1
|
Li YT, Liu CJ, Kao JH, Lin LF, Tu HC, Wang CC, Huang PH, Cheng HR, Chen PJ, Chen DS, Wu HL. Metastatic tumor antigen 1 contributes to hepatocarcinogenesis posttranscriptionally through RNA-binding function. Hepatology 2023; 77:379-394. [PMID: 35073601 DOI: 10.1002/hep.32356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS Both nuclear and cytoplasmic overexpression of metastatic tumor antigen 1 (MTA1) contributes to tumorigenesis of HCC. Most studies have focused on nuclear MTA1 whose function is mainly a chromatin modifier regulating the expression of various cancer-promoting genes. By contrast, the molecular mechanisms of cytoplasmic MTA1 in carcinogenesis remain elusive. Here, we reveal a role of MTA1 in posttranscriptional gene regulation. APPROACH AND RESULTS We conducted the in vitro and in vivo RNA-protein interaction assays indicating that MTA1 could bind directly to the 3'-untranslated region of MYC RNA. Mutation at the first glycine of the conserved GXXG loop within a K-homology II domain-like structure in MTA1 (G78D) resulted in the loss of RNA-binding activity. We used gain- and loss-of-function strategy showing that MTA1, but not the G78D mutant, extended the half-life of MYC and protected it from the lethal -7-mediated degradation. The G78D mutant exhibited lower activity in promoting tumorigenesis than wild-type in vitro and in vivo. Furthermore, RNA-immunoprecipitation sequencing analysis demonstrated that MTA1 binds various oncogenesis-related mRNAs besides MYC . The clinical relevance of cytoplasmic MTA1 and its interaction with MYC were investigated using HBV-HCC cohorts with or without early recurrence. The results showed that higher cytoplasmic MTA1 level and MTA1- MYC interaction were associated with early recurrence. CONCLUSIONS MTA1 is a generic RNA-binding protein. Cytoplasmic MTA1 and its binding to MYC is associated with early recurrence in patients with HBV-HCC. This function enables it to regulate gene expression posttranscriptionally and contributes to hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yung-Tsung Li
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
- Department of Internal Medicine , National Taiwan University Hospital , Taipei , Taiwan
- Graduate Institute of Clinical Medicine , National Taiwan University College of Medicine , Taipei , Taiwan
| | - Chun-Jen Liu
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
- Department of Internal Medicine , National Taiwan University Hospital , Taipei , Taiwan
- Graduate Institute of Clinical Medicine , National Taiwan University College of Medicine , Taipei , Taiwan
| | - Jia-Horng Kao
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
- Department of Internal Medicine , National Taiwan University Hospital , Taipei , Taiwan
- Graduate Institute of Clinical Medicine , National Taiwan University College of Medicine , Taipei , Taiwan
| | - Li-Feng Lin
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
| | - Hui-Chu Tu
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
| | - Chih-Chiang Wang
- Graduate Institute of Clinical Medicine , National Taiwan University College of Medicine , Taipei , Taiwan
| | - Po-Hsi Huang
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
| | - Huei-Ru Cheng
- Graduate Institute of Clinical Medicine , National Taiwan University College of Medicine , Taipei , Taiwan
| | - Pei-Jer Chen
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
- Department of Internal Medicine , National Taiwan University Hospital , Taipei , Taiwan
- Graduate Institute of Clinical Medicine , National Taiwan University College of Medicine , Taipei , Taiwan
| | - Ding-Shinn Chen
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
- Department of Internal Medicine , National Taiwan University Hospital , Taipei , Taiwan
- Graduate Institute of Clinical Medicine , National Taiwan University College of Medicine , Taipei , Taiwan
- Genomics Research Center , Academia Sinica , Taipei , Taiwan
| | - Hui-Lin Wu
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
- Graduate Institute of Clinical Medicine , National Taiwan University College of Medicine , Taipei , Taiwan
| |
Collapse
|
2
|
Screening of Proliferation-Related Genes and Pathological Changes in Thiram-Induced Tibial Dyschondroplasia. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6209047. [PMID: 35872845 PMCID: PMC9303149 DOI: 10.1155/2022/6209047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 06/07/2022] [Indexed: 11/29/2022]
Abstract
Materials and Methods Three hundred sixty (n = 360) broiler chickens were equally divided into control (C) and thiram (T) groups. Furthermore, the C and T groups were dividedinto 8-, 9-, 11-, and 13-day-old chickens. Results Clinically, it was observed that broiler chickens of group T had abnormal posture, gait, and lameness, and histopathological results revealed dead and abnormal chondrocytes of T group on day 6. Real-time qPCR results showed that HDAC1, MTA1, H4, and PCNA genes were significantly expressed (P < 0.05). HDAC1 was upregulated on days 1, 2, 4, and 6 (P < 0.01); MTA1 was upregulated on days 1 and 2 (P < 0.01); H4 was upregulated on days 2 and 4 (P < 0.01), and PCNA was downregulated on days 1, 2, and 4 (P < 0.01). Furthermore, IHC results of HDAC1 protein were significantly (P < 0.01) expressed in proliferative zone of day 1 and hypertrophic zone of day 6. MTA1 protein was significantly (P < 0.01) expressed on days 1, 2, and 6 in all zones, except prehypertrophic zone of day 2. Conclusion In conclusion, the mRNA expressions of HDAC1, MTA1, H4, and PCNA were differentially expressed in the chondrocytes of thiram-induced TD chickens. HDAC1 and MTA1 protein expression found involved and responsible in the abnormal chondrocytes' proliferation of broiler chicken.
Collapse
|
3
|
Li YT, Wu HL, Liu CJ. Molecular Mechanisms and Animal Models of HBV-Related Hepatocellular Carcinoma: With Emphasis on Metastatic Tumor Antigen 1. Int J Mol Sci 2021; 22:9380. [PMID: 34502289 PMCID: PMC8431721 DOI: 10.3390/ijms22179380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an important cause of cancer death worldwide, and hepatitis B virus (HBV) infection is a major etiology, particularly in the Asia-Pacific region. Lack of sensitive biomarkers for early diagnosis of HCC and lack of effective therapeutics for patients with advanced HCC are the main reasons for high HCC mortality; these clinical needs are linked to the molecular heterogeneity of hepatocarcinogenesis. Animal models are the basis of preclinical and translational research in HBV-related HCC (HBV-HCC). Recent advances in methodology have allowed the development of several animal models to address various aspects of chronic liver disease, including HCC, which HBV causes in humans. Currently, multiple HBV-HCC animal models, including conventional, hydrodynamics-transfection-based, viral vector-mediated transgenic, and xenograft mice models, as well as the hepadnavirus-infected tree shrew and woodchuck models, are available. This review provides an overview of molecular mechanisms and animal models of HBV-HCC. Additionally, the metastatic tumor antigen 1 (MTA1), a cancer-promoting molecule, was introduced as an example to address the importance of a suitable animal model for studying HBV-related hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yung-Tsung Li
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Hui-Lin Wu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chun-Jen Liu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
4
|
Li YT, Wu HL, Kao JH, Cheng HR, Ho MC, Wang CC, Chen PJ, Chen DS, Liu CJ. Expression of Metastatic Tumor Antigen 1 Splice Variant Correlates With Early Recurrence and Aggressive Features of Hepatitis B Virus-Associated Hepatocellular Carcinoma. Hepatology 2019; 70:184-197. [PMID: 30802976 DOI: 10.1002/hep.30581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/17/2019] [Indexed: 12/18/2022]
Abstract
Overexpression of metastatic tumor antigen 1 (MTA1) was correlated with poor prognosis of hepatitis B virus (HBV)-associated hepatocellular carcinoma (HBV-HCC). The aim of this study was to examine the clinical significance of the expression of MTA1 and its exon 4-excluded form (MTA1dE4), the most abundant spliced variant of MTA1, in patients receiving curative resection for HBV-HCC. We collected 102 patients with HBV-HCC and received curative resection retrospectively and examined the expressions level of total MTA1/MTA1dE4 in their paired nontumor and tumor liver tissues by using RT-qPCR. The association between MTA1/MTA1dE4 expression and various tumor features as well as tumor recurrence was analyzed. During the median follow-up period of 4 years, 25 patients (24.5%) showed early recurrence (within 12 months postresection) and 42 (54.5%) showed late recurrence. In Kaplan-Meier analysis, MTA1dE4 overexpression in tumor, but not MTA1, was associated with early recurrence (P = 0.0365), but not late recurrence. In multivariate analysis, only alpha-fetoprotein (AFP) ≥200 ng/mL (P = 0.006) and large tumor size (P = 0.027) were correlated with early recurrence. In the subgroup of patients with AFP <200 ng/mL, high MTA1dE4, but not total MTA1, expression could help predict early recurrence (P = 0.0195). In vitro, wound healing and invasion assays were performed in HCC cells, and MTA1dE4 was found to exhibit a higher ability in promoting migration and invasion of hepatoma cells than full-length MTA1. Conclusion: MTA1dE4 expression is correlated with more aggressive tumor characteristics and might serve as a more sensitive marker for early recurrence of HBV-HCC, especially for low-AFP patients.
Collapse
Affiliation(s)
- Yung-Tsung Li
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Hui-Lin Wu
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Jia-Horng Kao
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Huei-Ru Cheng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Chih Ho
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Chiang Wang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Jer Chen
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Ding-Shinn Chen
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Jen Liu
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
5
|
Abstract
To discuss the prognostic correlation between hepatitis B virus DNA (HBV DNA) level and HBV-related hepatocellular carcinoma (HCC) patients with microvascular invasion (MVI).Data from HCC patients undergoing hepatectomy with pathological evidence of MVI were retrospectively collected and 1:1 propensity scoring matching (PSM) analysis was performed. According to the HBV DNA levels before and after surgery, the disease-free survival (DFS) and overall survival (OS) were evaluated using the Kaplan-Meier method, and the Cox proportional hazards regression was used to analyze the risk factors associated with the postoperative prognosis. After 1:1 PSM, 139 pairs of patients were enrolled in the high preoperative HBV DNA level group (H group) and low preoperative HBV DNA level group (L group), and after operation, patients with high preoperative HBV DNA levels were divided into the persistently high HBV DNA level group (P group) and the decreased HBV DNA level group (D group).According to the multivariate analysis, the HBV DNA level of 2000 IU/ml or greater before operation was significantly associated with the DFS (hazard ratio, 1.322; 95%CI, 1.016-1.721) and OS (hazard ratio, 1.390; 95%CI, 1.023-1.888). A persistent HBV DNA level of 2,000 IU/ml or greater after operation was also the independent risk factor of DFS (hazard ratio, 1.421; 95%CI, 1.018-1.984) and OS (hazard ratio, 1.545; 95%CI, 1.076-2.219).For the HBV-related HCC patients with MVI, preoperative high HBV DNA copies are prognostication of poorer prognosis, and effective antivirus treatment would significantly improve the patients' prognosis.
Collapse
Affiliation(s)
- Lian Li
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu
| | - Bo Li
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu
| | - Ming Zhang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu
- Department of General Surgery, Mianzhu Hospital of West China hospital, Sichuan University, Mianzhu, Sichuan Province, China
| |
Collapse
|
6
|
Ma K, Fan Y, Hu Y. Prognostic and clinical significance of metastasis-associated gene 1 overexpression in solid cancers: A meta-analysis. Medicine (Baltimore) 2018; 97:e12292. [PMID: 30313027 PMCID: PMC6203568 DOI: 10.1097/md.0000000000012292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 08/16/2018] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND In the past 2 decades, metastasis-associated gene 1 (MTA1) has attracted attention for its close association with cancer progression and its roles in chromatin remodeling processes, making it a central gene in cancer. The present meta-analysis was performed to assess MTA1 expression in solid tumors. MATERIALS AND METHODS This analysis identified studies that evaluated the relationship between MTA1 expression and clinical characteristics or prognosis of patients with solid tumors via the PubMed, Cochrane Library, and Embase electronic databases. Fixed-effect and random-effect meta-analytical techniques were used to correlate MTA1 expression with outcome measures. The outcome variables are shown as odds ratio (OR) or hazard ratio (HR) with 95% confidence interval (CI). RESULTS Analysis of 40 cohort studies involving 4564 cancer patients revealed a significant association of MTA1 overexpression with tumor patient age (>50 vs. <50 years: combined OR 0.73, 95% CI 0.57-0.94), tumor grade (G3/4 vs. G1/2: combined OR 1.94, 95% CI 1.48-2.53), tumor size (>3 cm vs. <3 cm: combined OR 2.35, 95% CI 1.73-3.19), T stage (T3/4 vs. T1/2: combined OR 2.11, 95% CI 1.74-2.56), lymph node metastasis (yes vs. no: combined OR 2.92, 95% CI 2.26-3.75), distant metastasis (yes vs. no: combined OR 2.26, 95% CI 1.42-3.59), TNM stage (III/IV vs. I/II: combined OR 2.50, 95% CI 1.84-3.38), vascular invasion (yes vs. no: combined OR 2.26, 95% CI 1.92-3.56), and poor overall survival time (HR 1.83; 95% CI: 1.53-2.20; P = .000). CONCLUSIONS Our analyses demonstrate that MTA1 was an effective predictor of a worse prognosis in tumor patients. Moreover, MTA1 may play important role in tumor progression and outcome, and targeting MTA1 may be a new strategy for anti-cancer therapy.
Collapse
Affiliation(s)
- Ke Ma
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan
| | - Yangwei Fan
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China
| | - Yuan Hu
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China
| |
Collapse
|
7
|
Li YH, Zhong M, Zang HL, Tian XF. Mechanism of TRIM25 mediated ubiquitination of metastasis associated protein (MTA) 1 in normal liver cells. Exp Cell Res 2018; 371:250-254. [PMID: 30118695 DOI: 10.1016/j.yexcr.2018.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 02/02/2023]
Abstract
Ninety percent of all cancer related deaths happen due to metastatic progression. One important protein facilitating metastatic progression in hepatocellular carcinoma (HCC) is the metastasis associated 1 protein (MTA-1). We have earlier shown that in the context of HCC and normal liver cell lines, HuH6 and THLE-2, respectively. MTA-1 protein is actively stabilized in HCC cell lines and actively degraded in normal liver cells. We had also shown that TRIM25 is the E3 ligase that interacts with and degrades MTA-1 protein in normal liver cells. However, the exact mechanism by which TRIM25 degrades MTA-1 protein has still not been elucidated. In the study, we used both in situ prediction algorithms and mass spectrometry based post-translational modification analysis to map the lysine residues in MTA-1 that are polyubiquitinated. Whereas UbPred algorithm revealed a combination of medium and low confidence sites, it revealed only one high confidence lysine (K98) residue. The hCKSAAP_UbSite algorithm also predicted K98 site. Mass spectrometry analysis also showed that K98 has ubiquitin modification. Immunofluorescence analysis showed that in normal liver cell line, THLE-2, which has high expression of TRIM25, ectopically expressed FLAG-tagged wild-type MTA-1 was actively degraded, but the K98R mutant MTA-1 was not. In vitro ubiquitination assay using recombinant wild-type and K98R mutant MTA-1 confirmed that MTA-1 is poly-ubiquitinated at K98 residue by TRIM25. The K98R mutant had a longer half-life than wild-type MTA-1 protein in an in vitro protein stability assay. We establish that TRIM25 ubiquitinates MTA-1 at lysine 98 and degrades it normal liver cells.
Collapse
Affiliation(s)
- Yu-Hui Li
- Department of General Surgery, The China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Ming Zhong
- Respiratory Department, The China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Hong-Liang Zang
- Department of General Surgery, The China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Xiao-Feng Tian
- Department of General Surgery, The China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
8
|
Qian YY, Liu ZS, Yan HJ, Yuan YF, Levenson AS, Li K. Pterostilbene inhibits MTA1/HDAC1 complex leading to PTEN acetylation in hepatocellular carcinoma. Biomed Pharmacother 2018; 101:852-859. [PMID: 29635894 DOI: 10.1016/j.biopha.2018.03.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/03/2018] [Accepted: 03/05/2018] [Indexed: 02/03/2023] Open
Abstract
PURPOSE The aim of this study is to investigate the inhibition of cancer growth by pterostilbene through Metastasis-Associated Protein 1 (MTA1) and the histone deacetylase 1 (HDAC1) complex in hepatocellular carcinoma (HCC). METHODS We investigate the antitumor effects of pterostilbene (PTER) in HCC. The SMMC-7721 hepatoma cell line was cultured and treated with PTER for different time depending on the experiment. After treatment, we tested the cellular expression of proteins by Western blot and the expression of MTA1 mRNA by real-time PCR. And the immunoprecipitation was performed to confirm the acetylation in PTEN. Animal models have been established to confirm the anti-cancer effects of PTER. RESULTS PTER treatment could downregulate the expression of MTA1, and HDAC1 and elevates the Ac-PTEN ratio in tumors. The results suggest that PTER can decrease the expression of MTA1 and destabilize the MTA1/HDAC1 complex allowing acetylation/activation of PTEN on Lys402 site. The expression of MTA1 may be linked to cell apoptosis and invasion in HCC. CONCLUSION We demonstrated that PTER suppressed the growth, and invasion of HCC and was effective in regulating the levels of the MTA1/HDAC1/NuRD complex, promoting PTEN acetylation and apoptosis in HCC. Our findings suggest that the novel epigenetic nature of PTER anticancer activity opens up new avenues for primary chemoprevention, as well as anticancer and antimetastatic treatment.
Collapse
Affiliation(s)
- Yu-Yuan Qian
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhi-Su Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hua-Jun Yan
- Department of General Surgery, Central Hospital of Xiaogan, Xiaogan, Hubei, China
| | - Yu-Feng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Anait S Levenson
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kun Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
9
|
Li YT, Liu CJ, Su TH, Cheng HR, Jeng YM, Lin HL, Wang CC, Kao JH, Chen PJ, Chen DS, Wu HL. Characterization of metastatic tumor antigen 1 and its interaction with hepatitis B virus X protein in NF-κB signaling and tumor progression in a woodchuck hepatocellular carcinoma model. Oncotarget 2018; 7:47173-47185. [PMID: 27323415 PMCID: PMC5216933 DOI: 10.18632/oncotarget.9986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/28/2016] [Indexed: 12/18/2022] Open
Abstract
The metastatic tumor antigen 1 (MTA1) protein is associated with tumor invasiveness and poor prognosis in patients with hepatocellular carcinoma (HCC), particularly in those with hepatitis B virus (HBV)-related HCC. Chronically woodchuck hepatitis virus (WHV)-infected woodchuck is an ideal animal model for studying the pathogenesis of HBV-associated liver diseases, including HCC. To investigate the roles of MTA1 in HBV-associated hepatocarcinogenesis in the woodchuck model, we cloned the woodchuck MTA1 (wk-MTA1) complementary (c)DNA and characterized its molecular functions. The sequence and organization of the wk-MTA1 protein were highly conserved among different species. Similar to its expression in human HCC, wk-MTA1 was upregulated in woodchuck HCC, as determined at RNA and protein levels. Furthermore, an MTA1-spliced variant, wk-MTA1dE4, was overexpressed in woodchuck HCC, and it was attributed to approximately 50% of the total transcripts. The percentage of wk-MTA1dE4-overexpressed woodchuck HCCs was higher than that of the total wk-MTA1-overexpressed HCCs (77.8% vs 61.1%) and wk-MTA1dE4 may represent a more sensitive marker than the total wk-MTA1 in woodchuck HCC. We overexpressed or knocked down wk-MTA1 in a woodchuck HCC cell line and demonstrated that wk-MTA1 could interact with the WHV X protein (WHx) and play indispensable roles in WHx-mediated NF-κB activation and tumor cell migration- and invasion-promoting activities. In conclusion, our results support the hypothesis that woodchuck HCC recapitulates HBV-associated HCC with respect to the molecular characteristics of MTA1 and provides new clues for conducting mechanistic studies of MTA1 in HBV-associated hepatocarcinogenesis, including the possible clinical significance of wk-MTA1dE4.
Collapse
Affiliation(s)
- Yung-Tsung Li
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Jen Liu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Tung-Hung Su
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Huei-Ru Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Ming Jeng
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiu-Lin Lin
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Chiang Wang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Ding-Shinn Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Hui-Lin Wu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
10
|
Malisetty VL, Penugurti V, Panta P, Chitta SK, Manavathi B. MTA1 expression in human cancers - Clinical and pharmacological significance. Biomed Pharmacother 2017; 95:956-964. [PMID: 28915537 DOI: 10.1016/j.biopha.2017.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 02/09/2023] Open
Abstract
Remarkably, majority of the cancer deaths are due to metastasis, not because of primary tumors. Metastasis is one of the important hallmarks of cancer. During metastasis invasion of primary tumor cells from the site of origin to a new organ occurs. Metastasis associated proteins (MTAs) are a small family of transcriptional coregulators that are closely associated with tumor metastasis. These proteins are integral components of nuclear remodeling and deacetylation complex (NuRD). By virtue of being integral components of NuRD, these proteins regulate the gene expression by altering the epigenetic changes such as acetylation and methylation on the target gene chromatin. Among the MTA proteins, MTA1 expression is very closely correlated with the aggressiveness of several cancers that includes breast, liver, colon, pancreas, prostate, blood, esophageal, gastro-intestinal etc. Considering its close association with aggressiveness in human cancers, MTA1 may be considered as a potential therapeutic target for cancer treatment. The recent developments in its crystal structure further strengthened the idea of developing small molecule inhibitors for MTA1. In this review, we discuss the recent trends on the diverse functions of MTA1 and its role in various cancers, with the focus to consider MTA1 as a 'druggable' target in the control of human cancers.
Collapse
Affiliation(s)
| | - Vasudevarao Penugurti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Prashanth Panta
- Department of Oral Medicine and Radiology, MNR Dental College and Hospital, Sangareddy, Telangana, India
| | - Suresh Kumar Chitta
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapuramu, AP, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
11
|
Zang HL, Ren SN, Cao H, Tian XF. The ubiquitin ligase TRIM25 inhibits hepatocellular carcinoma progression by targeting metastasis associated 1 protein. IUBMB Life 2017; 69:795-801. [PMID: 28861931 DOI: 10.1002/iub.1661] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/10/2017] [Indexed: 11/11/2022]
Abstract
Metastasis associated 1 protein (MTA1) is one of the prime facilitators of metastatic progression in all solid tumors including hepatocellular carcinoma (HCC). However, the underlying regulatory mechanism of MTA1 expression in HCC is not clear. In this study, we evaluated MTA1 transcript and protein expression in HCC and normal hepatic cell lines. The results revealed that MTA1 protein expression had a significantly increase in HCC cell line, HuH6, compared with that in normal hepatic cell line, THLE-2. Determination of protein half-life using cycloheximide (CHX) treatment did not reveal any statistically significant difference in protein turn-over rates between THLE-2 (3.3 ± 0.25 h) and HuH6 (3.6 ± 0.15 h) cell lines. MTA1 protein level was stabilized in THLE-2 cells after treatment with MG-132 to levels similar to those observed in HuH6 cells. Mass spectrometric analysis of FLAG immunoprecipitates of FLAG-MTA1 transfected THLE-2 cells after MG-132 treated revealed candidate ubiquitin ligases that were interacting with MTA1. RNAi-mediated silencing of each prospective ubiquitin ligase in THLE-2 cells indicated that knockdown of TRIM25 resulted in stabilization of MTA1 protein, indicating TRIM25 as a putative E3 ligase for MTA1. Coimmunoprecipitation of FLAG-tagged MTA1, but not IgG, in MG-132 treated and untreated THLE-2 cells cotransfected with either FLAG-MTA1 or Myc-TRIM25 revealed robust polyubiquitinated MTA1, confirming that the TRIM25 is the ubiquitin ligase for MTA1 degradation. Overexpression of TRIM25 in HuH6 and RNAi mediated silencing of TRIM25 in THLE-2 cells inhibited and increased the cell migration and invasion, respectively. Analysis of The Cancer Genome Atlas data for assessment of TRIM25 transcript level and MTA1 protein expression in 25 HCC patients confirmed an inverse correlation between the expression of TRIM25 and MTA1. Cumulatively, our data reveal a novel mechanism of post-translational to regulate MTA1 expression in normal hepatic cells, which is repressed in HCC. © 2017 IUBMB Life, 69(10):795-801, 2017.
Collapse
Affiliation(s)
- Hong-Liang Zang
- Department of General Surgery, The China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Sheng-Nan Ren
- Department of General Surgery, The China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | | | - Xiao-Feng Tian
- Department of General Surgery, The China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Xue T, Feng W, Yu H, Zhu M, Fei M, Bao Y, Wang X, Ma W, Lv G, Guan J, Chen S. Metastasis-Associated Protein 1 Is Involved in Angiogenesis after Transarterial Chemoembolization Treatment. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6757898. [PMID: 28589145 PMCID: PMC5447282 DOI: 10.1155/2017/6757898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Transarterial chemoembolization (TACE), a well-established treatment for unresectable hepatocellular carcinoma (HCC), blocks the arterial blood supply to the tumor, which can be short-lived as development of collateral neovessels, leading to the failure of treatment. Metastasis-associated protein 1 (MTA1) is involved in development of tumors and metastases. However, the role of MTA1 in angiogenesis is still obscure. METHODS We detected the expression of MTA1 and hypoxia-inducible factor-1α (HIF-1α) and microvessel density (MVD) value in liver tumor tissues and tumor periphery before and after TACE treatment. Hepatocellular carcinoma cell line HepG2, tube formation assay, and chorioallantoic membrane (CAM) assay were applied to explore the mechanism of MTA1 in angiogenesis. RESULTS We found that expression of MTA1 increased after TACE treatment, especially in tumor periphery, which was accompanied by markedly elevated MVD value, indicating a significant correlation between MTA1 and MVD value. Moreover, MTA1 contributed to neovascularization of residual tumors. Cellular experiments further revealed that MTA1 increased the stability and the expression of HIF-1α, and overexpression of MTA1 enhanced tube formation and neovessels of chick embryos. CONCLUSIONS MTA1 is an active angiogenic regulator; our results shed light on better understanding in neovascularization, which are helpful to predict prognosis of TACE, and provide evidences for intervention to improve therapeutic effects on HCC.
Collapse
Affiliation(s)
- Tao Xue
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Laboratory of Molecular Medicine, First People's Hospital Affiliated to Huzhou University, Huzhou 313000, China
| | - Wenming Feng
- Department of Hepatobiliary Surgery, First People's Hospital Affiliated to Huzhou University, Huzhou 313000, China
| | - Hongbin Yu
- Department of Hepatobiliary Surgery, First People's Hospital Affiliated to Huzhou University, Huzhou 313000, China
| | - Ming Zhu
- Department of Nephrology, First People's Hospital Affiliated to Huzhou University, Huzhou 313000, China
| | - Maoyun Fei
- Department of Hepatobiliary Surgery, First People's Hospital Affiliated to Huzhou University, Huzhou 313000, China
| | - Ying Bao
- Department of Hepatobiliary Surgery, First People's Hospital Affiliated to Huzhou University, Huzhou 313000, China
| | - Xiaoyi Wang
- Department of Nephrology, First People's Hospital Affiliated to Huzhou University, Huzhou 313000, China
| | - Wenxue Ma
- Moores Cancer Center, University of California, San Diego, CA 92037, USA
| | - Guiyuan Lv
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jianming Guan
- Department of Ultrasound, First People's Hospital Affiliated to Huzhou University, Huzhou 313000, China
| | - Suhong Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
13
|
Wu YL, Hsu NY, Cheau-Feng Lin F, Lee H, Cheng YW. MiR-30c-2* negative regulated MTA-1 expression involved in metastasis and drug resistance of HPV-infected non-small cell lung cancer. Surgery 2016; 160:1591-1598. [PMID: 27506865 DOI: 10.1016/j.surg.2016.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/26/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND MiR-30c-2* is considered to be a tumor suppressor microRNA in various cancers and is associated with gemcitabine sensitivity of lung cancer cells. Downregulation of miR-30c-2* promotes tumor invasion via increased expression of metastasis-associated protein-1. We hypothesized that downregulated expression of miR-30c-2* was involved in human papillomavirus-associated lung tumorigenesis and drug resistance. METHODS We examined whether expression of human papillomavirus 16/18 oncoprotein and miR-30c-2*-associated genes could be linked to patient outcome by collecting 319 lung tumors from patients with non-small cell lung cancer to determine expression of human papillomavirus 16/18 E6 protein, miR-30c-2*, and miR-30c-2* downstream metastasis-associated protein-1 mRNA by immunohistochemical and real-time polymerase chain reaction analysis. RESULTS Our results showed that miR-30C-2* levels were increased 45-fold in the E6-knockdown TL-1 cells when compared with levels in the parental cells. More interestingly, metastasis-associated protein-1 expression correlated negatively with miR-30C-2* and positively with human papillomavirus 16 E6 protein expression in lung tumors from lung cancer patients. Metastasis-associated protein-1 expression levels in the tumor tissues correlated positively with tumor stage and nodal metastasis. Patients with high metastasis-associated protein-1 expression, and especially patients infected with human papillomavirus, experienced a poor clinical outcome, tumor recurrence, and a poor therapeutic response compared with those with low metastasis-associated protein-1 expression. CONCLUSION These results showed that miR-30C-2* and levels of downstream metastasis-associated protein-1 gene expression in the tumor tissues of patients could be useful in predicting clinical outcome and therapeutic response and in selecting useful therapeutic drugs for lung cancer patients, especially patients with human papillomavirus infection.
Collapse
Affiliation(s)
- Yi-Liang Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Nan-Yung Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Cancer Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan; Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan; Division of Thoracic Surgery, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo, China
| | - Frank Cheau-Feng Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Huei Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Cancer Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ya-Wen Cheng
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Cancer Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
14
|
Lamarca A, Mendiola M, Barriuso J. Hepatocellular carcinoma: Exploring the impact of ethnicity on molecular biology. Crit Rev Oncol Hematol 2016; 105:65-72. [PMID: 27372199 DOI: 10.1016/j.critrevonc.2016.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/15/2016] [Accepted: 06/14/2016] [Indexed: 01/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer in the world and the third leading cause of cancer-related death. The high rate of diagnosis in non-curable stages and the lack of novel active treatments make it necessary to review all the possible sources of misleading results in this scenario. The incidence of HCC shows clear geographical variation with higher annual incidence in Asia and Africa than in Western countries; we aimed to review the literature to find if there are different trends in the main activated molecular pathways. Hyperactivation of RAS/RAF/MEK/ERK and PI3K/AKT/mTOR signalling and epithelial to mesenchymal transition (EMT) process are more prevalent in the Western population; however, fibroblast growth factor (FGF), transforming growth factor β (TGFβ) and Notch pathways seems to be more relevant in Asian population. Whether these variations just reflect the distinct distribution of known causes of HCC or proper ethnical differences remain to be elucidated. Nevertheless, these clearly different patterns are relevant to regional or worldwide clinical trial design. If this information is neglected by sponsors and researchers the rate of failure in HCC trials will not improve.
Collapse
Affiliation(s)
- Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Marta Mendiola
- Cancer Molecular Pathology and Therapeutic Targets Research Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Jorge Barriuso
- Faculty of Life Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
15
|
Epigenomic regulation of oncogenesis by chromatin remodeling. Oncogene 2016; 35:4423-36. [PMID: 26804164 DOI: 10.1038/onc.2015.513] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/27/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023]
Abstract
Disruption of the intricate gene expression program represents one of major driving factors for the development, progression and maintenance of human cancer, and is often associated with acquired therapeutic resistance. At the molecular level, cancerous phenotypes are the outcome of cellular functions of critical genes, regulatory interactions of histones and chromatin remodeling complexes in response to dynamic and persistent upstream signals. A large body of genetic and biochemical evidence suggests that the chromatin remodelers integrate the extracellular and cytoplasmic signals to control gene activity. Consequently, widespread dysregulation of chromatin remodelers and the resulting inappropriate expression of regulatory genes, together, lead to oncogenesis. We summarize the recent developments and current state of the dysregulation of the chromatin remodeling components as the driving mechanism underlying the growth and progression of human tumors. Because chromatin remodelers, modifying enzymes and protein-protein interactions participate in interpreting the epigenetic code, selective chromatin remodelers and bromodomains have emerged as new frontiers for pharmacological intervention to develop future anti-cancer strategies to be used either as single-agent or in combination therapies with chemotherapeutics or radiotherapy.
Collapse
|
16
|
Deng L, Yang H, Tang J, Lin Z, Yin A, Gao Y, Wang X, Jiang R, Sun B. Inhibition of MTA1 by ERα contributes to protection hepatocellular carcinoma from tumor proliferation and metastasis. J Exp Clin Cancer Res 2015; 34:128. [PMID: 26503703 PMCID: PMC4624357 DOI: 10.1186/s13046-015-0248-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/19/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although expression of MTA1 inversely correlates with the nuclear localization of ERα, the effect and molecular mechanism of ERα regulation of MTA1 remain unknown. METHODS Quantitative real-time PCR and western blot analyses were used to measure levels of MTA1. The effect on HCC cell proliferation and invasion was assessed by EdU incorporation assays and Transwell, respectively. ShRNA and dual-luciferase assays were used to investigate the regulatory relationship between MTA1 and ERα in cell lines. RESULTS We found that MTA1 gene regulation by ERα may be influenced by nuclear corepressors. The MTA1 promoter has three functional ER-element half-sites that lead to decreased MTA1 transcription and expression. ERα overexpression suppressed the proliferation and invasion of hepatocellular carcinoma cells (HCC). In addition, overexpression of MTA1 attenuated ERα-mediated suppression of the proliferation and invasion of HCC cells and tumor formation in vivo. These results suggested feedback regulation between ERα and MTA1. In summary, our results demonstrated that ERα suppressed proliferation and invasion of human HCC cells through downregulation of MTA1 transcription. CONCLUSIONS Our study is an improved description of the mechanisms of the suppressive effect of ERα on HCCs, adding understanding to the gender disparity of HCC progression.
Collapse
Affiliation(s)
- Lei Deng
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Hui Yang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junwei Tang
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Zhe Lin
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Aihong Yin
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Yun Gao
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Xuehao Wang
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Runqiu Jiang
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China.
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, P.R. China.
| | - Beicheng Sun
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China.
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, P.R. China.
| |
Collapse
|
17
|
Zhang H, Zhu X, Li N, Li D, Sha Z, Zheng X, Wang H. miR-125a-3p targets MTA1 to suppress NSCLC cell proliferation, migration, and invasion. Acta Biochim Biophys Sin (Shanghai) 2015; 47:496-503. [PMID: 25998575 DOI: 10.1093/abbs/gmv039] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 03/13/2015] [Indexed: 12/18/2022] Open
Abstract
Metastasis-associated gene 1 (MTA1) is associated with cell growth, metastasis, and survival in non-small-cell lung cancer (NSCLC). Several previous reports have demonstrated that microRNAs affect gene expression through interaction between their seed region and the 3'-untranslated region of the target mRNA, resulting in post-transcriptional regulation. The aim of this study was to identify miRNAs that suppress malignancy in NSCLC cells by targeting MTA1. Two human NSCLC cell lines were analyzed for the expression of MTA1 by quantitative RT-PCR and western blotting after transfection with MTA1 mimics. A luciferase reporter assay was established to test the direct connection between MTA1 and its upstream miRNAs. Cell proliferation was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, 5-ethynyl-2'-deoxyuridine analysis, and colony formation assay. Cell migration and invasive capacity were evaluated by wound-healing assay and transwell assay. The miRNA/MTA1 axis was also probed by quantitative RT-PCR and western blotting in samples from eight NSCLC patients. Among the candidate miRNAs, miR-125a-3p was shown to post-transcriptionally regulate MTA1 in NSCLC cells. These data were reinforced by the luciferase reporter assay, in addition to the demonstration that MTA1 is inversely correlated with miR-125a-3p in NSCLC tissues. Furthermore, miR-125a-3p was found to inhibit NSCLC cell proliferation, migration, and invasion, through the same mechanisms of down-regulated MTA1. Our report demonstrates that miR-125a-3p inhibits the proliferation, migration, and invasion of NSCLC cells through down-regulation of MTA1, indicating the role of the miR-125a-3p/MTA1 axis in NSCLC, and may provide novel insight into the molecular mechanisms underpinning the disease and potential therapeutic targets.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoxia Zhu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Na Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dianhe Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhou Sha
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaokang Zheng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haofei Wang
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
18
|
Abstract
Since the initial recognition of the metastasis-associated protein 1 (MTA1) as a metastasis-relevant gene approximately 20 years ago, our appreciation for the complex role of the MTA family of coregulatory proteins in human cancer has profoundly grown. MTA proteins consist of six family members with similar structural units and act as central signaling nodes for integrating upstream signals into regulatory chromatin-remodeling networks, leading to regulation of gene expression in cancer cells. Substantial experimental and clinical evidence demonstrates that MTA proteins, particularly MTA1, are frequently deregulated in a wide range of human cancers. The MTA family governs cell survival, the invasive and metastatic phenotypes of cancer cells, and the aggressiveness of cancer and the prognosis of patients with MTA1 overexpressing cancers. Our discussion here highlights our current understanding of the regulatory mechanisms and functional roles of MTA proteins in cancer progression and expands upon the potential implications of MTA proteins in cancer biology and cancer therapeutics.
Collapse
Affiliation(s)
- Da-Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Epigenetics in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Rakesh Kumar
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Cellular Oncology, University of Texas M.D., Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
19
|
Dhar S, Kumar A, Li K, Tzivion G, Levenson AS. Resveratrol regulates PTEN/Akt pathway through inhibition of MTA1/HDAC unit of the NuRD complex in prostate cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:265-75. [PMID: 25447541 DOI: 10.1016/j.bbamcr.2014.11.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/22/2014] [Accepted: 11/04/2014] [Indexed: 01/31/2023]
Abstract
Metastasis associated protein 1 (MTA1) is a component of the nucleosome remodeling and deacetylating (NuRD) complex which mediates gene silencing and is overexpressed in several cancers. We reported earlier that resveratrol, a dietary stilbene found in grapes, can down-regulate MTA1. In the present study, we show that PTEN is inactivated by MTA1 in prostate cancer cells. Further, we show that resveratrol promotes acetylation and reactivation of PTEN via inhibition of the MTA1/HDAC complex, resulting in inhibition of the Akt pathway. In addition, we show that MTA1 knockdown is sufficient to augment acetylation of PTEN indicating a crucial role of MTA1 itself in the regulation of PTEN acetylation contributing to its lipid phosphatase activity. Acetylated PTEN preferentially accumulates in the nucleus where it binds to MTA1. We also show that MTA1 interacts exclusively with PTEN acetylated on Lys¹²⁵ and Lys¹²⁸, resulting in diminished p-Akt levels. Finally, using orthotopic prostate cancer xenografts, we demonstrate that both resveratrol treatment and MTA1 knockdown enhance PTEN levels leading to a decreased p-Akt expression and proliferation index. Taken together, our results indicate that MTA1/HDAC unit is a negative regulator of PTEN which facilitates survival pathways and progression of prostate cancer and that resveratrol can reverse this process through its MTA1 inhibitory function.
Collapse
Affiliation(s)
- Swati Dhar
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Avinash Kumar
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kun Li
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Guri Tzivion
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Anait S Levenson
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA; Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
20
|
Liu J, Wang H, Ma F, Xu D, Chang Y, Zhang J, Wang J, Zhao M, Lin C, Huang C, Qian H, Zhan Q. MTA1 regulates higher-order chromatin structure and histone H1-chromatin interaction in-vivo. Mol Oncol 2015; 9:218-235. [PMID: 25205035 PMCID: PMC5528677 DOI: 10.1016/j.molonc.2014.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/04/2014] [Accepted: 08/18/2014] [Indexed: 11/27/2022] Open
Abstract
In the current study, for the first time, we found that metastasis-associated gene 1 (MTA1) was a higher-order chromatin structure organizer that decondenses the interphase chromatin and mitotic chromosomes. MTA1 interacts dynamically with nucleosomes during the cell cycle progression, prominently contributing to the mitotic chromatin/chromosome structure transitions at both prophase and telophase. We showed that the decondensation of interphase chromatin by MTA1 was independent of Mi-2 chromatin remodeling activity. H1 was reported to stabilize the compact higher-order chromatin structure through its interaction with DNA. Our data showed that MTA1 caused a reduced H1-chromatin interaction in-vivo. Moreover, the dynamic MTA1-chromatin interaction in the cell cycle contributed to the periodical H1-chromatin interaction, which in turn modulated chromatin/chromosome transitions. Although MTA1 drove a global decondensation of chromatin structure, it changed the expression of only a small proportion of genes. After MTA1 overexpression, the up-regulated genes were distributed in clusters along with down-regulated genes on chromosomes at parallel frequencies.
Collapse
Affiliation(s)
- Jian Liu
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China; Medical Research Center, Beijing ChaoYang Hospital, Capital Medical University, Beijing 100020, China
| | - Haijuan Wang
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Fei Ma
- Department of Medical Oncology, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, State Key Laboratory of Molecular Oncology, Beijing 100021, China
| | - Dongkui Xu
- Department of Abdominal Surgery, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, State Key Laboratory of Molecular Oncology, Beijing 100021, China
| | - Yanan Chang
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Jinlong Zhang
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Jia Wang
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Mei Zhao
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Chen Lin
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Changzhi Huang
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China.
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China.
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China.
| |
Collapse
|
21
|
Abstract
Gene mutation's role in initiating carcinogenesis has been controversial, but it is consensually accepted that both carcinogenesis and cancer metastasis are gene-regulated processes. MTA1, a metastasis-associated protein, has been extensively researched, especially regarding its role in cancer metastasis. In this review, I try to elucidate MTA1's role in both carcinogenesis and metastasis from a different angle. I propose that MTA1 is a stress response protein that is upregulated in various stress-related situations such as heat shock, hypoxia, and ironic radiation. Cancer cells are mostly living in a stressful environment of hypoxia, lack of nutrition, and immune reaction attacks. To cope with all these stresses, MTA1 expression is upregulated, plays a role of master regulator of gene expression, and helps cancer cells to survive and migrate out of their original dwelling.
Collapse
Affiliation(s)
- Rui-An Wang
- State Key Lab for Cancer Biology, Department of Pathology, Xijing Hospital, Xi'an, China,
| |
Collapse
|
22
|
Ning Z, Gan J, Chen C, Zhang D, Zhang H. Molecular functions and significance of the MTA family in hormone-independent cancer. Cancer Metastasis Rev 2014; 33:901-19. [PMID: 25341508 DOI: 10.1007/s10555-014-9517-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The members of the metastasis-associated protein (MTA) family play pivotal roles in both physiological and pathophysiological processes, especially in cancer development and metastasis, and their role as master regulators has come to light. Due to the fact that they were first identified as crucial factors in estrogen receptor-mediated breast cancer metastasis, most of the early studies focused on their hormone-dependent functions. However, the accumulating evidence shows that the members of MTA family are deregulated in most, if not all, the cancers studied so far. Therefore, the levels as well as the activities of the MTA family members are widely accepted as potential biomarkers for diagnosis, prognosis, and predictors of overall survival. They function differently in different cancers with specific mechanisms. p53 and HIF-1α appear to be the respectively common upstream and downstream regulator of the MTA family in both development and metastasis of a wide spectrum of cancers. Here, we review the expression and clinical significance of the MTA family, focusing on hormone-independent cancers. To illustrate the molecular mechanisms, we analyze the MTA family-related signaling pathways in different cancers. Finally, targeting the MTA family directly or the pathways involved in the MTA family indirectly could be invaluable strategies in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Zhifeng Ning
- Laboratory for Translational Oncology, Basic Medicine College, Hubei University of Science and Technology, Xianning, Hubei Province, 437100, China
| | | | | | | | | |
Collapse
|
23
|
Abstract
Among the genes that were found to be abundantly overexpressed in highly metastatic rat cell lines compared to poorly metastatic cell lines, we identified a completely novel complementary DNA (cDNA) without any homologous or related genes in the database in 1994. The full-length cDNA of this rat gene was cloned, sequenced, and named metastasis-associated gene 1 (mta1), and eventually, its human cDNA counterpart, MTA1, was also cloned and sequenced by our group. MTA1 has now been identified as one of the members of a gene family (MTA gene family) and the products of the MTA genes, the MTA proteins, are transcriptional co-regulators that function in histone deacetylation and nucleosome remodeling and have been found in nuclear histone remodeling complexes. Furthermore, MTA1 along with its protein product MTA1 has been repeatedly and independently reported to be overexpressed in a vast range of human cancers and cancer cell lines compared to non-cancerous tissues and cell lines. The expression levels of MTA1 correlate well with the malignant properties of human cancers, strongly suggesting that MTA1 and possibly other MTA proteins (and their genes) could be a new class of molecular targets for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yasushi Toh
- Department of Gastroenterological Surgery, National Kyushu Cancer Center, 3-1-1 Notame, Minami-ku, Fukuoka, 811-1395, Japan,
| | | |
Collapse
|
24
|
Ryu SH, Jang MK, Kim WJ, Lee D, Chung YH. Metastatic tumor antigen in hepatocellular carcinoma: golden roads toward personalized medicine. Cancer Metastasis Rev 2014; 33:965-80. [PMID: 25325987 DOI: 10.1007/s10555-014-9522-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC), a prototype of hypervascular tumors, is one of the most common malignancies in the world, especially hyperendemic in the Far East where chronic hepatitis B virus (HBV) infection is highly prevalent. It is characterized by the clinical feature of a poor prognosis or a high mortality due to its already far advanced stages at diagnosis. It is so multifactorial that hepatocarcinogenesis cannot be explained by a single molecular mechanism. To date, a number of pathways have been known to contribute to the development, growth, angiogenesis, and even metastasis of HCC. Among the various factors, metastatic tumor antigens (MTAs) or metastasis-associated proteins have been vigorously investigated as an intriguing target in the field of hepatocarcinogenesis. According to recent studies including ours, MTAs are not only involved in the HCC development and growth (molecular carcinogenesis), but also closely associated with the post-operative recurrence and a poor prognosis or a worse response to post-operative anti-cancer therapy (clinical significance). Herein, we review MTAs in light of their essential structure, functions, and molecular mechanism in hepatocarcinogenesis. We will also focus in detail on the interaction between hepatitis B x protein (HBx) of HBV and MTA in order to clarify the HBV-associated HCC development. Finally, we will discuss the prognostic significance and clinical application of MTA in HCC. We believe that this review will help clinicians to understand the meaning and use of the detection of MTA in order to more effectively manage their HCC patients.
Collapse
Affiliation(s)
- Soo Hyung Ryu
- Department of Internal Medicine, Inje University College of Medicine, Seoul Paik Hospital, Seoul, South Korea
| | | | | | | | | |
Collapse
|
25
|
Abstract
Metastasis-associated gene or metastasis tumor antigen 1 (MTA1) is a new member of cancer progression-related gene family. It was first identified in rat mammary adenocarcinoma and later recognized as an important constituent of nucleosomal remodeling complex (NuRD), displaying dual regulatory functions as a co-repressor and co-activator for a large number of genes. Chromatin remodelers are ATP-dependent multi-protein chromatin modifying machines. These complexes alter the nucleosome positioning regulating the accessibility of genomic DNA to various transcription factors and thus modulate eukaryotic gene transcription. Since its identification two decades ago, MTA1 has been reported to be overexpressed in many cancers. Moreover, its overexpression has also been correlated with transformation and tumor progression. Furthermore, MTA1 has been shown to modulate the response of several tumor suppressor genes like p53 and oncogenes like c-myc. Taken together, current literature suggests that MTA proteins, especially MTA1, act as a master co-regulatory molecule involved in the carcinogenesis and progression of various malignant tumors. The primary focus of this review is to provide an overview of the MTA proteins with special emphasis on its role in cancer and use as a marker for cancer progression and potential target for therapy.
Collapse
Affiliation(s)
- Ekjot Kaur
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | | | | |
Collapse
|
26
|
Abstract
The subcellular localization of a protein is closely linked to and indicates its function. The metastatic tumor antigen (MTA) family has been under continuous investigation since its identification two decades ago. MTA1, MTA2, and MTA3 are the main members of the MTA family. MTA1, as the representative member of this family, has been shown to be widely expressed in both embryonic and adult tissues, as well as in normal and cancerous conditions, indicating that MTA1 has functions both in physiological and pathological contexts. MTA1 is expressed at a higher level in most cancers than in their normal tissue counterparts. Even in normal cells, MTA1 levels vary a great deal from tissue to tissue. Importantly, MTA1 shows a multiple localization pattern in the cell, as do MTA2 and MTA3. Different MTA components in different subcellular compartments may exert different molecular functions in the cell. Previous studies revealed that MTA1 and MTA2 are predominately localized to the nucleus, while MTA3 is observed in both the nucleus and cytoplasm. Recent studies have reported that MTA1 is located in the nucleus, cytoplasm, and the nuclear envelope. In the nucleus, MTA1 dynamically interacts with chromatin in a MTA1-K532 methylation-dependent manner, whereas cytoplasmic MTA1 binds to the microtubule skeleton. MTA1 also shows a dynamic distribution during the cell cycle. Further investigations are needed to identify the exact subcellular localizations of MTA proteins. We review the sub-cellular localization patterns of the MTA family members and give a comprehensive overview of their respective molecular activities in multiple contexts.
Collapse
Affiliation(s)
- Jian Liu
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | | | | | | |
Collapse
|
27
|
Al-Bader MD, Kilarkaje N, El-Farra A, Al-Abdallah AA. Expression and subcellular localization of metastasis-associated protein 1, its short form, and estrogen receptors in rat placenta. Reprod Sci 2014; 22:484-94. [PMID: 25217305 DOI: 10.1177/1933719114549851] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Metastasis-associated protein 1 (MTA1) and its short form (MTA1s) regulate the function of estrogen receptors (ERs). Estrogens, via ERs, affect placental growth and fetal development, a process that may involve MTA1 signaling. Expression of MTA1, MTA1s, ERα, and ERβ genes and proteins in rat placentas was studied on 16, 19, and 21 days of gestation (dg). The ERβ messenger RNA decreased significantly toward the end of gestation, whereas its protein level increased in the nuclear fraction on 21 dg. Both MTA1 and MTA1s increased with gestation. Decidual, trophoblast giant, glycogen, and villous trophoblast cells expressed MTA1, ERα, and ERβ proteins on all dg with colocalization of MTA1 with ERα and ERβ in the nucleus and cytoplasm. Expression of MTA1 suggests a possible role in regulating placental functions; considering the repressive function of MTA1 on ERs, the expression of MTA1 suggests that placental cells may be less sensitive to estrogens during late pregnancy.
Collapse
Affiliation(s)
| | | | - Aseel El-Farra
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait
| | | |
Collapse
|
28
|
MIYASHITA TOMOHARU, TAJIMA HIDEHIRO, MUNEMOTO MASAYOSHI, SHAH FURHAWNA, HARMON JOHNW, WATANABE TOSHIFUMI, SHOJI MASATOSHI, OKAMOTO KOICHI, NAKANUMA SHINICHI, SAKAI SEISHO, KINOSHITA JUN, MAKINO ISAMU, NAKAMURA KEISHI, HAYASHI HIRONORI, OYAMA KATSUNOBU, INOKUCHI MASAFUMI, NAKAGAWARA HISATOSHI, TAKAMURA HIROYUKI, NINOMIYA ITASU, KITAGAWA HIROHISA, FUSHIDA SACHIO, MUKAISHO KENICHI, FUJIMURA TAKASHI, OHTA TETSUO. Impact of histone deacetylase 1 and metastasis-associated gene 1 expression in esophageal carcinogenesis. Oncol Lett 2014; 8:758-764. [PMID: 25009653 PMCID: PMC4081431 DOI: 10.3892/ol.2014.2176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 04/24/2014] [Indexed: 02/06/2023] Open
Abstract
Animal models are important for the development of novel therapies for esophageal cancer. Histone deacetylase 1 (HDAC1)/metastasis-associated gene (MTA1) complexes inhibit p53 acetylation and thus, inhibit p53-induced apoptosis. The aim of the present study was to evaluate HDAC1 and MTA1 expression in esophageal carcinogenesis in rats. The rats underwent a total gastrectomy followed by esophagojejunostomy to induce chronic duodenal content reflux esophagitis. The rats were sacrificed sequentially at 20, 30, 40 and 50 weeks post-surgery and the esophagi were examined. Immunohistochemical analysis was conducted to assess the expression and localization of HDAC1 and MTA1. At 20 weeks post-surgery, squamous proliferative hyperplasia and Barrett's metaplasia (BM) were observed. While, adenocarcinoma-associated BM and squamous cell carcinoma were observed at 30-50 weeks post-surgery. The nuclear expression of HDAC1 and MTA1 was observed in all of the stages of squamous carcinogenesis and adenocarcinogenesis, although not in the normal esophageal epithelium. The expression of HDAC1 and MTA1 may be involved in duodenoesophageal reflux-induced neoplastic transformation of the esophageal mucosa into cancer cells with squamous and adeno differentiation.
Collapse
Affiliation(s)
- TOMOHARU MIYASHITA
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - HIDEHIRO TAJIMA
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - MASAYOSHI MUNEMOTO
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - FURHAWN A. SHAH
- Department of Surgery, Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - JOHN W. HARMON
- Department of Surgery, Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - TOSHIFUMI WATANABE
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - MASATOSHI SHOJI
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - KOICHI OKAMOTO
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - SHINICHI NAKANUMA
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - SEISHO SAKAI
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - JUN KINOSHITA
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - ISAMU MAKINO
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - KEISHI NAKAMURA
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - HIRONORI HAYASHI
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - KATSUNOBU OYAMA
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - MASAFUMI INOKUCHI
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - HISATOSHI NAKAGAWARA
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - HIROYUKI TAKAMURA
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - ITASU NINOMIYA
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - HIROHISA KITAGAWA
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - SACHIO FUSHIDA
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - KENICHI MUKAISHO
- Department of Pathology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - TAKASHI FUJIMURA
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - TETSUO OHTA
- Department of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| |
Collapse
|
29
|
Liu J, Xu D, Wang H, Zhang Y, Chang Y, Zhang J, Wang J, Li C, Liu H, Zhao M, Lin C, Zhan Q, Huang C, Qian H. The subcellular distribution and function of MTA1 in cancer differentiation. Oncotarget 2014; 5:5153-5164. [PMID: 24970816 PMCID: PMC4148129 DOI: 10.18632/oncotarget.2095] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/10/2014] [Indexed: 12/28/2022] Open
Abstract
The functions and mechanisms of metastasis-associated protein 1 (MTA1) in cancer progression are still unclear due to a lagged recognition of the subcellular localization. In the present study, using multiple molecular technologies we confirmed for the first time that MTA1 localizes to the nucleus, cytoplasm and nuclear envelope. MTA1 is primarily localized in the nucleus of normal adult tissues but in the cytoplasm of embryonic tissues. While in colon cancer, both distributions have been described. Further investigation revealed that MTA1 localizes on the nuclear envelope in a translocated promoter region (TPR)-dependent manner, while in the cytoplasm, MTA1 shows an obvious localization on microtubules. Both nuclear and cytoplasmic MTA1 are associated with cancer progression. However, these functions may be associated with different mechanisms because only nuclear MTA1 has been associated with cancer differentiation. Overexpression of MTA1 in HCT116 cells inhibited differentiation and promoted proliferation, whereas MTA1 knockdown resulted in cell differentiation and death. Theses results not only suggest that nuclear MTA1 is a good marker for cancer differentiation diagnosis and a potential target for the treatment of cancers but also reveal the necessity to differentially examine the functions of nuclear and cytoplasmic MTA1.
Collapse
Affiliation(s)
- Jian Liu
- State Key Laboratory of Molecular Oncology; Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
- Medical Research Center, Beijing ChaoYang Hospital, Capital Medical University, Beijing, China
| | - Dongkui Xu
- Department of Abdominal Surgery, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Haijuan Wang
- State Key Laboratory of Molecular Oncology; Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Zhang
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yanan Chang
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Jinlong Zhang
- State Key Laboratory of Molecular Oncology; Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Wang
- State Key Laboratory of Molecular Oncology; Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Chunxiao Li
- State Key Laboratory of Molecular Oncology; Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Huan Liu
- State Key Laboratory of Molecular Oncology; Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Mei Zhao
- State Key Laboratory of Molecular Oncology; Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Lin
- State Key Laboratory of Molecular Oncology; Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology; Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Changzhi Huang
- State Key Laboratory of Molecular Oncology; Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology; Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
30
|
Song Q, Zhang H, Wang M, Song W, Ying M, Fang Y, Li Y, Chao Y, Zhu X. MTA1 promotes nasopharyngeal carcinoma growth in vitro and in vivo. J Exp Clin Cancer Res 2013; 32:54. [PMID: 23941622 PMCID: PMC3751420 DOI: 10.1186/1756-9966-32-54] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/12/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The prognostic value of metastasis-associated gene 1 (MTA1) in nasopharyngeal carcinoma (NPC) has been suggested. However, there is still no direct evidence that MTA1 promotes NPC growth in vivo. In this study, we aimed to investigate the function of MTA1 in the regulation of NPC cell proliferation and tumorigenesis in vitro and in vivo. METHODS Stable MTA1 knockdown or overexpression NPC cell lines were employed. The effects of MTA1 depletion or overexpression on cell proliferation, colony formation, cell cycle progression were examined by MTT, colony formation and flow cytometry assay. The effects of MTA1 depletion on tumor growth in vivo were examined in mouse xenograft model. RESULTS MTA1 knockdown or overexpression drastically changed the proliferation, colony formation and cell cycle of NPC cells in vitro. MTA1 depletion significantly suppressed NPC tumorigenesis in vivo. CONCLUSION MTA1 promotes NPC cell proliferation via enhancing G1 to S phase transition, leading to increased tumor growth. Targeting MTA1 is a promising approach to reduce tumor burden of NPC.
Collapse
Affiliation(s)
- Qingcui Song
- Cancer Research Institute, Key Lab for Transcriptomics and Proteomics of Human Fatal Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Hong Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Min Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wen Song
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Min Ying
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuan Fang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yiyi Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yilan Chao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaoxia Zhu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
31
|
Lee D, Chung YH, Kim JA, Park WH, Jin YJ, Shim JH, Ryu SH, Jang MK, Yu E, Lee YJ. Safety and efficacy of adjuvant pegylated interferon therapy for metastatic tumor antigen 1-positive hepatocellular carcinoma. Cancer 2013; 119:2239-46. [PMID: 23564564 DOI: 10.1002/cncr.28082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Metastatic tumor antigen 1 (MTA1) overexpression is closely associated with postoperative recurrence of hepatocellular carcinoma (HCC). It has been suggested that pegylated interferon (Peg-IFN) can prevent the occurrence of HCC in patients who have chronic viral hepatitis. In this study, the authors examined whether postoperative adjuvant Peg-IFN therapy can reduce the recurrence of MTA1-positive HCC after curative surgical resection. METHODS In this case-control study, 93 patients with MTA1-positive HCC who underwent curative surgical resection were prospectively enrolled. The median patient age was 53 years (range, 27-78); there were 65 men and 28 women; the etiology was hepatitis B virus (HBV) in 77 patients, hepatitis C virus (HCV) in 6 patients, and non-HBV/non-HCV in 10 patients; 31 patients received Peg-IFN (Peg-INTRON) subcutaneously at a dose of 50 μg per week for 12 months (the Peg-IFN group); and the remaining 62 patients were followed only and did not receive any adjuvant therapies (control group). Patients were followed every 1 to 3 months for a median of 24 months. RESULTS HCC recurred postoperatively in 26 of 93 patients (28%), and 9 patients (10%) died during follow-up. The overall cumulative recurrence rates were significantly lower in the Peg-IFN group than in the control group (7% and 14% vs. 24% and 34% at 1 year and 2 years, respectively; P < .05). In addition, the 1-year and 2-year cumulative survival rates were higher in the Peg-IFN group compared with the control group (100% vs. 93% and 100% vs. 87%, respectively; P < .05). In multivariate analysis, the receipt of adjuvant Peg-IFN therapy, in addition to having a lower Cancer of the Liver Italian Program score and being a woman, was an independent, favorable factor for a lower risk of postoperative recurrence. CONCLUSIONS The current data indicate that adjuvant Peg-IFN therapy may reduce the recurrence of HCC in patients who have MTA1-positive HCC after curative surgical resection.
Collapse
Affiliation(s)
- Danbi Lee
- Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tuncay Cagatay S, Cimen I, Savas B, Banerjee S. MTA-1 expression is associated with metastasis and epithelial to mesenchymal transition in colorectal cancer cells. Tumour Biol 2013; 34:1189-204. [PMID: 23371285 DOI: 10.1007/s13277-013-0662-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/09/2013] [Indexed: 12/11/2022] Open
Abstract
Although metastasis associated protein 1 (MTA1) has been widely linked to tumor metastasis, the relevant mechanisms remain to be elucidated, especially in colorectal cancer (CRC). Here, we have investigated the link between MTA1, metastasis and epithelial-mesenchymal transition (EMT) in CRC. Eighteen normal colon tissues and 91 resected tumor samples were analyzed for MTA1 expression by immunohistochemistry (IHC). IHC indicated low or no nuclear MTA1 expression in the normal tissues and significantly higher expression in Grade II, Grade III and liver metastasis tumors. No statistically significant difference was observed in MTA1 expression between Grade III and liver metastatic tumors. To demonstrate the functional importance of MTA1 in vitro, the gene was silenced in HCT-116 cells and LoVo cells and overexpressed in HCT-116 cells. MTA1 overexpression in HCT-116 cells enhanced proliferation, adhesion to fibronectin, motility, migration, invasion through Matrigel, anchorage-independent growth, neoangiogenesis and induced a loss of apoptosis. Silencing of MTA1 resulted in a reversal of all of these features. Mechanistically, MTA1 silencing caused an increase in the epithelial markers E-cadherin and ZO-1 and a decrease in the mesenchymal marker vimentin while MTA1 overexpression caused an increase in vimentin expression. Moreover, MTA1 enhanced the expression of Snai1 and Slug; silencing of MTA1 reduced their recruitment to the promoter of E-cadherin, thereby leading to its expression. MTA1 is highly expressed in higher grade tumors and is important in the orchestration of various phenotypic changes in CRC, most likely by inducing EMT. This further corroborates its role as a master regulator in tumorigenesis.
Collapse
Affiliation(s)
- Seda Tuncay Cagatay
- Department of Biological Sciences, Z-16, Middle East Technical University, 06800, Ankara, Turkey
| | | | | | | |
Collapse
|
33
|
Critelli RM, Cariani E, Villa E. Expression Profiling of Hepatocellular Carcinoma. CANCER GENOMICS 2013:163-184. [DOI: 10.1007/978-94-007-5842-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
34
|
Jin YJ, Chung YH, Kim JA, Park WH, Lee D, Seo DD, Ryu SH, Jang MK, Yu E, Lee YJ. Factors predisposing metastatic tumor antigen 1 overexpression in hepatitis B virus associated hepatocellular carcinoma. Dig Dis Sci 2012; 57:2917-23. [PMID: 22777614 DOI: 10.1007/s10620-012-2296-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 06/13/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND/AIM Overexpression of metastatic tumor antigen-1 (MTA-1) is suggested to be associated with frequent postoperative recurrence and poor survival of hepatocellular carcinoma (HCC) patients. In this study, we intended to determine clinical factors predisposing the overexpression of MTA-1 in patients with hepatitis B virus (HBV)-associated HCC and also examine whether MTA-1 overexpression affects the survival periods of these patients treated with curative surgical resection. METHODS A total of 303 patients with HBV-associated HCC who underwent curative surgical resection were subjected. The expressions of MTA-1 in HCC and surrounding non-tumor liver tissues were evaluated using the immunohistochemical method. The clinical, radiological and histological characteristics of the patients were analyzed in relation to the expression of MTA-1 to find predisposing factors of MTA-1 overexpression. RESULTS MTA-1 was overexpressed in 104 HCC tissues (34.3 %) and none of the surrounding non-tumor tissues. Clinically, MTA-1 overexpression was significantly associated with younger age, female gender, higher serum alpha-fetoprotein level, and Child-Turcotte-Pugh class A. Also, portal vein thrombosis, microvascular invasion, capsular invasion and poorly histological differentiation were associated with overexpression of MTA-1. The cumulative survival rates were significantly lower in patients with MTA-1 overexpression compared with those in the MTA-1 negative group (P = 0.03). In addition to the overexpression of MTA-1, the presence of microvascular or capsular invasion was a significant factor determining the poor survival of the patients with HBV-associated HCC after curative resection. CONCLUSIONS MTA-1 is overexpressed in patients with HBV-associated HCC of invasive nature. MTA-1 overexpression is associated with shorter survival periods of patients with HBV-associated HCC after curative resection.
Collapse
Affiliation(s)
- Young-Joo Jin
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Epigenetic control of metastasis-associated protein 1 gene expression by hepatitis B virus X protein during hepatocarcinogenesis. Oncogenesis 2012; 1:e25. [PMID: 23552838 PMCID: PMC3503295 DOI: 10.1038/oncsis.2012.26] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Expression of metastasis-associated protein 1 (MTA1) gene correlates with the degree of invasion and metastasis in hepatocellular carcinoma (HCC). Expression of MTA1 is induced by hepatitis B virus X protein (HBx); however, little is known about the transcriptional regulation of MTA1 gene expression. Here, we report that the 5′-flanking region of the human MTA1 promoter contains two CpG islands. Transient expression of HBx in Chang liver cells increased the methylation of the CpG island1 from 18 to 49% when measured by bisulfite-modified direct sequencing. Chromatin immunoprecipitation showed that HBx recruited DNA methyltransferase 3a (DNMT3a) and DNMT3b to the CpG island1. In silico analysis of CpG island1 predicted the existence of putative p53-binding sequences. p53 was pulled down by a DNA probe encoding the p53-binding sequences but not by the methylated DNA probe. The mouse MTA1 promoter also contains a CpG island encoding a p53-binding sequence of which p53 binding was decreased in the presence of HBx, and the expression of MTA1 and DNMT3 was increased in the liver of HBx-transgenic mice. Comparison of MTA1 and DNMT3a expression in the human normal liver and HCC specimens produced a significant correlation coefficient >0.5 (r=0.5686, P=0.0001) for DNMT3a, and a marginally significant coefficient (r=0.3162, P=0.0103) for DNMT3b. These data show that HBx induces methylation of CpG island in the MTA1 promoter, which interferes with DNA binding of p53 in the specific DNA region. This result may explain the molecular mechanism responsible for the induction of MTA1 gene expression by HBx.
Collapse
|
36
|
Wang YC, Xu GL, Jia WD, Han SJ, Ren WH, Wang W, Liu WB, Zhang CH, Chen H. Estrogen suppresses metastasis in rat hepatocellular carcinoma through decreasing interleukin-6 and hepatocyte growth factor expression. Inflammation 2012; 35:143-9. [PMID: 21302136 DOI: 10.1007/s10753-011-9299-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metastasis remains one of the major challenges before hepatocellular carcinoma (HCC) is finally conquered. Estrogen has recently emerged as a protective factor in the development and progression of HCC, but whether and how it reduces metastasis of HCC remain to be elucidated. We conducted an in vivo highly metastatic rat HCC model in female Sprague-Dawley rats induced by diethylnitrosamine and N-nitrosomorpholine to examine the effects of estrogen on HCC metastasis. Moreover, female rats were randomly distributed into four groups: ovariectomy (OVX), sham operation, ovariectomy followed by 30 μg/kg body weight/day 17α-ethynylestradiol supplementation, and sexually intact control groups. Here, we show that, 60% lung metastasis was observed in the rats of OVX group, whereas 17-25% lung metastasis was found in rats of the other three groups. Furthermore, physiological doses of estrogen, no matter endogenous or exogenous, can suppress metastasis of HCC through decreasing interleukin-6 (IL-6) and hepatocyte growth factor (HGF) expression in the tumor microenvironment. In conclusion, the present study demonstrated that estrogen has the potential to inhibit lung metastasis from rat HCCs in vivo. Its mechanism of action may involve modulation of inflammatory tumor microenvironment by suppression of HGF and IL-6 production.
Collapse
Affiliation(s)
- Yong-Cang Wang
- Centre for Study of Liver Cancer, Affiliated Provincial Hospital, Anhui Medical University, No. 17, Lujiang Road, Hefei, 230001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Liu SL, Han Y, Zhang Y, Xie CY, Wang EH, Miao Y, Li HY, Xu HT, Dai SD. Expression of metastasis-associated protein 2 (MTA2) might predict proliferation in non-small cell lung cancer. Target Oncol 2012; 7:135-43. [PMID: 22585429 DOI: 10.1007/s11523-012-0215-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 04/24/2012] [Indexed: 11/26/2022]
Abstract
Metastatic tumor antigen 2 (MTA2) is a member of the MTA family that is closely associated with tumor progression and metastasis. In this study, the expression profile of MTA2 in 223 cases of non-small cell lung cancer (NSCLC) tissues and two lung cancer cell lines was investigated. Interestingly, we found MTA2, which was believed to have nuclear distribution only, was distributed in both nucleus and cytoplasm in normal and cancer cells. Nuclear MTA2 expression was detected in 148 cases of NSCLC (66.4%), and was correlated with advanced TNM stages (p=0.023), tumor size (p=0.036), and lymph node metastasis (p=0.004). Besides, the Ki-67 proliferation index was significantly higher in nuclear MTA2-positive tumors than in nuclear MTA2-negative tumors (r=0.538, p=0.006). However, there was no significant difference in cytoplasmic MTA2 status by age, gender, tumor stage, histology, grade, lymph node metastasis, and Ki-67 proliferation index. Univariate analysis revealed nuclear MTA2 expression was correlated with poor overall survival (p=0.035), whereas there was a nonsignificant trend in the same direction for cytoplasmic MTA2 (p=0.134). Multivariate Cox regression analysis revealed the overexpression of nuclear and cytoplasmic MTA2 not to be independent factors predictive of poor disease outcome. Our data suggested that MTA2 might play roles in both the nucleus and cytoplasm in the progression of NSCLC.
Collapse
Affiliation(s)
- Shu-Li Liu
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, 110001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lee SH, Chung YH, Kim JA, Lee D, Jin YJ, Shim JH, Jang MK, Cho EY, Shin ES, Lee JE, Park NH, Yu E, Lee YJ. Single nucleotide polymorphisms associated with metastatic tumour antigen 1 overexpression in patients with hepatocellular carcinoma. Liver Int 2012; 32:457-66. [PMID: 22098246 DOI: 10.1111/j.1478-3231.2011.02648.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/22/2011] [Indexed: 01/29/2023]
Abstract
BACKGROUNDS/AIMS Metastatic tumour antigen 1 (MTA1) promotes angiogenesis by stabilizing hypoxia-inducible factor-1α (HIF-1α), which is closely associated with frequent postoperative recurrence and poor survival in patients with HCC. In this study, we determined single nucleotide polymorphisms (SNPs) in angiogenesis-related genes that are associated with MTA1 overexpression in HCC tissues. METHODS A total of 376 patients with HCC who had received curative surgical resection or liver transplantation were enrolled (312/21/43; HBV/HCV/NBNC). MTA1 expression was determined via immunohistochemistry. Thirty-three common SNPs sites (frequency ≥5%) in the angiogenic protein gene that are closely connected to one another were selected, including MTA1, VEGF, HIF-1α, FGF-2, and IGF-II. RESULTS Expression of MTA1 was detected in 120 HCC tissues (31%). An A allele at position IVS4-81G/A of the MTA1 gene (P = 0.016) and the TT genotype at position +12916C of the VEGF gene (P = 0.023) were significantly associated with MTA1 overexpression. However, the TT genotype at position -13021C (P = 0.011) and the haplotypes CT-CT (-11228C; -13021C) of the IGF-II gene (P(cor) = 0.033) were more common in patients with MTA1-negative HCC. Using multivariate analysis, the A allele at IVS4-81G/A in MTA1 gene (P = 0.015) and a T allele (TT+CT genotype) at -13021C in IGF-II (P = 0.002) were independent risk factors in HCC recurrence after curative surgical resection. CONCLUSIONS The genetic polymorphisms IVS4-81G/A in MTA1 and +12916C in VEGF genes were correlated with MTA1 overexpression. The SNPs in MTA1 and IGF-II genes may be important risk factors for the recurrence of HCC.
Collapse
Affiliation(s)
- Sae Hwan Lee
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Boonyaratanakornkit V. Scaffolding proteins mediating membrane-initiated extra-nuclear actions of estrogen receptor. Steroids 2011; 76:877-84. [PMID: 21354435 DOI: 10.1016/j.steroids.2011.02.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/14/2011] [Accepted: 02/16/2011] [Indexed: 12/30/2022]
Abstract
Estrogen mediates biological effects on cell proliferation, differentiation, and homeostasis through estrogen receptor (ER). In addition to functioning as a ligand-activated nuclear transcription factor to directly regulate gene transcription, ER also mediates rapid activation of signaling pathways independent of its transcriptional activity. A subpopulation of ER localized to the cell membrane or cytoplasm has been proposed to mediate ER activation of signaling pathways. This review focuses on recent advances in our understanding of mechanisms responsible for ER cytoplasm/membrane localization, where rapid extra-nuclear signaling is initiated. These mechanisms include lipid modification of the receptor (palmitoylation) and interactions with membrane and cytoplasmic adaptor proteins including caveolins, striatin, p130Cas, Shc, HPIP, MTA-1s, and MNAR/PELP1. While it is clear that ER mediates rapid extra-nuclear signaling resulting in activation of signaling pathways such as Src/MAPK and PI-3 kinase/Akt, how ER extra-nuclear signaling influences overall ER/estrogen physiology is still not well understood. Future studies defining physiological roles of ER extra-nuclear actions and crosstalk with its nuclear counterparts will be important to our overall understanding of estrogen and ER biological functions.
Collapse
Affiliation(s)
- Viroj Boonyaratanakornkit
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, MS-130, Houston, TX 77030, USA.
| |
Collapse
|
40
|
Kai L, Wang J, Ivanovic M, Chung YT, Laskin WB, Schulze-Hoepfner F, Mirochnik Y, Satcher RL, Levenson AS. Targeting prostate cancer angiogenesis through metastasis-associated protein 1 (MTA1). Prostate 2011; 71:268-80. [PMID: 20717904 DOI: 10.1002/pros.21240] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 07/02/2010] [Indexed: 12/27/2022]
Abstract
BACKGROUND Metastasis-associated protein 1 (MTA1) is overexpressed in many forms of cancer types but its role in prostate cancer (PCa) progression and metastasis has not been explored. In this study, we addressed the functional and biological role of MTA1 in PCa. METHODS Gene expression profiling was used to determine MTA1 overexpression during PCa cell-bone interaction. Immunohistochemistry was used to detect MTA1 on tissue microarrays (TMA) and vascular endothelial growth factor (VEGF), CD31, and Ki67 in xenografts. We used retroviral or lentiviral RNAi transduction of PCa cells to establish MTA1 knockdowns. RT-PCR, Western blot, invasion, and endothelial cell migration assays were used to characterize the cells in vitro. The role of MTA1 in PCa tumorigenesis was evaluated in mouse xenografts. RESULTS We identified MTA1 as a component of bone metastasis signature in PCa, which suggested a possible role for MTA1 in PCa progression and metastasis. MTA1 was expressed at higher levels in PCa cell lines than in normal prostate epithelial cells. Silencing MTA1 significantly suppressed the invasion and angiogenic activity of the cells in vitro and delayed tumor formation and development in mouse xenografts. Tumors that express MTA1 had higher proliferative indices, secreted higher levels of VEGF and were more vascularized. Analysis of the human TMA showed positive correlation between MTA1 nuclear localization/staining intensity and PCa aggressiveness. CONCLUSIONS MTA1 pro-angiogenic and pro-invasive functions create permissive environment for PCa tumor growth and likely support metastasis. Taken together with its predictive values, MTA1 can be utilized both as a prognostic marker and a therapy target in PCa.
Collapse
Affiliation(s)
- Li Kai
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lee H, Ryu SH, Hong SS, Seo DD, Min HJ, Jang MK, Kwon HJ, Yu E, Chung YH, Kim KW. Overexpression of metastasis-associated protein 2 is associated with hepatocellular carcinoma size and differentiation. J Gastroenterol Hepatol 2009; 24:1445-50. [PMID: 19702911 DOI: 10.1111/j.1440-1746.2009.05965.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Metastasis is a multistep event in which neoplastic cells detach from the tumor, migrate, disseminate, extravasate, and eventually proliferate at the secondary distant sites. Hepatocellular carcinoma (HCC) is characterized by hypervascularity and frequent metastasis. Recently, metastasis-associated proteins were identified and named metastatic tumor antigens (MTA) 1, 2, and 3. They have been found to be contained in the nucleosome remodeling and histone deacetylase complex. MTA2 has been reported to interact with p53 and inhibit p53-mediated cell growth arrest and apoptosis by deacetylation. Although it has been reported that the expression of MTA1 is related to tumor progression and metastasis, it is still unclear how MTA2 is involved in HCC. In this study, we found that the overexpression of MTA2 is associated with HCC size and differentiation after hepatectomy. METHODS The expression of MTA2 was examined in 506 human HCC samples that underwent hepatic resection using tissue microarray. The expression of MTA2 was classified into 0, 1, 2, and 3, based on immunoreactivity. RESULTS The expression of MTA2 was predominantly localized to the nucleus. MTA2 was detected in 487 (96.2%) of the 506 human HCC samples. Notably, the MTA2 expression level strongly increased depending on the size and differentiation of HCC. CONCLUSIONS These findings indicate a tight correlation between the MTA2 expression level and HCC size and differentiation. Therefore, MTA2 might be a predictor of aggressive phenotypes and a possible target molecule for anticancer drug design in human HCC.
Collapse
Affiliation(s)
- Hyunseung Lee
- NeuroVascular Coordination Research Center, College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Johnson EE, Yamane BH, Buhtoiarov IN, Lum HD, Rakhmilevich AL, Mahvi DM, Gillies SD, Sondel PM. Radiofrequency ablation combined with KS-IL2 immunocytokine (EMD 273066) results in an enhanced antitumor effect against murine colon adenocarcinoma. Clin Cancer Res 2009; 15:4875-84. [PMID: 19638464 DOI: 10.1158/1078-0432.ccr-09-0110] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Radiofrequency ablation (RFA) is a common treatment modality for surgically unresectable tumors. However, there is a high rate of both local and systemic recurrence. EXPERIMENTAL DESIGN In this preclinical study, we sought to enhance the antitumor effect of RFA by combining it with huKS-IL2 immunocytokine [tumor-specific monoclonal antibody fused to interleukin-2 (IL2)] in mice bearing CT26-KS colon adenocarcinoma. Mice were treated with RFA, huKS-IL2 via intratumoral injection, or combination therapy. RESULTS Treatment of mice bearing s.c. tumors with RFA and huKS-IL2 resulted in significantly greater tumor growth suppression and enhanced survival compared with mice treated with RFA or huKS-IL2 alone. When subtherapeutic regimens of RFA or huKS-IL2 were used, tumors progressed in all treated mice. In contrast, the combination of RFA and immunocytokine resulted in complete tumor resolution in 50% of mice. Treatment of a tumor with RFA and intratumoral huKS-IL2 also showed antitumor effects against a distant untreated tumor. Tumor-free mice after treatment with RFA and huKS-IL2 showed immunologic memory based on their ability to reject subsequent challenges of CT26-KS and the more aggressive parental CT26 tumors. Flow cytometry analysis of tumor-reactive T cells from mice with complete tumor resolution showed that treatment with RFA and huKS-IL2 resulted in a greater proportion of cytokine-producing CD4 T cells and CD8 T cells compared with mice treated with RFA or huKS-IL2 alone. CONCLUSIONS These results show that the addition of huKS-IL2 to RFA significantly enhances the antitumor response in this murine model, resulting in complete tumor resolution and induction of immunologic memory.
Collapse
Affiliation(s)
- Erik E Johnson
- Departments of Surgery, Human Oncology, and Pediatrics and Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53792, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Li W, Ma L, Zhao J, Liu X, Li Z, Zhang Y. Expression profile of MTA1 in adult mouse tissues. Tissue Cell 2009; 41:390-9. [PMID: 19524276 DOI: 10.1016/j.tice.2009.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 04/03/2009] [Accepted: 04/10/2009] [Indexed: 01/08/2023]
Abstract
MTA1, as a constituent of the nucleosome-remodeling and -deacetylation complex (NuRD), is thought to modulate transcription by influencing the status of chromatin remodeling. Despite its strong correlation with the metastatic potential of several cancer cell lines and tissues, MTA1 can also regulate divergent cellular pathways by modifying the acetylation status of crucial target genes. However, its fundamental physiological functions have not been characterized. To further address the possible physiological role of this protein in mammals, the authors examined the expression pattern of mouse MTA1 in a variety of adult mouse tissues by a combination of techniques, including semi-quantitative RT-PCR, Western blotting and immunohistochemistry. Positive signals were observed on variety of tissues/cells in multiple systems including nervous, cardiovascular, respiratory, digestive, immune, endocrine, urinary, reproductive and sensory organ systems. MTA1 was localized in both the cytoplasm and the nuclei, and was accumulated in the nuclei. In mature mice, MTA1 expression was seen in cell types that constantly undergo proliferation or self-renewal, such as testis and cell types not constantly engaged in proliferation or self-renewal, such as brain, liver and kidney. This differential expression suggests that this protein serves distinct functions in murine organs.
Collapse
Affiliation(s)
- Wei Li
- Department of Human Anatomy, Histology and Embryology, The Fourth Military Medical University, Shaanxi Province, Xi'an, People's Republic of China
| | | | | | | | | | | |
Collapse
|
44
|
Yang H, Li TWH, Ko KS, Xia M, Lu SC. Switch from Mnt-Max to Myc-Max induces p53 and cyclin D1 expression and apoptosis during cholestasis in mouse and human hepatocytes. Hepatology 2009; 49:860-70. [PMID: 19086036 PMCID: PMC4427513 DOI: 10.1002/hep.22720] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED Toxic bile acids induce hepatocyte apoptosis, for which p53 and cyclin D1 have been implicated as underlying mediators. Both p53 and cyclin D1 are targets of c-Myc, which is also up-regulated in cholestasis. Myc and Mnt use Max as a cofactor for DNA binding. Myc-Max typically activates transcription via E-box binding. Mnt-Max also binds the E-box sequence but serves as a repressor and inhibits the enhancer activity of Myc-Max. The current work tested the hypothesis that the switch from Mnt-Max to Myc-Max is responsible for p53 and cyclin D1 up-regulation and apoptosis during cholestasis. Following common bile duct ligation or left hepatic bile duct ligation, the expression of p53, c-Myc, and cyclin D1 increased markedly, whereas Mnt expression decreased. Nuclear binding activity of Myc to the E-box element of p53 and cyclin D1 increased, whereas that of Mnt decreased in a time-dependent fashion. Lithocholic acid (LCA) treatment of primary human hepatocytes and HuH-7 cells induced a similar switch from Mnt to Myc and increased p53 and cyclin D1 promoter activity and endogenous p53 and cyclin D1 expression and apoptosis. Blocking c-Myc induction in HuH-7 cells prevented the LCA-mediated increase in p53 and cyclin D1 expression and reduced apoptosis. Lowering Mnt expression further enhanced LCA's inductive effect on p53 and cyclin D1. Bile duct-ligated mice treated with a lentivirus harboring c-myc small interfering RNA were protected from hepatic induction of p53 and cyclin D1, a switch from Mnt to Myc nuclear binding to E-box, and hepatocyte apoptosis. CONCLUSION The switch from Mnt to Myc during bile duct ligation and in hepatocytes treated with LCA is responsible for the induction in p53 and cyclin D1 expression and contributes to apoptosis.
Collapse
Affiliation(s)
- Heping Yang
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
45
|
Toh Y, Nicolson GL. The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. Clin Exp Metastasis 2008; 26:215-27. [PMID: 19116762 DOI: 10.1007/s10585-008-9233-8] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 12/12/2008] [Indexed: 01/10/2023]
Abstract
MTA (metastasis-associated gene) is a newly discovered family of cancer progression-related genes and their encoded products. MTA1, the first gene found in this family, has been repeatedly reported to be overexpressed along with its protein product MTA1 in a wide range of human cancers. In addition, the expression of MTA1/MTA1 correlates with the clinicopathological properties (malignant properties) of human cancers. MTA proteins are transcriptional co-repressors that function in histone deacetylation and are involved in the NuRD complex, which contains nucleosome remodeling and histone deacetylating molecules. MTA1 expression correlates with tumor formation in the mammary gland. In addition, MTA1 converts breast cancer cells to a more aggressive phenotype by repression of the estrogen receptor (ER) alpha trans-activation function through deacetylation of the chromatin in the ER-responsive element of ER-responsive genes. Furthermore, MTA1 plays an essential role in c-MYC-mediated cell transformation. Another member of this family, MTA3, is induced by estrogen and represses the expression of the transcriptional repressor Snail, a master regulator of "epithelial to mesenchymal transitions", resulting in the expression of the cell adhesion molecule E-cadherin and maintenance of a differentiated, normal epithelial phenotype in breast cells. In addition, tumor suppressor p53 protein is deacetylated and inactivated by both MTA1 and MTA2, leading to inhibition of growth arrest and apoptosis. Moreover, a hypoxia-inducible factor-1alpha (HIF-1alpha) is also deacetylated and stabilized by MTA1, resulting in angiogenesis. Thus, MTA proteins, especially MTA1, represent a possible set of master co-regulatory molecules involved in the carcinogenesis and progression of various malignant tumors. MTA proteins are proposed to be important new tools for clinical application in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yasushi Toh
- Department of Gastroenterological Surgery, National Kyushu Cancer Center, 3-1-1 Notame, Minami-ku, Fukuoka, Japan.
| | | |
Collapse
|
46
|
Lawless MW, Norris S, O'Byrne KJ, Gray SG. Targeting histone deacetylases for the treatment of disease. J Cell Mol Med 2008; 13:826-52. [PMID: 19175682 PMCID: PMC3823402 DOI: 10.1111/j.1582-4934.2008.00571.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ‘histone code’ is a well-established hypothesis describing the idea that specific patterns of post-translational modifications to histones act like a molecular ‘code’ recognized and used by non-histone proteins to regulate specific chromatin functions. One modification, which has received significant attention, is that of histone acetylation. The enzymes that regulate this modification are described as lysine acetyltransferases or KATs, and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. The pro-inflammatory environment is increasingly being recognized as a critical element for both degenerative diseases and cancer. The present review will discuss the current knowledge surrounding the clinical potential and current development of histone deacetylases for the treatment of diseases for which a pro-inflammatory environment plays important roles, and the molecular mechanisms by which such inhibitors may play important functions in modulating the pro-inflammatory environment.
Collapse
Affiliation(s)
- M W Lawless
- Centre for Liver Disease, School of Medicine and Medical Science, Mater Misericordiae University Hospital - University College Dublin, Dublin, Ireland
| | | | | | | |
Collapse
|
47
|
Kalra M, Mayes J, Assefa S, Kaul AK, Kaul R. Role of sex steroid receptors in pathobiology of hepatocellular carcinoma. World J Gastroenterol 2008; 14:5945-5961. [PMID: 18932272 PMCID: PMC2760195 DOI: 10.3748/wjg.14.5945] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 09/16/2008] [Accepted: 09/23/2008] [Indexed: 02/06/2023] Open
Abstract
The striking gender disparity observed in the incidence of hepatocellular carcinoma (HCC) suggests an important role of sex hormones in HCC pathogenesis. Though the studies began as early as in 1980s, the precise role of sex hormones and the significance of their receptors in HCC still remain poorly understood and perhaps contribute to current controversies about the potential use of hormonal therapy in HCC. A comprehensive review of the existing literature revealed several shortcomings associated with the studies on estrogen receptor (ER) and androgen receptor (AR) in normal liver and HCC. These shortcomings include the use of less sensitive receptor ligand binding assays and immunohistochemistry studies for ERalpha alone until 1996 when ERbeta isoform was identified. The animal models of HCC utilized for studies were primarily based on chemical-induced hepatocarcinogenesis with less similarity to virus-induced HCC pathogenesis. However, recent in vitro studies in hepatoma cells provide newer insights for hormonal regulation of key cellular processes including interaction of ER and AR with viral proteins. In light of the above facts, there is an urgent need for a detailed investigation of sex hormones and their receptors in normal liver and HCC. In this review, we systematically present the information currently available on androgens, estrogens and their receptors in normal liver and HCC obtained from in vitro, in vivo experimental models and clinical studies. This information will direct future basic and clinical research to bridge the gap in knowledge to explore the therapeutic potential of hormonal therapy in HCC.
Collapse
|
48
|
Yoo YG, Na TY, Seo HW, Seong JK, Park CK, Shin YK, Lee MO. Hepatitis B virus X protein induces the expression of MTA1 and HDAC1, which enhances hypoxia signaling in hepatocellular carcinoma cells. Oncogene 2008; 27:3405-13. [PMID: 18264140 DOI: 10.1038/sj.onc.1211000] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 11/06/2007] [Indexed: 02/06/2023]
Abstract
Expression level of metastasis-associated protein 1 (MTA1) is closely related to tumor growth and metastasis in various cancers. Although increased expression level of MTA1 was observed in hepatocellular carcinoma (HCC), role of MTA1 complex containing histone deacetylase (HDAC) in hepatitis B virus (HBV)-associated hepatocarcinogenesis has not been studied. Here, we demonstrated that HBx strongly induced the expression of MTA1 and HDAC1 genes at transcription level. MTA1 and HDAC1/2 physically associated with hypoxia-inducible factor-1 alpha (HIF-1 alpha) in vivo in the presence of HBx, which was abolished by knockdown of MTA1 by short interfering RNA (siRNA). HBx induced deacetylation of the oxygen-dependent degradation domain of HIF-1 alpha, which was accompanied with dissociation of prolyl hydroxylases and von Hippel-Lindau tumor suppressor from HIF-1 alpha. These results indicate that HBx-induced deacetylation is important for proteasomal degradation of HIF-1 alpha. Further, we observed that protein levels of MTA1 and HDAC1 were increased in the liver of HBx-transgenic mice. Also, there was a higher expression of HDAC1 in HCC than in the adjacent non-tumorous cirrhotic nodules in 10 out of 12 human HBV-associated HCC specimens. Together, our data indicate a positive cross talk between HBx and the MTA1/HDAC complex in stabilizing HIF-1 alpha, which may play a critical role in angiogenesis and metastasis of HBV-associated HCC.
Collapse
Affiliation(s)
- Y-G Yoo
- College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Ryu SH, Chung YH, Lee H, Kim JA, Shin HD, Min HJ, Seo DD, Jang MK, Yu E, Kim KW. Metastatic tumor antigen 1 is closely associated with frequent postoperative recurrence and poor survival in patients with hepatocellular carcinoma. Hepatology 2008; 47:929-36. [PMID: 18306220 DOI: 10.1002/hep.22124] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metastatic tumor antigen 1 (MTA1) is known to play a role in angiogenic processes as a stabilizer of hypoxia-inducible factor 1-alpha (HIF1-alpha). In this study, we examined whether overexpression of MTA1 affects the recurrence of hepatocellular carcinoma (HCC) after surgical resection and the survival of the patients. A total of 506 HCC patients who underwent hepatic resection were included in the study. They were followed up for a median of 43 months (range, 1-96 months) after hepatectomy. MTA1 expression levels were determined by the proportion of immunopositive cells (none, all negative; +, <50%; ++, >50%). The relationships between MTA1 expression and the HCC histological features, the appearance of recurrent HCC after surgical resection, and the survival of the patients were examined. Eighty-eight cases (17%) of the HCCs were positive for MTA1, although the surrounding liver tissues were all negative for MTA1; 62 cases were + and 26 cases were ++. Increased MTA1 expression levels in HCC were correlated with larger tumors (P = 0.04), perinodal extension (P = 0.03), and microvascular invasion (P = 0.008). Histological differentiation had marginal significance (P = 0.056). However, there was no association between MTA1 expression and age, sex, Child-Pugh class, and capsule invasion of HCC. Interestingly, MTA1 expression levels were significantly greater in hepatitis B virus (HBV)-associated HCC compared with hepatitis C virus (HCV)-associated HCC (P = 0.017). The cumulative recurrence rates of MTA1-positive HCCs were markedly greater than those of MTA1-negative HCCs (P < 0.0001). The cumulative survival rates of patients with MTA1-positive HCCs were significantly shorter than those of patients with MTA1-negative HCCs (P < 0.0001). In conclusion, our data indicate that MTA1 is closely associated with microvascular invasion, frequent postoperative recurrence, and poor survival of HCC patients, especially in those with HBV-associated HCC.
Collapse
Affiliation(s)
- Soo Hyung Ryu
- Department of Internal Medicine, University of Inje College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Manavathi B, Singh K, Kumar R. MTA family of coregulators in nuclear receptor biology and pathology. NUCLEAR RECEPTOR SIGNALING 2007; 5:e010. [PMID: 18174918 PMCID: PMC2121320 DOI: 10.1621/nrs.05010] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 10/09/2007] [Indexed: 01/16/2023]
Abstract
Nuclear receptors (NRs) rely on coregulators (coactivators and corepressors) to modulate the transcription of target genes. By interacting with nucleosome remodeling complexes, NR coactivators potentiate transcription, whereas corepressors inhibit transcription of the target genes. Metastasis-associated proteins (MTA) represent an emerging family of novel NR coregulators. In general, MTA family members form independent nucleosome remodeling and deacetylation (NuRD) complexes and repress the transcription of different genes by recruiting histone deacetylases onto their target genes. However, MTA1 also acts as a coactivator in a promoter-context dependent manner. Recent findings that repression of estrogen receptor transactivation functions by MTA1, MTA1s, and MTA2 and regulation of MTA3 by estrogen signaling have indicated the significance of these proteins in NR signaling. Here, we highlight the action of MTA proteins on NR signaling and their roles in pathophysiological conditions.
Collapse
Affiliation(s)
- Bramanandam Manavathi
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | | |
Collapse
|