1
|
Saulle I, Vitalyos AV, D’Agate D, Clerici M, Biasin M. Unveiling the impact of ERAP1 and ERAP2 on migration, angiogenesis and ER stress response. Front Cell Dev Biol 2025; 13:1564649. [PMID: 40226591 PMCID: PMC11985534 DOI: 10.3389/fcell.2025.1564649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
Recent studies have investigated the key roles exerted by ERAP1 and ERAP2 in maintaining cellular homeostasis, emphasizing their functions beyond traditional antigen processing and presentation. In particular, genetic variants of these IFNγ-inducible aminopeptidases significantly impact critical cellular pathways, including migration, angiogenesis, and autophagy, which are essential in immune responses and disease processes. ERAP1's influence on endothelial cell migration and VEGF-driven angiogenesis, along with ERAP2's role in managing stress-induced autophagy via the UPR, highlights their importance in cellular adaptation to stress and disease outcomes, including autoimmune diseases, cancer progression, and infections. By presenting recent insights into ERAP1 and ERAP2 functions, this review underscores their potential as therapeutic targets in immune regulation and cellular stress-response pathways.
Collapse
Affiliation(s)
- Irma Saulle
- Università degli Studi di Milano, Dipartimento di Scienze Biomediche e Cliniche, Milano, Italy
- Università degli Studi di Milano, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Milano, Italy
| | | | - Daniel D’Agate
- Università degli Studi di Milano, Dipartimento di Scienze Biomediche e Cliniche, Milano, Italy
| | - Mario Clerici
- Università degli Studi di Milano, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Milano, Italy
- IRCCS, Fondazione Don Carlo Gnocchi, Milano, Italy
| | - Mara Biasin
- Università degli Studi di Milano, Dipartimento di Scienze Biomediche e Cliniche, Milano, Italy
| |
Collapse
|
2
|
Sæterstad S, Østvik AE, Hansen MD, Bruland T, van Beelen Granlund A. The effect of rs2910686 on ERAP2 expression in IBD and epithelial inflammatory response. J Transl Med 2024; 22:750. [PMID: 39123229 PMCID: PMC11316291 DOI: 10.1186/s12967-024-05532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND ERAP2 is an aminopeptidase involved in antigen processing and presentation, and harbor genetic variants linked to several inflammatory diseases such as Inflammatory Bowel Disease (IBD). The lack of an ERAP2 gene homologue in mice has hampered functional studies, and most human studies have focused on cells of hematopoietic origin. Using an IBD biobank as vantage point, this study explores how genetic variation in ERAP2 affects gene expression in human-derived epithelial organoids upon proinflammatory stimulation. METHODS An IBD patient cohort was genotyped with regards to two single nucleotide polymorphisms (SNP) (rs2910686/rs2248374) associated with ERAP2 expression levels, and we examined the correlation between colon gene expression and genotype, specifically aiming to establish a relationship with ERAP2 expression proficiency. Human-derived colon organoids (colonoids) with known ERAP2 genotype were established and used to explore differences in whole genome gene expression between ERAP2-deficient (n = 4) and -proficient (n = 4) donors upon pro-inflammatory encounter. RESULTS When taking rs2910686 genotype into account, ERAP2 gene expression is upregulated in the inflamed colon of IBD patients. Colonoids upregulate ERAP2 upon IFNɣ stimulation, and ERAP2 expression proficiency is dependent on rs2910686 genotype. Colonoid genotyping confirms that mechanisms independent of the frequently studied SNP rs2248374 can cause ERAP2-deficiency. A total of 586 genes involved in various molecular mechanisms are differentially expressed between ERAP2 proficient- and deficient colonoids upon proinflammatory stimulation, including genes encoding proteins with the following molecular function: catalytic activity (AOC1, CPE, ANPEP and MEP1A), regulator activity (TNFSF9, MDK, GDF15, ILR6A, LGALS3 and FLNA), transmembrane transporter activity (SLC40A1 and SLC5A1), and extracellular matrix structural constituents (FGL2, HMCN2, and MUC17). CONCLUSIONS ERAP2 is upregulated in the inflamed IBD colon mucosa, and expression proficiency is highly correlated with genotype of rs2910686. While the SNP rs2248374 is commonly used to determine ERAP2 expressional proficiency, our data confirms that mechanisms independent of this SNP can lead to ERAP2 deficiency. Our data demonstrates that epithelial ERAP2 presence affects the inflammatory response in colonoids, suggesting a pleiotropic role of ERAP2 beyond MHC class I antigen processing.
Collapse
Affiliation(s)
- Siri Sæterstad
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ann Elisabeth Østvik
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Marianne Doré Hansen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Torunn Bruland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Atle van Beelen Granlund
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway.
- Department of Pathology, St. Olav's University Hospital, Trondheim, Norway.
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
3
|
Pudjihartono N, Ho D, O’Sullivan JM. Integrative analysis reveals novel insights into juvenile idiopathic arthritis pathogenesis and shared molecular pathways with associated traits. Front Genet 2024; 15:1448363. [PMID: 39175752 PMCID: PMC11338781 DOI: 10.3389/fgene.2024.1448363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Background Juvenile idiopathic arthritis (JIA) is an autoimmune joint disease that frequently co-occurs with other complex phenotypes, including cancers and other autoimmune diseases. Despite the identification of numerous risk variants through genome-wide association studies (GWAS), the affected genes, their connection to JIA pathogenesis, and their role in the development of associated traits remain unclear. This study aims to address these gaps by elucidating the gene-regulatory mechanisms underlying JIA pathogenesis and exploring its potential role in the emergence of associated traits. Methods A two-sample Mendelian Randomization (MR) analysis was conducted to identify blood-expressed genes causally linked to JIA. A curated protein interaction network was subsequently used to identify sets of single-nucleotide polymorphisms (i.e., spatial eQTL SNPs) that regulate the expression of JIA causal genes and their protein interaction partners. These SNPs were cross-referenced against the GWAS catalog to identify statistically enriched traits associated with JIA. Results The two-sample MR analysis identified 52 genes whose expression changes in the blood are putatively causal for JIA. These genes (e.g., HLA, LTA, LTB, IL6ST) participate in a range of immune-related pathways (e.g., antigen presentation, cytokine signalling) and demonstrate cell type-specific regulatory patterns across different immune cell types (e.g., PPP1R11 in CD4+ T cells). The spatial eQTLs that regulate JIA causal genes and their interaction partners were statistically enriched for GWAS SNPs linked with 95 other traits, including both known and novel JIA-associated traits. This integrative analysis identified genes whose dysregulation may explain the links between JIA and associated traits, such as autoimmune/inflammatory diseases (genes at 6p22.1 locus), Hodgkin lymphoma (genes at 6p21.3 [FKBPL, PBX2, AGER]), and chronic lymphocytic leukemia (BAK1). Conclusion Our approach provides a significant advance in understanding the genetic architecture of JIA and associated traits. The results suggest that the burden of associated traits may differ among JIA patients, influenced by their combined genetic risk across different clusters of traits. Future experimental validation of the identified connections could pave the way for refined patient stratification, the discovery of new biomarkers, and shared therapeutic targets.
Collapse
Affiliation(s)
- N. Pudjihartono
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - D. Ho
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - J. M. O’Sullivan
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom
- Australian Parkinsons Mission, Garvan Institute of Medical Research, Sydney, NSW, Australia
- A*STAR Singapore Institute for Clinical Sciences, Singapore, Singapore
| |
Collapse
|
4
|
Fontana RJ, Li YJ, Vuppalanchi R, Kleiner DE, Gu J, Shroff H, Van Wagner LB, Watkins PB. ERAP-1 and ERAP-2 Variants in Liver Injury After COVID-19 mRNA Vaccination: A US Multicenter Study. Am J Gastroenterol 2024; 119:1496-1505. [PMID: 38314748 PMCID: PMC11296936 DOI: 10.14309/ajg.0000000000002702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
INTRODUCTION The aim of this study is to describe the presenting features, genetic factors, and outcomes of 23 adults who developed liver injury after coronavirus disease 2019 (COVID-19) mRNA vaccination. METHODS Patients with suspected COVID-19 vaccine hepatitis were enrolled into the Drug-Induced Liver Injury Network. Causality was assessed using the Drug-Induced Liver Injury Network expert opinion score. High-resolution HLA sequencing was undertaken using Illumina platform. RESULTS Amongst the 16 high causality cases, median time to onset was 16 days, median age was 63 years, and 75% were female. The injury was hepatocellular in 75% with a median alanine aminotransferase of 497 U/L, and 37% had jaundice. An antinuclear antibody and smooth muscle antibody were detectable in 27% and 36%, but only 12% had an elevated immunoglobulin G level. During follow-up, 37% received a short course of corticosteroids, and 88% fully recovered by 6 months with no deaths observed. HLA alleles associated with autoimmune hepatitis were not overrepresented compared with controls, but an ERAP-2 variant (rs1263907) and the ERAP-1 Hap6 haplotype were significantly overrepresented in the high causality cases vs controls ( P = 0.026 and 5 × 10 -5 , respectively). DISCUSSION Acute liver injury may arise within 8 weeks of COVID-19 mRNA vaccination that is generally mild and self-limited in most patients. The absence of an association with the AIH HLA alleles combined with the significant ERAP-2 and ERAP-1 Hap6 haplotype associations implicates a unique but very rare host immune response to vaccine-derived antigens in the pathogenesis of COVID-19 vaccine hepatotoxicity.
Collapse
Affiliation(s)
- Robert J. Fontana
- Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI
| | - Yi Ju Li
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC
| | - Raj Vuppalanchi
- Department of Medicine, Indiana University, Indianapolis, IN
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute (NCI), Bethesda, MD
| | - Jiezhun Gu
- Duke Clinical Research Institute, Duke University, Durham, NC
| | - Hersh Shroff
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Lisa B. Van Wagner
- Division of Digestive Diseases, University of Texas Southwestern Medical Center, Dallas, TX
| | - Paul B Watkins
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
5
|
Brunnberg J, Barends M, Frühschulz S, Winter C, Battin C, de Wet B, Cole DK, Steinberger P, Tampé R. Dual role of the peptide-loading complex as proofreader and limiter of MHC-I presentation. Proc Natl Acad Sci U S A 2024; 121:e2321600121. [PMID: 38771881 PMCID: PMC11145271 DOI: 10.1073/pnas.2321600121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/17/2024] [Indexed: 05/23/2024] Open
Abstract
Antigen presentation via major histocompatibility complex class I (MHC-I) molecules is essential for surveillance by the adaptive immune system. Central to this process is the peptide-loading complex (PLC), which translocates peptides from the cytosol to the endoplasmic reticulum and catalyzes peptide loading and proofreading of peptide-MHC-I (pMHC-I) complexes. Despite its importance, the impact of individual PLC components on the presented pMHC-I complexes is still insufficiently understood. Here, we used stoichiometrically defined antibody-nanobody complexes and engineered soluble T cell receptors (sTCRs) to quantify different MHC-I allomorphs and defined pMHC-I complexes, respectively. Thereby, we uncovered distinct effects of individual PLC components on the pMHC-I surface pool. Knockouts of components of the PLC editing modules, namely tapasin, ERp57, or calreticulin, changed the MHC-I surface composition to a reduced proportion of HLA-A*02:01 presentation compensated by a higher ratio of HLA-B*40:01 molecules. Intriguingly, these knockouts not only increased the presentation of suboptimally loaded HLA-A*02:01 complexes but also elevated the presentation of high-affinity peptides overexpressed in the cytosol. Our findings suggest that the components of the PLC editing module serve a dual role, acting not only as peptide proofreaders but also as limiters for abundant peptides. This dual function ensures the presentation of a broad spectrum of antigenic peptides.
Collapse
Affiliation(s)
- Jamina Brunnberg
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Martina Barends
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Stefan Frühschulz
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Christian Winter
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Claire Battin
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna1090, Austria
| | - Ben de Wet
- Immunocore Ltd., AbingdonOX14 4RY, United Kingdom
| | | | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna1090, Austria
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| |
Collapse
|
6
|
Sears T, Pagadala M, Castro A, Lee KH, Kong J, Tanaka K, Lippman S, Zanetti M, Carter H. Integrated germline and somatic features reveal divergent immune pathways driving ICB response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575430. [PMID: 38293085 PMCID: PMC10827124 DOI: 10.1101/2024.01.12.575430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Immune Checkpoint Blockade (ICB) has revolutionized cancer treatment, however mechanisms determining patient response remain poorly understood. Here we used machine learning to predict ICB response from germline and somatic biomarkers and interpreted the learned model to uncover putative mechanisms driving superior outcomes. Patients with higher T follicular helper infiltrates were robust to defects in the class-I Major Histocompatibility Complex (MHC-I). Further investigation uncovered different ICB responses in MHC-I versus MHC-II neoantigen reliant tumors across patients. Despite similar response rates, MHC-II reliant responses were associated with significantly longer durable clinical benefit (Discovery: Median OS=63.6 vs. 34.5 months P=0.0074; Validation: Median OS=37.5 vs. 33.1 months, P=0.040). Characteristics of the tumor immune microenvironment reflected MHC neoantigen reliance, and analysis of immune checkpoints revealed LAG3 as a potential target in MHC-II but not MHC-I reliant responses. This study highlights the value of interpretable machine learning models in elucidating the biological basis of therapy responses.
Collapse
Affiliation(s)
- Timothy Sears
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA USA
| | - Meghana Pagadala
- Biomedical Sciences Program, University of California San Diego, La Jolla, CA,, USA
| | - Andrea Castro
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Ko-han Lee
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA USA
| | - JungHo Kong
- Division of Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Kairi Tanaka
- School of Biological Sciences, University of California San Diego, La Jolla, CA USA
| | - Scott Lippman
- Moores Cancer Center, University of California San Diego, La Jolla, CA USA
| | - Maurizio Zanetti
- Moores Cancer Center, University of California San Diego, La Jolla, CA USA
- The Laboratory of Immunology, Moores Cancer Center and Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Hannah Carter
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA USA
- The Laboratory of Immunology, Moores Cancer Center and Department of Medicine, University of California San Diego, La Jolla, CA USA
| |
Collapse
|
7
|
Venema WJ, Hiddingh S, van Loosdregt J, Bowes J, Balliu B, de Boer JH, Ossewaarde-van Norel J, Thompson SD, Langefeld CD, de Ligt A, van der Veken LT, Krijger PHL, de Laat W, Kuiper JJW. A cis-regulatory element regulates ERAP2 expression through autoimmune disease risk SNPs. CELL GENOMICS 2024; 4:100460. [PMID: 38190099 PMCID: PMC10794781 DOI: 10.1016/j.xgen.2023.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 01/09/2024]
Abstract
Single-nucleotide polymorphisms (SNPs) near the ERAP2 gene are associated with various autoimmune conditions, as well as protection against lethal infections. Due to high linkage disequilibrium, numerous trait-associated SNPs are correlated with ERAP2 expression; however, their functional mechanisms remain unidentified. We show by reciprocal allelic replacement that ERAP2 expression is directly controlled by the splice region variant rs2248374. However, disease-associated variants in the downstream LNPEP gene promoter are independently associated with ERAP2 expression. Allele-specific conformation capture assays revealed long-range chromatin contacts between the gene promoters of LNPEP and ERAP2 and showed that interactions were stronger in patients carrying the alleles that increase susceptibility to autoimmune diseases. Replacing the SNPs in the LNPEP promoter by reference sequences lowered ERAP2 expression. These findings show that multiple SNPs act in concert to regulate ERAP2 expression and that disease-associated variants can convert a gene promoter region into a potent enhancer of a distal gene.
Collapse
Affiliation(s)
- Wouter J Venema
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sanne Hiddingh
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - John Bowes
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Brunilda Balliu
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joke H de Boer
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - Susan D Thompson
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Aafke de Ligt
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lars T van der Veken
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Jonas J W Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
8
|
Raja A, Kuiper JJW. Evolutionary immuno-genetics of endoplasmic reticulum aminopeptidase II (ERAP2). Genes Immun 2023; 24:295-302. [PMID: 37925533 PMCID: PMC10721543 DOI: 10.1038/s41435-023-00225-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Endoplasmic reticulum aminopeptidase 2 (ERAP2) is a proteolytic enzyme involved in adaptive immunity. The ERAP2 gene is highly polymorphic and encodes haplotypes that confer resistance against lethal infectious diseases, but also increase the risk for autoimmune disorders. Identifying how ERAP2 influences susceptibility to these traits requires an understanding of the selective pressures that shaped and maintained allelic variation throughout human evolution. Our review discusses the genetic regulation of haplotypes and diversity in naturally occurring ERAP2 allotypes in the global population. We outline how these ERAP2 haplotypes evolved during human history and highlight the presence of Neanderthal DNA sequences in ERAP2 of modern humans. Recent evidence suggests that human adaptation during the last ~10,000 years and historic pandemics left a significant mark on the ERAP2 gene that determines susceptibility to infectious and inflammatory diseases today.
Collapse
Affiliation(s)
- Aroosha Raja
- Department of Ophthalmology, Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Jonas J W Kuiper
- Department of Ophthalmology, Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Saad MA, Abdul-Sattar AB, Abdelal IT, Baraka A. Shedding Light on the Role of ERAP1 in Axial Spondyloarthritis. Cureus 2023; 15:e48806. [PMID: 38024089 PMCID: PMC10645460 DOI: 10.7759/cureus.48806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
Spondyloarthritis (SpA) is a multifactorial chronic inflammatory disease affecting the axial skeleton (axSpA) and/or peripheral joints (p-SpA) and entheses. The disease's pathogenesis depends on genetic, immunological, mechanical, and environmental factors. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is a multifunctional enzyme that shapes the peptide repertoire presented by major histocompatibility complex (MHC) class I molecules. Genome-wide association studies (GWAS) have identified different single nucleotide polymorphisms (SNPs) in ERAP1 that are associated with several autoimmune diseases, including axSpA. Therefore, a deeper understanding of the ERAP1 role in axSpA could make it a potential therapeutic target for this disease and offer greater insight into its impact on the immune system. Here, we review the biological functions and structure of ERAP1, discuss ERAP1 polymorphisms and their association with axSpA, highlight the interaction between ERAP1 and human leukocyte antigen (HLA)-B27, and review the association between ERAP1 SNPs and axSpA clinical parameters.
Collapse
Affiliation(s)
- Mohamed A Saad
- Rheumatology and Rehabilitation, Physical Medicine and Rehabilitation (PMR) Hospital, Kuwait, KWT
| | - Amal B Abdul-Sattar
- Rheumatology and Rehabilitation, Faculty of Medicine, Zagazig University, Zagazig, EGY
| | - Ibrahim T Abdelal
- Rheumatology and Rehabilitation, Faculty of Medicine, Zagazig University, Zagazig, EGY
| | - Ahmed Baraka
- Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, EGY
| |
Collapse
|
10
|
Papadaki GF, Woodward CH, Young MC, Winters TJ, Burslem GM, Sgourakis NG. A Chicken Tapasin ortholog can chaperone empty HLA-B∗37:01 molecules independent of other peptide-loading components. J Biol Chem 2023; 299:105136. [PMID: 37543367 PMCID: PMC10534222 DOI: 10.1016/j.jbc.2023.105136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023] Open
Abstract
Human Tapasin (hTapasin) is the main chaperone of MHC-I molecules, enabling peptide loading and antigen repertoire optimization across HLA allotypes. However, it is restricted to the endoplasmic reticulum (ER) lumen as part of the protein loading complex (PLC), and therefore is highly unstable when expressed in recombinant form. Additional stabilizing co-factors such as ERp57 are required to catalyze peptide exchange in vitro, limiting uses for the generation of pMHC-I molecules of desired antigen specificities. Here, we show that the chicken Tapasin (chTapasin) ortholog can be expressed recombinantly at high yields in a stable form, independent of co-chaperones. chTapasin can bind the human HLA-B∗37:01 with low micromolar-range affinity to form a stable tertiary complex. Biophysical characterization by methyl-based NMR methods reveals that chTapasin recognizes a conserved β2m epitope on HLA-B∗37:01, consistent with previously solved X-ray structures of hTapasin. Finally, we provide evidence that the B∗37:01/chTapasin complex is peptide-receptive and can be dissociated upon binding of high-affinity peptides. Our results highlight the use of chTapasin as a stable scaffold for protein engineering applications aiming to expand the ligand exchange function on human MHC-I and MHC-like molecules.
Collapse
Affiliation(s)
- Georgia F Papadaki
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Claire H Woodward
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael C Young
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Trenton J Winters
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Cancer Biology and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nikolaos G Sgourakis
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
11
|
Papadaki GF, Woodward CH, Young MC, Winters TJ, Burslem GM, Sgourakis NG. A Chicken Tapasin ortholog can chaperone empty HLA molecules independently of other peptide-loading components. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.546255. [PMID: 37425753 PMCID: PMC10326978 DOI: 10.1101/2023.06.23.546255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Human Tapasin (hTapasin) is the main chaperone of MHC-I molecules, enabling peptide loading and antigen repertoire optimization across HLA allotypes. However, it is restricted to the endoplasmic reticulum (ER) lumen as part of the protein loading complex (PLC) and therefore is highly unstable when expressed in recombinant form. Additional stabilizing co-factors such as ERp57 are required to catalyze peptide exchange in vitro , limiting uses for the generation of pMHC-I molecules of desired antigen specificities. Here, we show that the chicken Tapasin (chTapasin) ortholog can be expressed recombinantly at high yields in stable form, independently of co-chaperones. chTapasin can bind the human HLA-B * 37:01 with low micromolar-range affinity to form a stable tertiary complex. Biophysical characterization by methyl-based NMR methods reveals that chTapasin recognizes a conserved β 2 m epitope on HLA-B * 37:01, consistent with previously solved X-ray structures of hTapasin. Finally, we provide evidence that the B * 37:01/chTapasin complex is peptide-receptive and can be dissociated upon binding of high-affinity peptides. Our results highlight the use of chTapasin as a stable scaffold for future protein engineering applications aiming to expand the ligand exchange function on human MHC-I and MHC-like molecules.
Collapse
|
12
|
Limanaqi F, Vicentini C, Saulle I, Clerici M, Biasin M. The role of endoplasmic reticulum aminopeptidases in type 1 diabetes mellitus. Life Sci 2023; 323:121701. [PMID: 37059356 DOI: 10.1016/j.lfs.2023.121701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Type-I diabetes mellitus (T1DM) is generally considered as a chronic, T-cell mediated autoimmune disease. This notwithstanding, both the endogenous characteristics of β-cells, and their response to environmental factors and exogenous inflammatory stimuli are key events in disease progression and exacerbation. As such, T1DM is now recognized as a multifactorial condition, with its onset being influenced by both genetic predisposition and environmental factors, among which, viral infections represent major triggers. In this frame, endoplasmic reticulum aminopeptidase 1 (ERAP1) and 2 (ERAP2) hold center stage. ERAPs represent the main hydrolytic enzymes specialized in trimming of N-terminal antigen peptides to be bound by MHC class I molecules and presented to CD8+ T cells. Thus, abnormalities in ERAPs expression alter the peptide-MHC-I repertoire both quantitatively and qualitatively, fostering both autoimmune and infectious diseases. Although only a few studies succeeded in determining direct associations between ERAPs variants and T1DM susceptibility/outbreak, alterations of ERAPs do impinge on a plethora of biological events which might indeed contribute to the disease development/exacerbation. Beyond abnormal self-antigen peptide trimming, these include preproinsulin processing, nitric oxide (NO) production, ER stress, cytokine responsiveness, and immune cell recruitment/activity. The present review brings together direct and indirect evidence focused on the immunobiological role of ERAPs in T1DM onset and progression, covering both genetic and environmental aspects.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Chiara Vicentini
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy; Don C. Gnocchi Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation, Via A. Capecelatro 66, 20148 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy.
| |
Collapse
|
13
|
Kuiper JJ, Prinz JC, Stratikos E, Kuśnierczyk P, Arakawa A, Springer S, Mintoff D, Padjen I, Shumnalieva R, Vural S, Kötter I, van de Sande MG, Boyvat A, de Boer JH, Bertsias G, de Vries N, Krieckaert CL, Leal I, Vidovič Valentinčič N, Tugal-Tutkun I, El Khaldi Ahanach H, Costantino F, Glatigny S, Mrazovac Zimak D, Lötscher F, Kerstens FG, Bakula M, Viera Sousa E, Böhm P, Bosman K, Kenna TJ, Powis SJ, Breban M, Gul A, Bowes J, Lories RJ, Nowatzky J, Wolbink GJ, McGonagle DG, Turkstra F. EULAR study group on ‘MHC-I-opathy’: identifying disease-overarching mechanisms across disciplines and borders. Ann Rheum Dis 2023:ard-2022-222852. [PMID: 36987655 DOI: 10.1136/ard-2022-222852] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/25/2023] [Indexed: 03/29/2023]
Abstract
The ‘MHC-I (major histocompatibility complex class I)-opathy’ concept describes a family of inflammatory conditions with overlapping clinical manifestations and a strong genetic link to the MHC-I antigen presentation pathway. Classical MHC-I-opathies such as spondyloarthritis, Behçet’s disease, psoriasis and birdshot uveitis are widely recognised for their strong association with certain MHC-I alleles and gene variants of the antigen processing aminopeptidases ERAP1 and ERAP2 that implicates altered MHC-I peptide presentation to CD8+T cells in the pathogenesis. Progress in understanding the cause and treatment of these disorders is hampered by patient phenotypic heterogeneity and lack of systematic investigation of the MHC-I pathway.Here, we discuss new insights into the biology of MHC-I-opathies that strongly advocate for disease-overarching and integrated molecular and clinical investigation to decipher underlying disease mechanisms. Because this requires transformative multidisciplinary collaboration, we introduce the EULAR study group on MHC-I-opathies to unite clinical expertise in rheumatology, dermatology and ophthalmology, with fundamental and translational researchers from multiple disciplines such as immunology, genomics and proteomics, alongside patient partners. We prioritise standardisation of disease phenotypes and scientific nomenclature and propose interdisciplinary genetic and translational studies to exploit emerging therapeutic strategies to understand MHC-I-mediated disease mechanisms. These collaborative efforts are required to address outstanding questions in the etiopathogenesis of MHC-I-opathies towards improving patient treatment and prognostication.
Collapse
Affiliation(s)
- Jonas Jw Kuiper
- Department of Ophthalmology, Center for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jörg C Prinz
- University Hospital, department of Dermatology and Allergy, Ludwig Maximilians University Munich, Munchen, Germany
| | - Efstratios Stratikos
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Institute of Immunology and Experimental Therapy Ludwik Hirszfeld Polish Academy of Sciences, Wroclaw, Poland
| | - Akiko Arakawa
- University Hospital, department of Dermatology and Allergy, Ludwig Maximilians University Munich, Munchen, Germany
| | | | - Dillon Mintoff
- Department of Dermatology, Mater Dei Hospital, Msida, Malta
- Department of Pathology, University of Malta Faculty of Medicine and Surgery, Msida, Malta
| | - Ivan Padjen
- Division of Clinical Immunology and Rheumatology, University Hospital Centre Zagreb Department of Internal Medicine, Zagreb, Croatia
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Russka Shumnalieva
- Clinic of Rheumatology, Department of Rheumatology, Medical University of Sofia, Sofia, Bulgaria
| | - Seçil Vural
- School of Medicine, Department of Dermatology, Koç University, Istanbul, Turkey
| | - Ina Kötter
- Clinic for Rheumatology and Immunology, Bad Bramdsted Hospital, Bad Bramstedt, Germany
- Division of Rheumatology and Systemic Inflammatory Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marleen G van de Sande
- University of Amsterdam, Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Amsterdam Rheumatology and Immunology Center (ARC) | Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ayşe Boyvat
- Department of Dermatology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Joke H de Boer
- Department of Ophthalmology, Center for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - George Bertsias
- Department of Rheumatology and Clinical Immunology, University of Crete School of Medicine, Iraklio, Greece
- Laboratory of Autoimmunity-Inflammation, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Niek de Vries
- University of Amsterdam, Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Amsterdam Rheumatology and Immunology Center (ARC) | Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Charlotte Lm Krieckaert
- Amsterdam Rheumatology and immunology Center (ARC)| Reade, Amsterdam, The Netherlands
- Department of Rheumatology, Reade Hoofdlocatie Dr Jan van Breemenstraat, Amsterdam, The Netherlands
| | - Inês Leal
- Department of Ophthalmology, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte EPE, Lisboa, Portugal
- Centro de Estudeos das Ciencias da Visão, Universidade de Lisboa Faculdade de Medicina, Lisboa, Portugal
| | - Nataša Vidovič Valentinčič
- University Eye Clinic, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ilknur Tugal-Tutkun
- Department of Ophthalmology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Hanane El Khaldi Ahanach
- Departement of Ophthalmology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Department of Ophthalmology, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| | - Félicie Costantino
- Service de Rheumatology, Hospital Ambroise-Pare, Boulogne-Billancourt, France
- Infection & Inflammation, UMR 1173, Inserm, UVSQ, University Paris-Saclay, Montigny-le-Bretonneux, France
| | - Simon Glatigny
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, Montigny-le-Bretonneux, France
- Laboratoire d'Excellence Inflamex, Paris, France
| | | | - Fabian Lötscher
- Department of Rheumatology and Immunology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - Floor G Kerstens
- Amsterdam Rheumatology and immunology Center (ARC)| Reade, Amsterdam, The Netherlands
- Department of Rheumatology, Reade Hoofdlocatie Dr Jan van Breemenstraat, Amsterdam, The Netherlands
| | - Marija Bakula
- Division of Clinical Immunology and Rheumatology, University Hospital Centre Zagreb Department of Internal Medicine, Zagreb, Croatia
| | - Elsa Viera Sousa
- Rheumatology Research Unit Molecular João Lobo Antunes, University of Lisbon Medical Faculty, Lisboa, Portugal
- Rheumatology DepartmentSanta Maria Centro Hospital, Academic Medical Centre of Lisbon, Lisboa, Portugal
| | - Peter Böhm
- Patientpartner, German League against Rheumatism, Bonn, Germany
| | - Kees Bosman
- Patientpartner, Nationale Vereniging ReumaZorg, Nijmegen, The Netherlands
| | - Tony J Kenna
- Translational Research Institute, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Simon J Powis
- School of Medicine, University of St Andrews School of Medicine, St Andrews, UK
| | - Maxime Breban
- Service de Rheumatology, Hospital Ambroise-Pare, Boulogne-Billancourt, France
- Infection & Inflammation, UMR 1173, Inserm, UVSQ, University Paris-Saclay, Montigny-le-Bretonneux, France
| | - Ahmet Gul
- Division of Rheumatology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - John Bowes
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Center, The University of Manchester, Manchester, UK
- NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester University NHS Foundation Trust, Manchester, UK
| | - Rik Ju Lories
- Department of Rheumatology, KU Leuven University Hospitals Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Johannes Nowatzky
- Department of Medicine, Division of Rheumatology, NYU Langone Behçet's Disease Program, NYU Langone Ocular Rheumatology Program, New York University Grossman School of Medicine, New York University, New York, New York, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA
| | - Gerrit Jan Wolbink
- Amsterdam Rheumatology and immunology Center (ARC)| Reade, Amsterdam, The Netherlands
- Department Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Dennis G McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Franktien Turkstra
- Amsterdam Rheumatology and immunology Center (ARC)| Reade, Amsterdam, The Netherlands
- Department of Rheumatology, Reade Hoofdlocatie Dr Jan van Breemenstraat, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Nicoletti P, Dellinger A, Li YJ, Barnhart HX, Chalasani N, Fontana RJ, Odin JA, Serrano J, Stolz A, Etheridge AS, Innocenti F, Govaere O, Grove JI, Stephens C, Aithal GP, Andrade RJ, Bjornsson ES, Daly AK, Lucena MI, Watkins PB. Identification of Reduced ERAP2 Expression and a Novel HLA Allele as Components of a Risk Score for Susceptibility to Liver Injury Due to Amoxicillin-Clavulanate. Gastroenterology 2023; 164:454-466. [PMID: 36496055 PMCID: PMC9974860 DOI: 10.1053/j.gastro.2022.11.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS Drug-induced liver injury (DILI) due to amoxicillin-clavulanate (AC) has been associated with HLA-A∗02:01, HLA-DRB1∗15:01, and rs2476601, a missense variant in PTPN22. The aim of this study was to identify novel risk factors for AC-DILI and to construct a genetic risk score (GRS). METHODS Transcriptome-wide association study and genome-wide association study analyses were performed on 444 AC-DILI cases and 10,397 population-based controls of European descent. Associations were confirmed in a validation cohort (n = 133 cases and 17,836 population-based controls). Discovery and validation AC-DILI cases were also compared with 1358 and 403 non-AC-DILI cases. RESULTS Transcriptome-wide association study revealed a significant association of AC-DILI risk with reduced liver expression of ERAP2 (P = 3.7 × 10-7), coding for an aminopeptidase involved in antigen presentation. The lead eQTL single nucleotide polymorphism, rs1363907 (G), was associated with AC-DILI risk in the discovery (odds ratio [OR], 1.68; 95% CI, 1.23-1.66; P = 1.7 × 10-7) and validation cohorts (OR, 1.2; 95% CI, 1.04-2.05; P = .03), following a recessive model. We also identified HLA-B∗15:18 as a novel AC-DILI risk factor in both discovery (OR, 4.19; 95% CI, 2.09-8.36; P = 4.9 × 10-5) and validation (OR, 7.78; 95% CI, 2.75-21.99; P = .0001) cohorts. GRS, incorporating rs1363907, rs2476601, HLA-B∗15:18, HLA-A∗02:01, and HLA-DRB1∗15:01, was highly predictive of AC-DILI risk when cases were analyzed against both general population and non-AC-DILI control cohorts. GRS was the most significant predictor in a regression model containing known AC-DILI clinical risk characteristics and significantly improved the predictive model. CONCLUSIONS We identified novel associations of AC-DILI risk with ERAP2 low expression and with HLA-B∗15:18. GRS based on the 5 risk variants may assist AC-DILI causality assessment and risk management.
Collapse
Affiliation(s)
- Paola Nicoletti
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Andrew Dellinger
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Yi Ju Li
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina; Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Huiman X Barnhart
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina; Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Joseph A Odin
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jose Serrano
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Andrew Stolz
- University of Southern California, Los Angeles, California
| | - Amy S Etheridge
- University of North Carolina Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Federico Innocenti
- University of North Carolina Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Olivier Govaere
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jane I Grove
- Nottingham Digestive Diseases Centre and National Institute for Health Research Nottingham Biomedical Research Centre at the Nottingham University Hospital National Health Service Trust, Nottingham, United Kingdom; University of Nottingham, Nottingham, United Kingdom
| | - Camilla Stephens
- Servicios de Digestivo y Farmacologia Clínica, Instituto de Investigación Biomédica de Málaga (IBIMA_Plataforma Bionand), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Guruprasad P Aithal
- Nottingham Digestive Diseases Centre and National Institute for Health Research Nottingham Biomedical Research Centre at the Nottingham University Hospital National Health Service Trust, Nottingham, United Kingdom; University of Nottingham, Nottingham, United Kingdom
| | - Raul J Andrade
- Servicios de Digestivo y Farmacologia Clínica, Instituto de Investigación Biomédica de Málaga (IBIMA_Plataforma Bionand), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Einar S Bjornsson
- Department of Internal Medicine, Landspitali University Hospital, Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Ann K Daly
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - M Isabel Lucena
- Servicios de Digestivo y Farmacologia Clínica, Instituto de Investigación Biomédica de Málaga (IBIMA_Plataforma Bionand), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Paul B Watkins
- University of North Carolina Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; University of North Carolina Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
15
|
Liu Q, Hao T, Li L, Huang D, Lin Z, Fang Y, Wang D, Zhang X. Construction of a mitochondrial dysfunction related signature of diagnosed model to obstructive sleep apnea. Front Genet 2022; 13. [PMID: 36468038 PMCID: PMC9714559 DOI: 10.3389/fgene.2022.1056691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
Background: The molecular mechanisms underlying obstructive sleep apnea (OSA) and its comorbidities may involve mitochondrial dysfunction. However, very little is known about the relationships between mitochondrial dysfunction-related genes and OSA. Methods: Mitochondrial dysfunction-related differentially expressed genes (DEGs) between OSA and control adipose tissue samples were identified using data from the Gene Expression Omnibus database and information on mitochondrial dysfunction-related genes from the GeneCards database. A mitochondrial dysfunction-related signature of diagnostic model was established using least absolute shrinkage and selection operator Cox regression and then verified. Additionally, consensus clustering algorithms were used to conduct an unsupervised cluster analysis. A protein-protein interaction network of the DEGs between the mitochondrial dysfunction-related clusters was constructed using STRING database and the hub genes were identified. Functional analyses, including Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene set enrichment analysis (GSEA), and gene set variation analysis (GSVA), were conducted to explore the mechanisms involved in mitochondrial dysfunction in OSA. Immune cell infiltration analyses were conducted using CIBERSORT and single-sample GSEA (ssGSEA). Results: we established mitochondrial dysfunction related four-gene signature of diagnostic model consisted of NPR3, PDIA3, SLPI, ERAP2, and which could easily distinguish between OSA patients and controls. In addition, based on mitochondrial dysfunction-related gene expression, we identified two clusters among all the samples and three clusters among the OSA samples. A total of 10 hub genes were selected from the PPI network of DEGs between the two mitochondrial dysfunction-related clusters. There were correlations between the 10 hub genes and the 4 diagnostic genes. Enrichment analyses suggested that autophagy, inflammation pathways, and immune pathways are crucial in mitochondrial dysfunction in OSA. Plasma cells and M0 and M1 macrophages were significantly different between the OSA and control samples, while several immune cell types, especially T cells (γ/δ T cells, natural killer T cells, regulatory T cells, and type 17 T helper cells), were significantly different among mitochondrial dysfunction-related clusters of OSA samples. Conclusion: A novel mitochondrial dysfunction-related four-gen signature of diagnostic model was built. The genes are potential biomarkers for OSA and may play important roles in the development of OSA complications.
Collapse
Affiliation(s)
- Qian Liu
- Shantou University Medical College, Shantou, China
- Department of Cardiology, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong Province, China
| | - Tao Hao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lei Li
- Department of Cardiology, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong Province, China
| | - Daqi Huang
- Department of Cardiology, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong Province, China
| | - Ze Lin
- Shantou University Medical College, Shantou, China
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yipeng Fang
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Dong Wang
- Department of Cardiology, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong Province, China
| | - Xin Zhang
- Shantou University Medical College, Shantou, China
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
16
|
Camberlein V, Fléau C, Sierocki P, Li L, Gealageas R, Bosc D, Guillaume V, Warenghem S, Leroux F, Rosell M, Cheng K, Medve L, Prigent M, Decanter M, Piveteau C, Biela A, Eveque M, Dumont J, Mpakali A, Giastas P, Herledan A, Couturier C, Haupenthal J, Lesire L, Hirsch AKH, Deprez B, Stratikos E, Bouvier M, Deprez‐Poulain R. Discovery of the First Selective Nanomolar Inhibitors of ERAP2 by Kinetic Target-Guided Synthesis. Angew Chem Int Ed Engl 2022; 61:e202203560. [PMID: 35904863 PMCID: PMC9558494 DOI: 10.1002/anie.202203560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 01/07/2023]
Abstract
Endoplasmic reticulum aminopeptidase 2 (ERAP2) is a key enzyme involved in the trimming of antigenic peptides presented by Major Histocompatibility Complex class I. It is a target of growing interest for the treatment of autoimmune diseases and in cancer immunotherapy. However, the discovery of potent and selective ERAP2 inhibitors is highly challenging. Herein, we have used kinetic target-guided synthesis (KTGS) to identify such inhibitors. Co-crystallization experiments revealed the binding mode of three different inhibitors with increasing potency and selectivity over related enzymes. Selected analogues engage ERAP2 in cells and inhibit antigen presentation in a cellular context. 4 d (BDM88951) displays favorable in vitro ADME properties and in vivo exposure. In summary, KTGS allowed the discovery of the first nanomolar and selective highly promising ERAP2 inhibitors that pave the way of the exploration of the biological roles of this enzyme and provide lead compounds for drug discovery efforts.
Collapse
Affiliation(s)
- Virgyl Camberlein
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems3 rue du Pr Laguesse59000LilleFrance,European Genomic Institute for Diabetes, EGID, Pôle Recherche1 place de Verdun59045Lille CedexFrance
| | - Charlotte Fléau
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems3 rue du Pr Laguesse59000LilleFrance,European Genomic Institute for Diabetes, EGID, Pôle Recherche1 place de Verdun59045Lille CedexFrance
| | - Pierre Sierocki
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems3 rue du Pr Laguesse59000LilleFrance,European Genomic Institute for Diabetes, EGID, Pôle Recherche1 place de Verdun59045Lille CedexFrance
| | - Lenong Li
- Department of Microbiology and ImmunologyUniversity of Illinois at Chicago909 S Wolcott AvenueChicagoIL 60612USA
| | - Ronan Gealageas
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems3 rue du Pr Laguesse59000LilleFrance,European Genomic Institute for Diabetes, EGID, Pôle Recherche1 place de Verdun59045Lille CedexFrance
| | - Damien Bosc
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems3 rue du Pr Laguesse59000LilleFrance,European Genomic Institute for Diabetes, EGID, Pôle Recherche1 place de Verdun59045Lille CedexFrance
| | - Valentin Guillaume
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems3 rue du Pr Laguesse59000LilleFrance,European Genomic Institute for Diabetes, EGID, Pôle Recherche1 place de Verdun59045Lille CedexFrance
| | - Sandrine Warenghem
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems3 rue du Pr Laguesse59000LilleFrance,European Genomic Institute for Diabetes, EGID, Pôle Recherche1 place de Verdun59045Lille CedexFrance
| | - Florence Leroux
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems3 rue du Pr Laguesse59000LilleFrance,European Genomic Institute for Diabetes, EGID, Pôle Recherche1 place de Verdun59045Lille CedexFrance
| | - Melissa Rosell
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems3 rue du Pr Laguesse59000LilleFrance,European Genomic Institute for Diabetes, EGID, Pôle Recherche1 place de Verdun59045Lille CedexFrance
| | - Keguang Cheng
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems3 rue du Pr Laguesse59000LilleFrance,European Genomic Institute for Diabetes, EGID, Pôle Recherche1 place de Verdun59045Lille CedexFrance
| | - Laura Medve
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems3 rue du Pr Laguesse59000LilleFrance,European Genomic Institute for Diabetes, EGID, Pôle Recherche1 place de Verdun59045Lille CedexFrance
| | - Mathilde Prigent
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems3 rue du Pr Laguesse59000LilleFrance,European Genomic Institute for Diabetes, EGID, Pôle Recherche1 place de Verdun59045Lille CedexFrance
| | - Myriam Decanter
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems3 rue du Pr Laguesse59000LilleFrance,European Genomic Institute for Diabetes, EGID, Pôle Recherche1 place de Verdun59045Lille CedexFrance
| | - Catherine Piveteau
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems3 rue du Pr Laguesse59000LilleFrance,European Genomic Institute for Diabetes, EGID, Pôle Recherche1 place de Verdun59045Lille CedexFrance
| | - Alexandre Biela
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems3 rue du Pr Laguesse59000LilleFrance,European Genomic Institute for Diabetes, EGID, Pôle Recherche1 place de Verdun59045Lille CedexFrance
| | - Maxime Eveque
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems3 rue du Pr Laguesse59000LilleFrance,European Genomic Institute for Diabetes, EGID, Pôle Recherche1 place de Verdun59045Lille CedexFrance
| | - Julie Dumont
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems3 rue du Pr Laguesse59000LilleFrance,European Genomic Institute for Diabetes, EGID, Pôle Recherche1 place de Verdun59045Lille CedexFrance
| | - Anastasia Mpakali
- National Center for Scientific Research DemokritosAgia Paraskevi15341Greece
| | - Petros Giastas
- National Center for Scientific Research DemokritosAgia Paraskevi15341Greece
| | - Adrien Herledan
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems3 rue du Pr Laguesse59000LilleFrance,European Genomic Institute for Diabetes, EGID, Pôle Recherche1 place de Verdun59045Lille CedexFrance
| | - Cyril Couturier
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems3 rue du Pr Laguesse59000LilleFrance,European Genomic Institute for Diabetes, EGID, Pôle Recherche1 place de Verdun59045Lille CedexFrance
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany
| | - Laetitia Lesire
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems3 rue du Pr Laguesse59000LilleFrance,European Genomic Institute for Diabetes, EGID, Pôle Recherche1 place de Verdun59045Lille CedexFrance
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany,Department for Pharmacy, Saarland UniversityCampus E8 166123SaarbrückenGermany
| | - Benoit Deprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems3 rue du Pr Laguesse59000LilleFrance,European Genomic Institute for Diabetes, EGID, Pôle Recherche1 place de Verdun59045Lille CedexFrance
| | - Efstratios Stratikos
- National Center for Scientific Research DemokritosAgia Paraskevi15341Greece,Laboratory of BiochemistryDepartment of ChemistryNational and Kapodistrian University of AthensPanepistimiopolisZographou15784Greece
| | - Marlene Bouvier
- Department of Microbiology and ImmunologyUniversity of Illinois at Chicago909 S Wolcott AvenueChicagoIL 60612USA
| | - Rebecca Deprez‐Poulain
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems3 rue du Pr Laguesse59000LilleFrance,European Genomic Institute for Diabetes, EGID, Pôle Recherche1 place de Verdun59045Lille CedexFrance
| |
Collapse
|
17
|
Giusti L, Tesi M, Ciregia F, Marselli L, Zallocco L, Suleiman M, De Luca C, Del Guerra S, Zuccarini M, Trerotola M, Eizirik DL, Cnop M, Mazzoni MR, Marchetti P, Lucacchini A, Ronci M. The Protective Action of Metformin against Pro-Inflammatory Cytokine-Induced Human Islet Cell Damage and the Mechanisms Involved. Cells 2022; 11:2465. [PMID: 35954309 PMCID: PMC9368307 DOI: 10.3390/cells11152465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
Abstract
Metformin, a drug widely used in type 2 diabetes (T2D), has been shown to protect human β-cells exposed to gluco- and/or lipotoxic conditions and those in islets from T2D donors. We assessed whether metformin could relieve the human β-cell stress induced by pro-inflammatory cytokines (which mediate β-cells damage in type 1 diabetes, T1D) and investigated the underlying mechanisms using shotgun proteomics. Human islets were exposed to 50 U/mL interleukin-1β plus 1000 U/mL interferon-γ for 48 h, with or without 2.4 µg/mL metformin. Glucose-stimulated insulin secretion (GSIS) and caspase 3/7 activity were studied, and a shotgun label free proteomics analysis was performed. Metformin prevented the reduction of GSIS and the activation of caspase 3/7 induced by cytokines. Proteomics analysis identified more than 3000 proteins in human islets. Cytokines alone altered the expression of 244 proteins (145 up- and 99 down-regulated), while, in the presence of metformin, cytokine-exposure modified the expression of 231 proteins (128 up- and 103 downregulated). Among the proteins inversely regulated in the two conditions, we found proteins involved in vesicle motility, defense against oxidative stress (including peroxiredoxins), metabolism, protein synthesis, glycolysis and its regulation, and cytoskeletal proteins. Metformin inhibited pathways linked to inflammation, immune reactions, mammalian target of rapamycin (mTOR) signaling, and cell senescence. Some of the changes were confirmed by Western blot. Therefore, metformin prevented part of the deleterious actions of pro-inflammatory cytokines in human β-cells, which was accompanied by islet proteome modifications. This suggests that metformin, besides use in T2D, might be considered for β-cell protection in other types of diabetes, possibly including early T1D.
Collapse
Affiliation(s)
- Laura Giusti
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Marta Tesi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Federica Ciregia
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, University of Liège, 4000 Liège, Belgium
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | | - Mara Suleiman
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Carmela De Luca
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Silvia Del Guerra
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Mariachiara Zuccarini
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Trerotola
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Maurizio Ronci
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
18
|
Camberlein V, Fleau-Tabey C, Sierocki P, Li L, Gealageas R, Bosc D, Guillaume V, Warenghem S, Leroux F, Rosell M, Cheng K, Medve L, Prigent M, Decanter M, Piveteau C, Biela A, Eveque M, Dumont J, Mpakali A, Giastas P, Herledan A, Couturier C, Haupenthal J, Lesire L, Hirsch AK, Deprez B, Stratikos E, Bouvier M, Deprez-Poulain R. Discovery of the First Selective Nanomolar Inhibitors of Endoplasmic Reticulum Aminopeptidase 2 by Kinetic Target‐Guided Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Virgyl Camberlein
- University of Lille: Universite de Lille M2SV: Drugs and molecules for living systems Lille FRANCE
| | - Charlotte Fleau-Tabey
- University of Lille: Universite de Lille M2SV: Drugs and Molecules for Living systems Lille FRANCE
| | - Pierre Sierocki
- University of Lille: Universite de Lille M2SV: Drugs and Molecules for Living Systems LILLE FRANCE
| | - Lenong Li
- University of Illinois at Chicago Microbiology and Immunology chicago UNITED STATES
| | - Ronan Gealageas
- University of Lille: Universite de Lille M2SV: Drugs and molecules for Living Systems Lille FRANCE
| | - Damien Bosc
- University of Lille: Universite de Lille M2SV: Drugs and Molecules for Living Systems Lille FRANCE
| | - Valentin Guillaume
- Institut Pasteur de Lille M2SV: Drugs and molecules for Living Systems Lille FRANCE
| | - Sandrine Warenghem
- Institut Pasteur de Lille M2SV: Drugs and Molecules for Living Systems Lille FRANCE
| | - Florence Leroux
- INSERM U1177 Drugs and Molecules for Living Systems M2SV Drugs and Moelcules for Living Systems Lille FRANCE
| | - Melissa Rosell
- Universite de Lille M2SV: Drugs and molecules for living systems Lille FRANCE
| | - Keguang Cheng
- University of Lille: Universite de Lille M2SV: Drugs and molecules for Living systems Lille FRANCE
| | - Laura Medve
- Institut Pasteur de Lille M2SV: Drugs and Molecules for Living systems Lille FRANCE
| | - Mathilde Prigent
- Pasteur Institute Lille: Institut Pasteur de Lille M2SV: Drugs and Molecules for Living Systems FRANCE
| | - Myriam Decanter
- Pasteur Institute Lille: Institut Pasteur de Lille M2SV: Drugs and Molecules for Living Systems FRANCE
| | - Catherine Piveteau
- University of Lille: Universite de Lille M2SV: Drugs and molecules for living systems Lille FRANCE
| | - Alexandre Biela
- Institut Pasteur de Lille M2SV: Drugs and Molecules for Living Systems Lille FRANCE
| | - Maxime Eveque
- University of Lille: Universite de Lille M2SV: Drugs and Molecules for Living Systems Lille FRANCE
| | - Julie Dumont
- University of Lille: Universite de Lille M2SV: Drugs and Molecules for Living Systems Lille FRANCE
| | - Anastasia Mpakali
- National Centre for Scientific Research-Demokritos: Ethniko Kentro Ereunas Physikon Epistemon Demokritos Protein Chemistry laboratory Athens GREECE
| | - Petros Giastas
- NCSR Demokritos: Ethniko Kentro Ereunas Physikon Epistemon Demokritos Protein Chemistry laboratory Athens GREECE
| | - Adrien Herledan
- INSERM U1177 Drugs and Molecules for Living Systems M2SV: Drugs and Moelcules for Living systems Lille FRANCE
| | - Cyril Couturier
- University of Lille: Universite de Lille M2SV: Drugs and Molecules for Living Systems Lille FRANCE
| | - Jörg Haupenthal
- Helmholtz-Institut fur Pharmazeutische Forschung Saarland HIPS Saarbrücken GERMANY
| | - Laetitia Lesire
- Institut Pasteur de Lille M2SV: Drugs and Molecules for Living Systems Lille FRANCE
| | - Anna K Hirsch
- Helmholtz-Institut fur Pharmazeutische Forschung Saarland HIPS Saarbrücken GERMANY
| | - Benoit Deprez
- University of Lille: Universite de Lille M2SV: Drugs and Molecules for Living Systems Lille FRANCE
| | - Efstratios Stratikos
- National and Kapodistrian University of Athens: Ethniko kai Kapodistriako Panepistemio Athenon biochemistry Athens GREECE
| | - Marlene Bouvier
- University of Illinois at Chicago Microbiology and Immunology Chicago UNITED STATES
| | - Rebecca Deprez-Poulain
- University of Lille: Universite de Lille U1177 M2SV Drugs and molecules for Living systems 3 rue du Pr Laguesse 59000 LILLE FRANCE
| |
Collapse
|
19
|
Kuśnierczyk P. To Be or Not to Be: The Case of Endoplasmic Reticulum Aminopeptidase 2. Front Immunol 2022; 13:902567. [PMID: 35769458 PMCID: PMC9234130 DOI: 10.3389/fimmu.2022.902567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
To be, or not to be, that is the question. (William Shakespeare, Hamlet)
Endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2, respectively) play a role in trimming peptides that are too long to be bound and presented by class I HLA (HLA-I) molecules to CD8+ T cells. They may also affect the HLA-I-presented peptide repertoire by overtrimming potential epitopes. Both enzymes may also be released from the cell to cleave cytokine receptors and regulate blood pressure. Both enzymes are polymorphic, which affects their expression, specificity, and activity, resulting in their role in diseases associated with HLA-I. In this brief review, we concentrate on ERAP2, less investigated because of its lack in laboratory mice and 25% of humans, as well as a lower polymorphism. ERAP2 was found to be associated with several diseases and to influence ERAP1 effects. It was discovered recently that the defective ERAP2 gene, not encoding functional aminopeptidase, may nevertheless, during viral infections, produce a truncated protein isoform of unknown function, possibly interfering with ERAP1 and full-length ERAP2 by heterodimer formation. The disease associations of ERAP2, alone or in combination with ERAP1, are reviewed.
Collapse
|
20
|
Papakyriakou A, Mpakali A, Stratikos E. Can ERAP1 and ERAP2 Form Functional Heterodimers? A Structural Dynamics Investigation. Front Immunol 2022; 13:863529. [PMID: 35514997 PMCID: PMC9065437 DOI: 10.3389/fimmu.2022.863529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
Endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2) play important roles in the generation of antigenic peptides presented by Major Histocompatibility Class I (MHCI) molecules and indirectly regulate adaptive immune responses. Although the discrete function of these enzymes has been extensively characterized, recent reports have suggested that they can also form heterodimers with functional consequences. However, lack of structural characterization of a putative ERAP1/ERAP2 dimer has limited our understanding of its biological role and significance. To address this, we employed computational molecular dynamics calculations to explore the topology of interactions between these two, based on experimentally determined homo-dimerization interfaces observed in crystal structures of ERAP2 or homologous enzymes. Our analysis of 8 possible dimerization models, suggested that the most likely ERAP1/ERAP2 heterodimerization topology involves the exon 10 loop, a non-conserved loop previously implicated in interactions between ERAP1 and the disulfide-bond shuffling chaperone ERp44. This dimerization topology allows access to the active site of both enzymes and is consistent with a previously reported construct in which ERAP1 and ERAP2 were linked by Fos/Jun zipper tags. The proposed model constitutes a tentative structural template to help understand the physiological role and significance of ERAP1/ERAP2 molecular interactions.
Collapse
Affiliation(s)
- Athanasios Papakyriakou
- Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Anastasia Mpakali
- Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Efstratios Stratikos
- Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
21
|
Temponeras I, Stamatakis G, Samiotaki M, Georgiadis D, Pratsinis H, Panayotou G, Stratikos E. ERAP2 Inhibition Induces Cell-Surface Presentation by MOLT-4 Leukemia Cancer Cells of Many Novel and Potentially Antigenic Peptides. Int J Mol Sci 2022; 23:ijms23031913. [PMID: 35163832 PMCID: PMC8836666 DOI: 10.3390/ijms23031913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 02/01/2023] Open
Abstract
Recent studies have linked the activity of ER aminopeptidase 2 (ERAP2) to increased efficacy of immune-checkpoint inhibitor cancer immunotherapy, suggesting that pharmacological inhibition of ERAP2 could have important therapeutic implications. To explore the effects of ERAP2 inhibition on the immunopeptidome of cancer cells, we treated MOLT-4 T lymphoblast leukemia cells with a recently developed selective ERAP2 inhibitor, isolated Major Histocompatibility class I molecules (MHCI), and sequenced bound peptides by liquid chromatography tandem mass spectrometry. Inhibitor treatment induced significant shifts on the immunopeptidome so that more than 20% of detected peptides were either novel or significantly upregulated. Most of the inhibitor-induced peptides were 9mers and had sequence motifs and predicted affinity consistent with being optimal ligands for at least one of the MHCI alleles carried by MOLT-4 cells. Such inhibitor-induced peptides could serve as triggers for novel cytotoxic responses against cancer cells and synergize with the therapeutic effect of immune-checkpoint inhibitors.
Collapse
Affiliation(s)
- Ioannis Temponeras
- National Centre for Scientific Research “Demokritos”, 15341 Agia Paraskevi, Greece; (I.T.); (H.P.)
- Department of Pharmacy, University of Patras, 26504 Patra, Greece
| | - George Stamatakis
- Biomedical Sciences Research Center “Alexander Fleming”, Institute for Bioinnovation, 16672 Vari, Greece; (G.S.); (M.S.); (G.P.)
| | - Martina Samiotaki
- Biomedical Sciences Research Center “Alexander Fleming”, Institute for Bioinnovation, 16672 Vari, Greece; (G.S.); (M.S.); (G.P.)
| | - Dimitris Georgiadis
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Zografou, Greece;
| | - Harris Pratsinis
- National Centre for Scientific Research “Demokritos”, 15341 Agia Paraskevi, Greece; (I.T.); (H.P.)
| | - George Panayotou
- Biomedical Sciences Research Center “Alexander Fleming”, Institute for Bioinnovation, 16672 Vari, Greece; (G.S.); (M.S.); (G.P.)
| | - Efstratios Stratikos
- National Centre for Scientific Research “Demokritos”, 15341 Agia Paraskevi, Greece; (I.T.); (H.P.)
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Zografou, Greece;
- Correspondence: or
| |
Collapse
|
22
|
Mpakali A, Georgiadis D, Stratikos E, Giastas P. Inhibitor-Dependent Usage of the S1' Specificity Pocket of ER Aminopeptidase 2. ACS Med Chem Lett 2022; 13:218-224. [PMID: 35178178 PMCID: PMC8842112 DOI: 10.1021/acsmedchemlett.1c00582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/10/2022] [Indexed: 01/16/2023] Open
Abstract
Endoplasmic reticulum aminopeptidase 2 (ERAP2) is an intracellular enzyme involved in the processing of antigenic peptides intended for presentation by major histocompatibility complex class I (MHCI) molecules. Because of its role in regulating immune responses, ERAP2 is an emerging pharmacological target. Phosphinic pseudopeptides are potent transition-state analogue inhibitors of ERAP2. Previous structure-activity studies have revealed a complex but ambiguous relationship between the occupation of putative specificity pockets and the inhibitor efficacy. To address these problems, we solved crystal structures of ERAP2 in complex with two phosphinic pseudotripeptide inhibitors. Both compounds are found in the catalytic site in a canonical orientation for transition-state analogues and utilize the S1 and S2' pockets in a similar fashion. Strikingly, their P1' side chains exhibit different orientations and make interactions with distinct shallow pockets near the ERAP2 active site. These structures suggest that S1' pocket usage in ERAP2 may be inhibitor-dependent and constitute useful starting templates for the further optimization of this class of compounds.
Collapse
Affiliation(s)
- Anastasia Mpakali
- National
Centre for Scientific Research Demokritos, Agia Paraskevi, Athens 15341, Greece,
| | - Dimitris Georgiadis
- Laboratory
of Organic Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Efstratios Stratikos
- National
Centre for Scientific Research Demokritos, Agia Paraskevi, Athens 15341, Greece,Laboratory
of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771 Greece
| | - Petros Giastas
- Department
of Neurobiology, Hellenic Pasteur Institute, Athens 11521, Greece,Department
of Biotechnology, School of Applied Biology & Biotechnology, Agricultural University of Athens, Athens 11855, Greece,
| |
Collapse
|
23
|
Peruzza L, Pascoli F, Dalla Rovere G, Franch R, Ferraresso S, Babbucci M, Biasini L, Abbadi M, Panzarin V, Toffan A, Bargelloni L. Transcriptome analysis reveals a complex response to the RGNNV/SJNNV reassortant Nervous Necrosis Virus strain in sea bream larvae. FISH & SHELLFISH IMMUNOLOGY 2021; 114:282-292. [PMID: 33971258 DOI: 10.1016/j.fsi.2021.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
The gilthead sea bream (Sparus aurata) is a marine fish of great importance for Mediterranean aquaculture. This species has long been considered resistant to Nervous Necrosis Virus (NNV), an RNA virus that causes massive mortalities in several farmed fish animals. However, the recent appearance of RGNNV/SJNNV reassortant strains started to pose a serious threat to sea bream hatcheries, as it is able to infect larvae and juveniles of this species. While host response to NNV has been extensively studied in adult fish, little attention has been devoted to early life history stages, which are generally the most sensitive ones. Here we report for the first time a time-course RNA-seq analysis on 21-day old fish gilthead sea bream larvae experimentally infected with a RGNNV/SJNNV strain. NNV-infected and mock-infected samples were collected at four time points (6 h, 12 h, 24 h, and 48 h post infection). Four biological replicates, each consisting of five pooled larvae, were analysed for each time point and group. A large set of genes were found to be significantly regulated, especially at early time points (6 h and 12 h), with several heat shock protein encoding transcripts being up-regulated (e.g. hspa5, dnaj4, hspa9, hsc70), while many immune genes were down-regulated (e.g. myd88 and irf5 at T06, pik3r1, stat3, jak1, il12b and il6st at T12). A gene set enrichment analysis (GSEA) identified several altered pathways/processes. For instance, the formation of peroxisomes, which are important anti-viral components as well as essential for nervous system homeostasis, and the autophagy pathway were down-regulated at 6 h and 24 h post infection (hpi). Finally, two custom "reactomes" (i.e. significant gene sets observed in other studies) were defined and used. The first reactome integrated the transcriptomic response to NNV in different fish species, while the second one included all genes found to be stimulated either by interferon (IFN) or by IFN and Chikungunya virus in zebrafish. Genes in both reactomes showed predominant up-regulation at 6hpi and 12hpi and a general down-regulation at 24hpi. Such evidence suggest a certain degree of similarity between the response of sea bream and that of other fish species to NNV, while the observed down-regulation of IFN- and viral-stimulated pathways argues for a possible interference of NNV against the host response.
Collapse
Affiliation(s)
- L Peruzza
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università, 16 35020, Legnaro, PD, Italy.
| | - F Pascoli
- Division of Comparative Biomedical Sciences, OIE Reference Centre for Viral Encephalopathy and Retinopathy, Istituto Zooprofilattico Sperimentale Delle Venezie (IZSVe), Padua, Italy
| | - G Dalla Rovere
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università, 16 35020, Legnaro, PD, Italy
| | - R Franch
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università, 16 35020, Legnaro, PD, Italy
| | - S Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università, 16 35020, Legnaro, PD, Italy
| | - M Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università, 16 35020, Legnaro, PD, Italy
| | - L Biasini
- Division of Comparative Biomedical Sciences, OIE Reference Centre for Viral Encephalopathy and Retinopathy, Istituto Zooprofilattico Sperimentale Delle Venezie (IZSVe), Padua, Italy
| | - M Abbadi
- Division of Comparative Biomedical Sciences, OIE Reference Centre for Viral Encephalopathy and Retinopathy, Istituto Zooprofilattico Sperimentale Delle Venezie (IZSVe), Padua, Italy
| | - V Panzarin
- Division of Comparative Biomedical Sciences, OIE Reference Centre for Viral Encephalopathy and Retinopathy, Istituto Zooprofilattico Sperimentale Delle Venezie (IZSVe), Padua, Italy
| | - A Toffan
- Division of Comparative Biomedical Sciences, OIE Reference Centre for Viral Encephalopathy and Retinopathy, Istituto Zooprofilattico Sperimentale Delle Venezie (IZSVe), Padua, Italy
| | - L Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università, 16 35020, Legnaro, PD, Italy
| |
Collapse
|
24
|
Hutchinson JP, Temponeras I, Kuiper J, Cortes A, Korczynska J, Kitchen S, Stratikos E. Common allotypes of ER aminopeptidase 1 have substrate-dependent and highly variable enzymatic properties. J Biol Chem 2021; 296:100443. [PMID: 33617882 PMCID: PMC8024916 DOI: 10.1016/j.jbc.2021.100443] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Polymorphic variation of immune system proteins can drive variability of individual immune responses. Endoplasmic reticulum aminopeptidase 1 (ERAP1) generates antigenic peptides for presentation by major histocompatibility complex class I molecules. Coding SNPs in ERAP1 have been associated with predisposition to inflammatory rheumatic disease and shown to affect functional properties of the enzyme, but the interplay between combinations of these SNPs as they exist in allotypes has not been thoroughly explored. We used phased genotype data to estimate ERAP1 allotype frequency in 2504 individuals across five major human populations, generated highly pure recombinant enzymes corresponding to the ten most common ERAP1 allotypes, and systematically characterized their in vitro enzymatic properties. We find that ERAP1 allotypes possess a wide range of enzymatic activities, up to 60-fold, whose ranking is substrate dependent. Strikingly, allotype 10, previously associated with Behçet’s disease, is consistently a low-activity outlier, suggesting that a significant percentage of individuals carry a subactive ERAP1 gene. Enzymatic analysis revealed that ERAP1 allotypes can differ in both catalytic efficiency and substrate affinity, differences that can change intermediate accumulation in multistep trimming reactions. Alterations in efficacy of an allosteric inhibitor that targets the regulatory site suggest that allotypic variation influences the communication between the regulatory and the active site. Our work defines the wide landscape of ERAP1 activity in human populations and demonstrates how common allotypes can induce substrate-dependent variability in antigen processing, thus contributing, in synergy with major histocompatibility complex haplotypes, to immune response variability and predisposition to chronic inflammatory conditions.
Collapse
Affiliation(s)
| | - Ioannis Temponeras
- Protein Chemistry Laboratory, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Jonas Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Adrian Cortes
- Human Genetics, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Justyna Korczynska
- Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Semra Kitchen
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Efstratios Stratikos
- Protein Chemistry Laboratory, National Centre for Scientific Research "Demokritos", Athens, Greece; Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece.
| |
Collapse
|
25
|
ERAP1 and ERAP2 Enzymes: A Protective Shield for RAS against COVID-19? Int J Mol Sci 2021; 22:ijms22041705. [PMID: 33567739 PMCID: PMC7914632 DOI: 10.3390/ijms22041705] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with coronavirus disease 2019 (COVID-19) have a wide variety of clinical outcomes ranging from asymptomatic to severe respiratory syndrome that can progress to life-threatening lung lesions. The identification of prognostic factors can help to improve the risk stratification of patients by promptly defining for each the most effective therapy to resolve the disease. The etiological agent causing COVID-19 is a new coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that enters cells via the ACE2 receptor. SARS-CoV-2 infection causes a reduction in ACE2 levels, leading to an imbalance in the renin-angiotensin system (RAS), and consequently, in blood pressure and systemic vascular resistance. ERAP1 and ERAP2 are two RAS regulators and key components of MHC class I antigen processing. Their polymorphisms have been associated with autoimmune and inflammatory conditions, hypertension, and cancer. Based on their involvement in the RAS, we believe that the dysfunctional status of ERAP1 and ERAP2 enzymes may exacerbate the effect of SARS-CoV-2 infection, aggravating the symptomatology and clinical outcome of the disease. In this review, we discuss this hypothesis.
Collapse
|
26
|
Niepiekło-Miniewska W, Matusiak Ł, Narbutt J, Lesiak A, Kuna P, Wiśniewski A, Piekarska K, Nowak I, Kuśnierczyk P. Synergy of endoplasmic reticulum aminopeptidase 1 and 2 (ERAP1 and ERAP2) polymorphisms in atopic dermatitis: Effects on disease prevalence. Hum Immunol 2020; 82:121-123. [PMID: 33309189 DOI: 10.1016/j.humimm.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/18/2023]
Abstract
Endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 trim peptides to a length of 8-10 amino acids optimal for binding by HLA class I molecules. Although these two enzymes may work separately, but they may also form a heterodimer of enhanced trimming efficiency. We have earlier described a role for ERAP1 single nucleotide polymorphism rs26618 and HLA-C*05:01 as risk factors for atopic dermatitis (AD). Here, we examined whether ERAP2 single nucleotide polymorphism rs2248374, determining the presence or absence of the functional form of enzyme, would influence the rs26618 effect. Out of nine rs2248374 - rs26618 genotypic combinations, only one, rs2248374*A/A - rs26618*C/C, was associated with a risk of AD. Interestingly, the odds ratio increased from 1.10 (CI95%: 0.72; 1.69; p = 0.657) for ERAP2 rs2248374*A/A and 1.88 (CI95%: 1.07; 3.28; p = 0.025) for ERAP1 rs26618*C/C to 3.36 (CI95%: 1.41; 8.01; p = 0.004) for their combination, therefore revealing a synergistic effect.
Collapse
Affiliation(s)
- Wanda Niepiekło-Miniewska
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Łukasz Matusiak
- Department of Dermatology, Venereology and Allergology, Medical University of Wroclaw, Wrocław, Poland
| | - Joanna Narbutt
- 1st Department of Dermatology and Venereology, Medical University of Łódź, Łódź, Poland
| | - Aleksandra Lesiak
- 1st Department of Dermatology and Venereology, Medical University of Łódź, Łódź, Poland
| | - Piotr Kuna
- 2nd Chair of Internal Diseases, Medical University of Łódź, Poland; N. Barlicki Medical University Hospital, Łódź, Poland
| | - Andrzej Wiśniewski
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Karolina Piekarska
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Izabela Nowak
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| |
Collapse
|
27
|
Zheng WB, Zou Y, He JJ, Elsheikha HM, Liu GH, Hu MH, Wang SL, Zhu XQ. Global profiling of lncRNAs-miRNAs-mRNAs reveals differential expression of coding genes and non-coding RNAs in the lung of beagle dogs at different stages of Toxocara canis infection. Int J Parasitol 2020; 51:49-61. [PMID: 32991917 DOI: 10.1016/j.ijpara.2020.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/25/2022]
Abstract
The roundworm Toxocara canis causes toxocariasis in dogs and larval migrans in humans. Better understanding of the lung response to T. canis infection could explain why T. canis must migrate to and undergoes part of its development inside the lung of the definitive host. In this study, we profiled the expression patterns of long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs in the lungs of Beagle dogs infected by T. canis, using high throughput RNA sequencing. At 24 h p.i., 1,012 lncRNAs, 393 mRNAs and 10 miRNAs were differentially expressed (DE). We also identified 883 DElncRNAs, 264 DEmRNAs and 20 DEmiRNAs at 96 h p.i., and 996 DElncRNAs, 342 DEmRNAs and eight DEmiRNAs at 36 days p.i., between infected and control dogs. Significant changes in the levels of expression of transcripts related to immune response and inflammation were associated with the antiparasitic response of the lung to T. canis. The remarkable increase in the expression of scgb1a1 at all time points after infection suggests the need for consistent moderation of the excessive inflammatory response. Also, upregulation of foxj1 at 24 h p.i., and downregulation of IL-1β and IL-21 at 96 h p.i., suggest an attenuation of the humoral immunity of infected dogs. These results indicate that T. canis pathogenesis in the lung is mediated through contributions from both pro-inflammatory and anti-inflammatory mechanisms. Competing endogenous RNA (ceRNA) network analysis revealed significant interactions between DElncRNAs, DEmiRNAs and DEmRNAs, and improved our understanding of the ceRNA regulatory mechanisms in the context of T. canis infection. These data provide comprehensive understanding of the regulatory networks that govern the lung response to T. canis infection and reveal new mechanistic insights into the interaction between the host and parasite during the course of T. canis infection in the canine.
Collapse
Affiliation(s)
- Wen-Bin Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China; Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, China
| | - Yang Zou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China.
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Guo-Hua Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, China
| | - Min-Hua Hu
- National Canine Laboratory Animal Resource Center, Guangzhou General Pharmaceutical Research Institute Co., Ltd, Guangzhou, Guangdong Province 510240, China
| | - Shui-Lian Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China; College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, China.
| |
Collapse
|
28
|
Saulle I, Vanetti C, Goglia S, Vicentini C, Tombetti E, Garziano M, Clerici M, Biasin M. A New ERAP2/Iso3 Isoform Expression Is Triggered by Different Microbial Stimuli in Human Cells. Could It Play a Role in the Modulation of SARS-CoV-2 Infection? Cells 2020; 9:E1951. [PMID: 32847031 PMCID: PMC7563522 DOI: 10.3390/cells9091951] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Following influenza infection, rs2248374-G ERAP2 expressing cells may transcribe an alternative spliced isoform: ERAP2/Iso3. This variant, unlike ERAP2-wt, is unable to trim peptides to be loaded on MHC class I molecules, but it can still dimerize with both ERAP2-wt and ERAP1-wt, thus contributing to profiling an alternative cellular immune-peptidome. In order to verify if the expression of ERAP2/Iso3 may be induced by other pathogens, PBMCs and MDMs isolated from 20 healthy subjects were stimulated with flu, LPS, CMV, HIV-AT-2, SARS-CoV-2 antigens to analyze its mRNA and protein expression. In parallel, Calu3 cell lines and PBMCs were in vitro infected with growing doses of SARS-CoV-2 (0.5, 5, 1000 MOI) and HIV-1BAL (0.1, 1, and 10 ng p24 HIV-1Bal/1 × 106 PBMCs) viruses, respectively. Results showed that: (1) ERAP2/Iso3 mRNA expression can be prompted by many pathogens and it is coupled with the modulation of several determinants (cytokines, interferon-stimulated genes, activation/inhibition markers, antigen-presentation elements) orchestrating the anti-microbial immune response (Quantigene); (2) ERAP2/Iso3 mRNA is translated into a protein (western blot); (3) ERAP2/Iso3 mRNA expression is sensitive to SARS-CoV-2 and HIV-1 concentration. Considering the key role played by ERAPs in antigen processing and presentation, it is conceivable that these enzymes may be potential targets and modulators of the pathogenicity of infectious diseases and further analyses are needed to define the role played by the different isoforms.
Collapse
Affiliation(s)
- Irma Saulle
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
| | - Sara Goglia
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
| | - Chiara Vicentini
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
| | - Enrico Tombetti
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
| | - Micaela Garziano
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Don C. Gnocchi Foundation ONLUS, IRCCS, 20148 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
| |
Collapse
|
29
|
Mavridis G, Arya R, Domnick A, Zoidakis J, Makridakis M, Vlahou A, Mpakali A, Lelis A, Georgiadis D, Tampé R, Papakyriakou A, Stern LJ, Stratikos E. A systematic re-examination of processing of MHCI-bound antigenic peptide precursors by endoplasmic reticulum aminopeptidase 1. J Biol Chem 2020; 295:7193-7210. [PMID: 32184355 PMCID: PMC7247305 DOI: 10.1074/jbc.ra120.012976] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/09/2020] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims antigenic peptide precursors to generate mature antigenic peptides for presentation by major histocompatibility complex class I (MHCI) molecules and regulates adaptive immune responses. ERAP1 has been proposed to trim peptide precursors both in solution and in preformed MHCI-peptide complexes, but which mode is more relevant to its biological function remains controversial. Here, we compared ERAP1-mediated trimming of antigenic peptide precursors in solution or when bound to three MHCI alleles, HLA-B*58, HLA-B*08, and HLA-A*02. For all MHCI-peptide combinations, peptide binding onto MHCI protected against ERAP1-mediated trimming. In only a single MHCI-peptide combination, trimming of an HLA-B*08-bound 12-mer progressed at a considerable rate, albeit still slower than in solution. Results from thermodynamic, kinetic, and computational analyses suggested that this 12-mer is highly labile and that apparent on-MHC trimming rates are always slower than that of MHCI-peptide dissociation. Both ERAP2 and leucine aminopeptidase, an enzyme unrelated to antigen processing, could trim this labile peptide from preformed MHCI complexes as efficiently as ERAP1. A pseudopeptide analogue with high affinity for both HLA-B*08 and the ERAP1 active site could not promote the formation of a ternary ERAP1/MHCI/peptide complex. Similarly, no interactions between ERAP1 and purified peptide-loading complex were detected in the absence or presence of a pseudopeptide trap. We conclude that MHCI binding protects peptides from ERAP1 degradation and that trimming in solution along with the dynamic nature of peptide binding to MHCI are sufficient to explain ERAP1 processing of antigenic peptide precursors.
Collapse
Affiliation(s)
- George Mavridis
- National Centre for Scientific Research Demokritos, Agia Paraskevi 15341, Greece
| | - Richa Arya
- University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Alexander Domnick
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
| | - Jerome Zoidakis
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Manousos Makridakis
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Antonia Vlahou
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Anastasia Mpakali
- National Centre for Scientific Research Demokritos, Agia Paraskevi 15341, Greece
| | - Angelos Lelis
- Laboratory of Organic Chemistry, Chemistry Department, University of Athens, Athens 15772, Greece
| | - Dimitris Georgiadis
- Laboratory of Organic Chemistry, Chemistry Department, University of Athens, Athens 15772, Greece
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
| | | | - Lawrence J Stern
- University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi 15341, Greece.
| |
Collapse
|
30
|
Saulle I, Vicentini C, Clerici M, Biasin M. An Overview on ERAP Roles in Infectious Diseases. Cells 2020; 9:E720. [PMID: 32183384 PMCID: PMC7140696 DOI: 10.3390/cells9030720] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) aminopeptidases ERAP1 and ERAP2 (ERAPs) are crucial enzymes shaping the major histocompatibility complex I (MHC I) immunopeptidome. In the ER, these enzymes cooperate in trimming the N-terminal residues from precursors peptides, so as to generate optimal-length antigens to fit into the MHC class I groove. Alteration or loss of ERAPs function significantly modify the repertoire of antigens presented by MHC I molecules, severely affecting the activation of both NK and CD8+ T cells. It is, therefore, conceivable that variations affecting the presentation of pathogen-derived antigens might result in an inadequate immune response and onset of disease. After the first evidence showing that ERAP1-deficient mice are not able to control Toxoplasma gondii infection, a number of studies have demonstrated that ERAPs are control factors for several infectious organisms. In this review we describe how susceptibility, development, and progression of some infectious diseases may be affected by different ERAPs variants, whose mechanism of action could be exploited for the setting of specific therapeutic approaches.
Collapse
Affiliation(s)
- Irma Saulle
- Cattedra di Immunologia, Dipartimento di Scienze Biomediche e Cliniche L. Sacco”, Università degli Studi di Milano, 20157 Milan, Italy; (C.V.); (M.B.)
- Cattedra di Immunologia, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti Università degli Studi di Milano, 20122 Milan, Italy;
| | - Chiara Vicentini
- Cattedra di Immunologia, Dipartimento di Scienze Biomediche e Cliniche L. Sacco”, Università degli Studi di Milano, 20157 Milan, Italy; (C.V.); (M.B.)
| | - Mario Clerici
- Cattedra di Immunologia, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti Università degli Studi di Milano, 20122 Milan, Italy;
- IRCCS Fondazione Don Carlo Gnocchi, 20157 Milan, Italy
| | - Mara Biasin
- Cattedra di Immunologia, Dipartimento di Scienze Biomediche e Cliniche L. Sacco”, Università degli Studi di Milano, 20157 Milan, Italy; (C.V.); (M.B.)
| |
Collapse
|
31
|
Fenizia C, Saulle I, Clerici M, Biasin M. Genetic and epigenetic regulation of natural resistance to HIV-1 infection: new approaches to unveil the HESN secret. Expert Rev Clin Immunol 2020; 16:429-445. [PMID: 32085689 DOI: 10.1080/1744666x.2020.1732820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Since the identification of HIV, several studies reported the unusual case of small groups of subjects showing natural resistance to HIV infection. These subjects are referred to as HIV-1-exposed seronegative (HESN) individuals and include people located in different areas, with diverse ethnic backgrounds and routes of exposure. The mechanism/s responsible for protection from infection in HESN individuals are basically indefinite and most likely are multifactorial.Areas covered: Host factors, including genetic background as well as natural and acquired immunity, have all been associated with this phenomenon. Recently, epigenetic factors have been investigated as possible determinants of reduced susceptibility to HIV infection. With the advent of the OMICS era, the availability of techniques such as GWAS, RNAseq, and exome-sequencing in both bulk cell populations and single cells will likely lead to great strides in the understanding of the HESN mystery.Expert opinion: The employment of increasingly sophisticated techniques is allowing the gathering of enormous amounts of data. The integration of such information will provide important hints that could lead to the identification of viral and host correlates of protection against HIV infection, allowing the development of more effective preventative and therapeutic regimens.
Collapse
Affiliation(s)
- Claudio Fenizia
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| |
Collapse
|
32
|
Guasp P, Lorente E, Martín-Esteban A, Barnea E, Romania P, Fruci D, Kuiper JW, Admon A, López de Castro JA. Redundancy and Complementarity between ERAP1 and ERAP2 Revealed by their Effects on the Behcet's Disease-associated HLA-B*51 Peptidome. Mol Cell Proteomics 2019; 18:1491-1510. [PMID: 31092671 PMCID: PMC6682995 DOI: 10.1074/mcp.ra119.001515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 trim peptides to be loaded onto HLA molecules, including the main risk factor for Behçet's disease HLA-B*51. ERAP1 is also a risk factor among HLA-B*51-positive individuals, whereas no association is known with ERAP2. This study addressed the mutual relationships between both enzymes in the processing of an HLA-bound peptidome, interrogating their differential association with Behçet's disease. CRISPR/Cas9 was used to generate knock outs of ERAP1, ERAP2 or both from transfectant 721.221-HLA-B*51:01 cells. The surface expression of HLA-B*51 was reduced in all cases. The effects of depleting each or both enzymes on the B*51:01 peptidome were analyzed by quantitative label-free mass spectrometry. Substantial quantitative alterations of peptide length, subpeptidome balance, N-terminal residue usage, affinity and presentation of noncanonical ligands were observed. These effects were often different in the presence or absence of the other enzyme, revealing their mutual dependence. In the absence of ERAP1, ERAP2 showed similar and significant processing of B*51:01 ligands, indicating functional redundancy. The high overlap between the peptidomes of wildtype and double KO cells indicates that a large majority of B*51:01 ligands are present in the ER even in the absence of ERAP1/ERAP2. These results indicate that both enzymes have distinct, but complementary and partially redundant effects on the B*51:01 peptidome, leading to its optimization and maximal surface expression. The distinct effects of both enzymes on the HLA-B*51 peptidome provide a basis for their differential association with Behçet's disease and suggest a pathogenetic role of the B*51:01 peptidome.
Collapse
Affiliation(s)
- Pablo Guasp
- ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | - Elena Lorente
- ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | | | - Eilon Barnea
- §Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Paolo Romania
- ¶Immuno-Oncology Laboratory, Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Doriana Fruci
- ¶Immuno-Oncology Laboratory, Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - JonasJ W Kuiper
- ‖Department of Ophthalmology, Laboratory of Translational Immunology, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Arie Admon
- §Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
33
|
Saulle I, Ibba SV, Torretta E, Vittori C, Fenizia C, Piancone F, Minisci D, Lori EM, Trabattoni D, Gelfi C, Clerici M, Biasin M. Endoplasmic Reticulum Associated Aminopeptidase 2 (ERAP2) Is Released in the Secretome of Activated MDMs and Reduces in vitro HIV-1 Infection. Front Immunol 2019; 10:1648. [PMID: 31379846 PMCID: PMC6646713 DOI: 10.3389/fimmu.2019.01648] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Haplotype-specific alternative splicing of the endoplasmic reticulum (ER) aminopeptidase type 2 (ERAP2) gene results in either full-length (FL, haplotype A) or alternatively spliced (AS, haplotype B) mRNA. HapA/HapA homozygous (HomoA) subjects show a reduced susceptibility to HIV-1 infection, probably secondary to the modulation of the antigen processing/presenting machinery. ERAP1 was recently shown to be secreted from the plasma membrane in response to activation; we investigated whether ERAP2 can be released as well and if the secreted form of this enzyme retains its antiviral function. Methods: Human monocyte derived macrophages (MDMs) were differentiated from peripheral blood mononuclear cells (PBMCs) isolated from 6 HomoA healthy controls and stimulated with IFNγ and LPS. ERAP2-FL secretion was evaluated by mass spectrometry. PBMCs (14 HomoA and 16 HomoB) and CD8-depleted PBMCs (CD8−PBMCs) (4 HomoA and 4 HomoB) were in vitro HIV-infected in the absence/presence of recombinant human ERAP2-FL (rhERAP2) protein; p24 viral antigen quantification was used to assess viral replication. IFNγ and CD69 mRNA expression, as well as the percentage of perforin-producing CD8+ T Lymphocytes, were analyzed 3 and 7-days post in vitro HIV-1-infection, respectively. The effect of rhERAP2 addition in cell cultures on T cell apoptosis, proliferation, activation, and maturation was evaluated as well on 24 h-stimulated PBMCs. Results: ERAP2 can be secreted from human MDMs in response to IFNγ/LPS stimulation. Notably, the addition of rhERAP2 to PBMC and CD8−PBMC cultures resulted in the reduction of viral replication, though these differences were statistically significant only in PBMCs (p < 0.05 in both HomoA and HomoB). This protective effect was associated with an increase in IFNγ and CD69 mRNA expression and in the percentage of perforin-expressing CD107+CD8+ cells. RhERAP2 addition also resulted in an increase in CD8+ activated lymphocyte (CD25+HLA−DRII+) and Effector Memory/Terminally differentiated CD8+ T cells ratio. Conclusions: This is the first report providing evidence for the release of ERAP2 in the secretome of immunocompetent cells. Data herein also indicate that exogenous ERAP2-FL exerts its protective function against HIV-1 infection, even in HomoB subjects who do not genetically produce it. Presumably, this defensive extracellular feature is only partially dependent on immune system modulation.
Collapse
Affiliation(s)
- Irma Saulle
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Salomè Valentina Ibba
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Enrica Torretta
- Department of Biomedical Science for Health, University of Milan, Milan, Italy
| | - Cecilia Vittori
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Claudio Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | | - Davide Minisci
- Department of Infectious Disease, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Elisa Maria Lori
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Cecilia Gelfi
- Department of Biomedical Science for Health, University of Milan, Milan, Italy.,I.R.C.C.S Orthopaedic Institute Galeazzi, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Don C. Gnocchi Foundation IRCCS, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| |
Collapse
|
34
|
Kuśnierczyk P, Stratikos E. Endoplasmic reticulum aminopeptidases as a double-faced tool to increase or decrease efficiency of antigen presentation in health and disease. Hum Immunol 2019; 80:277-280. [PMID: 30928619 DOI: 10.1016/j.humimm.2019.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, The Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi, Athens, Greece
| |
Collapse
|
35
|
Kores K, Lešnik S, Bren U, Janežič D, Konc J. Discovery of Novel Potential Human Targets of Resveratrol by Inverse Molecular Docking. J Chem Inf Model 2019; 59:2467-2478. [PMID: 30883115 DOI: 10.1021/acs.jcim.8b00981] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Resveratrol is a polyphenol known for its antioxidant and anti-inflammatory properties, which support its use as a treatment for variety of diseases. There are already known connections of resveratrol to chemoprevention of cancer because of its ability to prevent tumor initiation and inhibit tumor promotion and progression. Resveratrol is also believed to be important in cardiovascular diseases and neurological disorders, such as Alzheimer's disease. Using an inverse molecular docking approach, we sought to find new potential targets of resveratrol. Docking of resveratrol into each ProBiS predicted binding site of >38 000 protein structures from the Protein Data Bank was examined, and a number of novel potential targets into which resveratrol was docked successfully were found. These explain known actions or predict new effects of resveratrol. The results included three human proteins that are already known to bind resveratrol. A majority of proteins discovered however have no already described connections with resveratrol. We report new potential target human proteins and proteins connected with different organisms into which resveratrol can dock. Our results reveal previously unknown potential target human proteins, whose connection with cardiovascular and neurological disorders could lead to new potential treatments for variety of diseases. We believe that our research could help in future experimental studies on revestratol bioactivity in humans.
Collapse
Affiliation(s)
- Katarina Kores
- University of Maribor , Faculty for Chemistry and Chemical Technology Maribor , Smetanova ulica 17 , SI-2000 Maribor , Slovenia
| | - Samo Lešnik
- National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia
| | - Urban Bren
- University of Maribor , Faculty for Chemistry and Chemical Technology Maribor , Smetanova ulica 17 , SI-2000 Maribor , Slovenia.,National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia.,University of Primorska , Faculty of Mathematics, Natural Sciences and Information Technology , Glagoljaška 8 , SI-6000 Koper , Slovenia
| | - Dušanka Janežič
- University of Primorska , Faculty of Mathematics, Natural Sciences and Information Technology , Glagoljaška 8 , SI-6000 Koper , Slovenia
| | - Janez Konc
- National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia.,University of Primorska , Faculty of Mathematics, Natural Sciences and Information Technology , Glagoljaška 8 , SI-6000 Koper , Slovenia
| |
Collapse
|
36
|
Ubaida-Mohien C, Gonzalez-Freire M, Lyashkov A, Moaddel R, Chia CW, Simonsick EM, Sen R, Ferrucci L. Physical Activity Associated Proteomics of Skeletal Muscle: Being Physically Active in Daily Life May Protect Skeletal Muscle From Aging. Front Physiol 2019; 10:312. [PMID: 30971946 PMCID: PMC6443906 DOI: 10.3389/fphys.2019.00312] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/07/2019] [Indexed: 01/18/2023] Open
Abstract
Muscle strength declines with aging and increasing physical activity is the only intervention known to attenuate this decline. In order to adequately investigate both preventive and therapeutic interventions against sarcopenia, a better understanding of the biological changes that are induced by physical activity in skeletal muscle is required. To determine the effect of physical activity on the skeletal muscle proteome, we utilized liquid-chromatography mass spectrometry to obtain quantitative proteomics data on human skeletal muscle biopsies from 60 well-characterized healthy individuals (20-87 years) who reported heterogeneous levels of physical activity (not active, active, moderately active, and highly active). Over 4,000 proteins were quantified, and higher self-reported physical activity was associated with substantial overrepresentation of proteins associated with mitochondria, TCA cycle, structural and contractile muscle, and genome maintenance. Conversely, proteins related to the spliceosome, transcription regulation, immune function, and apoptosis, DNA damage, and senescence were underrepresented with higher self-reported activity. These differences in observed protein expression were related to different levels of physical activity in daily life and not intense competitive exercise. In most instances, differences in protein levels were directly opposite to those reported in the literature observed with aging. These data suggest that being physically active in daily life has strong and biologically detectable beneficial effects on muscle.
Collapse
Affiliation(s)
- Ceereena Ubaida-Mohien
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Marta Gonzalez-Freire
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Alexey Lyashkov
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Ruin Moaddel
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Chee W Chia
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Eleanor M Simonsick
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Ranjan Sen
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|