disruptors can result in an elevated risk of heart disease and increased incidence of adverse CV events. Here, we discuss the importance of circadian rhythms for CV homeostasis, recent developments in understanding the impact of disrupted circadian rhythms on CV health and disease progression, and how understanding the interactions between circadian and CV physiology is crucial for improving interventions to mitigate CVD, especially in populations impacted by disrupted circadian rhythms.
Collapse
Affiliation(s)
- Morag J Young
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia.
| | - Seamus Heanue
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Medicine, Central Clinical School, Monash University, Clayton, VIC, Australia
| | - Monica Kanki
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kegan J Moneghetti
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Smyrnis A, Theleritis C, Ferentinos P, Smyrnis N. Psychotic relapse prediction via biomarker monitoring: a systematic review. Front Psychiatry 2024; 15:1463974. [PMID: 39691789 PMCID: PMC11650710 DOI: 10.3389/fpsyt.2024.1463974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/23/2024] [Indexed: 12/19/2024] Open
Abstract
Background Associating temporal variation of biomarkers with the onset of psychotic relapse could help demystify the pathogenesis of psychosis as a pathological brain state, while allowing for timely intervention, thus ameliorating clinical outcome. In this systematic review, we evaluated the predictive accuracy of a broad spectrum of biomarkers for psychotic relapse. We also underline methodological concerns, focusing on the value of prospective studies for relapse onset estimation. Methods Following the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines, a list of search strings related to biomarkers and relapse was assimilated and run against the PubMed and Scopus databases, yielding a total of 808 unique records. After exclusion of studies related to the distinction of patients from controls or treatment effects, the 42 remaining studies were divided into 5 groups, based on the type of biomarker used as a predictor: the genetic biomarker subgroup (n = 4, or 9%), the blood-based biomarker subgroup (n = 15, or 36%), the neuroimaging biomarker subgroup (n = 10, or 24%), the cognitive-behavioral biomarker subgroup (n = 5, or 12%) and the wearables biomarker subgroup (n = 8, or 19%). Results In the first 4 groups, several factors were found to correlate with the state of relapse, such as the genetic risk profile, Interleukin-6, Vitamin D or panels consisting of multiple markers (blood-based), ventricular volume, grey matter volume in the right hippocampus, various functional connectivity metrics (neuroimaging), working memory and executive function (cognition). In the wearables group, machine learning models were trained based on features such as heart rate, acceleration, and geolocation, which were measured continuously. While the achieved predictive accuracy differed compared to chance, its power was moderate (max reported AUC = 0.77). Discussion The first 4 groups revealed risk factors, but cross-sectional designs or sparse sampling in prospective studies did not allow for relapse onset estimations. Studies involving wearables provide more concrete predictions of relapse but utilized markers such as geolocation do not advance pathophysiological understanding. A combination of the two approaches is warranted to fully understand and predict relapse.
Collapse
Affiliation(s)
- Alexandros Smyrnis
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS”, Athens, Greece
| | - Christos Theleritis
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS”, Athens, Greece
- 2Psychiatry Department, National and Kapodistrian University of Athens, Medical School, University General Hospital “ATTIKON”, Athens, Greece
| | - Panagiotis Ferentinos
- 2Psychiatry Department, National and Kapodistrian University of Athens, Medical School, University General Hospital “ATTIKON”, Athens, Greece
| | - Nikolaos Smyrnis
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS”, Athens, Greece
- 2Psychiatry Department, National and Kapodistrian University of Athens, Medical School, University General Hospital “ATTIKON”, Athens, Greece
| |
Collapse
|
11
|
Lear CA, Maeda Y, King VJ, Dhillon SK, Beacom MJ, Gunning MI, Lear BA, Davidson JO, Stone PR, Ikeda T, Gunn AJ, Bennet L. Circadian patterns of heart rate variability in fetal sheep after hypoxia-ischaemia: A biomarker of evolving brain injury. J Physiol 2024; 602:6553-6569. [PMID: 37432936 PMCID: PMC11607889 DOI: 10.1113/jp284560] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
Hypoxia-ischaemia (HI) before birth is a key risk factor for stillbirth and severe neurodevelopmental disability in survivors, including cerebral palsy, although there are no reliable biomarkers to detect at risk fetuses that may have suffered a transient period of severe HI. We investigated time and frequency domain measures of fetal heart rate variability (FHRV) for 3 weeks after HI in preterm fetal sheep at 0.7 gestation (equivalent to preterm humans) until 0.8 gestation (equivalent to term humans). We have previously shown that this is associated with delayed development of severe white and grey matter injury, including cystic white matter injury (WMI) resembling that observed in human preterm infants. HI was associated with suppression of time and frequency domain measures of FHRV and reduced their circadian rhythmicity during the first 3 days of recovery. By contrast, circadian rhythms of multiple measures of FHRV were exaggerated over the final 2 weeks of recovery, mediated by a greater reduction in FHRV during the morning nadir, but no change in the evening peak. These data suggest that the time of day at which FHRV measurements are taken affects their diagnostic utility. We further propose that circadian changes in FHRV may be a low-cost, easily applied biomarker of antenatal HI and evolving brain injury. KEY POINTS: Hypoxia-ischaemia (HI) before birth is a key risk factor for stillbirth and probably for disability in survivors, although there are no reliable biomarkers for antenatal brain injury. In preterm fetal sheep, acute HI that is known to lead to delayed development of severe white and grey matter injury over 3 weeks, was associated with early suppression of multiple time and frequency domain measures of fetal heart rate variability (FHRV) and loss of their circadian rhythms during the first 3 days after HI. Over the final 2 weeks of recovery after HI, exaggerated circadian rhythms of frequency domain FHRV measures were observed. The morning nadirs were lower with no change in the evening peak of FHRV. Circadian changes in FHRV may be a low-cost, easily applied biomarker of antenatal HI and evolving brain injury.
Collapse
Affiliation(s)
- Christopher A. Lear
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Yoshiki Maeda
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
- The Department of Obstetrics and GynaecologyMie UniversityMieJapan
| | - Victoria J. King
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Simerdeep K. Dhillon
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Michael J. Beacom
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Mark I. Gunning
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Benjamin A. Lear
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Joanne O. Davidson
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Peter R. Stone
- The Department of Obstetrics and GynaecologyThe University of AucklandAucklandNew Zealand
| | - Tomoaki Ikeda
- The Department of Obstetrics and GynaecologyMie UniversityMieJapan
| | - Alistair J. Gunn
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Laura Bennet
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| |
Collapse
|
12
|
Han HM, Choi SJ, Park E, Chang J, Jung HH, Im GJ. A big data analysis of fever threshold and vital sign characteristics using tympanic temperature in hospitalized patients. Sci Rep 2024; 14:27470. [PMID: 39523412 PMCID: PMC11551164 DOI: 10.1038/s41598-024-79080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
This study aimed to analyze vital sign characteristics of adult patients admitted at the Tertiary Hospital, and to define fever threshold and average body temperature by examining the tympanic temperatures of all patients. Retrospective medical data were extracted from 9195 patients aged > 21 years admitted to a tertiary hospital for elective surgeries between 2016 and 2020. Data regarding the patients' vital signs during their hospital stay, including tympanic body temperature, heart rate, and respiratory rate, were analyzed according to age, sex, and circadian rhythm. A normal-distribution graph was obtained when all the body temperature results were aligned. The average body temperature measured was 36.91 ± 0.45 °C (average ± standard deviation), indicating a potential fever threshold of 37.81 °C. When the participants were divided into age groups, the average temperature, heart rate, and respiratory rate exhibited parabolic trends. Patients in their 60s exhibited the lowest average temperature (36.88 °C), whereas those in their 50s had the lowest average heart rate (75.82/min) and lowest respiratory rate (19.08/min). Heart rate and respiratory rate tended to increase in elderly people older than 81 years. The average body temperature was greater in women than in men (36.94 ± 0.42 °C vs. 36.89 ± 0.47 °C), while the average heart (75.53 ± 10.04/min vs. 77.31 ± 11.52/min) and respiratory rates (19.13 ± 1.39/min vs. 19.29 ± 2.24/min) were lower in women than in men respectively. According to the time of measurement, the average temperature and heart rate appeared to follow a sinusoidal pattern, suggesting that the circadian rhythm was highest at 1 a.m. and lowest at 8 a.m. Tympanic temperature is a convenient measurement method preferred in hospital settings because it is noninvasive and easier to measure compared to other body parts. To develop an improved device and measurement method in the future, it is necessary to analyze tympanic temperature big data and compare it with past vital sign data or biometric information from other body parts.
Collapse
Affiliation(s)
- Hye Min Han
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, 02841, Seoul, Republic of Korea
| | - Soo Jeong Choi
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, 02841, Seoul, Republic of Korea
| | - Euyhyun Park
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, 02841, Seoul, Republic of Korea
| | - Jiwon Chang
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, 02841, Seoul, Republic of Korea
| | - Hak Hyun Jung
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, 02841, Seoul, Republic of Korea
| | - Gi Jung Im
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, 02841, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Immohr MB, Sugimura Y, Hartmann M, Moza A, Akhyari P, Aljalloud A. Circadian rhythm and daytime variation do not affect intraoperative bacterial sternal contamination and postoperative wound infections following cardiac surgery. Sci Rep 2024; 14:26695. [PMID: 39496736 PMCID: PMC11535550 DOI: 10.1038/s41598-024-78435-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/30/2024] [Indexed: 11/06/2024] Open
Abstract
Studies have documented various effects of circadian rhythm and daytime variations on the cardiovascular and immune system as well as wound healing. From June to December 2016, n = 367 cardiac surgery patients were enrolled. Microbiological swabs from the mediastinum and subcutaneous wound were taken before sternal closure. Patients were assigned to groups based on operation start: morning (n = 219) or afternoon (n = 135). Bacterial contamination and wound infections were studied in relation to circadian rhythm and daytime variation. We did not observe any difference in mortality (morning: 3.7%, afternoon: 3.0%, p > 0.99) and major adverse events (morning: 8.2%, afternoon: 5.9%, p = 0.53). In 27.7% of the morning group, at least one positive intraoperative swab was observed, similar to the afternoon group (25.6%, p = 0.71). The incidence of positive presternal swabs was 15.6% in the morning compared to 9.1% in the afternoon (p = 0.18). About 90% of the germs detected were part of the natural skin flora (e.g., Cutibacterium acnes and Staphylococcus epidermidis). The incidence of sternal wound infections was 7.3% (morning) and 3.0% (afternoon) (p = 0.18). We did not find differences in the incidence of intraoperative bacterial sternal contamination, nor postoperative infections, between patients who underwent cardiac surgery in the morning or afternoon.
Collapse
Affiliation(s)
- Moritz Benjamin Immohr
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, Medical Faculty and University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 405147, Essen, Germany.
- Department of Cardiac Surgery, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Yukiharu Sugimura
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, Medical Faculty and University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 405147, Essen, Germany
- Department of Cardiac Surgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michelle Hartmann
- Department of Cardiac Surgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ajay Moza
- Department of Cardiac Surgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Payam Akhyari
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, Medical Faculty and University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 405147, Essen, Germany
- Department of Cardiac Surgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ali Aljalloud
- Department of Cardiac Surgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Cardiology, Nephrology and Internal Intensive Care, Rhein-Maas Hospital, Würselen, Germany
| |
Collapse
|
14
|
Yao PC, Li MH, Chen M, Che QJ, Fei YD, Li GL, Sun J, Wang QS, Wu YB, Yang M, Zhao MZ, Yang YL, Cai ZX, Luo L, Wu H, Li YG. Circadian variation pattern of sudden cardiac arrest occurred in Chinese community. Open Heart 2024; 11:e002904. [PMID: 39414308 PMCID: PMC11487843 DOI: 10.1136/openhrt-2024-002904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The circadian variation pattern of sudden cardiac arrest (SCA) occurred in Chinese community including both community healthcare centres and primary hospitals remains unknown. This study analysed the circadian variation of SCA in the Chinese community. METHODS Data between 2018 and 2022 from the remote ECG diagnosis system of Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine were analysed to examine the circadian rhythm of SCA, stratified by initial shockable (ventricular tachycardia or ventricular fibrillation) versus non-shockable (asystole or pulseless electrical activity) rhythm. RESULTS Among 10 210 cases of SCA, major cases (8736, 85.6%) were non-shockable and 1474 (14.4%) cases were shockable. The circadian rhythm of SCA was as follows: peak time was from 08:00 to 11:59 (30.1%), while deep valley was from 00:00 to 03:59 (7.5%). The proportions of events by non-shockable and shockable events were similar and both reached their peak from 08:00 to 11:59, with a percentage of 29.0% and 36.4%, respectively. Multivariable analysis showed that the relative risk of shockable compared with non-shockable arrests was lower between 00:00 and 03:59 (adjusted OR (aOR): 0.72, 95% CI: 0.54 to 0.97, p=0.028) and 04:00 to 07:59 (aOR: 0.60, 95% CI: 0.46 to 0.79, p<0.001), but higher between 08:00 and 11:59 (aOR: 1.34, 95% CI: 1.09 to 1.64, p=0.005). CONCLUSIONS In Chinese community, there is a distinct circadian rhythm of SCA, regardless of initial rhythms. Our findings may be helpful in decision-making, in that more attention and manpower should be placed on the morning hours of first-aid and resuscitation management in Chinese community.
Collapse
Affiliation(s)
- Peng-Cheng Yao
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mo-Han Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mu Chen
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian-Ji Che
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Dong Fei
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guan-Lin Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Sun
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qun-Shan Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Bo Wu
- Shanghai Siwei Medical Co. Ltd, Shanghai, China
| | - Mei Yang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Zhe Zhao
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Li Yang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Li Luo
- School of Public Health, Fudan University, Shanghai, China
| | - Hong Wu
- Shanghai Municipal Health Commission, Shanghai, China
| | - Yi-Gang Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Information Telemonitoring Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Manolis AA, Manolis TA, Manolis AS. Circadian (diurnal/nocturnal) pattern of cardiac arrhythmias. Heart Rhythm 2024:S1547-5271(24)03428-3. [PMID: 39395570 DOI: 10.1016/j.hrthm.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
Circadian rhythms follow 24-hour biological cycle patterns controlled by internal biological or circadian clocks that optimize organismal homeostasis according to predictable environmental changes. These clocks are found in virtually all cells in the body, including cardiomyocytes. Triggers for and/or the occurrence of sudden cardiac death (SCD) and cardiac arrhythmias seem to follow such daily patterns. This review highlights data from studies exploring the role of day/night rhythms in the timing of arrhythmic events, studies describing the environmental, behavioral, and circadian mechanisms regulating cardiac electrophysiology focusing on the circadian pattern of arrhythmias and SCD. Mechanisms involved relate to circadian control of electrophysiological properties, vagal tone, and sleep disorders, as well as the potential interaction and synergism among these factors. By studying the diurnal variations of arrhythmias, therapy can be improved by optimally timing it to their circadian pattern and a person's internal body clock time. Potential treatment targets for arrhythmias with nocturnal onset may include upstream therapy for underlying comorbidities, type and timing of drug intake, pulmonary vein isolation, ablation of the ganglionated plexus, and autonomic nervous system control. Thus, specific history-taking, screening, and diagnostic workup are recommended to identify and characterize comorbidities and potential contributors to nocturnal arrhythmias, such as obesity, advanced age, diabetes, hypertension, and heart failure. In this direction, symptoms of sleep apnea may comprise snoring and excessive daytime sleepiness. Risk factors include obesity, decreased upper airway dimensions, and heart failure. Thus, one should have a low threshold for sleep testing to assess for sleep apnea. Sleep apnea treatment decreases ventricular arrhythmias and ameliorates some severe bradycardic episodes, often obviating the need for pacemaker implantation. Importantly, comorbidity treatment and lifestyle optimization remain crucial.
Collapse
|
16
|
Shlobin NA, Thijs RD, Benditt DG, Zeppenfeld K, Sander JW. Sudden death in epilepsy: the overlap between cardiac and neurological factors. Brain Commun 2024; 6:fcae309. [PMID: 39355001 PMCID: PMC11443455 DOI: 10.1093/braincomms/fcae309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024] Open
Abstract
People with epilepsy are at risk of premature death, of which sudden unexpected death in epilepsy (SUDEP), sudden cardiac death (SCD) and sudden arrhythmic death syndrome (SADS) are the primary, partly overlapping, clinical scenarios. We discuss the epidemiologies, risk factors and pathophysiological mechanisms for these sudden death events. We reviewed the existing evidence on sudden death in epilepsy. Classification of sudden death depends on the presence of autopsy and expertise of the clinician determining aetiology. The definitions of SUDEP, SCD and SADS lead to substantial openings for overlap. Seizure-induced arrhythmias constitute a minority of SUDEP cases. Comorbid cardiovascular conditions are the primary determinants of increased SCD risk in chronic epilepsy. Genetic mutations overlap between the states, yet whether these are causative, associated or incidentally present is often unclear. Risk stratification for sudden death in people with epilepsy requires a multidisciplinary approach, including a review of clinical history, toxicological analysis and complete autopsy with histologic and, preferably, genetic examination. We recommend pursuing genetic testing of relatives of people with epilepsy who died suddenly, mainly if a post-mortem genetic test contained a Class IV/V (pathogenic/likely pathogenic) gene variant. Further research may allow more precise differentiation of SUDEP, SCD and SADS and the development of algorithms for risk stratification and preventative strategies.
Collapse
Affiliation(s)
- Nathan A Shlobin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, The Netherlands
- Department of Neurology and Clinical Neurophysiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Roland D Thijs
- Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, The Netherlands
- Department of Neurology and Clinical Neurophysiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- UCL Queen Square Institute of Neurology, NIHR University College London Hospitals Biomedical Research Centre, London WC1N 3BG, UK
| | - David G Benditt
- Cardiac Arrhythmia and Syncope Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Josemir W Sander
- Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, The Netherlands
- UCL Queen Square Institute of Neurology, NIHR University College London Hospitals Biomedical Research Centre, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Tan C, Mineyama K, Shiotani H. Influence of night shift work on circadian heart-rate rhythm in nurses: using a Holter electrocardiogram that can be continuously measured for two weeks. INDUSTRIAL HEALTH 2024; 62:324-333. [PMID: 38749757 PMCID: PMC11462410 DOI: 10.2486/indhealth.2023-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/24/2024] [Indexed: 10/01/2024]
Abstract
The influence of night shift work on circadian heart-rate rhythm was examined in nurses engaged in shift work using a Holter electrocardiogram, continuously measured for two weeks, and cosine periodic regression analysis. We enrolled 11 nurses who were engaged in a two-shift system. The R2 value in the cosine regression curve of heart-rate rhythm (concordance rate), indicating the concordance rate between the actual heart rate over 24 h and the cosine regression curve approximated by the least-squares procedure, was significantly lower in the night shift (0.40 ± 0.15) than in the day shift (0.66 ± 0.19; p<0.001). Moreover, the amplitude was significantly lower and the acrophase was significantly delayed in the night shift. Thus, the circadian heart-rate rhythm was disrupted by the night shift work. Although the heart-rate acrophase recovered during the day and two days after the night shift, the concordance rate and amplitude did not recover, indicating that the influence of night shift work on circadian heart-rate rhythm might persist even two days after the night shift. Based on these results, adequate clinical attention should be paid to how to spend the day and two days after the night shift to correct the circadian heart-rate rhythm disruption caused by night shift work.
Collapse
Affiliation(s)
- Chieko Tan
- School of Health Sciences, Nursing, Kobe Tokiwa University, Japan
| | - Kae Mineyama
- Department of Nursing, Kobe University Hospital, Japan
| | | |
Collapse
|
18
|
Park JA, Yoon JE, Liu X, Chang Y, Maiolino G, Pengo MF, Lin GM, Kwon Y. Cardiovascular Implications of Sleep Disorders Beyond Sleep Apnea. CURRENT SLEEP MEDICINE REPORTS 2024; 10:320-328. [PMID: 39281064 PMCID: PMC11391919 DOI: 10.1007/s40675-024-00302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 09/18/2024]
Abstract
Purpose of Review Sleep is crucial for human health and life. There is still limited attention to the association between sleep disorders beyond sleep apnea and cardiovascular (CV) health. We investigated the current evidence between non-respiratory sleep disorders and CV health. Recent Findings Current evidence suggests an important association between sleep duration, circadian rhythm, insomnia, disorders of hypersomnolence and CV health. Sleep-related movement disorders exhibit a moderate association with CV health. Further research is needed to explore the effects of each sleep disorder on CV health. Summary Given the close association between non-respiratory sleep disorders and CV health, it is crucial to recognize and address sleep disorders in patients with a high CV risk.
Collapse
Affiliation(s)
- Jung-A Park
- Department of Neurology, Daegu Catholic University Medical Center, Daegu, Korea
| | - Jee-Eun Yoon
- Department of Neurology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Xiaoyue Liu
- New York University Rory Meyers College of Nursing, New York, NY, USA
| | - Yoonhee Chang
- Staff Physician, Sleep Medicine, Evergreen Health, Kirkland, WA, USA
| | - Giuseppe Maiolino
- Clinica Medica 3, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Martino F Pengo
- Department of Cardiovascular, Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Gen-Min Lin
- Department of Medicine, Hualien-Armed Forces General Hospital, Hualien, Taiwan
| | - Younghoon Kwon
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
19
|
Saengsuwan J, Ruangsuphaphichat A, Brockmann L, Sirasaporn P, Manimmanakorn N, Hunt KJ. Diurnal variation of heart rate variability in individuals with spinal cord injury. Biomed Eng Online 2024; 23:58. [PMID: 38902756 PMCID: PMC11188279 DOI: 10.1186/s12938-024-01256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Heart rate variability (HRV) may provide objective information about cardiogenic autonomic balance in individuals with spinal cord injury (SCI). The aim of this study was to characterize the diurnal variation of HRV in individuals with SCI at lesion level T6 and above and lesion level below T6. METHODS This was a retrospective analysis of a prior cross-sectional study. Individuals with chronic SCI underwent 24 h recording of the time between consecutive R waves (RR interval) to derive parameters of HRV as follows: standard deviation of all normal-to-normal R-R intervals (SDNN) and square root of the mean of the squared differences between successive R-R intervals (RMSSD) (time domain); and high frequency power (HF), low-frequency power (LF), very low frequency power (VLF), ultra-low frequency power (ULF) and total power (TP) (frequency domain). Changes in the magnitude of HRV outcomes over the 24 h period were investigated using a novel multi-component cosinor model constrained to the form of a three-harmonic Fourier series. RESULTS Participants were grouped as lesion level T6 and above (n = 22) or below T6 (n = 36). Most of them were male (n = 40, 69%) and the median age (interquartile range) was 50.5 (28) years. Both groups exhibited similar diurnal patterns in most HRV metrics. The lowest values occurred in the late afternoon (4-6 pm) and gradually increased, peaking around midnight to early morning (1-6 am). Exceptions included RMSSD, which peaked before midnight, and ULF, which showed a double peak pattern that peaked from 11 am to 1 pm and 4-6 am in participants with lesion level at T6 and above. The HRV values in participants with lesion level T6 and above were generally lower than participants with lesion level below T6, except for peak values of RMSSD, HF and LF. CONCLUSION This study demonstrated substantial diurnal variation of HRV in participants with SCI in both groups of participants. In clinical and research settings, diurnal variations in HRV must be taken into consideration.
Collapse
Affiliation(s)
- Jittima Saengsuwan
- Department of Rehabilitation Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
- The Laboratory for Rehabilitation Engineering, Institute for Human Centred Engineering, Bern University of Applied Sciences, Biel, Switzerland.
| | | | - Lars Brockmann
- The Laboratory for Rehabilitation Engineering, Institute for Human Centred Engineering, Bern University of Applied Sciences, Biel, Switzerland
| | - Patpiya Sirasaporn
- Department of Rehabilitation Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nuttaset Manimmanakorn
- Department of Rehabilitation Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kenneth J Hunt
- The Laboratory for Rehabilitation Engineering, Institute for Human Centred Engineering, Bern University of Applied Sciences, Biel, Switzerland
| |
Collapse
|
20
|
Miron G, Halimeh M, Jeppesen J, Loddenkemper T, Meisel C. Autonomic biosignals, seizure detection, and forecasting. Epilepsia 2024. [PMID: 38837428 DOI: 10.1111/epi.18034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Wearable devices have attracted significant attention in epilepsy research in recent years for their potential to enhance patient care through improved seizure monitoring and forecasting. This narrative review presents a detailed overview of the current clinical state of the art while addressing how devices that assess autonomic nervous system (ANS) function reflect seizures and central nervous system (CNS) state changes. This includes a description of the interactions between the CNS and the ANS, including physiological and epilepsy-related changes affecting their dynamics. We first discuss technical aspects of measuring autonomic biosignals and considerations for using ANS sensors in clinical practice. We then review recent seizure detection and seizure forecasting studies, highlighting their performance and capability for seizure detection and forecasting using devices measuring ANS biomarkers. Finally, we address the field's challenges and provide an outlook for future developments.
Collapse
Affiliation(s)
- Gadi Miron
- Computational Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Mustafa Halimeh
- Computational Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Jesper Jeppesen
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tobias Loddenkemper
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Christian Meisel
- Computational Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Center for Stroke Research Berlin, Berlin, Germany
| |
Collapse
|
21
|
Okada K, Shimatani K. Effect of olfactory stimulation from aromatherapy on the autonomic nervous activity during aerobic exercises. Sci Rep 2024; 14:11198. [PMID: 38755393 PMCID: PMC11099183 DOI: 10.1038/s41598-024-61732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
Variations in the autonomic nervous system activity during exercise therapy in patients with cardiovascular diseases may lead to adverse events. Aromatherapy may reduce these adverse events by enhancing parasympathetic nervous activity (PNA). However, the effects of aromatherapy during exercise remain relatively unknown. This study aimed to evaluate the effect of aromatherapy on autonomic nervous activity during exercise and recovery. This randomized crossover study included 20 healthy men subjected to both aroma and placebo conditions which involved rest and moderate-intensity aerobic exercise on a cycle ergometer, followed by recovery. Blood pressure, heart rate variability indices, and SpO2 were measured during the rest, exercise, and recovery phases. Moreover, aroma preferences and emotional changes in response to the aroma were assessed. Under the placebo condition, high frequency (HF), root mean square of successive differences indices, and heart rate showed delayed recovery (P < 0.05). Furthermore, a moderate positive correlation was identified between aroma preference, pleasant emotions induced by aromatherapy, and the HF index (P < 0.05). These results indicate that aromatherapy facilitates the recovery of PNA after exercise. Furthermore, these effects were more pronounced among individuals who exhibited a stronger preference for and more positive emotions toward aromas.
Collapse
Affiliation(s)
- Katsuki Okada
- Ehime Prefectural Imabari Hospital, Imabari, Ehime, 794-0006, Japan
| | - Koji Shimatani
- Prefectural University of Hiroshima, Mihara, Hiroshima, 723-0053, Japan.
| |
Collapse
|
22
|
Rabinovich-Nikitin I, Crandall M, Kirshenbaum LA. Circadian-Regulated GR Signaling Mediates Morning Arrhythmias. Circ Res 2024; 134:1327-1329. [PMID: 38723035 DOI: 10.1161/circresaha.124.324571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Affiliation(s)
- Inna Rabinovich-Nikitin
- Department of Physiology and Pathophysiology (I.R.-N., M.C., L.A.K.), Max Rady Faculty of Health Sciences, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Molly Crandall
- Department of Physiology and Pathophysiology (I.R.-N., M.C., L.A.K.), Max Rady Faculty of Health Sciences, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Lorrie A Kirshenbaum
- Department of Physiology and Pathophysiology (I.R.-N., M.C., L.A.K.), Max Rady Faculty of Health Sciences, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Rady College of Medicine, University of Manitoba, Winnipeg, Canada
- Department of Pharmacology and Therapeutics (L.A.K.), Max Rady Faculty of Health Sciences, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
23
|
Tikhomirov R, Oakley RH, Anderson C, Xiang Y, Al-Othman S, Smith M, Yaar S, Torre E, Li J, Wilson LR, Goulding DR, Donaldson I, Harno E, Soattin L, Shiels HA, Morris GM, Zhang H, Boyett MR, Cidlowski JA, Mesirca P, Mangoni ME, D’Souza A. Cardiac GR Mediates the Diurnal Rhythm in Ventricular Arrhythmia Susceptibility. Circ Res 2024; 134:1306-1326. [PMID: 38533639 PMCID: PMC11081863 DOI: 10.1161/circresaha.123.323464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/15/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Ventricular arrhythmias (VAs) demonstrate a prominent day-night rhythm, commonly presenting in the morning. Transcriptional rhythms in cardiac ion channels accompany this phenomenon, but their role in the morning vulnerability to VAs and the underlying mechanisms are not understood. We investigated the recruitment of transcription factors that underpins transcriptional rhythms in ion channels and assessed whether this mechanism was pertinent to the heart's intrinsic diurnal susceptibility to VA. METHODS AND RESULTS Assay for transposase-accessible chromatin with sequencing performed in mouse ventricular myocyte nuclei at the beginning of the animals' inactive (ZT0) and active (ZT12) periods revealed differentially accessible chromatin sites annotating to rhythmically transcribed ion channels and distinct transcription factor binding motifs in these regions. Notably, motif enrichment for the glucocorticoid receptor (GR; transcriptional effector of corticosteroid signaling) in open chromatin profiles at ZT12 was observed, in line with the well-recognized ZT12 peak in circulating corticosteroids. Molecular, electrophysiological, and in silico biophysically-detailed modeling approaches demonstrated GR-mediated transcriptional control of ion channels (including Scn5a underlying the cardiac Na+ current, Kcnh2 underlying the rapid delayed rectifier K+ current, and Gja1 responsible for electrical coupling) and their contribution to the day-night rhythm in the vulnerability to VA. Strikingly, both pharmacological block of GR and cardiomyocyte-specific genetic knockout of GR blunted or abolished ion channel expression rhythms and abolished the ZT12 susceptibility to pacing-induced VA in isolated hearts. CONCLUSIONS Our study registers a day-night rhythm in chromatin accessibility that accompanies diurnal cycles in ventricular myocytes. Our approaches directly implicate the cardiac GR in the myocyte excitability rhythm and mechanistically link the ZT12 surge in glucocorticoids to intrinsic VA propensity at this time.
Collapse
Affiliation(s)
- Roman Tikhomirov
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
- Myocardial Function Section, National Heart and Lung Institute, Imperial College London, United Kingdom (R.T., M.S., A.D.)
| | - Robert H. Oakley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (R.H.O., J.L., L.R.W., D.R.G., J.A.C.)
| | - Cali Anderson
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
| | - Yirong Xiang
- Department of Physics and Astronomy (Y.X., H.Z.), The University of Manchester, United Kingdom
| | - Sami Al-Othman
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
| | - Matthew Smith
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
- Myocardial Function Section, National Heart and Lung Institute, Imperial College London, United Kingdom (R.T., M.S., A.D.)
| | - Sana Yaar
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
| | - Eleonora Torre
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), F-34094 Montpellier France (E.T., P.M., M.E.M.)
| | - Jianying Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (R.H.O., J.L., L.R.W., D.R.G., J.A.C.)
| | - Leslie R. Wilson
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (R.H.O., J.L., L.R.W., D.R.G., J.A.C.)
| | - David R. Goulding
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (R.H.O., J.L., L.R.W., D.R.G., J.A.C.)
| | - Ian Donaldson
- Bioinformatics Core Facility (I.D.), The University of Manchester, United Kingdom
| | - Erika Harno
- Division of Diabetes, Endocrinology and Gastroenterology (E.H.), The University of Manchester, United Kingdom
| | - Luca Soattin
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
| | - Holly A. Shiels
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
| | - Gwilym M. Morris
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
- Department of Cardiology, John Hunter Hospital, Newcastle, NSW, Australia (G.M.M.)
| | - Henggui Zhang
- Department of Physics and Astronomy (Y.X., H.Z.), The University of Manchester, United Kingdom
| | - Mark R. Boyett
- Faculty of Life Sciences, University of Bradford, United Kingdom (M.R.B.)
| | - John A. Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (R.H.O., J.L., L.R.W., D.R.G., J.A.C.)
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), F-34094 Montpellier France (E.T., P.M., M.E.M.)
| | - Matteo E. Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), F-34094 Montpellier France (E.T., P.M., M.E.M.)
| | - Alicia D’Souza
- Division of Cardiovascular Sciences (R.T., C.A., S.A.O., M.S., S.Y., L.S., H.A.S., G.M.M., A.D.), The University of Manchester, United Kingdom
- Myocardial Function Section, National Heart and Lung Institute, Imperial College London, United Kingdom (R.T., M.S., A.D.)
| |
Collapse
|
24
|
Tian H, Zhao X, Zhang Y, Xia Z. Research progress of circadian rhythm in cardiovascular disease: A bibliometric study from 2002 to 2022. Heliyon 2024; 10:e28738. [PMID: 38560247 PMCID: PMC10979111 DOI: 10.1016/j.heliyon.2024.e28738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Background Given that the circadian rhythm is intricately linked to cardiovascular physiological functions, the objective of this investigation was to employ bibliometric visualization analysis in order to scrutinize the trends, hotspots, and prospects of the circadian rhythm and cardiovascular disease (CVD) over the past two decades. Methods A thorough exploration of the literature related to the circadian rhythm and CVD was conducted via the Web of Science Core Collection database spanning the years 2002-2022. Advanced software tools, including citespace and VOSviewer, were employed to carry out a comprehensive analysis of the co-occurrence and collaborative relationships among countries, institutions, journals, references, and keywords found in this literature. Furthermore, correlation mapping was executed to provide a visual representation of the data. Results The present study encompassed a total of 3399 published works, comprising of 2691 articles and 708 reviews. The publications under scrutiny were primarily derived from countries such as the United States, Japan, and China. The most prominent research institutions were found to be the University of Vigo, University of Minnesota, and Harvard University. Notably, the journal Chronobiology International, alongside its co-cited publications, had the most substantial contribution to the research in this field. Following an exhaustive analysis, the most frequently observed keywords were identified as circadian rhythm, blood pressure, hypertension, heart rate, heart rate variability, and melatonin. Furthermore, a nascent analysis indicated that future research might gravitate towards topics such as inflammation, metabolism, oxidative stress, and autophagy, thereby indicating new directions for investigation. Conclusion This analysis represents the first instance of bibliometric scrutiny pertaining to circadian rhythm and its correlation with cardiovascular disease (CVD) through the use of visualization software. Notably, this study has succeeded in highlighting the recent research frontiers and prominent trajectories in this field, thereby providing a valuable contribution to the literature.
Collapse
Affiliation(s)
- Hao Tian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoshuai Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuxi Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
25
|
Zhu P, Peek CB. Circadian timing of satellite cell function and muscle regeneration. Curr Top Dev Biol 2024; 158:307-339. [PMID: 38670711 DOI: 10.1016/bs.ctdb.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Recent research has highlighted an important role for the molecular circadian machinery in the regulation of tissue-specific function and stress responses. Indeed, disruption of circadian function, which is pervasive in modern society, is linked to accelerated aging, obesity, and type 2 diabetes. Furthermore, evidence supporting the importance of the circadian clock within both the mature muscle tissue and satellite cells to regulate the maintenance of muscle mass and repair capacity in response injury has recently emerged. Here, we review the discovery of circadian clocks within the satellite cell (a.k.a. adult muscle stem cell) and how they act to regulate metabolism, epigenetics, and myogenesis during both healthy and diseased states.
Collapse
Affiliation(s)
- Pei Zhu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Medicine-Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| | - Clara B Peek
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Medicine-Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
26
|
Soomro QH, Koplan BA, Costea AI, Roy-Chaudhury P, Tumlin JA, Kher V, Williamson DE, Pokhariyal S, McClure CK, Charytan DM. Arrhythmia and Time of Day in Maintenance Hemodialysis: Secondary Analysis of the Monitoring in Dialysis Study. Kidney Med 2024; 6:100799. [PMID: 38572395 PMCID: PMC10987926 DOI: 10.1016/j.xkme.2024.100799] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Rationale & Objective The incidence of arrhythmia varies by time of day. How this affects individuals on maintenance dialysis is uncertain. Our objective was to quantify the relationship of arrhythmia with the time of day and timing of dialysis. Study Design Secondary analysis of the Monitoring in Dialysis study, a multicenter prospective cohort study. Settings & Participants Loop recorders were implanted for continuous cardiac monitoring in 66 participants on maintenance dialysis with a follow up of 6 months. Exposure Time of day based on 6-hour intervals. Outcomes Event rates of clinically significant arrhythmia. Analytical Approach Negative binomial mixed effects regression models for repeated measures were used to evaluate data from the Monitoring in Dialysis study for differences in diurnal patterns of clinically significant arrhythmia among those with end-stage kidney disease with heart failure and end-stage kidney disease alone. We additionally analyzed rates according to presence of heart failure, time of dialysis shift, and dialysis versus nondialysis day. Results Rates of clinically significant arrhythmia peaked between 12:00 AM and 5:59 AM and were more than 1.5-fold as frequent during this interval than the rest of the day. In contrast, variations in atrial fibrillation peaked between 6:00 AM and 11:59 AM, but variations across the day were qualitatively small. Clinically significant arrhythmia occurred at numerically higher rate in individuals with end-stage kidney disease and heart failure (5.9 events/mo; 95% CI, 1.3-26.8) than those without heart failure (4.0 events/mo; 95% CI, 0.9-17.9). Although differences in overall rate were not significant, their periodicity was significantly different (P < 0.001), with a peak between 12:00 AM and 6:00 AM with kidney failure alone and between 6:00 AM and 11:59 AM in those with heart failure. Although the overall clinically significant arrhythmia rate was similar in morning compared with evening dialysis shifts (P = 0.43), their periodicity differed with a peak between 12:00 AM and 5:59 AM in those with AM dialysis and a later peak between 6:00 AM and 11:59 AM in those with PM shifts. Limitations Post hoc analysis, unable to account for unmeasured confounders. Conclusion Clinically significant arrhythmias showed strong diurnal patterns with a maximal peak between 12:00 AM and 5:59 AM and noon. Although overall arrhythmia rates were similar, the peak rate occurred overnight in individuals without heart failure and during the morning in individuals with heart failure. Further exploration of the influence of circadian rhythm on arrhythmia in the setting of hemodialysis is needed.
Collapse
Affiliation(s)
- Qandeel H. Soomro
- Nephrology Division, Department of Medicine, NYU Langone Medical Center, New York, New York
| | | | | | - Prabir Roy-Chaudhury
- University of North Carolina Kidney Center, Chapel Hill, North Carolina
- WG (Bill) Hefner VA Medical Center, Salisbury, North Carolina
| | - James A. Tumlin
- Georgia Nephrology Clinical Research Institute, Atlanta, Georgia
| | - Vijay Kher
- Fortis Escorts Kidney & Urology Institute, Fortis Escorts Hospital, New Delhi, India
| | | | | | | | - David M. Charytan
- Nephrology Division, Department of Medicine, NYU Langone Medical Center, New York, New York
| |
Collapse
|
27
|
Pun PH. Listening to the Rhythm of Arrhythmias Among Patients Maintained on Hemodialysis. Kidney Med 2024; 6:100803. [PMID: 38572396 PMCID: PMC10987898 DOI: 10.1016/j.xkme.2024.100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Affiliation(s)
- Patrick H. Pun
- Address for Correspondence: Patrick H. Pun, MD, MHS, Duke Clinical Research Institute, PO Box 17969, Durham, North Carolina 27715.
| |
Collapse
|
28
|
Delisle BP, Prabhat A, Burgess DE, Ono M, Esser KA, Schroder EA. Circadian Regulation of Cardiac Arrhythmias and Electrophysiology. Circ Res 2024; 134:659-674. [PMID: 38484028 PMCID: PMC11177776 DOI: 10.1161/circresaha.123.323513] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Circadian rhythms in physiology and behavior are ≈24-hour biological cycles regulated by internal biological clocks (ie, circadian clocks) that optimize organismal homeostasis in response to predictable environmental changes. These clocks are present in virtually all cells in the body, including cardiomyocytes. Many decades ago, clinicians and researchers became interested in studying daily patterns of triggers for sudden cardiac death, the incidence of sudden cardiac death, and cardiac arrhythmias. This review highlights historical and contemporary studies examining the role of day/night rhythms in the timing of cardiovascular events, delves into changes in the timing of these events over the last few decades, and discusses cardiovascular disease-specific differences in the timing of cardiovascular events. The current understanding of the environmental, behavioral, and circadian mechanisms that regulate cardiac electrophysiology is examined with a focus on the circadian regulation of cardiac ion channels and ion channel regulatory genes. Understanding the contribution of environmental, behavioral, and circadian rhythms on arrhythmia susceptibility and the incidence of sudden cardiac death will be essential in developing future chronotherapies.
Collapse
Affiliation(s)
- Brian P. Delisle
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Abhilash Prabhat
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Don E. Burgess
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Makoto Ono
- Division of Cardiology and Rehabilitation, Tamaki Hospital, Japan
| | | | | |
Collapse
|
29
|
Han Y, Shao M, Yang H, Sun H, Sang W, Wang L, Wang L, Yang S, Jian Y, Tang B, Li Y. Safety and efficacy of cardioneuroablation for vagal bradycardia in a single arm prospective study. Sci Rep 2024; 14:5926. [PMID: 38467744 PMCID: PMC10928196 DOI: 10.1038/s41598-024-56651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 03/08/2024] [Indexed: 03/13/2024] Open
Abstract
Cardioneuroablation (CNA) is currently considered as a promising treatment option for patients with symptomatic bradycardia caused by vagotonia. This study aims to further investigate its safety and efficacy in patients suffering from vagal bradycardia. A total of 60 patients with vagal bradycardia who underwent CNA in the First Affiliated Hospital of Xinjiang Medical University from November 2019 to June 2022. Preoperative atropine tests revealed abnormal vagal tone elevation in all patients. First, the electroanatomic structures of the left atrium was mapped out by using the Carto 3 system, according to the protocol of purely anatomy-guided and local fractionated intracardiac electrogram-guided CNA methods. The upper limit of ablation power of superior left ganglion (SLGP) and right anterior ganglion (RAGP) was not more than 45W with an ablation index of 450.Postoperative transesophageal cardiac electrophysiological examination was performed 1 to 3 months after surgery. The atropine test was conducted when appropriate. Twelve-lead electrocardiogram, Holter electrocardiogram, and skin sympathetic nerve activity were reviewed at 1, 3, 6 and 12 months after operation. Adverse events such as pacemaker implantation and other complications were also recorded to analyze the safety and efficacy of CNA in the treatment of vagus bradycardia. Sixty patients were enrolled in the study (38 males, mean age 36.67 ± 9.44, ranging from 18 to 50 years old). None of the patients had a vascular injury, thromboembolism, pericardial effusion, or other surgical complications. The mean heart rate, minimum heart rate, low frequency, low/high frequency, acceleration capacity of rate, and skin sympathetic nerve activity increased significantly after CNA. Conversely, SDNN, PNN50, rMSSD, high frequency, and deceleration capacity of rate values decreased after CNA (all P < 0.05). At 3 months after ablation, the average heart rate, maximum heart rate, and acceleration capacity of heart rate remained higher than those before ablation, and the deceleration capacity of heart rate remained lower than those before ablation and the above results continued to follow up for 12 months after ablation (all P < 0.05). There was no significant difference in other indicators compared with those before ablation (all P > 0.05). The remaining 81.67% (49/60) of the patients had good clinical results, with no episodes of arrhythmia during follow-up. CNA may be a safe and effective treatment for vagal-induced bradycardia, subject to confirmation by larger multicenter trials.
Collapse
Affiliation(s)
- Yafan Han
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Medical Science and Technology Innovation Center, College of Laboratory Animals (Provincial Laboratory Animal Center), Shandong First Medical University, Affiliated Provincial Hospital, Jinan, 250117, China
| | - Mingliang Shao
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Cardiovascular Department, The People's Hospital of Xuancheng City, Anhui, 242000, China
| | - Hang Yang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Huaxin Sun
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu Cardiovascular Disease Research Institute, Chengdu, 610014, Sichuan, China
| | - Wanyue Sang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Lu Wang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Liang Wang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Suxia Yang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Yi Jian
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Baopeng Tang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| | - Yaodong Li
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| |
Collapse
|
30
|
Lei M, Salvage SC, Jackson AP, Huang CLH. Cardiac arrhythmogenesis: roles of ion channels and their functional modification. Front Physiol 2024; 15:1342761. [PMID: 38505707 PMCID: PMC10949183 DOI: 10.3389/fphys.2024.1342761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 03/21/2024] Open
Abstract
Cardiac arrhythmias cause significant morbidity and mortality and pose a major public health problem. They arise from disruptions in the normally orderly propagation of cardiac electrophysiological activation and recovery through successive cardiomyocytes in the heart. They reflect abnormalities in automaticity, initiation, conduction, or recovery in cardiomyocyte excitation. The latter properties are dependent on surface membrane electrophysiological mechanisms underlying the cardiac action potential. Their disruption results from spatial or temporal instabilities and heterogeneities in the generation and propagation of cellular excitation. These arise from abnormal function in their underlying surface membrane, ion channels, and transporters, as well as the interactions between them. The latter, in turn, form common regulatory targets for the hierarchical network of diverse signaling mechanisms reviewed here. In addition to direct molecular-level pharmacological or physiological actions on these surface membrane biomolecules, accessory, adhesion, signal transduction, and cytoskeletal anchoring proteins modify both their properties and localization. At the cellular level of excitation-contraction coupling processes, Ca2+ homeostatic and phosphorylation processes affect channel activity and membrane excitability directly or through intermediate signaling. Systems-level autonomic cellular signaling exerts both acute channel and longer-term actions on channel expression. Further upstream intermediaries from metabolic changes modulate the channels both themselves and through modifying Ca2+ homeostasis. Finally, longer-term organ-level inflammatory and structural changes, such as fibrotic and hypertrophic remodeling, similarly can influence all these physiological processes with potential pro-arrhythmic consequences. These normal physiological processes may target either individual or groups of ionic channel species and alter with particular pathological conditions. They are also potentially alterable by direct pharmacological action, or effects on longer-term targets modifying protein or cofactor structure, expression, or localization. Their participating specific biomolecules, often clarified in experimental genetically modified models, thus constitute potential therapeutic targets. The insights clarified by the physiological and pharmacological framework outlined here provide a basis for a recent modernized drug classification. Together, they offer a translational framework for current drug understanding. This would facilitate future mechanistically directed therapeutic advances, for which a number of examples are considered here. The latter are potentially useful for treating cardiac, in particular arrhythmic, disease.
Collapse
Affiliation(s)
- Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Samantha C. Salvage
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Antony P. Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
31
|
Gubin D. Chronotherapeutic Approaches. CHRONOBIOLOGY AND CHRONOMEDICINE 2024:536-577. [DOI: 10.1039/bk9781839167553-00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
The chapter provides a comprehensive review of current approaches to personalized chronodiagnosis and chronotherapy. We discuss circadian clock drug targets that aim to affect cellular clock machinery, circadian mechanisms of pharmacokinetics/pharmacodynamics, and chronotherapeutic approaches aimed at increasing treatment efficacy and minimizing its side effects. We explore how chronotherapy can combat acquired and compensatory drug resistance. Non-pharmacological interventions for clock preservation and enhancement are also overviewed, including light treatment, melatonin, sleep scheduling, time-restricted feeding, physical activity, and exercise.
Collapse
Affiliation(s)
- Denis Gubin
- aTyumen State Medical University, Tyumen, Russia
- bTyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| |
Collapse
|
32
|
Lei T, Hua H, Du H, Xia J, Xu D, Liu W, Wang Y, Yang T. Molecular mechanisms of artificial light at night affecting circadian rhythm disturbance. Arch Toxicol 2024; 98:395-408. [PMID: 38103071 DOI: 10.1007/s00204-023-03647-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Artificial light at night (ALAN) pollution has been regarded as a global environmental concern. More than 80% of the global population is exposed to light pollution. Exacerbating this issue, artificially lit outdoor areas are growing by 2.2% per year, while continuously lit areas have brightened by 2.2% each year due to rapid population growth and expanding urbanization. Furthermore, the increasing prevalence of night shift work and smart device usage contributes to the inescapable influence of ALAN. Studies have shown that ALAN can disrupt endogenous biological clocks, resulting in a disturbance of the circadian rhythm, which ultimately affects various physiological functions. Up until now, scholars have studied various disease mechanisms caused by ALAN that may be related to the response of the circadian system to light. This review outlines the molecular mechanisms by which ALAN causes circadian rhythm abnormalities in sleep disorders, endocrine diseases, cardiovascular disease, cancer, immune impairment, depression, anxiety and cognitive impairments.
Collapse
Affiliation(s)
- Ting Lei
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Hui Hua
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Huiying Du
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Jie Xia
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Dandan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Wei Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yutong Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| | - Tianyao Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China.
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
33
|
Li P, Kim JK. Circadian regulation of sinoatrial nodal cell pacemaking function: Dissecting the roles of autonomic control, body temperature, and local circadian rhythmicity. PLoS Comput Biol 2024; 20:e1011907. [PMID: 38408116 PMCID: PMC10927146 DOI: 10.1371/journal.pcbi.1011907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/11/2024] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
Strong circadian (~24h) rhythms in heart rate (HR) are critical for flexible regulation of cardiac pacemaking function throughout the day. While this circadian flexibility in HR is sustained in diverse conditions, it declines with age, accompanied by reduced maximal HR performance. The intricate regulation of circadian HR involves the orchestration of the autonomic nervous system (ANS), circadian rhythms of body temperature (CRBT), and local circadian rhythmicity (LCR), which has not been fully understood. Here, we developed a mathematical model describing ANS, CRBT, and LCR in sinoatrial nodal cells (SANC) that accurately captures distinct circadian patterns in adult and aged mice. Our model underscores how the alliance among ANS, CRBT, and LCR achieves circadian flexibility to cover a wide range of firing rates in SANC, performance to achieve maximal firing rates, while preserving robustness to generate rhythmic firing patterns irrespective of external conditions. Specifically, while ANS dominates in promoting SANC flexibility and performance, CRBT and LCR act as primary and secondary boosters, respectively, to further enhance SANC flexibility and performance. Disruption of this alliance with age results in impaired SANC flexibility and performance, but not robustness. This unexpected outcome is primarily attributed to the age-related reduction in parasympathetic activities, which maintains SANC robustness while compromising flexibility. Our work sheds light on the critical alliance of ANS, CRBT, and LCR in regulating time-of-day cardiac pacemaking function and dysfunction, offering insights into novel therapeutic targets for the prevention and treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- Pan Li
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jae Kyoung Kim
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Mathematical Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
34
|
Shapiro B, Fang Y, Sen S, Forger D. Unraveling the interplay of circadian rhythm and sleep deprivation on mood: A Real-World Study on first-year physicians. PLOS DIGITAL HEALTH 2024; 3:e0000439. [PMID: 38295082 PMCID: PMC10829990 DOI: 10.1371/journal.pdig.0000439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024]
Abstract
The interplay between circadian rhythms, time awake, and mood remains poorly understood in the real-world. Individuals in high-stress occupations with irregular schedules or nighttime shifts are particularly vulnerable to depression and other mood disorders. Advances in wearable technology have provided the opportunity to study these interactions outside of a controlled laboratory environment. Here, we examine the effects of circadian rhythms and time awake on mood in first-year physicians using wearables. Continuous heart rate, step count, sleep data, and daily mood scores were collected from 2,602 medical interns across 168,311 days of Fitbit data. Circadian time and time awake were extracted from minute-by-minute wearable heart rate and motion measurements. Linear mixed modeling determined the relationship between mood, circadian rhythm, and time awake. In this cohort, mood was modulated by circadian timekeeping (p<0.001). Furthermore, we show that increasing time awake both deteriorates mood (p<0.001) and amplifies mood's circadian rhythm nonlinearly. These findings demonstrate the contributions of both circadian rhythms and sleep deprivation to underlying mood and show how these factors can be studied in real-world settings using Fitbits. They underscore the promising opportunity to harness wearables in deploying chronotherapies for psychiatric illness.
Collapse
Affiliation(s)
- Benjamin Shapiro
- Department of Psychiatry, Dartmouth Health, Hanover, New Hampshire, United States of America
- Dartmouth College Geisel School of Medicine, Hanover, New Hampshire, United States of America
| | - Yu Fang
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Srijan Sen
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Daniel Forger
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
35
|
Young ME. The Cardiac Circadian Clock: Implications for Cardiovascular Disease and its Treatment. JACC Basic Transl Sci 2023; 8:1613-1628. [PMID: 38205356 PMCID: PMC10774593 DOI: 10.1016/j.jacbts.2023.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 01/12/2024]
Abstract
Virtually all aspects of physiology fluctuate with respect to the time of day. This is beautifully exemplified by cardiovascular physiology, for which blood pressure and electrophysiology exhibit robust diurnal oscillations. At molecular/biochemical levels (eg, transcription, translation, signaling, metabolism), cardiovascular-relevant tissues (such as the heart) are profoundly different during the day vs the night. Unfortunately, this in turn contributes toward 24-hour rhythms in both risk of adverse event onset (eg, arrhythmias, myocardial infarction) and pathogenesis severity (eg, extent of ischemic damage). Accumulating evidence indicates that cell-autonomous timekeeping mechanisms, termed circadian clocks, temporally govern biological processes known to play critical roles in cardiovascular function/dysfunction. In this paper, a comprehensive review of our current understanding of the cardiomyocyte circadian clock during both health and disease is detailed. Unprecedented basic, translational, and epidemiologic studies support a need to implement chronobiological considerations in strategies designed for both prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Martin E. Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
36
|
Parks A, Hogg-Johnson S. Autonomic nervous system dysfunction in pediatric sport-related concussion: a systematic review. THE JOURNAL OF THE CANADIAN CHIROPRACTIC ASSOCIATION 2023; 67:246-268. [PMID: 38283159 PMCID: PMC10814701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Objective To identify, appraise and synthesize the evidence of autonomic nervous system (ANS) dysfunction following sport-related concussion in pediatric populations. Methods A literature search was conducted using MEDLINE (Ovid), SportDiscus (EBSCO), CINAHL (EBSCO), EMBASE (Ovid) and PsycINFO (Ovid). Studies were selected and appraised using the Joanna Briggs Institute (JBI) critical appraisal tools. Data was extracted from the included studies and qualitatively synthesized. Results Eleven studies were included in the synthesis. There was variability in the methods used to measure ANS function between studies, and sample populations and time to assessment following concussion varied considerably. There was also variability in the direction of change of ANS function between some studies. Conclusion This systematic review identifies that concussion is associated with dysregulation of ANS function in pediatric athletes. We identified some weaknesses in the extant literature which may be due to existing logistical and financial barriers to implementing valid ANS measurements in clinical and sports settings.
Collapse
Affiliation(s)
- Andrew Parks
- Division of Graduate Studies, Sports Sciences, Canadian Memorial Chiropractic College
- Private Practice
| | - Sheilah Hogg-Johnson
- Department of Research and Innovation, Canadian Memorial Chiropractic College
- Dalla Lana School of Public Health, University of Toronto
- Institute for Disability and Rehabilitation Research, Ontario Tech University
| |
Collapse
|
37
|
Lin J, Kuang H, Jiang J, Zhou H, Peng L, Yan X, Kuang J. Circadian Rhythms in Cardiovascular Function: Implications for Cardiac Diseases and Therapeutic Opportunities. Med Sci Monit 2023; 29:e942215. [PMID: 37986555 PMCID: PMC10675984 DOI: 10.12659/msm.942215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/21/2023] [Indexed: 11/22/2023] Open
Abstract
Circadian rhythms are internal 24-h intrinsic oscillations that are present in essentially all mammalian cells and can influence numerous biological processes. Cardiac function is known to exhibit a circadian rhythm and is strongly affected by the day/night cycle. Many cardiovascular variables, including heart rate, heart rate variability (HRV), electrocardiogram (ECG) waveforms, endothelial cell function, and blood pressure, demonstrate robust circadian rhythms. Many experiential and clinical studies have highlighted that disruptions in circadian rhythms can ultimately lead to maladaptive cardiac function. Factors that disrupt the circadian rhythm, including shift work, global travel, and sleep disorders, may consequently enhance the risk of cardiovascular diseases. Some cardiac diseases appear to occur at particular times of the day or night; therefore, targeting the disease at particular times of day may improve the clinical outcome. The objective of this review is to unravel the relationship between circadian rhythms and cardiovascular health. By understanding this intricate interplay, we aim to reveal the potential risks of circadian disruption and discuss the emerging therapeutic strategies, specifically those targeting circadian rhythms. In this review, we explore the important role of circadian rhythms in cardiovascular physiology and highlight the role they play in cardiac dysfunction such as ventricular hypertrophy, arrhythmia, diabetes, and myocardial infarction. Finally, we review potential translational treatments aimed at circadian rhythms. These treatments offer an innovative approach to enhancing the existing approaches for managing and treating heart-related conditions, while also opening new avenues for therapeutic development.
Collapse
Affiliation(s)
- Jiayue Lin
- Postgraduate School, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
- Department of Cardiovascular, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, PR China
| | - Haoming Kuang
- Postgraduate School, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Jiahao Jiang
- Department of Chinese Medicine, The First People’s Hospital of Kunshan, Suzhou, Jiangsu, PR China
| | - Hui Zhou
- Department of Cardiovascular, Beibei Hospital of Chinese Medicine, Chongqing, PR China
| | - Li Peng
- Department of Cardiovascular, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, PR China
| | - Xu Yan
- Department of Cardiovascular, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, PR China
| | - Jianjun Kuang
- Department of Orthopedics and Traumatology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, PR China
| |
Collapse
|
38
|
Latimer MN, Williams LJ, Shanmugan G, Carpenter BJ, Lazar MA, Dierickx P, Young ME. Cardiomyocyte-specific disruption of the circadian BMAL1-REV-ERBα/β regulatory network impacts distinct miRNA species in the murine heart. Commun Biol 2023; 6:1149. [PMID: 37952007 PMCID: PMC10640639 DOI: 10.1038/s42003-023-05537-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023] Open
Abstract
Circadian disruption increases cardiovascular disease (CVD) risk, through poorly understood mechanisms. Given that small RNA species are critical modulators of cardiac physiology/pathology, we sought to determine the extent to which cardiomyocyte circadian clock (CCC) disruption impacts cardiac small RNA species. Accordingly, we collected hearts from cardiomyocyte-specific Bmal1 knockout (CBK; a model of CCC disruption) and littermate control (CON) mice at multiple times of the day, followed by small RNA-seq. The data reveal 47 differentially expressed miRNAs species in CBK hearts. Subsequent bioinformatic analyses predict that differentially expressed miRNA species in CBK hearts influence processes such as circadian rhythmicity, cellular signaling, and metabolism. Of the induced miRNAs in CBK hearts, 7 are predicted to be targeted by the transcriptional repressors REV-ERBα/β (integral circadian clock components that are directly regulated by BMAL1). Similar to CBK hearts, cardiomyocyte-specific Rev-erbα/β double knockout (CM-RevDKO) mouse hearts exhibit increased let-7c-1-3p, miR-23b-5p, miR-139-3p, miR-5123, and miR-7068-3p levels. Importantly, 19 putative targets of these 5 miRNAs are commonly repressed in CBK and CM-RevDKO heart (of which 16 are targeted by let-7c-1-3p). These observations suggest that disruption of the circadian BMAL1-REV-ERBα/β regulatory network in the heart induces distinct miRNAs, whose mRNA targets impact critical cellular functions.
Collapse
Affiliation(s)
- Mary N Latimer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lamario J Williams
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gobinath Shanmugan
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bryce J Carpenter
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Pieterjan Dierickx
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
39
|
Gotta V, Bachmann S, Pfister M, Donner B. Characterizing Associations of QTc Interval with Nocturnal Glycemic Control in Children with Type 1 Diabetes. J Clin Pharmacol 2023; 63:1147-1155. [PMID: 37409493 DOI: 10.1002/jcph.2301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
An association between QT prolongation (Bazett's corrected QT interval, QTcB) of 7 milliseconds and nocturnal hypoglycemia, compared with euglycemia, has been observed in children with type 1 diabetes (T1D). The objective of this pharmacometric analysis was to understand this association and other sources of QTc variability quantitatively. Data originate from a prospective observational study (25 cardiac healthy children with T1D, aged 8.1-17.6 years) with continuous subcutaneous glucose and electrocardiogram measurements for 5 consecutive nights. Mixed-effect modeling was used to compare QTcB with individual heart-rate correction (QTcI). Covariate models accounting for circadian variation, age, and sex were evaluated, followed by an investigation of glucose-QTc relationships (with univariable and combined adjusted analysis). Factors potentially modifying sensitivity to QTc lengthening were explored. Random inter-individual variability was reduced in the QTcI versus QTcB model (±12.6 vs 14.1 milliseconds), and was further reduced in the adjusted covariate model (±9.7 milliseconds), accounting for the significantly (P < .01) shortened QTc in adolescent boys (-14.6 milliseconds), circadian variation (amplitude, 19.2 milliseconds; shift, 2.9 hours), and linear glucose-QTc relationship (delay rate, 0.56-h ; slope, 0.76 milliseconds [95%CI 0.67- 0.85 milliseconds] per 1 mmol/L decrease in glucose). Differing sensitivity was suggested to depend upon hemoglobin A1c (HbA1c), T1D duration, and time spent in nocturnal hypoglycemia. In conclusion, a clinically mild association of QTc prolongation with nocturnal hypoglycemia was confirmed and quantified in this pharmacometric analysis, and the longest QTc interval was around 03:00 a.m. The characterized delayed association with glucose highlights the relevance of both the extent and the duration of hypoglycemia. Further clinical studies are warranted to investigate whether these factors contribute to increased risk of hypoglycemia-associated cardiac arrhythmia in children with T1D.
Collapse
Affiliation(s)
- Verena Gotta
- Pediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland
- Pediatric Clinical Pharmacy, University of Basel Children's Hospital, Basel, Switzerland
| | - Sara Bachmann
- Pediatric Endocrinology and Diabetology, University of Basel Children's Hospital, Basel, Switzerland
| | - Marc Pfister
- Pediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland
| | - Birgit Donner
- Pediatric Cardiology, University of Basel Children's Hospital, Basel, Switzerland
| |
Collapse
|
40
|
Kang J, Ratamess NA, Faigenbaum AD, Bush JA, Finnerty C, DiFiore M, Garcia A, Beller N. Time-of-Day Effects of Exercise on Cardiorespiratory Responses and Endurance Performance-A Systematic Review and Meta-Analysis. J Strength Cond Res 2023; 37:2080-2090. [PMID: 37026733 DOI: 10.1519/jsc.0000000000004497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
ABSTRACT Kang, J, Ratamess, NA, Faigenbaum, AD, Bush, JA, Finnerty, C, DiFiore, M, Garcia, A, and Beller, N. Time-of-day effects of exercise on cardiorespiratory responses and endurance performance-A systematic review and meta-analysis. J Strength Cond Res 37(10): 2080-2090, 2023-The time-of-day effect of exercise on human function remains largely equivocal. Hence, this study aimed to further analyze the existing evidence concerning diurnal variations in cardiorespiratory responses and endurance performance using a meta-analytic approach. Literature search was conducted through databases, including PubMed, CINAHL, and Google Scholar. Article selection was made based on inclusion criteria concerning subjects' characteristics, exercise protocols, times of testing, and targeted dependent variables. Results on oxygen uptake (V̇ o2 ), heart rate (HR), respiratory exchange ratio, and endurance performance in the morning (AM) and late afternoon or evening (PM) were extracted from the chosen studies. Meta-analysis was conducted with the random-effects model. Thirty-one original research studies that met the inclusion criteria were selected. Meta-analysis revealed higher resting V̇ o2 (Hedges' g = -0.574; p = 0.040) and resting HR (Hedges' g = -1.058; p = 0.002) in PM than in AM. During exercise, although V̇ o2 remained indifferent between AM and PM, HR was higher in PM at submaximal (Hedges' g = -0.199; p = 0.046) and maximal (Hedges' g = -0.298; p = 0.001) levels. Endurance performance as measured by time-to-exhaustion or the total work accomplished was higher in PM than in AM (Hedges' g = -0.654; p = 0.001). Diurnal variations in V̇ o2 appear less detectable during aerobic exercise. The finding that exercising HR and endurance performance were greater in PM than in AM emphasizes the need to consider the effect of circadian rhythm when evaluating athletic performance or using HR as a criterion to assess fitness or monitor training.
Collapse
Affiliation(s)
- Jie Kang
- Human Performance Laboratory, The College of New Jersey, Ewing, New Jersey
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Gillett L, Johnson-Sasso C, Miller B, Shakowski C, Walker LA, Tompkins C. Arrhythmic Effects of Cannabis in Ischemic Heart Disease. Cannabis Cannabinoid Res 2023; 8:867-876. [PMID: 35353598 PMCID: PMC10589466 DOI: 10.1089/can.2021.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rationale: Cannabis use is increasing worldwide, especially among older individuals at risk for chronic ischemic heart disease (IHD). However, little is known about the arrhythmic effects of cannabis use in IHD. Accordingly, we prospectively assessed the relationship between cannabis use, heart rate (HR), and arrhythmias in healthy age-matched controls and subjects with IHD. Methods: Healthy controls (n=37, 57% men) and subjects with IHD (myocardial infarction ≥3 months ago; n=24, 58% men) who used cannabis wore a Zio® (iRhythm Technologies) monitor for 14 days. Noncannabis using ischemic subjects (n=35, 51% males) wore Zio monitors for standard clinical indications. Baseline HR was compared with average HR measured for 4 h following consumption and changes in HR and frequency of arrhythmias were correlated with cannabis use. Results: In controls, HR increased 20 min (4.99±6.7 bpm, p=0.08) after use, then declined 4 h following use (-7.4±7.7, p<0.001). Conversely, subjects with IHD showed minimal HR increase (1.6±3.9 bpm) and blunted HR decline (-3.4±5.6 bpm, p<0.001). Supraventricular tachycardia (SVT) (29.7% vs. 58.3%; p=0.04) and nonsustained ventricular tachycardia (NSVT) (5.6% vs. 47.8%, p=0.01) were the most frequently occurring arrhythmias in controls and IHD subjects, respectively. Incidence of SVT decreased as cannabis use increased in both groups. Conversely, NSVT tended to increase with increased use in controls, and was significantly more prevalent in IHD. However, overall arrhythmia burden did not differ between cannabis users and nonusers with IHD. Conclusion: Our findings demonstrate that chronic cannabis use is associated with only mild HR changes, which are blunted in IHD. In addition, our data suggest that among cannabis users, arrhythmias are more frequent in IHD subjects that in healthy subjects.
Collapse
Affiliation(s)
- Leah Gillett
- Continuing Medical Education, University of Colorado Boulder, Boulder, Colorado, USA
| | - Cecelia Johnson-Sasso
- Department of Medicine, Northwestern University School of Medicine, Chicago, Illinois, USA
| | - Brian Miller
- Department of Medicine/Cardiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Courtney Shakowski
- Department of Medicine/Cardiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lori A. Walker
- Department of Medicine/Cardiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christine Tompkins
- Department of Medicine/Cardiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine/Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
42
|
Petrowski K, Mekschrat L, Bührer S, Siepmann M, Albus C, Schmalbach B. Effects of Post-awakening Light Exposure on Heart Rate Variability in Healthy Male Individuals. Appl Psychophysiol Biofeedback 2023; 48:311-321. [PMID: 36971985 PMCID: PMC10412670 DOI: 10.1007/s10484-023-09581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/29/2023]
Abstract
Light-induced effects on the autonomic nervous system (ANS) are assumed to be mediated by retinal projections to the hypothalamic suprachiasmatic nucleus (SCN) via different routes. Light information for the circadian system is detected by a subset of intrinsically photosensitive retinal ganglion cells (ipRGCs), however, inconsistency exists in research concerning the effects of light exposure on heart rate variability (HRV). Two within-subject experiments were conducted in a standardized sleep laboratory to investigate effects of light intensity (study I, n = 29: 2 days dim vs. bright light) and spectral composition (study II, n = 24: 3 days using red vs. blue vs. green light) on HRV parameters (RMSSD, LF, HF-HRV, LF/HF ratio). Light exposure was conducted for one-hour in the post-awakening phase at 5:00 AM. Results revealed no significant light intensity effect comparing dim light versus bright white light on HRV parameters. Light color of different wavelengths significantly influenced all HRV parameters except the low frequency, with moderate to large effect sizes. RMSSD values were elevated for all three colors compared to norm values, indicating stronger parasympathetic activation. LED light of different spectral compositions demonstrated bidirectional effects on spectral components of the HRV. Red light decreased the LF/HF ratio within 30 min, whereas with blue light, LF/HF ratio consistently increased across 40 min of light exposure.
Collapse
Affiliation(s)
- Katja Petrowski
- Medical Psychology & Medical Sociology, University Medical Center of the Johannes Gutenberg - University Mainz, University Medicine Mainz, Duesbergweg 6, 55128, Mainz, Germany.
| | - Liza Mekschrat
- Medical Psychology & Medical Sociology, University Medical Center of the Johannes Gutenberg - University Mainz, University Medicine Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Stefan Bührer
- Medical Psychology & Medical Sociology, University Medical Center of the Johannes Gutenberg - University Mainz, University Medicine Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Martin Siepmann
- Department of Psychotherapy and Psychosomatic Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christian Albus
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of University Cologne, Cologne, Germany
| | - Bjarne Schmalbach
- Medical Psychology & Medical Sociology, University Medical Center of the Johannes Gutenberg - University Mainz, University Medicine Mainz, Duesbergweg 6, 55128, Mainz, Germany
| |
Collapse
|
43
|
Bumgarner JR, Walker WH, Quintana DD, White RC, Richmond AA, Meléndez-Fernández OH, Liu JA, Becker-Krail DD, Walton JC, Simpkins JW, DeVries AC, Nelson RJ. Acute exposure to artificial light at night alters hippocampal vascular structure in mice. iScience 2023; 26:106996. [PMID: 37534143 PMCID: PMC10391664 DOI: 10.1016/j.isci.2023.106996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/15/2023] [Accepted: 05/25/2023] [Indexed: 08/04/2023] Open
Abstract
The structure and function of the cardiovascular system are modulated across the day by circadian rhythms, making this system susceptible to circadian rhythm disruption. Recent evidence demonstrated that short-term exposure to a pervasive circadian rhythm disruptor, artificial light at night (ALAN), increased inflammation and altered angiogenic transcripts in the hippocampi of mice. Here, we examined the effects of four nights of ALAN exposure on mouse hippocampal vascular networks. To do this, we analyzed 2D and 3D images of hippocampal vasculature and hippocampal transcriptomic profiles of mice exposed to ALAN. ALAN reduced vascular density in the CA1 and CA2/3 of female mice and the dentate gyrus of male mice. Network structure and connectivity were also impaired in the CA2/3 of female mice. These results demonstrate the rapid and potent effects of ALAN on cerebrovascular networks, highlighting the importance of ALAN mitigation in the context of health and cerebrovascular disease.
Collapse
Affiliation(s)
- Jacob R Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University Morgantown, WV 26505, USA
| | - William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University Morgantown, WV 26505, USA
| | - Dominic D Quintana
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University Morgantown, WV 26505, USA
| | - Rhett C White
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University Morgantown, WV 26505, USA
| | - Alexandra A Richmond
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University Morgantown, WV 26505, USA
| | | | - Jennifer A Liu
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University Morgantown, WV 26505, USA
| | - Darius D Becker-Krail
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University Morgantown, WV 26505, USA
| | - James C Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University Morgantown, WV 26505, USA
| | - James W Simpkins
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University Morgantown, WV 26505, USA
| | - A Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University Morgantown, WV 26505, USA
- Department of Medicine, Division of Oncology/Hematology West Virginia University Morgantown, WV 26505, USA
- WVU Cancer Institute West Virginia University Morgantown, WV 26505 USA
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University Morgantown, WV 26505, USA
| |
Collapse
|
44
|
Wrist photoplethysmography-based assessment of ectopic burden in hemodialysis patients. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
45
|
Huang CLH, Lei M. Cardiomyocyte electrophysiology and its modulation: current views and future prospects. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220160. [PMID: 37122224 PMCID: PMC10150219 DOI: 10.1098/rstb.2022.0160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/10/2023] [Indexed: 05/02/2023] Open
Abstract
Normal and abnormal cardiac rhythms are of key physiological and clinical interest. This introductory article begins from Sylvio Weidmann's key historic 1950s microelectrode measurements of cardiac electrophysiological activity and Singh & Vaughan Williams's classification of cardiotropic targets. It then proceeds to introduce the insights into cardiomyocyte function and its regulation that subsequently emerged and their therapeutic implications. We recapitulate the resulting view that surface membrane electrophysiological events underlying cardiac excitation and its initiation, conduction and recovery constitute the final common path for the cellular mechanisms that impinge upon this normal or abnormal cardiac electrophysiological activity. We then consider progress in the more recently characterized successive regulatory hierarchies involving Ca2+ homeostasis, excitation-contraction coupling and autonomic G-protein signalling and their often reciprocal interactions with the surface membrane events, and their circadian rhythms. Then follow accounts of longer-term upstream modulation processes involving altered channel expression, cardiomyocyte energetics and hypertrophic and fibrotic cardiac remodelling. Consideration of these developments introduces each of the articles in this Phil. Trans. B theme issue. The findings contained in these articles translate naturally into recent classifications of cardiac electrophysiological targets and drug actions, thereby encouraging future iterations of experimental cardiac electrophysiological discovery, and testing directed towards clinical management. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Christopher L.-H. Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
46
|
Pereira CH, Bare DJ, Rosas PC, Dias FAL, Banach K. The role of P21-activated kinase (Pak1) in sinus node function. J Mol Cell Cardiol 2023; 179:90-101. [PMID: 37086972 PMCID: PMC10294268 DOI: 10.1016/j.yjmcc.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023]
Abstract
Sinoatrial node (SAN) dysfunction (SND) and atrial arrhythmia frequently occur simultaneously with a hazard ratio of 4.2 for new onset atrial fibrillation (AF) in SND patients. In the atrial muscle attenuated activity of p21-activated kinase 1 (Pak1) increases the risk for AF by enhancing NADPH oxidase 2 dependent production of reactive oxygen species (ROS). However, the role of Pak1 dependent ROS regulation in SAN function has not yet been determined. We hypothesize that Pak1 activity maintains SAN activity by regulating the expression of the hyperpolarization activated cyclic nucleotide gated cation channel (HCN). To determine Pak1 dependent changes in heart rate (HR) regulation we quantified the intrinsic sinus rhythm in wild type (WT) and Pak1 deficient (Pak1-/-) mice of both sexes in vivo and in isolated Langendorff perfused hearts. Pak1-/- hearts displayed an attenuated HR in vivo after autonomic blockage and in isolated hearts. The contribution of the Ca2+ clock to pacemaker activity remained unchanged, but Ivabradine (3 μM), a blocker of HCN channels that are a membrane clock component, eliminated the differences in SAN activity between WT and Pak1-/- hearts. Reduced HCN4 expression was confirmed in Pak1-/- right atria. The reduced HCN activity in Pak1-/- could be rescued by class II HDAC inhibition (LMK235), ROS scavenging (TEMPOL) or attenuation of Extracellular Signal-Regulated Kinase (ERK) 1/2 activity (SCH772984). No sex specific differences in Pak1 dependent SAN regulation were determined. Our results establish Pak1 as a class II HDAC regulator and a potential therapeutic target to attenuate SAN bradycardia and AF susceptibility.
Collapse
Affiliation(s)
- Carlos H Pereira
- Dept. of Internal Medicine/Cardiology, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL 60612, USA; Biological Science Center, Department of Physiology, Av. Cel Francisco H. dos Santos 100, 19031 Centro Politécnico-Curitiba, Brazil.
| | - Dan J Bare
- Dept. of Physiology & Biophysics, The Ohio State University, 5018 Graves Hall, 333 W.10th Ave., Columbus, OH 4321, USA.
| | - Paola C Rosas
- Dept. of Pharmacy Practice, College of Pharmacy, 833 S Wood St., Chicago, IL 60612, USA.
| | - Fernando A L Dias
- Biological Science Center, Department of Physiology, Av. Cel Francisco H. dos Santos 100, 19031 Centro Politécnico-Curitiba, Brazil.
| | - Kathrin Banach
- Dept. of Internal Medicine/Cardiology, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL 60612, USA.
| |
Collapse
|
47
|
Ma Y, Chang MC, Litrownik D, Wayne PM, Yeh GY. Day-night patterns in heart rate variability and complexity: differences with age and cardiopulmonary disease. J Clin Sleep Med 2023; 19:873-882. [PMID: 36692177 PMCID: PMC10152358 DOI: 10.5664/jcsm.10434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 01/25/2023]
Abstract
STUDY OBJECTIVES Heart rate variability (HRV) measures provide valuable insights into physiology; however, gaps remain in understanding circadian patterns in heart rate dynamics. We aimed to explore day-night differences in heart rate dynamics in patients with chronic cardiopulmonary disease compared with healthy controls. METHODS Using 24-hour heart rate data from patients with chronic obstructive pulmonary disease (COPD) and/or heart failure (n = 16) and healthy adult controls (older group: ≥50 years, n = 42; younger group: 20-49 years, n = 136), we compared day-night differences in conventional time and frequency domain HRV indices and a multiscale-entropy-based complexity index (CI1-20) of HRV among the 3 groups. RESULTS Twenty-four-hour HRV showed significant day-night differences (marked with "△") among younger healthy (mean age: 34.5 years), older healthy (mean age: 61.6 years), and cardiopulmonary patients (mean age: 68.4 years), including change in percentage of adjacent intervals that differ > 50 ms (△pNN50), high frequency (△HF), normalized low frequency (△nLF), ratio (△LF/HF), and △CI1-20. Among these, △LF/HF (2.13 ± 2.35 vs 1.1 ± 2.47 vs -0.35 ± 1.25; P < .001) and △CI1-20 (0.15 ± 0.24 vs 0.02 ± 0.28 vs -0.21 ± 0.27; P < .001) were significant in each pairwise comparison following analysis of variance tests. Average CI1-20 was highest in younger healthy individuals and lowest in cardiopulmonary patients (1.37 ± 0.12 vs 1.01 ± 0.27; P < .001). Younger healthy patients showed a heart rate complexity dipping pattern (night < day), older healthy patients showed nondipping, and cardiopulmonary patients showed reverse dipping (night > day). CONCLUSIONS As measures of 24-hour variability, traditional and complexity-based metrics of HRV exhibit large day-night differences in healthy individuals; these differences are blunted, or even reversed, in individuals with cardiopulmonary pathology. Measures of diurnal dynamics may be useful indices of reduced adaptive capacity in patients with cardiopulmonary conditions. CITATION Ma Y, Chang M-C, Litrownik D, Wayne PM, Yeh GY. Day-night patterns in heart rate variability and complexity: differences with age and cardiopulmonary disease. J Clin Sleep Med. 2023;19(5):873-882.
Collapse
Affiliation(s)
- Yan Ma
- Osher Center for Integrative Medicine, Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mei-Chu Chang
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Daniel Litrownik
- Osher Center for Integrative Medicine, Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Division of General Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Peter M. Wayne
- Osher Center for Integrative Medicine, Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gloria Y. Yeh
- Osher Center for Integrative Medicine, Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Division of General Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
48
|
Djärv T. A night at the hospital- is it circadian rhythm or process of care that increase cardiac arrests? Resuscitation 2023; 186:109781. [PMID: 36990139 DOI: 10.1016/j.resuscitation.2023.109781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
|
49
|
McGuigan PJ, Edwards J, Blackwood B, Dark P, Doidge JC, Harrison DA, Kitchen G, Lawson I, Nichol AD, Rowan KM, Shankar-Hari M, McAuley DF, McGuigan PJ. The association between time of in hospital cardiac arrest and mortality; a retrospective analysis of two UK databases. Resuscitation 2023; 186:109750. [PMID: 36842674 DOI: 10.1016/j.resuscitation.2023.109750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023]
Abstract
AIMS The incidence of in hospital cardiac arrest (IHCA) varies throughout the day. This study aimed to report the variation in incidence of IHCA, presenting rhythm and outcome based on the hour in which IHCA occurred. METHODS We conducted a retrospective analysis of the National Cardiac Arrest Audit (NCAA) including patients who suffered an IHCA from 1st April 2011 to 31st December 2019. We then linked the NCAA and intensive care Case Mix Programme databases to explore the effect of time of IHCA on hospital survival in the subgroup of patients admitted to intensive care following IHCA. RESULTS We identified 115,690 eligible patients in the NCAA database. Pulseless electrical activity was the commonest presenting rhythm (54.8%). 66,885 patients died in the immediate post resuscitation period. Overall, hospital survival in the NCAA cohort was 21.3%. We identified 13,858 patients with linked ICU admissions in the Case Mix Programme database; 37.0% survived to hospital discharge. The incidence of IHCA peaked at 06.00. Rates of return of spontaneous circulation, survival to hospital discharge and good neurological outcome were lowest between 05.00 and 07.00. Among those admitted to ICU, no clear diurnal variation in hospital survival was seen in the unadjusted or adjusted analysis. This pattern was consistent across all presenting rhythms. CONCLUSIONS We observed higher rates of IHCA, and poorer outcomes at night. However, in those admitted to ICU, this variation was absent. This suggests patient factors and processes of care issues contribute to the variation in IHCA seen throughout the day.
Collapse
Affiliation(s)
- Peter J McGuigan
- Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, UK; Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, UK.
| | - Julia Edwards
- Intensive Care National Audit & Research Centre, Napier House, 24 High Holborn, London, UK
| | - Bronagh Blackwood
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, UK
| | - Paul Dark
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - James C Doidge
- Intensive Care National Audit & Research Centre, Napier House, 24 High Holborn, London, UK
| | - David A Harrison
- Intensive Care National Audit & Research Centre, Napier House, 24 High Holborn, London, UK
| | - Gareth Kitchen
- Faculty of Biology, Medicine, and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK; Manchester Foundation Trust, Manchester, UK
| | - Izabella Lawson
- Intensive Care National Audit & Research Centre, Napier House, 24 High Holborn, London, UK
| | - Alistair D Nichol
- University College Dublin Clinical Research Centre, St Vincent's University Hospital, Dublin, Ireland; The Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia; The Alfred Hospital, Melbourne, Australia
| | - Kathryn M Rowan
- Intensive Care National Audit & Research Centre, Napier House, 24 High Holborn, London, UK
| | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, UK; Royal Infirmary of Edinburgh, NHS Lothian, UK
| | - Danny F McAuley
- Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, UK; Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, UK
| | - Peter J McGuigan
- Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, UK; Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, UK.
| |
Collapse
|
50
|
Wang J, She Q, Du J. Dapagliflozin attenuates myocardial remodeling in hypertension by activating the circadian rhythm signaling pathway. Arch Pharm Res 2023; 46:117-130. [PMID: 36729273 DOI: 10.1007/s12272-023-01430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/27/2023] [Indexed: 02/03/2023]
Abstract
Sodium-glucose cotransporter 2 inhibitor (SGLT2i) is a new kind of antidiabetic drug which has shown beneficial effects in reducing heart failure-related hospitalization and cardiovascular-related mortality. The mechanisms are complicated. Our study aimed to investigate the effects of dapagliflozin on the myocardium of spontaneously hypertensive rats (SHRs) without heart failure. Wistar-Kyoto rats were used as normal controls. SHRs were randomly divided into the SHR group and the -treated group. After 8 weeks of dapagliflozin treatment, the morphology of heart tissues was examined. The mRNA expression profiles were identified via RNA sequencing (RNA-Seq). Various analysis methods were used to find the differentially expressed genes (DEGs) to predict gene function and coexpression. After dapagliflozin treatment, systolic blood pressure was significantly reduced compared with that in the SHR group. Myocardial remodeling was ameliorated compared with that in the SHR group. After dapagliflozin intervention, 75 DEGs (|log2-fold change | > 0 and Q value < 0.05) were identified in the heart tissues compared to the SHR group. Quantitative real-time PCR analysis confirmed that the expression of the circadian rhythm genes Per3, Bhlhe41, and Nr1d1 was significantly upregulated, while the results were coincident with the RNA-Seq results. Dapagliflozin may effectively inhibit myocardial remodeling and regulate blood pressure. The mechanisms may be related to the activation of the circadian rhythm signaling pathway.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|