1
|
Ding T, Yu Y, Pan X, Chen H. Establishment of humanized mice and its application progress in cancer immunotherapy. Immunotherapy 2023; 15:679-697. [PMID: 37096919 DOI: 10.2217/imt-2022-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
The current high prevalence of malignant tumors has attracted considerable attention, and treating advanced malignancies is becoming increasingly difficult. Although immunotherapy is a hopeful alternative, it is effective in only a few people. Thus, development of preclinical animal models is needed. Humanized xenotransplantation mouse models can help with selecting treatment protocols, evaluating curative effects and assessing prognosis. This review discusses the establishment of humanized mouse models and their application prospects in cancer immunotherapy to identify tailored therapies for individual patients.
Collapse
Affiliation(s)
- Tianlong Ding
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, PR China
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
| | - Yang Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, PR China
| | - Xiaoyuan Pan
- Department of Vision Rehabilitation, Gansu Province Hospital Rehabilitation Center, Lanzhou, 730030, PR China
| | - Hao Chen
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
- Key Laboratory of Digestive System Tumors, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
| |
Collapse
|
2
|
Martinez-Sanz P, Laurent ARG, Slot E, Hoogenboezem M, Bąbała N, van Bruggen R, Rongvaux A, Flavell RA, Tytgat GAM, Franke K, Matlung HL, Kuijpers TW, Amsen D, Karrich JJ. Humanized MISTRG as a preclinical in vivo model to study human neutrophil-mediated immune processes. Front Immunol 2023; 14:1105103. [PMID: 36969261 PMCID: PMC10032520 DOI: 10.3389/fimmu.2023.1105103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionMISTRG mice have been genetically modified to allow development of a human myeloid compartment from engrafted human CD34+ haemopoietic stem cells, making them particularly suited to study the human innate immune system in vivo. Here, we characterized the human neutrophil population in these mice to establish a model that can be used to study the biology and contribution in immune processes of these cells in vivo.Methods and resultsWe could isolate human bone marrow neutrophils from humanized MISTRG mice and confirmed that all neutrophil maturation stages from promyelocytes (CD11b–CD16–) to end-stage segmented cells (CD11b+CD16+) were present. We documented that these cells possessed normal functional properties, including degranulation, reactive oxygen species production, adhesion, and antibody-dependent cellular cytotoxicity towards antibody-opsonized tumor cells ex vivo. The acquisition of functional capacities positively correlated with the maturation state of the cell. We found that human neutrophils were retained in the bone marrow of humanized MISTRG mice during steady state. However, the mature segmented CD11b+CD16+ human neutrophils were released from the bone marrow in response to two well-established neutrophil-mobilizing agents (i.e., G-CSF and/or CXCR4 antagonist Plerixafor). Moreover, the neutrophil population in the humanized MISTRG mice actively reacted to thioglycolate-induced peritonitis and could infiltrate implanted human tumors, as shown by flow cytometry and fluorescent microscopy.DiscussionThese results show that functional human neutrophils are generated and can be studied in vivo using the humanized MISTRG mice, providing a model to study the various functions of neutrophils in inflammation and in tumors.
Collapse
Affiliation(s)
- Paula Martinez-Sanz
- Sanquin Research and Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Paula Martinez-Sanz, ; Julien J. Karrich, ; Derk Amsen,
| | - Adrien R. G. Laurent
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Edith Slot
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mark Hoogenboezem
- Sanquin Research and Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Nikolina Bąbała
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Robin van Bruggen
- Sanquin Research and Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Anthony Rongvaux
- Department of Immunology, University of Washington, Seattle, WA, United States
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, United States
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, United States
| | - Godelieve A. M. Tytgat
- Princess Maxima Center for Pediatric Oncology, Department of Pediatric Oncology, Utrecht, Netherlands
| | - Katka Franke
- Sanquin Research and Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hanke L. Matlung
- Sanquin Research and Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W. Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Rheumatology and Infectious Diseases, Emma Children's Hospital, Department of Pediatric Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Derk Amsen
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Paula Martinez-Sanz, ; Julien J. Karrich, ; Derk Amsen,
| | - Julien J. Karrich
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Paula Martinez-Sanz, ; Julien J. Karrich, ; Derk Amsen,
| |
Collapse
|
3
|
Nauman G, Danzl NM, Lee J, Borsotti C, Madley R, Fu J, Hölzl MA, Dahmani A, Dorronsoro Gonzalez A, Chavez É, Campbell SR, Yang S, Satwani P, Liu K, Sykes M. Defects in Long-Term APC Repopulation Ability of Adult Human Bone Marrow Hematopoietic Stem Cells (HSCs) Compared with Fetal Liver HSCs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1652-1663. [PMID: 35315788 PMCID: PMC8976823 DOI: 10.4049/jimmunol.2100966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/25/2022] [Indexed: 04/28/2023]
Abstract
Immunodeficient mice reconstituted with immune systems from patients, or personalized immune (PI) mice, are powerful tools for understanding human disease. Compared with immunodeficient mice transplanted with human fetal thymus tissue and fetal liver-derived CD34+ cells administered i.v. (Hu/Hu mice), PI mice, which are transplanted with human fetal thymus and adult bone marrow (aBM) CD34+ cells, demonstrate reduced levels of human reconstitution. We characterized APC and APC progenitor repopulation in human immune system mice and detected significant reductions in blood, bone marrow (BM), and splenic APC populations in PI compared with Hu/Hu mice. APC progenitors and hematopoietic stem cells (HSCs) were less abundant in aBM CD34+ cells compared with fetal liver-derived CD34+ cell preparations, and this reduction in APC progenitors was reflected in the BM of PI compared with Hu/Hu mice 14-20 wk posttransplant. The number of HSCs increased in PI mice compared with the originally infused BM cells and maintained functional repopulation potential, because BM from some PI mice 28 wk posttransplant generated human myeloid and lymphoid cells in secondary recipients. Moreover, long-term PI mouse BM contained functional T cell progenitors, evidenced by thymopoiesis in thymic organ cultures. Injection of aBM cells directly into the BM cavity, transgenic expression of hematopoietic cytokines, and coinfusion of human BM-derived mesenchymal stem cells synergized to enhance long-term B cell and monocyte levels in PI mice. These improvements allow a sustained time frame of 18-22 wk where APCs and T cells are present and greater flexibility for modeling immune disease pathogenesis and immunotherapies in PI mice.
Collapse
Affiliation(s)
- Grace Nauman
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY
- Department of Microbiology and Immunology, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Nichole M Danzl
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Jaeyop Lee
- Department of Microbiology and Immunology, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Chiara Borsotti
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Rachel Madley
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY
- Department of Microbiology and Immunology, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Markus A Hölzl
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Alexander Dahmani
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Akaitz Dorronsoro Gonzalez
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Éstefania Chavez
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Sean R Campbell
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Suxiao Yang
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Prakash Satwani
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Pediatrics, Columbia University Medical Center, Columbia University, New York, NY
| | - Kang Liu
- Department of Microbiology and Immunology, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT; and
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY;
- Department of Microbiology and Immunology, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Surgery, Columbia University Medical Center, Columbia University, New York, NY
| |
Collapse
|
4
|
Espíndola ODM, Siteur-van Rijnstra E, Frankin E, Weijer K, van der Velden YU, Berkhout B, Blom B, Villaudy J. Early Effects of HTLV-1 Infection on the Activation, Exhaustion, and Differentiation of T-Cells in Humanized NSG Mice. Cells 2021; 10:2514. [PMID: 34685494 PMCID: PMC8534134 DOI: 10.3390/cells10102514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is an aggressive malignancy of CD4+ T-cells associated with HTLV-1 infection. In this study, we used the model of immunodeficient NSG mice reconstituted with a functional human immune system (HIS) to investigate early events in HTLV-1 pathogenesis. Upon infection, human T-cells rapidly increased in the blood and lymphoid tissues, particularly CD4+CD25+ T-cells. Proliferation of CD4+ T-cells in the spleen and mesenteric lymph nodes (MLN) correlated with HTLV-1 proviral load and CD25 expression. In addition, splenomegaly, a common feature of ATLL in humans, was also observed. CD4+ and CD8+ T-cells predominantly displayed an effector memory phenotype (CD45RA-CCR7-) and expressed CXCR3 and CCR5 chemokine receptors, suggesting the polarization into a Th1 phenotype. Activated CD8+ T-cells expressed granzyme B and perforin; however, the interferon-γ response by these cells was limited, possibly due to elevated PD-1 expression and increased frequency of CD4+FoxP3+ regulatory T-cells in MLN. Thus, HTLV-1-infected HIS-NSG mice reproduced several characteristics of infection in humans, and it may be helpful to investigate ATLL-related events and to perform preclinical studies. Moreover, aspects of chronic infection were already present at early stages in this experimental model. Collectively, we suggest that HTLV-1 infection modulates host immune responses to favor viral persistence.
Collapse
Affiliation(s)
- Otávio de Melo Espíndola
- Laboratory for Clinical Research in Neuroinfections, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Esther Siteur-van Rijnstra
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Esmay Frankin
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Kees Weijer
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Yme Ubeles van der Velden
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.U.v.d.V.); (B.B.); (J.V.)
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.U.v.d.V.); (B.B.); (J.V.)
| | - Bianca Blom
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Julien Villaudy
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.U.v.d.V.); (B.B.); (J.V.)
- J&S Preclinical Solutions, 5345 RR Oss, The Netherlands
| |
Collapse
|
5
|
Jin KT, Du WL, Lan HR, Liu YY, Mao CS, Du JL, Mou XZ. Development of humanized mouse with patient-derived xenografts for cancer immunotherapy studies: A comprehensive review. Cancer Sci 2021; 112:2592-2606. [PMID: 33938090 PMCID: PMC8253285 DOI: 10.1111/cas.14934] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy has revolutionized cancer treatment, however, not all tumor types and patients are completely responsive to this approach. Establishing predictive pre-clinical models would allow for more accurate and practical immunotherapeutic drug development. Mouse models are extensively used as in vivo system for biomedical research. However, due to the significant differences between rodents and human, it is impossible to translate most of the findings from mouse models to human. Pharmacological development and advancing personalized medicine using patient-derived xenografts relies on producing mouse models in which murine cells and genes are substituted with their human equivalent. Humanized mice (HM) provide a suitable platform to evaluate xenograft growth in the context of a human immune system. In this review, we discussed recent advances in the generation and application of HM models. We also reviewed new insights into the basic mechanisms, pre-clinical evaluation of onco-immunotherapies, current limitations in the application of these models as well as available improvement strategies. Finally, we pointed out some issues for future studies.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Wen-Lin Du
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yu-Yao Liu
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Chun-Sen Mao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jin-Lin Du
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
6
|
Gillgrass A, Wessels JM, Yang JX, Kaushic C. Advances in Humanized Mouse Models to Improve Understanding of HIV-1 Pathogenesis and Immune Responses. Front Immunol 2021; 11:617516. [PMID: 33746940 PMCID: PMC7973037 DOI: 10.3389/fimmu.2020.617516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
Although antiretroviral therapy has transformed human immunodeficiency virus-type 1 (HIV-1) from a deadly infection into a chronic disease, it does not clear the viral reservoir, leaving HIV-1 as an uncurable infection. Currently, 1.2 million new HIV-1 infections occur globally each year, with little decrease over many years. Therefore, additional research is required to advance the current state of HIV management, find potential therapeutic strategies, and further understand the mechanisms of HIV pathogenesis and prevention strategies. Non-human primates (NHP) have been used extensively in HIV research and have provided critical advances within the field, but there are several issues that limit their use. Humanized mouse (Hu-mouse) models, or immunodeficient mice engrafted with human immune cells and/or tissues, provide a cost-effective and practical approach to create models for HIV research. Hu-mice closely parallel multiple aspects of human HIV infection and disease progression. Here, we highlight how innovations in Hu-mouse models have advanced HIV-1 research in the past decade. We discuss the effect of different background strains of mice, of modifications on the reconstitution of the immune cells, and the pros and cons of different human cells and/or tissue engraftment methods, on the ability to examine HIV-1 infection and immune response. Finally, we consider the newest advances in the Hu-mouse models and their potential to advance research in emerging areas of mucosal infections, understand the role of microbiota and the complex issues in HIV-TB co-infection. These innovations in Hu-mouse models hold the potential to significantly enhance mechanistic research to develop novel strategies for HIV prevention and therapeutics.
Collapse
Affiliation(s)
- Amy Gillgrass
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Jocelyn M. Wessels
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Jack X. Yang
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Charu Kaushic
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
7
|
Guil-Luna S, Sedlik C, Piaggio E. Humanized Mouse Models to Evaluate Cancer Immunotherapeutics. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2021. [DOI: 10.1146/annurev-cancerbio-050520-100526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunotherapy is at the forefront of cancer treatment. The advent of numerous novel approaches to cancer immunotherapy, including immune checkpoint antibodies, adoptive transfer of CAR (chimeric antigen receptor) T cells and TCR (T cell receptor) T cells, NK (natural killer) cells, T cell engagers, oncolytic viruses, and vaccines, is revolutionizing the treatment for different tumor types. Some are already in the clinic, and many others are underway. However, not all patients respond, resistance develops, and as available therapies multiply there is a need to further understand how they work, how to prioritize their clinical evaluation, and how to combine them. For this, animal models have been highly instrumental, and humanized mice models (i.e., immunodeficient mice engrafted with human immune and cancer cells) represent a step forward, although they have several limitations. Here, we review the different humanized models available today, the approaches to overcome their flaws, their use for the evaluation of cancer immunotherapies, and their anticipated evolution as tools to help personalized clinical decision-making.
Collapse
Affiliation(s)
- Silvia Guil-Luna
- Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - Christine Sedlik
- Translational Research Department, Institut Curie Research Center, INSERM U932, PSL Research University, 75248 Paris, France;,
| | - Eliane Piaggio
- Translational Research Department, Institut Curie Research Center, INSERM U932, PSL Research University, 75248 Paris, France;,
| |
Collapse
|
8
|
Laudanski K. Humanized Mice as a Tool to Study Sepsis-More Than Meets the Eye. Int J Mol Sci 2021; 22:2403. [PMID: 33673691 PMCID: PMC7957591 DOI: 10.3390/ijms22052403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
(1) Background. Repetitive animal studies that have disappointed upon translation into clinical therapies have led to an increased appreciation of humanized mice as a remedy to the shortcomings of rodent-based models. However, their limitations have to be understood in depth. (2) Methods. This is a narrative, comprehensive review of humanized mice and sepsis literature to understand the model's benefits and shortcomings. (3) Results: Studies involving humanized models of sepsis include bacterial, viral, and protozoan etiology. Humanized mice provided several unique insights into the etiology and natural history of sepsis and are particularly useful in studying Ebola, and certain viral and protozoan infections. However, studies are relatively sparse and based on several different models of sepsis and humanized animals. (4) Conclusions. The utilization of humanized mice as a model for sepsis presents complex limitations that, once surpassed, hold some potential for the advancement of sepsis etiology and treatment.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, Department of Neurology, Leonard Davis Institute of Healthcare Economics, University of Pennsylvania, Philadelphia, PA 19194, USA
| |
Collapse
|
9
|
Klein E, Hau AC, Oudin A, Golebiewska A, Niclou SP. Glioblastoma Organoids: Pre-Clinical Applications and Challenges in the Context of Immunotherapy. Front Oncol 2020; 10:604121. [PMID: 33364198 PMCID: PMC7753120 DOI: 10.3389/fonc.2020.604121] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Malignant brain tumors remain uniformly fatal, even with the best-to-date treatment. For Glioblastoma (GBM), the most severe form of brain cancer in adults, the median overall survival is roughly over a year. New therapeutic options are urgently needed, yet recent clinical trials in the field have been largely disappointing. This is partially due to inappropriate preclinical model systems, which do not reflect the complexity of patient tumors. Furthermore, clinically relevant patient-derived models recapitulating the immune compartment are lacking, which represents a bottleneck for adequate immunotherapy testing. Emerging 3D organoid cultures offer innovative possibilities for cancer modeling. Here, we review available GBM organoid models amenable to a large variety of pre-clinical applications including functional bioassays such as proliferation and invasion, drug screening, and the generation of patient-derived orthotopic xenografts (PDOX) for validation of biological responses in vivo. We emphasize advantages and technical challenges in establishing immunocompetent ex vivo models based on co-cultures of GBM organoids and human immune cells. The latter can be isolated either from the tumor or from patient or donor blood as peripheral blood mononuclear cells (PBMCs). We also discuss the challenges to generate GBM PDOXs based on humanized mouse models to validate efficacy of immunotherapies in vivo. A detailed characterization of such models at the cellular and molecular level is needed to understand the potential and limitations for various immune activating strategies. Increasing the availability of immunocompetent GBM models will improve research on emerging immune therapeutic approaches against aggressive brain cancer.
Collapse
Affiliation(s)
- Eliane Klein
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Ann-Christin Hau
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Anaïs Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Simone P. Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
10
|
Matas‐Céspedes A, Brown L, Mahbubani KT, Bareham B, Higgins J, Curran M, de Haan L, Lapointe J, Stebbings R, Saeb‐Parsy K. Use of human splenocytes in an innovative humanised mouse model for prediction of immunotherapy-induced cytokine release syndrome. Clin Transl Immunology 2020; 9:e1202. [PMID: 33173582 PMCID: PMC7641894 DOI: 10.1002/cti2.1202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/09/2020] [Accepted: 10/06/2020] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES Humanised mice have emerged as valuable models for pre-clinical testing of the safety and efficacy of immunotherapies. Given the variety of models available, selection of the most appropriate humanised mouse model is critical in study design. Here, we aimed to develop a model for predicting cytokine release syndrome (CRS) while minimising graft-versus-host disease (GvHD). METHODS To overcome donor-induced variation, we directly compared the in vitro and in vivo immune phenotype of immunodeficient NSG mice reconstituted with human bone marrow (BM) CD34+ haematopoietic stem cells (HSCs), peripheral blood mononuclear cells (PBMCs) or spleen mononuclear cells (SPMCs) from the same human donors. SPMC engraftment in NSG-dKO mice, which lack MHC class I and II, was also evaluated as a strategy to limit GvHD. Another group of mice was engrafted with umbilical cord blood (UCB) CD34+ HSCs. Induction of CRS in vivo was investigated upon administration of the anti-CD3 monoclonal antibody OKT3. RESULTS PBMC- and SPMC-reconstituted NSG mice showed short-term survival, with engrafted human T cells exhibiting mostly an effector memory phenotype. Survival in SPMC-reconstituted NSG-dKO mice was significantly longer. Conversely, both BM and UCB-HSC models showed longer survival, without demonstrable GvHD and a more naïve T-cell phenotype. PBMC- and SPMC-reconstituted mice, but not BM-HSC or UCB-HSC mice, experienced severe clinical signs of CRS upon administration of OKT3. CONCLUSION PBMC- and SPMC-reconstituted NSG mice better predict OKT3-mediated CRS. The SPMC model allows generation of large experimental groups, and the use of NSG-dKO mice mitigates the limitation of early GvHD.
Collapse
Affiliation(s)
- Alba Matas‐Céspedes
- Clinical Pharmacology and Safety SciencesR&DAstraZenecaCambridgeUK
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| | - Lee Brown
- Clinical Pharmacology and Safety SciencesR&DAstraZenecaCambridgeUK
| | - Krishnaa T Mahbubani
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| | - Bethany Bareham
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| | - Jackie Higgins
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| | - Michelle Curran
- Clinical Pharmacology and Safety SciencesR&DAstraZenecaCambridgeUK
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| | - Lolke de Haan
- Clinical Pharmacology and Safety SciencesR&DAstraZenecaCambridgeUK
- Present address:
ADC TherapeuticsLondonUK
| | | | | | - Kourosh Saeb‐Parsy
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| |
Collapse
|
11
|
Nguyen R, Patel AG, Griffiths LM, Dapper J, Stewart EA, Houston J, Johnson M, Akers WJ, Furman WL, Dyer MA. Next-generation humanized patient-derived xenograft mouse model for pre-clinical antibody studies in neuroblastoma. Cancer Immunol Immunother 2020; 70:721-732. [PMID: 32915319 DOI: 10.1007/s00262-020-02713-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 08/31/2020] [Indexed: 12/16/2022]
Abstract
Faithful tumor mouse models are fundamental research tools to advance the field of immuno-oncology (IO). This is particularly relevant in diseases with low incidence, as in the case of pediatric malignancies, that rely on pre-clinical therapeutic development. However, conventional syngeneic and genetically engineered mouse models fail to recapitulate the tumor heterogeneity and microenvironmental complexity of human pathology that are essential determinants of cancer-directed immunity. Here, we characterize a novel mouse model that supports human natural killer (NK) cell development and engraftment of neuroblastoma orthotopic patient-derived xenograft (O-PDX) for pre-clinical antibody and cytokine testing. Using cytotoxicity assays, single-cell RNA-sequencing, and multi-color flow cytometry, we demonstrate that NK cells that develop in the humanized mice are fully licensed to execute NK cell cytotoxicity, permit human tumor engraftment, but can be therapeutically redirected to induce antibody-dependent cell-mediated cytotoxicity (ADCC). Although these cells share phenotypic and molecular features with healthy controls, we noted that they lacked an NK cell subset, termed activated NK cells, that is characterized by differentially expressed genes that are induced by cytokine activation. Because this subset of genes is also downregulated in patients with neuroblastoma compared to healthy controls, we hypothesize that this finding could be due to tumor-mediated suppressive effects. Thus, despite its technical complexity, this humanized patient-derived xenograft mouse model could serve as a faithful system for future testing of IO applications and studies of underlying immunologic processes.
Collapse
Affiliation(s)
- Rosa Nguyen
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA.
| | - Anand G Patel
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lyra M Griffiths
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jason Dapper
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elizabeth A Stewart
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jim Houston
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Melissa Johnson
- Center for In Vivo Imaging and Therapeutics (CIVIT), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Walter J Akers
- Center for In Vivo Imaging and Therapeutics (CIVIT), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wayne L Furman
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
12
|
Blümich S, Zdimerova H, Münz C, Kipar A, Pellegrini G. Human CD34 + Hematopoietic Stem Cell-Engrafted NSG Mice: Morphological and Immunophenotypic Features. Vet Pathol 2020; 58:161-180. [PMID: 32901581 DOI: 10.1177/0300985820948822] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunodeficient mice engrafted with human immune cells represent an innovative tool to improve translatability of animal models for the study of human diseases. Immunophenotyping in these mice focuses on engraftment rates and cellular differentiation in blood and secondary lymphoid organs, and is predominantly carried out by FACS (fluorescent activated cell sorting) analysis; information on the morphological aspects of engraftment and the prevalence of histologic lesions is limited. We histologically examined 3- to 6-month-old NSG mice, naïve or engrafted with CD34+ human hemopoietic stem cells (HSC), and employed a quantitative immunohistochemical approach to identify human and murine cell compartments, comparing the results with the FACS data. NSG mice mainly exhibited incidental findings in lungs, kidneys, testes, and adrenal glands. A 6-month-old NSG mouse had a mediastinal lymphoblastic lymphoma. The lymphoid organs of NSG mice lacked typical lymphoid tissue architecture but frequently exhibited small periarteriolar leukocyte clusters in the spleen. Mice engrafted with human HSC frequently showed nephropathy, ovarian atrophy, cataract, and abnormal retinal development, lesions considered secondary to irradiation. In addition, 20% exhibited multisystemic granulomatous inflammatory infiltrates, dominated by human macrophages and T cells, leading to the observed 7% mortality and morbidity. Immunophenotypic data revealed variable repopulation of lymphoid organs with hCD45+ human cells, which did not always parallel the engraftment levels measured via FACS. The study describes the most common pathological features in young NSG mice after human HSC engraftment. As some of these lesions contribute to morbidity, morphological assessment of the engraftment at tissue level might help improve immunophenotypic evaluations of this animal model.
Collapse
Affiliation(s)
- Sandra Blümich
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, 27217University of Zurich, Zurich, Switzerland
| | - Hana Zdimerova
- Viral Immunobiology, Institute of Experimental Immunology, 27217University of Zurich, Zurich, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, 27217University of Zurich, Zurich, Switzerland
| | - Anja Kipar
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, 27217University of Zurich, Zurich, Switzerland
| | - Giovanni Pellegrini
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, 27217University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Anselmi G, Helft J, Guermonprez P. Development and function of human dendritic cells in humanized mice models. Mol Immunol 2020; 125:151-161. [PMID: 32688117 DOI: 10.1016/j.molimm.2020.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/06/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) are sentinel cells of the immune system arising from hematopoietic stem cells. DCs play a key role in the regulation of both adaptive and innate lymphocyte responses. As such, experimental models enabling a thorough analysis of human DCs development and function are needed. Humanized mice models (termed collectively as HIS mice, or human immune system mice models) provide unique opportunities to model human hematopoiesis and tackle the function of human immune cell types in vivo. Here, we review experimental approaches enabling to recapitulate the ontogeny of DC subsets in HIS mice and discuss studies addressing the biology of human DC subsets implementing HIS mice models.
Collapse
Affiliation(s)
- Giorgio Anselmi
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, United Kingdom
| | - Julie Helft
- PSL Research University, Institut Curie Research Center, Immunity and Cancer department, INSERM U932, Paris, France
| | - Pierre Guermonprez
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, United Kingdom; Université de Paris, Centre for Inflammation Research, CNRS ERL8252, INSERM 1149, Hopital Bichat Claude Bernard, France.
| |
Collapse
|
14
|
Curran M, Mairesse M, Matas-Céspedes A, Bareham B, Pellegrini G, Liaunardy A, Powell E, Sargeant R, Cuomo E, Stebbings R, Betts CJ, Saeb-Parsy K. Recent Advancements and Applications of Human Immune System Mice in Preclinical Immuno-Oncology. Toxicol Pathol 2019; 48:302-316. [PMID: 31847725 DOI: 10.1177/0192623319886304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significant advances in immunotherapies have resulted in the increasing need of predictive preclinical models to improve immunotherapeutic drug development, treatment combination, and to prevent or minimize toxicity in clinical trials. Immunodeficient mice reconstituted with human immune system (HIS), termed humanized mice or HIS mice, permit detailed analysis of human immune biology, development, and function. Although this model constitutes a great translational model, some aspects need to be improved as the incomplete engraftment of immune cells, graft versus host disease and the lack of human cytokines and growth factors. In this review, we discuss current HIS platforms, their pathology, and recent advances in their development to improve the quality of human immune cell reconstitution. We also highlight new technologies that can be used to better understand these models and how improved characterization is needed for their application in immuno-oncology safety, efficacy, and new modalities therapy development.
Collapse
Affiliation(s)
- Michelle Curran
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Maelle Mairesse
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Alba Matas-Céspedes
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Bethany Bareham
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Giovanni Pellegrini
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ardi Liaunardy
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Edward Powell
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Rebecca Sargeant
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Emanuela Cuomo
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Richard Stebbings
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Catherine J Betts
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
15
|
Carpenter RS, Jiang RR, Brennan FH, Hall JCE, Gottipati MK, Niewiesk S, Popovich PG. Human immune cells infiltrate the spinal cord and impair recovery after spinal cord injury in humanized mice. Sci Rep 2019; 9:19105. [PMID: 31836828 PMCID: PMC6911055 DOI: 10.1038/s41598-019-55729-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Humanized mice can be used to better understand how the human immune system responds to central nervous system (CNS) injury and inflammation. The optimal parameters for using humanized mice in preclinical CNS injury models need to be established for appropriate use and interpretation. Here, we show that the developmental age of the human immune system significantly affects anatomical and functional outcome measures in a preclinical model of traumatic spinal cord injury (SCI). Specifically, it takes approximately 3-4 months for a stable and functionally competent human immune system to develop in neonatal immune compromised mice after they are engrafted with human umbilical cord blood stem cells. Humanized mice receiving a SCI before or after stable engraftment exhibit significantly different neuroinflammatory profiles. Importantly, the development of a mature human immune system was associated with worse lesion pathology and neurological recovery after SCI. In these mice, human T cells infiltrate the spinal cord lesion and directly contact human macrophages. Together, data in this report establish an optimal experimental framework for using humanized mice to help translate promising preclinical therapies for CNS injury.
Collapse
Affiliation(s)
- Randall S Carpenter
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, Ohio, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Roselyn R Jiang
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, Ohio, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Faith H Brennan
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, Ohio, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Jodie C E Hall
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, Ohio, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Manoj K Gottipati
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, Ohio, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Phillip G Popovich
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, Ohio, USA.
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA.
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
16
|
Radtke S, Humbert O, Kiem HP. Mouse models in hematopoietic stem cell gene therapy and genome editing. Biochem Pharmacol 2019; 174:113692. [PMID: 31705854 DOI: 10.1016/j.bcp.2019.113692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022]
Abstract
Gene therapy has become an important treatment option for a variety of hematological diseases. The biggest advances have been made with CAR T cells and many of those studies are now FDA approved as a routine treatment for some hematologic malignancies. Hematopoietic stem cell (HSC) gene therapy is not far behind with treatment approvals granted for beta-hemoglobinopathies and adenosine deaminase severe combined immune deficiency (ADA-SCID), and additional approbations currently being sought. With the current pace of research, the significant investment of biotech companies, and the continuously growing toolbox of viral as well as non-viral gene delivery methods, the development of new ex vivo and in vivo gene therapy approaches is at an all-time high. Research in the field of gene therapy has been ongoing for more than 4 decades with big success stories as well as devastating drawbacks along the way. In particular, the damaging effect of uncontrolled viral vector integration observed in the initial gene therapy applications in the 90s led to a more comprehensive upfront safety assessment of treatment strategies. Since the late 90s, an important read-out to comprehensively assess the quality and safety of cell products has come forward with the mouse xenograft model. Here, we review the use of mouse models across the different stages of basic, pre-clinical and translational research towards the clinical application of HSC-mediated gene therapy and editing approaches.
Collapse
Affiliation(s)
- Stefan Radtke
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Olivier Humbert
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Dietz S, Schwarz J, Vogelmann M, Spring B, Molnár K, Orlikowsky TW, Wiese F, Holzer U, Poets CF, Gille C, Köstlin-Gille N. Cord blood granulocytic myeloid-derived suppressor cells impair monocyte T cell stimulatory capacity and response to bacterial stimulation. Pediatr Res 2019; 86:608-615. [PMID: 31349362 DOI: 10.1038/s41390-019-0504-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/20/2019] [Accepted: 07/15/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Neonatal sepsis is a leading cause of perinatal morbidity and mortality. In comparison to adults, neonates exhibit a higher susceptibility to infections. Myeloid-derived suppressor cells (MDSCs) are myeloid cells with suppressive activity on other immune cells accumulating during foetal life and controlling inflammation in neonates. Most studies investigating the mechanisms for MDSC-mediated immune suppression have been focused on T-cells. Thus far, little is known about the role of MDSC for monocyte function. METHODS The impact of human cord blood MDSCs (CB-MDSCs) on monocytes was investigated in an in vitro model. CB-MDSCs were co-cultured with peripheral blood mononuclear cells and monocytes were analysed for expression of surface markers, T cell stimulatory and phagocytic capacity, as well as the production of intracellular cytokines by flow cytometry. RESULTS CB-MDSCs increased the expression of co-inhibitory molecules and decreased the expression of major histocompatibility complex class II molecules on monocytes, leading to an impaired T-cell stimulatory capacity. Upon bacterial stimulation, expression of phagocytosis receptors, phagocytosis rates and production of tumor necrosis factor-α by monocytes was diminished by CB-MDSCs. CONCLUSION We show that CB-MDSCs profoundly modulate monocyte functions, thereby indirectly impairing T-cell activation. Further research is needed to figure out if MDSCs could be a therapeutic target for inflammatory diseases in neonates like neonatal sepsis.
Collapse
Affiliation(s)
- Stefanie Dietz
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | - Julian Schwarz
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | - Margit Vogelmann
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | - Bärbel Spring
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | - Kriszta Molnár
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | | | - Franziska Wiese
- Department of Hematology and Oncology, Tübingen University Children's Hospital, Tuebingen, Germany
| | - Ursula Holzer
- Department of Hematology and Oncology, Tübingen University Children's Hospital, Tuebingen, Germany
| | - Christian F Poets
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | - Christian Gille
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany.
| | | |
Collapse
|
18
|
Human multipotent hematopoietic progenitor cell expansion is neither supported in endothelial and endothelial/mesenchymal co-cultures nor in NSG mice. Sci Rep 2019; 9:12914. [PMID: 31501490 PMCID: PMC6733927 DOI: 10.1038/s41598-019-49221-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/12/2019] [Indexed: 01/22/2023] Open
Abstract
Endothelial and mesenchymal stromal cells (ECs/MSCs) are crucial components of hematopoietic bone marrow stem cell niches. Both cell types appear to be required to support the maintenance and expansion of multipotent hematopoietic cells, i.e. hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs). With the aim to exploit niche cell properties for experimental and potential clinical applications, we analyzed the potential of primary ECs alone and in combination with MSCs to support the ex vivo expansion/maintenance of human hematopoietic stem and progenitor cells (HSPCs). Even though a massive expansion of total CD34+ HSPCs was observed, none of the tested culture conditions supported the expansion or maintenance of multipotent HSPCs. Instead, mainly lympho-myeloid primed progenitors (LMPPs) were expanded. Similarly, following transplantation into immunocompromised mice the percentage of multipotent HSPCs within the engrafted HSPC population was significantly decreased compared to the original graft. Consistent with the in vitro findings, a bias towards lympho-myeloid lineage potentials was observed. In our conditions, neither classical co-cultures of HSPCs with primary ECs or MSCs, even in combination, nor the xenograft environment in immunocompromised mice efficiently support the expansion of multipotent HSPCs. Instead, enhanced expansion and a consistent bias towards lympho-myeloid committed LMPPs were observed.
Collapse
|
19
|
Skirecki T, Drechsler S, Hoser G, Jafarmadar M, Siennicka K, Pojda Z, Kawiak J, Osuchowski MF. The Fluctuations of Leukocytes and Circulating Cytokines in Septic Humanized Mice Vary With Outcome. Front Immunol 2019; 10:1427. [PMID: 31297113 PMCID: PMC6607920 DOI: 10.3389/fimmu.2019.01427] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
Sepsis remains a major challenge in translational research given its heterogeneous pathophysiology and the lack of specific therapeutics. The use of humanized mouse chimeras with transplanted human hematopoietic cells may improve the clinical relevance of pre-clinical studies. However, knowledge of the human immuno-inflammatory response during sepsis in humanized mice is scarce; it is unclear how similar or divergent mouse and human-origin immuno-inflammatory responses in sepsis are. In this study, we evaluated the early outcome-dependent immuno-inflammatory response in humanized mice generated in the NSG strain after cecal ligation and puncture (CLP) sepsis. Mice were observed for 32 h post-CLP and were assigned to either predicted-to-die (P-DIE) or predicted-to-survive (P-SUR) groups for retrospective comparisons. Blood samples were collected at baseline, 6 and 24 h, whereas the bone marrow and spleen were collected between 24 and 32 h post-CLP. In comparison to P-SUR, P-DIE humanized mice had a 3-fold higher frequency of human splenic monocytes and their CD80 expression was reduced by 1.3-fold; there was no difference in the HLA-DR expression. Similarly, the expression of CD80 on the bone marrow monocytes from P-DIE mice was decreased by 32% (p < 0.05). Sepsis induced a generalized up-regulation of both human and murine plasma cytokines (TNFα, IL-6, IL-10, IL-8/KC, MCP-1); it was additionally aggravated in P-DIE vs. P-SUR. Human cytokines were strongly overridden by the murine ones (approx. ratio 1:9) but human TNFα was 7-fold higher than mouse TNFα. Interestingly, transplantation of human cells did not influence murine cytokine response in NSG mice, but humanized NSG mice were more susceptible to sepsis in comparison with NSG mice (79 vs. 33% mortality; p < 0.05). In conclusion, our results show that humanized mice reflect selected aspects of human immune responses in sepsis and therefore may be a feasible alternative in preclinical immunotherapy modeling.
Collapse
Affiliation(s)
- Tomasz Skirecki
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Susanne Drechsler
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Grazyna Hoser
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Mohammad Jafarmadar
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Katarzyna Siennicka
- Department of Regenerative Medicine, Maria Sklodowska-Curie Institute-Oncology Center, Warsaw, Poland
| | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Sklodowska-Curie Institute-Oncology Center, Warsaw, Poland
| | - Jerzy Kawiak
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marcin F Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| |
Collapse
|
20
|
Lee GY, Jeong SY, Lee HR, Oh IH. Age-related differences in the bone marrow stem cell niche generate specialized microenvironments for the distinct regulation of normal hematopoietic and leukemia stem cells. Sci Rep 2019; 9:1007. [PMID: 30700727 PMCID: PMC6353913 DOI: 10.1038/s41598-018-36999-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
The bone marrow (BM) microenvironment serves as a stem cell niche regulating the in vivo cell fate of normal hematopoietic stem cells (HSC) as well as leukemia stem cells (LSCs). Accumulating studies have indicated that the regeneration of normal HSCs and the process of leukemogenesis change with advancing age. However, the role of microenvironmental factors in these age-related effects are unclear. Here, we compared the stem cell niche in neonatal and adult BM to investigate potential differences in their microenvironmental regulation of both normal and leukemic stem cells. We found that the mesenchymal niche in neonatal BM, compared to adult BM, was characterized by a higher frequency of primitive subsets of mesenchymal stroma expressing both platelet-derived growth factor receptor and Sca-1, and higher expression levels of the niche cross-talk molecules, Jagged-1 and CXCL-12. Accordingly, normal HSCs transplanted into neonatal mice exhibited higher levels of regeneration in BM, with no difference in homing efficiency or splenic engraftment compared to adult BM. In contrast, in vivo self-renewal of LSCs was higher in adult BM than in neonatal BM, with increased frequencies of leukemia-initiating cells as well as higher lympho-myeloid differentiation potential towards biphenotypic leukemic cells. These differences in LSC self-renewal capacity between neonates and adults was abrogated by switching of recipients, confirming their microenvironmental origin. Our study provides insight into the differences in leukemic diseases observed in childhood and adults, and is important for interpretation of many transplantation studies involving neonatal animal models.
Collapse
Affiliation(s)
- Ga-Young Lee
- Catholic High-Performance Cell Therapy Center and Department of Medical Lifescience, The Catholic University of Korea, College of Medicine, Seoul, 137-701, Korea
| | - Seon-Yeong Jeong
- Catholic High-Performance Cell Therapy Center and Department of Medical Lifescience, The Catholic University of Korea, College of Medicine, Seoul, 137-701, Korea
| | - Hae-Ri Lee
- Catholic High-Performance Cell Therapy Center and Department of Medical Lifescience, The Catholic University of Korea, College of Medicine, Seoul, 137-701, Korea
| | - Il-Hoan Oh
- Catholic High-Performance Cell Therapy Center and Department of Medical Lifescience, The Catholic University of Korea, College of Medicine, Seoul, 137-701, Korea. .,Department of Medical Lifescience, The Catholic University of Korea, College of Medicine, Seoul, 137-701, Korea.
| |
Collapse
|
21
|
Laudanski K, Stentz M, DiMeglio M, Furey W, Steinberg T, Patel A. Potential Pitfalls of the Humanized Mice in Modeling Sepsis. Int J Inflam 2018; 2018:6563454. [PMID: 30245803 PMCID: PMC6139216 DOI: 10.1155/2018/6563454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/17/2018] [Accepted: 08/13/2018] [Indexed: 01/30/2023] Open
Abstract
Humanized mice are a state-of-the-art tool used to study several diseases, helping to close the gap between mice and human immunology. This review focuses on the potential obstacles in the analysis of immune system performance between humans and humanized mice in the context of severe acute inflammation as seen in sepsis or other critical care illnesses. The extent to which the reconstituted human immune system in mice adequately compares to the performance of the human immune system in human hosts is still an evolving question. Although certain viral and protozoan infections can be replicated in humanized mice, whether a highly complex and dynamic systemic inflammation like sepsis can be accurately represented by current humanized mouse models in a clinically translatable manner is unclear. Humanized mice are xenotransplant animals in the most general terms. Several organs (e.g., bone marrow mesenchymal cells, endothelium) cannot interact with the grafted human leukocytes effectively due to species specificity. Also the interaction between mice gut flora and the human immune system may be paradoxical. Often, grafting is performed utilizing an identical batch of stem cells in highly inbred animals which fails to account for human heterogeneity. Limiting factors include the substantial cost and restricting supply of animals. Finally, humanized mice offer an opportunity to gain knowledge of human-like conditions, requiring careful data interpretation just as in nonhumanized animals.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Stentz
- Department of Anesthesiology and Intensive Care, Emory University, Atlanta, GA 30322, USA
| | - Matthew DiMeglio
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - William Furey
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Toby Steinberg
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arpit Patel
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Humanized Mice for the Study of Immuno-Oncology. Trends Immunol 2018; 39:748-763. [DOI: 10.1016/j.it.2018.07.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 01/28/2023]
|
23
|
Schlieckau F, Schulz D, Fill Malfertheiner S, Entleutner K, Seelbach-Goebel B, Ernst W. A novel model to study neonatal Escherichia coli sepsis and the effect of treatment on the human immune system using humanized mice. Am J Reprod Immunol 2018; 80:e12859. [PMID: 29672989 DOI: 10.1111/aji.12859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/27/2018] [Indexed: 01/03/2023] Open
Abstract
PROBLEM Neonatal sepsis is a serious threat especially for preterm infants. As existing in vitro and in vivo models have limitations, we generated a novel neonatal sepsis model using humanized mice and tested the effect of Betamethasone and Indomethacin which are used in the clinic in case of premature birth. METHOD OF STUDY Humanized mice were infected with Escherichia coli (E. coli). Subsequently, the effect of the infection itself, and treatment with Betamethasone and Indomethacin on survival, recovery, bacterial burden, leukocyte populations, and cytokine production, was analyzed. RESULTS The human immune system in the animals responded with leukocyte trafficking to the site of infection and granulopoiesis in the bone marrow. Treatment with Indomethacin had no pronounced effect on the immune system or bacterial burden. Betamethasone induced a decline of splenocytes. CONCLUSION The human immune system in humanized mice responds to the infection, making them a suitable model to study neonatal E. coli sepsis and the immune response of the neonatal immune system. Treatment with Betamethasone could have potential negative long-term effects for the immune system of the child.
Collapse
Affiliation(s)
- Florian Schlieckau
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Germany.,Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Daniela Schulz
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Germany.,Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Sara Fill Malfertheiner
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Germany
| | - Kathrin Entleutner
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Germany
| | - Birgit Seelbach-Goebel
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Germany
| | - Wolfgang Ernst
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Germany
| |
Collapse
|
24
|
Schönrich G, Raftery MJ. Exploring the Immunopathogenesis of Viral Hemorrhagic Fever in Mice with a Humanized Immune System. Front Immunol 2017; 8:1202. [PMID: 29018450 PMCID: PMC5622932 DOI: 10.3389/fimmu.2017.01202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/11/2017] [Indexed: 01/23/2023] Open
Abstract
Viral hemorrhagic fever (VHF) as a disease entity was first codified in the 1930s by soviet scientists investigating patients suffering from hantavirus infection. The group of hemorrhagic fever viruses (HFVs) has since expanded to include members from at least four different virus families: Arenaviridae, Bunyaviridae, Filoviridae, and Flaviviridae, all enveloped single-stranded RNA viruses. After infection, the natural hosts of HFVs do not develop symptoms, whereas humans can be severely affected. This observation and other evidence from experimental data suggest that the human immune system plays a crucial role in VHF pathogenesis. For this reason mice with a human immune system, referred to here as humanized mice (humice), are valuable tools that provide insight into disease mechanisms and allow for preclinical testing of novel vaccinations approaches as well as antiviral agents. In this article, we review the impact of humice in VHF research.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin J Raftery
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
25
|
LEA29Y expression in transgenic neonatal porcine islet-like cluster promotes long-lasting xenograft survival in humanized mice without immunosuppressive therapy. Sci Rep 2017; 7:3572. [PMID: 28620237 PMCID: PMC5472587 DOI: 10.1038/s41598-017-03913-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/05/2017] [Indexed: 02/02/2023] Open
Abstract
Genetically engineered pigs are a promising source for islet cell transplantation in type 1 diabetes, but the strong human anti-pig immune response prevents its successful clinical application. Here we studied the efficacy of neonatal porcine islet-like cell clusters (NPICCs) overexpressing LEA29Y, a high-affinity variant of the T cell co-stimulation inhibitor CTLA-4Ig, to engraft and restore normoglycemia after transplantation into streptozotocin-diabetic NOD-SCID IL2rγ−/− (NSG) mice stably reconstituted with a human immune system. Transplantation of INSLEA29Y expressing NPICCs resulted in development of normal glucose tolerance (70.4%) and long-term maintenance of normoglycemia without administration of immunosuppressive drugs. All animals transplanted with wild-type NPICCs remained diabetic. Immunohistological examinations revealed a strong peri- and intragraft infiltration of wild-type NPICCs with human CD45+ immune cells consisting of predominantly CD4+ and CD8+ lymphocytes and some CD68+ macrophages and FoxP3+ regulatory T cells. Significantly less infiltrating lymphocytes and only few macrophages were observed in animals transplanted with INSLEA29Y transgenic NPICCs. This is the first study providing evidence that beta cell-specific LEA29Y expression is effective for NPICC engraftment in the presence of a humanized immune system and it has a long-lasting protective effect on inhibition of human anti-pig xenoimmunity. Our findings may have important implications for the development of a low-toxic protocol for porcine islet transplantation in patients with type 1 diabetes.
Collapse
|
26
|
Tsoneva D, Minev B, Frentzen A, Zhang Q, Wege AK, Szalay AA. Humanized Mice with Subcutaneous Human Solid Tumors for Immune Response Analysis of Vaccinia Virus-Mediated Oncolysis. MOLECULAR THERAPY-ONCOLYTICS 2017; 5:41-61. [PMID: 28480327 PMCID: PMC5415323 DOI: 10.1016/j.omto.2017.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/02/2017] [Indexed: 12/20/2022]
Abstract
Oncolytic vaccinia virus (VACV) therapy is an alternative cancer treatment modality that mediates targeted tumor destruction through a tumor-selective replication and an induction of anti-tumor immunity. We developed a humanized tumor mouse model with subcutaneous human tumors to analyze the interactions of VACV with the developing tumors and human immune system. A successful systemic reconstitution with human immune cells including functional T cells as well as development of tumors infiltrated with human T and natural killer (NK) cells was observed. We also demonstrated successful in vivo colonization of such tumors with systemically administered VACVs. Further, a new recombinant GLV-1h376 VACV encoding for a secreted human CTLA4-blocking single-chain antibody (CTLA4 scAb) was tested. Surprisingly, although proving CTLA4 scAb's in vitro binding ability and functionality in cell culture, beside the significant increase of CD56bright NK cell subset, GLV-1h376 was not able to increase cytotoxic T or overall NK cell levels at the tumor site. Importantly, the virus-encoded β-glucuronidase as a measure of viral titer and CTLA4 scAb amount was demonstrated. Therefore, studies in our "patient-like" humanized tumor mouse model allow the exploration of newly designed therapy strategies considering the complex relationships between the developing tumor, the oncolytic virus, and the human immune system.
Collapse
Affiliation(s)
- Desislava Tsoneva
- Department of Biochemistry, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Boris Minev
- Department of Radiation Medicine and Applied Sciences, Rebecca & John Moores Comprehensive Cancer Center, University of California, San Diego, CA 92093, USA.,Genelux Corporation, San Diego Science Center, San Diego, CA 92109, USA
| | - Alexa Frentzen
- Genelux Corporation, San Diego Science Center, San Diego, CA 92109, USA
| | - Qian Zhang
- Genelux Corporation, San Diego Science Center, San Diego, CA 92109, USA
| | - Anja K Wege
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Aladar A Szalay
- Department of Biochemistry, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany.,Department of Radiation Medicine and Applied Sciences, Rebecca & John Moores Comprehensive Cancer Center, University of California, San Diego, CA 92093, USA.,Genelux Corporation, San Diego Science Center, San Diego, CA 92109, USA.,Rudolph Virchow Center for Experimental Biomedicine, University of Wuerzburg, 97080 Wuerzburg, Germany
| |
Collapse
|
27
|
Rodewohl A, Scholbach J, Leichsenring A, Köberle M, Lange F. Age-dependent cellular reactions of the human immune system of humanized NOD scid gamma mice on LPS stimulus. Innate Immun 2017; 23:258-275. [PMID: 28162006 DOI: 10.1177/1753425917690814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Despite sepsis being a life-threatening disease, targeted drugs that improve the therapy of affected patients are still lacking. Infants and adults differ in the maturity level of their immune system and this results in distinct reactions to Gram-negative bacteria. To study reactions of human immune cells in vivo, we used NOD scid gamma mice transplanted with human CD34+ stem cells to engraft a functional human immune system. Human cells undergo differentiation and maturation in these mice after transplantation and, accordingly, animals were divided into two groups: 8-13 wk and 15-22 wk after transplantation. Endotoxemia was induced by injecting LPS. Six h later, mice were euthanized. In both groups, LPS stimulation induced a decrease of CD14+ monocytes in peripheral blood, an up-regulation of activation markers on different cell subsets such as myeloid dendritic cells, and a release of the human cytokines TNF-α, IL-6 and IL-10. However, significant differences were detected with regard to the amounts of released cytokines, and 8-13-wk-old mice produced more IL-6, while PTX3 was mainly released by 15-22-wk-old animals. Thus, here we provide a potential model for preclinical research of sepsis in infants and adults.
Collapse
Affiliation(s)
- Anja Rodewohl
- 1 Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.,2 Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany
| | - Johanna Scholbach
- 1 Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.,3 Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Anna Leichsenring
- 1 Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Margarethe Köberle
- 1 Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.,2 Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany
| | - Franziska Lange
- 1 Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
28
|
Theocharides APA, Rongvaux A, Fritsch K, Flavell RA, Manz MG. Humanized hemato-lymphoid system mice. Haematologica 2016; 101:5-19. [PMID: 26721800 DOI: 10.3324/haematol.2014.115212] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the last decades, incrementally improved xenograft mouse models, supporting the engraftment and development of a human hemato-lymphoid system, have been developed and now represent an important research tool in the field. The most significant contributions made by means of humanized mice are the identification of normal and leukemic hematopoietic stem cells, the characterization of the human hematopoietic hierarchy, and their use as preclinical therapy models for malignant hematopoietic disorders. Successful xenotransplantation depends on three major factors: tolerance by the mouse host, correct spatial location, and appropriately cross-reactive support and interaction factors such as cytokines and major histocompatibility complex molecules. Each of these can be modified. Experimental approaches include the genetic modification of mice to faithfully express human support factors as non-cross-reactive cytokines, to create free niche space, the co-transplantation of human mesenchymal stem cells, the implantation of humanized ossicles or other stroma, and the implantation of human thymic tissue. Besides the source of hematopoietic cells, the conditioning regimen and the route of transplantation also significantly affect human hematopoietic development in vivo. We review here the achievements, most recent developments, and the remaining challenges in the generation of pre-clinically-predictive systems for human hematology and immunology, closely resembling the human situation in a xenogeneic mouse environment.
Collapse
Affiliation(s)
| | - Anthony Rongvaux
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Kristin Fritsch
- Hematology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Richard A Flavell
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Markus G Manz
- Hematology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
29
|
Bhatia S, Daschkey S, Lang F, Borkhardt A, Hauer J. Mouse models for pre-clinical drug testing in leukemia. Expert Opin Drug Discov 2016; 11:1081-1091. [DOI: 10.1080/17460441.2016.1229297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Carpenter RS, Kigerl KA, Marbourg JM, Gaudet AD, Huey D, Niewiesk S, Popovich PG. Traumatic spinal cord injury in mice with human immune systems. Exp Neurol 2015; 271:432-44. [PMID: 26193167 DOI: 10.1016/j.expneurol.2015.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/18/2015] [Accepted: 07/13/2015] [Indexed: 01/21/2023]
Abstract
Mouse models have provided key insight into the cellular and molecular control of human immune system function. However, recent data indicate that extrapolating the functional capabilities of the murine immune system into humans can be misleading. Since immune cells significantly affect neuron survival and axon growth and also are required to defend the body against infection, it is important to determine the pathophysiological significance of spinal cord injury (SCI)-induced changes in human immune system function. Research projects using monkeys or humans would be ideal; however, logistical and ethical barriers preclude detailed mechanistic studies in either species. Humanized mice, i.e., immunocompromised mice reconstituted with human immune cells, can help overcome these barriers and can be applied in various experimental conditions that are of interest to the SCI community. Specifically, newborn NOD-SCID-IL2rg(null) (NSG) mice engrafted with human CD34(+) hematopoietic stem cells develop normally without neurological impairment. In this report, new data show that when mice with human immune systems receive a clinically-relevant spinal contusion injury, spontaneous functional recovery is indistinguishable from that achieved after SCI using conventional inbred mouse strains. Moreover, using routine immunohistochemical and flow cytometry techniques, one can easily phenotype circulating human immune cells and document the composition and distribution of these cells in the injured spinal cord. Lesion pathology in humanized mice is typical of mouse contusion injuries, producing a centralized lesion epicenter that becomes occupied by phagocytic macrophages and lymphocytes and enclosed by a dense astrocytic scar. Specific human immune cell types, including three distinct subsets of human monocytes, were readily detected in the blood, spleen and liver. Future studies that aim to understand the functional consequences of manipulating the neuro-immune axis after SCI should consider using the humanized mouse model. Humanized mice represent a powerful tool for improving the translational value of pre-clinical SCI data.
Collapse
Affiliation(s)
- Randall S Carpenter
- Neuroscience Graduate Studies Program, The Ohio State University, Columbus, OH, USA; Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Kristina A Kigerl
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Jessica M Marbourg
- Neuroscience Graduate Studies Program, The Ohio State University, Columbus, OH, USA; Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Andrew D Gaudet
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Devra Huey
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Phillip G Popovich
- Neuroscience Graduate Studies Program, The Ohio State University, Columbus, OH, USA; Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
31
|
Abstract
During the past decade, the development of humanized mouse models and their general applications in biomedical research greatly accelerated the translation of outcomes obtained from basic research into potential diagnostic and therapeutic strategies in clinic. In this chapter, we firstly present an overview on the history and current progress of diverse humanized mouse models and then focus on those equipped with reconstituted human immune system. The update advancement in the establishment of humanized immune system mice and their applications in the studies of the development of human immune system and the pathogenesis of multiple human immune-related diseases are intensively reviewed here, while the shortcoming and perspective of these potent tools are discussed as well. As a valuable bridge across the gap between bench work and clinical trial, progressive humanized mouse models will undoubtedly continue to play an indispensable role in the wide area of biomedical research.
Collapse
|
32
|
Gu A, Torres-Coronado M, Tran CA, Vu H, Epps EW, Chung J, Gonzalez N, Blanchard S, DiGiusto DL. Engraftment and lineage potential of adult hematopoietic stem and progenitor cells is compromised following short-term culture in the presence of an aryl hydrocarbon receptor antagonist. Hum Gene Ther Methods 2015; 25:221-31. [PMID: 25003230 DOI: 10.1089/hgtb.2014.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hematopoietic stem cell gene therapy for HIV/AIDS is a promising alternative to lifelong antiretroviral therapy. One of the limitations of this approach is the number and quality of stem cells available for transplant following in vitro manipulations associated with stem cell isolation and genetic modification. The development of methods to increase the number of autologous, gene-modified stem cells available for transplantation would overcome this barrier. Hematopoietic stem and progenitor cells (HSPC) from adult growth factor-mobilized peripheral blood were cultured in the presence of an aryl hydrocarbon receptor antagonist (AhRA) previously shown to expand HSPC from umbilical cord blood. Qualitative and quantitative assessment of the hematopoietic potential of minimally cultured (MC-HSPC) or expanded HSPC (Exp-HSPC) was performed using an immunodeficient mouse model of transplantation. Our results demonstrate robust, multilineage engraftment of both MC-HSPC and Exp-HSPC although estimates of expansion based on stem cell phenotype were not supported by a corresponding increase in in vivo engrafting units. Bone marrow of animals transplanted with either MC-HSPC or Exp-HSPC contained secondary engrafting cells verifying the presence of primitive stem cells in both populations. However, the frequency of in vivo engrafting units among the more primitive CD34+/CD90+ HSPC population was significantly lower in Exp-HSPC compared with MC-HSPC. Exp-HSPC also produced fewer lymphoid progeny and more myeloid progeny than MC-HSPC. These results reveal that in vitro culture of adult HSPC in AhRA maintains but does not increase the number of in vivo engrafting cells and that HSPC expanded in vitro contain defects in lymphopoiesis as assessed in this model system. Further investigation is required before implementation of this approach in the clinical setting.
Collapse
Affiliation(s)
- Angel Gu
- 1 Laboratory for Cellular Medicine, Beckman Research Institute , City of Hope, CA 91010
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Brehm MA, Wiles MV, Greiner DL, Shultz LD. Generation of improved humanized mouse models for human infectious diseases. J Immunol Methods 2014; 410:3-17. [PMID: 24607601 PMCID: PMC4155027 DOI: 10.1016/j.jim.2014.02.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/18/2014] [Indexed: 12/26/2022]
Abstract
The study of human-specific infectious agents has been hindered by the lack of optimal small animal models. More recently development of novel strains of immunodeficient mice has begun to provide the opportunity to utilize small animal models for the study of many human-specific infectious agents. The introduction of a targeted mutation in the IL2 receptor common gamma chain gene (IL2rg(null)) in mice already deficient in T and B cells led to a breakthrough in the ability to engraft hematopoietic stem cells, as well as functional human lymphoid cells and tissues, effectively creating human immune systems in immunodeficient mice. These humanized mice are becoming increasingly important as pre-clinical models for the study of human immunodeficiency virus-1 (HIV-1) and other human-specific infectious agents. However, there remain a number of opportunities to further improve humanized mouse models for the study of human-specific infectious agents. This is being done by the implementation of innovative technologies, which collectively will accelerate the development of new models of genetically modified mice, including; i) modifications of the host to reduce innate immunity, which impedes human cell engraftment; ii) genetic modification to provide human-specific growth factors and cytokines required for optimal human cell growth and function; iii) and new cell and tissue engraftment protocols. The development of "next generation" humanized mouse models continues to provide exciting opportunities for the establishment of robust small animal models to study the pathogenesis of human-specific infectious agents, as well as for testing the efficacy of therapeutic agents and experimental vaccines.
Collapse
Affiliation(s)
- Michael A Brehm
- The University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, United States.
| | - Michael V Wiles
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, United States.
| | - Dale L Greiner
- The University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, United States.
| | - Leonard D Shultz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, United States.
| |
Collapse
|
34
|
Werner-Klein M, Proske J, Werno C, Schneider K, Hofmann HS, Rack B, Buchholz S, Ganzer R, Blana A, Seelbach-Göbel B, Nitsche U, Männel DN, Klein CA. Immune humanization of immunodeficient mice using diagnostic bone marrow aspirates from carcinoma patients. PLoS One 2014; 9:e97860. [PMID: 24830425 PMCID: PMC4022674 DOI: 10.1371/journal.pone.0097860] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/24/2014] [Indexed: 01/18/2023] Open
Abstract
Tumor xenografts in immunodeficient mice, while routinely used in cancer research, preclude studying interactions of immune and cancer cells or, if humanized by allogeneic immune cells, are of limited use for tumor-immunological questions. Here, we explore a novel way to generate cancer models with an autologous humanized immune system. We demonstrate that hematopoietic stem and progenitor cells (HSPCs) from bone marrow aspirates of non-metastasized carcinoma patients, which are taken at specialized centers for diagnostic purposes, can be used to generate a human immune system in NOD-scid IL2rγ(null) (NSG) and HLA-I expressing NSG mice (NSG-HLA-A2/HHD) comprising both, lymphoid and myeloid cell lineages. Using NSG-HLA-A2/HHD mice, we show that responsive and self-tolerant human T cells develop and human antigen presenting cells can activate human T cells. As critical factors we identified the low potential of bone marrow HSPCs to engraft, generally low HSPC numbers in patient-derived bone marrow samples, cryopreservation and routes of cell administration. We provide here an optimized protocol that uses a minimum number of HSPCs, preselects high-quality bone marrow samples defined by the number of initially isolated leukocytes and intra-femoral or intra-venous injection. In conclusion, the use of diagnostic bone marrow aspirates from non-metastasized carcinoma patients for the immunological humanization of immunodeficient mice is feasible and opens the chance for individualized analyses of anti-tumoral T cell responses.
Collapse
Affiliation(s)
| | - Judith Proske
- Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Christian Werno
- Project Group Personalized Tumor Therapy, Fraunhofer Institute of Toxicology and Experimental Medicine, Regensburg, Germany
| | - Katharina Schneider
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| | | | - Brigitte Rack
- Department of Gynecology and Obstetrics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan Buchholz
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
| | - Roman Ganzer
- Department of Urology, University of Leipzig, Leipzig, Germany
| | - Andreas Blana
- Department of Urology, Fuerth Hospital, Fuerth, Germany
| | - Birgit Seelbach-Göbel
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Germany
| | - Ulrich Nitsche
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Daniela N. Männel
- Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Christoph A. Klein
- Project Group Personalized Tumor Therapy, Fraunhofer Institute of Toxicology and Experimental Medicine, Regensburg, Germany
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| |
Collapse
|
35
|
|
36
|
Rongvaux A, Willinger T, Martinek J, Strowig T, Gearty SV, Teichmann LL, Saito Y, Marches F, Halene S, Palucka AK, Manz MG, Flavell RA. Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol 2014; 32:364-72. [PMID: 24633240 PMCID: PMC4017589 DOI: 10.1038/nbt.2858] [Citation(s) in RCA: 597] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/24/2014] [Indexed: 12/22/2022]
Abstract
Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models are unable to support development of human innate immune cells, including myeloid cells and NK cells. Here we describe a mouse strain, called MI(S)TRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked in to their respective mouse loci. The human cytokines support the development and function of monocytes/macrophages and natural killer cells derived from human fetal liver or adult CD34+ progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MI(S)TRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology.
Collapse
Affiliation(s)
- Anthony Rongvaux
- 1] Department of Immunobiology, Yale University, New Haven, Connecticut, USA. [2]
| | - Tim Willinger
- 1] Department of Immunobiology, Yale University, New Haven, Connecticut, USA. [2]
| | - Jan Martinek
- 1] Baylor Institute for Immunology Research, Dallas, Texas, USA. [2] Biomedical studies program, Baylor University, Waco, Texas, USA
| | - Till Strowig
- 1] Department of Immunobiology, Yale University, New Haven, Connecticut, USA. [2]
| | - Sofia V Gearty
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA
| | - Lino L Teichmann
- 1] Department of Laboratory Medicine, Yale University, New Haven, Connecticut, USA. [2] Department of Medicine III, University Hospital Bonn, Bonn, Germany
| | - Yasuyuki Saito
- Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | | | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University, New Haven, Connecticut, USA
| | | | - Markus G Manz
- Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Richard A Flavell
- 1] Department of Immunobiology, Yale University, New Haven, Connecticut, USA. [2] Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
37
|
Abstract
Mycobacterium tuberculosis (M.tb) is the second leading infectious cause of death worldwide and the primary cause of death in people living with HIV/AIDS. There are several excellent animal models employed to study tuberculosis (TB), but many have limitations for reproducing human pathology and none are amenable to the direct study of HIV/M.tb co-infection. The humanized mouse has been increasingly employed to explore HIV infection and other pathogens where animal models are limiting. Our goal was to develop a small animal model of M.tb infection using the bone marrow, liver, thymus (BLT) humanized mouse. NOD-SCID/γc(null) mice were engrafted with human fetal liver and thymus tissue, and supplemented with CD34(+) fetal liver cells. Excellent reconstitution, as measured by expression of the human CD45 pan leukocyte marker by peripheral blood populations, was observed at 12 weeks after engraftment. Human T cells (CD3, CD4, CD8), as well as natural killer cells and monocyte/macrophages were all observed within the human leukocyte (CD45(+)) population. Importantly, human T cells were functionally competent as determined by proliferative capacity and effector molecule (e.g. IFN-γ, granulysin, perforin) expression in response to positive stimuli. Animals infected intranasally with M.tb had progressive bacterial infection in the lung and dissemination to spleen and liver from 2-8 weeks post infection. Sites of infection in the lung were characterized by the formation of organized granulomatous lesions, caseous necrosis, bronchial obstruction, and crystallization of cholesterol deposits. Human T cells were distributed throughout the lung, liver, and spleen at sites of inflammation and bacterial growth and were organized to the periphery of granulomas. These preliminary results demonstrate the potential to use the humanized mouse as a model of experimental TB.
Collapse
|
38
|
Humanized mice, a new model to study the influence of drug treatment on neonatal sepsis. Infect Immun 2013; 81:1520-31. [PMID: 23439310 DOI: 10.1128/iai.01235-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Bacterial infection with group B Streptococcus (GBS) represents a prominent threat to neonates and fetuses in the Western world, causing severe organ damage and even death. To improve current therapeutic strategies and to investigate new approaches, an appropriate in vivo model to study the immune response of a human immune system is needed. Therefore, we introduced humanized mice as a new model for GBS-induced sepsis. Humanized mice feature deficiencies similar to those found in neonates, such as lower immunoglobulin levels and myeloid cell dysfunction. Due to the husbandry in specific-pathogen-free (SPF) facilities, the human immune cells in these mice also exhibit a naive phenotype which mimics the conditions in fetuses/neonates. Following infection, cytokine release and leukocyte trafficking from the bone marrow to the lymphoid organ (spleen) and into the peritoneum (site of infection) as well as bacterial spreading and clearance were traceable in the humanized mice. Furthermore, we investigated the effects of betamethasone and indomethacin treatment using this novel sepsis model. Although both drugs are commonly used in perinatal care, little is known about their effects on the neonatal immune system. Treatment of infected humanized mice not only induced the reduction of human leukocytes in the spleen but also increased the bacterial load in all analyzed organs, including the brain, which did not show infiltration of live GBS in untreated controls. These studies demonstrate the utility of the humanized mice as a new model to study an immature human immune response during bacterial infection and allow the investigation of side effects induced by various treatments.
Collapse
|
39
|
Flow cytometry in the detection of neonatal sepsis. Int J Pediatr 2013; 2013:763191. [PMID: 23431318 PMCID: PMC3574650 DOI: 10.1155/2013/763191] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 12/17/2022] Open
Abstract
Neonatal sepsis remains a burden problem by showing minimal initial symptoms of subtle character, nonspecific manifestation, and diagnostic pitfalls. The clinical course can be fulminant and fatal if treatment is not commenced promptly. It is therefore crucial to establish early diagnosis and initiate adequate therapy. Besides clinical symptoms, the most reliable laboratory markers in establishing diagnosis is currently the combined measurement of CRP and a cytokine (IL-6 and IL-8). Due to their different kinetics, a diagnostic gap might occur and thus withholding antimicrobial therapy in clinical suspicion of infection is not acceptable. We therefore need parameters which unerringly differentiate between infants in need for antimicrobial therapy and those who are not. Flow cytometry promises to be a useful tool in this field, allowing the determination of different cellular, dissolved, and functional pathophysiological components of sepsis. Despite technical and methodical advances in flow cytometry, its use in clinical routine is still limited. Advantages and disadvantages of promising new parameters in diagnosis of sepsis performed by flow cytometry, particularly CD64, HLA-DR, and apoptosis, are reviewed here. The necessity of tests to be used as an “ideal” parameter is presented.
Collapse
|
40
|
Rongvaux A, Takizawa H, Strowig T, Willinger T, Eynon EE, Flavell RA, Manz MG. Human hemato-lymphoid system mice: current use and future potential for medicine. Annu Rev Immunol 2013; 31:635-674. [PMID: 23330956 DOI: 10.1146/annurev-immunol-032712-095921] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To directly study complex human hemato-lymphoid system physiology and respective system-associated diseases in vivo, human-to-mouse xenotransplantation models for human blood and blood-forming cells and organs have been developed over the past three decades. We here review the fundamental requirements and the remarkable progress made over the past few years in improving these systems, the current major achievements reached by use of these models, and the future challenges to more closely model and study human health and disease and to achieve predictive preclinical testing of both prevention measures and potential new therapies.
Collapse
Affiliation(s)
- Anthony Rongvaux
- Department of Immunobiology, Yale University, New Haven, Connecticut 06520
| | - Hitoshi Takizawa
- Division of Hematology, University Hospital Zürich, CH-8091 Zürich, Switzerland
| | - Till Strowig
- Department of Immunobiology, Yale University, New Haven, Connecticut 06520
| | - Tim Willinger
- Department of Immunobiology, Yale University, New Haven, Connecticut 06520
| | - Elizabeth E Eynon
- Department of Immunobiology, Yale University, New Haven, Connecticut 06520
| | - Richard A Flavell
- Department of Immunobiology, Yale University, New Haven, Connecticut 06520.,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520;
| | - Markus G Manz
- Division of Hematology, University Hospital Zürich, CH-8091 Zürich, Switzerland
| |
Collapse
|