1
|
Wendlinger S, Wohlfarth J, Siedel C, Kreft S, Kilian T, Junker S, Schmid L, Sinnberg T, Dischinger U, Heppt MV, Wistuba-Hamprecht K, Meier F, Erpenbeck L, Neubert E, Goebeler M, Gesierich A, Schrama D, Kosnopfel C, Schilling B. Susceptibility of Melanoma Cells to Targeted Therapy Correlates with Protection by Blood Neutrophils. Cancers (Basel) 2024; 16:1767. [PMID: 38730718 PMCID: PMC11083732 DOI: 10.3390/cancers16091767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Elevated levels of peripheral blood and tumor tissue neutrophils are associated with poorer clinical response and therapy resistance in melanoma. The underlying mechanism and the role of neutrophils in targeted therapy is still not fully understood. Serum samples of patients with advanced melanoma were collected and neutrophil-associated serum markers were measured and correlated with response to targeted therapy. Blood neutrophils from healthy donors and patients with advanced melanoma were isolated, and their phenotypes, as well as their in vitro functions, were compared. In vitro functional tests were conducted through nonadherent cocultures with melanoma cells. Protection of melanoma cell lines by neutrophils was assessed under MAPK inhibition. Blood neutrophils from advanced melanoma patients exhibited lower CD16 expression compared to healthy donors. In vitro, both healthy-donor- and patient-derived neutrophils prevented melanoma cell apoptosis upon dual MAPK inhibition. The effect depended on cell-cell contact and melanoma cell susceptibility to treatment. Interference with protease activity of neutrophils prevented melanoma cell protection during treatment in cocultures. The negative correlation between neutrophils and melanoma outcomes seems to be linked to a protumoral function of neutrophils. In vitro, neutrophils exert a direct protective effect on melanoma cells during dual MAPK inhibition. This study further hints at a crucial role of neutrophil-related protease activity in protection.
Collapse
Affiliation(s)
- Simone Wendlinger
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
- Mildred Scheel Early Career Center Wuerzburg, University Hospital Wuerzburg, 97080 Würzburg, Germany
| | - Jonas Wohlfarth
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Claudia Siedel
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Sophia Kreft
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Teresa Kilian
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Sarah Junker
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Luisa Schmid
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Tobias Sinnberg
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Ulrich Dischinger
- Department of Endocrinology and Diabetology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Markus V. Heppt
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Kilian Wistuba-Hamprecht
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Friedegund Meier
- Department of Dermatology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Skin Cancer Center at the University Cancer Centre Dresden and National Center for Tumor Diseases, 01307 Dresden, Germany
| | - Luise Erpenbeck
- Department of Dermatology, University of Münster, 48149 Münster, Germany
| | - Elsa Neubert
- Leiden Academic Centre for Drug Research, Leiden University, 2333 Leiden, The Netherlands
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen University, 37075 Göttingen, Germany
| | - Matthias Goebeler
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Anja Gesierich
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - David Schrama
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Corinna Kosnopfel
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
- Mildred Scheel Early Career Center Wuerzburg, University Hospital Wuerzburg, 97080 Würzburg, Germany
- Department of Hematology, Oncology and Pneumology, University Hospital Münster, 48149 Münster, Germany
| | - Bastian Schilling
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
2
|
Zhang L, Wang Q, Wang L, Xie L, An Y, Zhang G, Zhu W, Li Y, Liu Z, Zhang X, Tang P, Huo X, Guo X. OSskcm: an online survival analysis webserver for skin cutaneous melanoma based on 1085 transcriptomic profiles. Cancer Cell Int 2020; 20:176. [PMID: 32467670 PMCID: PMC7236197 DOI: 10.1186/s12935-020-01262-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background Cutaneous melanoma is one of the most aggressive and lethal skin cancers. It is greatly important to identify prognostic biomarkers to guide the clinical management. However, it is technically challenging for untrained researchers to process high dimensional profiling data and identify potential prognostic genes in profiling datasets. Methods In this study, we developed a webserver to analyze the prognostic values of genes in cutaneous melanoma using data from TCGA and GEO databases. The webserver is named Online consensus Survival webserver for Skin Cutaneous Melanoma (OSskcm) which includes 1085 clinical melanoma samples. The OSskcm is hosted in a windows tomcat server. Server-side scripts were developed in Java script. The database system is managed by a SQL Server, which integrates gene expression data and clinical data. The Kaplan–Meier (KM) survival curves, Hazard ratio (HR) and 95% confidence interval (95%CI) were calculated in a univariate Cox regression analysis. Results In OSskcm, by inputting official gene symbol and selecting proper options, users could obtain KM survival plot with log-rank P value and HR on the output web page. In addition, clinical characters including race, stage, gender, age and type of therapy could also be included in the prognosis analysis as confounding factors to constrain the analysis in a subgroup of melanoma patients. Conclusion The OSskcm is highly valuable for biologists and clinicians to perform the assessment and validation of new or interested prognostic biomarkers for melanoma. OSskcm can be accessed online at: http://bioinfo.henu.edu.cn/Melanoma/MelanomaList.jsp.
Collapse
Affiliation(s)
- Lu Zhang
- 1Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Qiang Wang
- 1Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Lijie Wang
- 1Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Longxiang Xie
- 1Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Yang An
- 1Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Guosen Zhang
- 1Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Wan Zhu
- 3Department of Anesthesia, Stanford University, Stanford, CA 94305 USA
| | - Yongqiang Li
- 1Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Zhihui Liu
- 1Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Xiaochen Zhang
- 1Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Panpan Tang
- 1Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Xiaozheng Huo
- 1Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Xiangqian Guo
- 1Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China.,2Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, 475004 Henan China
| |
Collapse
|
3
|
Obrador E, Liu-Smith F, Dellinger RW, Salvador R, Meyskens FL, Estrela JM. Oxidative stress and antioxidants in the pathophysiology of malignant melanoma. Biol Chem 2019; 400:589-612. [PMID: 30352021 DOI: 10.1515/hsz-2018-0327] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
Abstract
The high number of somatic mutations in the melanoma genome associated with cumulative ultra violet (UV) exposure has rendered it one of the most difficult of cancers to treat. With new treatment approaches based on targeted and immune therapies, drug resistance has appeared as a consistent problem. Redox biology, including reactive oxygen and nitrogen species (ROS and RNS), plays a central role in all aspects of melanoma pathophysiology, from initiation to progression and to metastatic cells. The involvement of melanin production and UV radiation in ROS/RNS generation has rendered the melanocytic lineage a unique system for studying redox biology. Overall, an elevated oxidative status has been associated with melanoma, thus much effort has been expended to prevent or treat melanoma using antioxidants which are expected to counteract oxidative stress. The consequence of this redox-rebalance seems to be two-fold: on the one hand, cells may behave less aggressively or even undergo apoptosis; on the other hand, cells may survive better after being disseminated into the circulating system or after drug treatment, thus resulting in metastasis promotion or further drug resistance. In this review we summarize the current understanding of redox signaling in melanoma at cellular and systemic levels and discuss the experimental and potential clinic use of antioxidants and new epigenetic redox modifiers.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| | - Feng Liu-Smith
- Department of Epdemiology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA
| | | | - Rosario Salvador
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| | - Frank L Meyskens
- Department of Epdemiology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
| | - José M Estrela
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
4
|
Increased expression of MMP-2 and MMP-9 indicates poor prognosis in glioma recurrence. Biomed Pharmacother 2019; 118:109369. [PMID: 31545229 DOI: 10.1016/j.biopha.2019.109369] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022] Open
Abstract
The main characteristic of glioma is recurrence, even after intensive multidisciplinary treatment. Studies show that enhanced invasive ability will increase the ability of tumor cells to escape from the primary tumor mass, which is a key factor contributing to tumor relapse and recurrence. In this study, we assessed the expression of MMP-2, MMP-9, two important matrix metallopeptidases that increase the invasive ability of glioma, and their suppressors, TIMP-1, TIMP-2 in glioma tissues from primary and recurrent glioma patients by immunohistochemistry. Glioma cells and nude mice were used for in vitro and in vivo studies. Results showed that the expression of MMP-2 and MMP-9 in recurrent gliomas were significantly higher than those in primary gliomas (P = 3.075 × 10-11, P = 1.510 × 10-5, respectively). We also found that radiotherapy increased the expression of MMP-9, but had no effect on MMP-2 and TIMP-1/2. With glioma cell line U251, we found that irradiation increased the expression of MMP-9 in vitro. Tumor tissues from an orthotopic xenograft model showed that after irradiation treatment, the expression of MMP-9 increased significantly in vivo. We also found that knocking down MMP-9 decreased irradiation-induced invasion obviously. Above all, we concluded that higher expressions of MMP-2/-9 indicate poor prognosis in glioma recurrence. The increased expression of MMP-9 after radiotherapy suggests that MMP-9 might be an important target in the radiosensitization of glioma.
Collapse
|
5
|
Wu D, Shi Z, Xu H, Chen R, Xue S, Sun X. Knockdown of Cripto-1 inhibits the proliferation, migration, invasion, and angiogenesis in prostate carcinoma cells. J Biosci 2018; 42:405-416. [PMID: 29358554 DOI: 10.1007/s12038-017-9700-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cripto-1 (CR-1) is a member of the epidermal growth factor-Cripto-1/FRL1/Cryptic gene family that plays a key role in the various malignant cancers. However, the role of CR-1 in prostate carcinoma (PCa) remains limited. The expression of CR-1 was down-regulated by small interfering RNA (siRNA). Western blot measured the expression levels of CR-1 and some related proteins. We performed Cell Counting Kit-8, 5-ethynyl-2-deoxyuridine (EdU) incorporation assay and flow cytometry to detect the cellular proliferation and cycle. The transwell assay was used to observe cellular migration and invasion. The ability of angiogenesis was evaluated by tube formation assay. Our results showed that CR-1 knockdown markedly inhibited cell proliferation and induced cycle arrest in G1 phase, as p21 and p27 were up-regulated, whereas cyclin D1 and cyclin E1 were diminished. Moreover, silencing of CR-1 dramatically inhibited cell migration and invasion, repressed matrix metalloproteinases, and disturbed epithelial-mesenchymal transition. CR-1 siRNA suppressed the secreted level of vascular endothelial growth factor, and reduced protein level of Vascular endothelial growth factor receptor 2. We further found that decreased CR-1 expression inhibited FAK/Src/PI3K and Wnt/b-catenin signalling in PCa cells. These results suggested CR-1 might be served as an effective therapeutic target in PCa.
Collapse
Affiliation(s)
- Ding Wu
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
6
|
Pautu V, Leonetti D, Lepeltier E, Clere N, Passirani C. Nanomedicine as a potent strategy in melanoma tumor microenvironment. Pharmacol Res 2017; 126:31-53. [PMID: 28223185 DOI: 10.1016/j.phrs.2017.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Abstract
Melanoma originated from melanocytes is the most aggressive type of skin cancer. Despite considerable progresses in clinical treatment with the discovery of BRAF or MEK inhibitors and monoclonal antibodies, the durability of response to treatment is often limited to the development of acquired resistance and systemic toxicity. The limited success of conventional treatment highlights the importance of understanding the role of melanoma tumor microenvironment in tumor developement and drug resistance. Nanoparticles represent a promising strategy for the development of new cancer treatments able to improve the bioavailability of drugs and increase their penetration by targeting specifically tumors cells and/or tumor environment. In this review, we will discuss the main influence of tumor microenvironment in melanoma growth and treatment outcome. Furthermore, third generation loaded nanotechnologies represent an exciting tool for detection, treatment, and escape from possible mechanism of resistance mediated by tumor microenvironment, and will be highlighted in this review.
Collapse
Affiliation(s)
- Vincent Pautu
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | | | - Elise Lepeltier
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Nicolas Clere
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Catherine Passirani
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France.
| |
Collapse
|
7
|
Siyer A, Karabulut YY, Ünal Ş, Derici D. Analyzing the Effect of c-myc Oncogene and Matrix Mettalloproteinase-2 Enzyme Ekspression on Metastasis and Prognosis of Malignant Melanoma. JOURNAL OF CLINICAL AND EXPERIMENTAL INVESTIGATIONS 2016. [DOI: 10.5799/jcei.328612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Andreucci E, Bianchini F, Biagioni A, Del Rosso M, Papucci L, Schiavone N, Magnelli L. Roles of different IRES-dependent FGF2 isoforms in the acquisition of the major aggressive features of human metastatic melanoma. J Mol Med (Berl) 2016; 95:97-108. [PMID: 27558498 DOI: 10.1007/s00109-016-1463-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 11/29/2022]
Abstract
Fibroblast growth factor 2 (FGF2) is involved in many physiological and pathological processes. Fgf2 deregulation contributes to the acquisition of malignant features of melanoma and other cancers. FGF2 is an alternative translation product expressed as five isoforms, a low-molecular-weight (18 KDa) and four high-molecular-weight (22, 22.5, 24, 34 KDa) isoforms, with different subcellular distributions. An internal ribosomal entry site (IRES) in its mRNA controls the translation of all the isoforms with the exception for the cap-dependent 34 KDa. The 18-KDa isoform has been extensively studied, while very few is known about the roles of high molecular weight isoforms. FGF2 is known to promote melanoma development and progression. To disclose the differential contribution of FGF2 isoforms in melanoma, we forced the expression of IRES-dependent low-molecular-weight (LMW, 18 KDa) and high-molecular-weight (HMW, 22, 22.5, 24 KDa) isoforms in a human metastatic melanoma cell line. This comparative study highlights that, while LMW isoform confers stem-like features to melanoma cells and promotes angiogenesis, HMW isoforms induce higher migratory ability and contribute to tumor perfusion by promoting vasculogenic mimicry (VM) when endothelial cell-driven angiogenesis is lacking. To conclude, FGF2 isoforms mainly behave in specific, antithetical manners, but can cooperate in different steps of tumor progression, providing melanoma cells with major malignant features. KEY MESSAGE FGF2 is an alternative translation product expressed as different isoforms termed LMW and HMW. FGF2 is involved in melanoma development and progression. HMW FGF2 isoforms enhance in vitro motility of melanoma cells. LMW FGF2 confers stem-like features and increases in vivo metastasization. LMW FGF2 promotes angiogenesis while HMW FGF2 induces vasculogenic mimicry.
Collapse
Affiliation(s)
- Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy.
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy.
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| |
Collapse
|
9
|
Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis. Int J Mol Sci 2016; 17:ijms17060868. [PMID: 27271600 PMCID: PMC4926402 DOI: 10.3390/ijms17060868] [Citation(s) in RCA: 670] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/13/2016] [Accepted: 05/30/2016] [Indexed: 12/23/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc-containing endopeptidases with an extensive range of substrate specificities. Collectively, these enzymes are able to degrade various components of extracellular matrix (ECM) proteins. Based on their structure and substrate specificity, they can be categorized into five main subgroups, namely (1) collagenases (MMP-1, MMP-8 and MMP-13); (2) gelatinases (MMP-2 and MMP-9); (3) stromelysins (MMP-3, MMP-10 and MMP-11); (4) matrilysins (MMP-7 and MMP-26); and (5) membrane-type (MT) MMPs (MMP-14, MMP-15, and MMP-16). The alterations made to the ECM by MMPs might contribute in skin wrinkling, a characteristic of premature skin aging. In photocarcinogenesis, degradation of ECM is the initial step towards tumor cell invasion, to invade both the basement membrane and the surrounding stroma that mainly comprises fibrillar collagens. Additionally, MMPs are involved in angiogenesis, which promotes cancer cell growth and migration. In this review, we focus on the present knowledge about premature skin aging and skin cancers such as basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma, with our main focus on members of the MMP family and their functions.
Collapse
Affiliation(s)
- Pavida Pittayapruek
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12000, Thailand.
| | - Jitlada Meephansan
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12000, Thailand.
| | - Ornicha Prapapan
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12000, Thailand.
| | - Mayumi Komine
- Department of Dermatology, Jichi Medical University, Tochigi 329-0498, Japan.
| | - Mamitaro Ohtsuki
- Department of Dermatology, Jichi Medical University, Tochigi 329-0498, Japan.
| |
Collapse
|
10
|
Xia Y, Wu S. Tissue inhibitor of metalloproteinase 2 inhibits activation of the β-catenin signaling in melanoma cells. Cell Cycle 2016; 14:1666-74. [PMID: 25839957 DOI: 10.1080/15384101.2015.1030557] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The tissue inhibitor of metalloproteinase (TIMP) family, including TIMP-2, regulates the activity of multifunctional metalloproteinases in pathogenesis of melanoma. The Wnt/β-catenin pathway is constitutively activated and plays a critical role in melanoma progression. However, the relationship between TIMP-2 expression and β-catenin activity is still unclear. We hypothesize that TIMP-2 over expression inhibits the activation of the Wnt/β-catenin pathway in melanoma cells. Protein expression, distribution, and transcriptional activity of β-catenin were assayed in established stable melanoma cell lines: parental A2058 expressing, A2058 T2-1 over-expressing (T2-1), and A2058 T2R-7 under-expressing (T2R-7) TIMP-2. Compared to T2-1 cells at the basal level, T2R-7 showed significantly lower amount protein and weaker immunofluorescence staining of β-catenin. This regulation is through posttranslational level via ubiquitination. Functionally, proliferation and cell growth were lower in T2R-7 compared to A2058 and T2-1. Lithium treatment was used to mimics activation of the Wnt/β-catenin pathway. In T2R-7 cells under-expressing TIMP2, lithium significantly increased total β-catenin, nuclear β-catenin, and its downstream protein phosphor-c-Myc (S62). Nuclear β-catenin staining was enhanced in T2R-7. Beta-catenin transcriptional activity and cell proliferation were also increased significantly. Axins inhibit β-catenin pathway via GSK-3 β. We further found the ratio of p-GSK-3 β (S9) to β-catenin and protein levels of Axins were significantly lower, whereas downstream Wnt 11 was high in T2R-7 treated with lithium. Collectively, the high level of TIMP-2 protein inhibits the activation of the Wnt/β-catenin pathway, thus suppressing proliferation. Insights in the molecular mechanisms of TIMP-2 may provide promising opportunities for anti-proliferative therapeutic intervention.
Collapse
Affiliation(s)
- Yuxuan Xia
- a Department of Biochemistry; Rush University ; Chicago , IL , USA
| | | |
Collapse
|
11
|
Lu J, Cheng Y, Zhang G, Tang Y, Dong Z, McElwee KJ, Li G. Increased expression of neuropilin 1 in melanoma progression and its prognostic significance in patients with melanoma. Mol Med Rep 2015; 12:2668-76. [PMID: 25954957 PMCID: PMC4464456 DOI: 10.3892/mmr.2015.3752] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 04/20/2015] [Indexed: 12/18/2022] Open
Abstract
Neuropilin 1 (NRP1), a receptor of vascular endothelial growth factor (VEGF), promotes angiogenesis, tumor growth, tumor invasion and metastasis. However, the function of NRP1 in melanoma progression, as well as the effect of NRP1 expression on the prognosis of patients with melanoma remains unknown. In the present study, NRP1 expression was examined in 460 cases of melanocytic lesions (28 common nevi, 51 dysplastic nevi, 250 primary melanoma and 131 metastatic melanoma) at different stages, using a tissue microarray. The correlation of NRP1 expression with melanoma progression, and its prognostic value in patients with melanoma was examined. In addition, the correlation between matrix metalloproteinase 2 (MMP2) and NRP1 expression in patients with melanoma was analyzed. The results demonstrated that NRP1 expression was significantly increased in primary (56%) and metastatic melanoma (62%), compared with common nevi (11%) and dysplastic nevi (24%). Notably, increased NRP1 expression was correlated with a poorer overall, and disease-specific, 10-year survival (P=0.03 and P=0.002, respectively). Multivariate Cox regression analyses indicated that NRP1 is an independent prognostic marker for melanoma. Furthermore, a significant positive correlation between NRP1 and MMP2 expression in melanoma biopsies was observed, and their concomitant expression was closely correlated with melanoma patient survival, further supporting the hypothesis that the expression of NRP1 is associated with melanoma invasion and metastasis. In conclusion, increased NRP1 expression is associated with disease progression and reduced survival in patients with melanoma, and is a promising prognostic molecular marker for this disease.
Collapse
Affiliation(s)
- Jing Lu
- Department of Dermatology and Skin Science, Research Pavilion, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V5Z IL8, Canada
| | - Yabin Cheng
- Department of Dermatology and Skin Science, Research Pavilion, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V5Z IL8, Canada
| | - Guohong Zhang
- Department of Dermatology and Skin Science, Research Pavilion, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V5Z IL8, Canada
| | - Yun Tang
- Department of Dermatology and Skin Science, Research Pavilion, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V5Z IL8, Canada
| | - Ziming Dong
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Kevin J McElwee
- Department of Dermatology and Skin Science, Research Pavilion, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V5Z IL8, Canada
| | - Gang Li
- Department of Dermatology and Skin Science, Research Pavilion, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V5Z IL8, Canada
| |
Collapse
|
12
|
Cheng Y, Lu J, Chen G, Ardekani GS, Rotte A, Martinka M, Xu X, McElwee KJ, Zhang G, Zhou Y. Stage-specific prognostic biomarkers in melanoma. Oncotarget 2015; 6:4180-9. [PMID: 25784655 PMCID: PMC4414181 DOI: 10.18632/oncotarget.2907] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/13/2014] [Indexed: 02/05/2023] Open
Abstract
The melanoma staging system proposed by the American Joint Committee on Cancer (AJCC) (which classifies melanoma patients into four clinical stages) is currently the most widely used tool for melanoma prognostication, and clinical management decision making by clinicians. However, multiple studies have shown that melanomas within specific AJCC Stages can exhibit varying progression and clinical outcomes. Thus, additional information, such as that provided by biomarkers is needed to assist in identifying the patients at risk of disease progression. Having previously found six independent prognostic biomarkers in melanoma, including BRAF, MMP2, p27, Dicer, Fbw7 and Tip60, our group has gone on to investigate if these markers are useful in risk stratification of melanoma patients in individual AJCC stages. First, we performed Kaplan-Meier survival and Cox proportional multivariate analyses comparing prognostication power of these markers in 254 melanoma patients for whom the expression levels were known, identifying the best performing markers as candidates for stage-specific melanoma markers. We then verified the results by incorporating an additional independent cohort (87 patients) and in a combined cohort (341 patients). Our data indicate that BRAF and MMP2 are optimal prognostic biomarkers for AJCC Stages I and II, respectively (P = 0.010, 0.000, Log-rank test); whereas p27 emerged as a good marker for AJCC Stages III/IV (0.018, 0.046, respectively, log-rank test). Thus, our study has identified stage-specific biomarkers in melanoma, a finding which may assist clinicians in designing improved personalized therapeutic modalities.
Collapse
Affiliation(s)
- Yabin Cheng
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jing Lu
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China
| | - Guangdi Chen
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Gholamreza Safaee Ardekani
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anand Rotte
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Magdalena Martinka
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xuezhu Xu
- Department of Dermatology, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Kevin J. McElwee
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guohong Zhang
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Youwen Zhou
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Pastushenko I, Vermeulen PB, Van den Eynden GG, Rutten A, Carapeto FJ, Dirix LY, Van Laere S. Mechanisms of tumour vascularization in cutaneous malignant melanoma: clinical implications. Br J Dermatol 2014; 171:220-33. [PMID: 24641095 DOI: 10.1111/bjd.12973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 01/02/2023]
Abstract
Malignant melanoma represents < 10% of all skin cancers but is responsible for the majority of skin-cancer-related deaths. Metastatic melanoma has historically been considered as one of the most therapeutically challenging malignancies. Fortunately, for the first time after decades of basic research and clinical investigation, new drugs have produced major clinical responses. Angiogenesis has been considered an important target for cancer treatment. Initial efforts have focused primarily on targeting endothelial and tumour-related vascular endothelial growth factor signalling. Here, we review different mechanisms of tumour vascularization described in melanoma and discuss the potential clinical implications.
Collapse
Affiliation(s)
- I Pastushenko
- Department of Dermatology, Hospital Clínico Universitario 'Lozano Blesa', Zaragoza, 50009, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Abbas O, Miller DD, Bhawan J. Cutaneous malignant melanoma: update on diagnostic and prognostic biomarkers. Am J Dermatopathol 2014; 36:363-79. [PMID: 24803061 DOI: 10.1097/dad.0b013e31828a2ec5] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The incidence of cutaneous malignant melanoma has rapidly increased in recent years in all parts of the world, and melanoma is a leading cause of cancer death. As even relatively small melanomas may have metastatic potential, accurate assessment of progression is critical. Although diagnosis of cutaneous malignant melanoma is usually based on histopathologic criteria, these criteria may at times be inadequate in differentiating melanoma from certain types of benign nevi. As for prognosis, tumor (Breslow) thickness, mitotic rate, and ulceration have been considered the most important prognostic indicators among histopathologic criteria. However, there are cases of thin primary melanomas that have ultimately developed metastases despite complete excision. Given this, an accurate assessment of melanoma progression is critical, and development of molecular biomarkers that identify high-risk melanoma in its early phase is urgently needed. Large-scale genomic profiling has identified considerable heterogeneity in melanoma and suggests subgrouping of tumors by patterns of gene expression and mutation will ultimately be essential to accurate staging. This subgrouping in turn may allow for more targeted therapy. In this review, we aim to provide an update on the most promising new biomarkers that may help in the identification and prognostication of melanoma.
Collapse
Affiliation(s)
- Ossama Abbas
- *Associate Professor of Clinical Dermatology, Dermatology Department, American University of Beirut-Medical Center, Beirut, Lebanon; and †Assistant Professor of Dermatology (D.D.M.), Professor of Dermatology and Pathology (J.B.), Dermatopathology Section, Department of Dermatology, Boston University School of Medicine, Boston, MA
| | | | | |
Collapse
|
15
|
Sinha D, Dutta K, Ganguly KK, Biswas J, Bishayee A. A novel synthetic oleanane triterpenoid suppresses adhesion, migration, and invasion of highly metastatic melanoma cells by modulating gelatinase signaling axis. Mol Carcinog 2014; 54:654-67. [PMID: 24510625 DOI: 10.1002/mc.22136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/13/2013] [Accepted: 01/13/2014] [Indexed: 12/13/2022]
Abstract
A methyl derivative natural triterpenoid amooranin (methyl-25-hydroxy-3-oxoolean-12-en-28-oate, AMR-Me) has been found to possess antiproliferative, proapoptotic, and antiinflammatory effects against established tumor cells. Large-scale synthesis of pure AMR-Me has eliminated the need of the natural phytochemical for further development of AMR-Me as an anticancer drug. Metastatic melanoma is a fatal form of cutaneous malignancy with poor prognosis and limited therapeutic options. It was hypothesized that antitumor pharmacological effect of AMR-Me could be linked to AMR-Me-mediated suppression of the metastatic potential of B16F10 murine melanoma. AMR-Me was assessed for its antimetastatic efficacy by cell adhesion, migration, and invasion assays in B16F10 cells. The signaling crosstalk was explored by gelatin zymography, Western blot, ELISA, and immunocytochemistry. The results elicited that AMR-Me was successful in restricting the adhesion, migration, and invasion of highly metastatic cells. The antimetastatic potential of this compound may be attributed to the reduced expression of membrane type 1 metalloproteinase (MT1-MMP) and matrix metalloproteinases (MMP-2 and MMP-9). AMR-Me was found to downregulate vascular endothelial growth factor (VEGF)/phosphorylated forms of focal adhesion kinase (pFAK397 )/Jun N-terminus kinase (pJNK)/extracellular signal-regulated kinase (pERK). This, in turn, inhibited transcription factor nuclear factor-κB (NF-κB) and transactivation of MMPs. Moreover, the activation of tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) might have influenced the downmodulation of MT1-MMP, MMP-2, and MMP-9. AMR-Me suppresses the activity of MT1-MMP, MMP-2, and MMP-9 by downregulation of VEGF/pFAK397 /pJNK/pERK/NF-κB and activation of TIMP-1 and TIMP-2 in metastatic melanoma cell line, B16F10. AMR-Me has the potential as an effective anticancer drug for metastatic melanoma which is a dismal disease.
Collapse
Affiliation(s)
- Dona Sinha
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Kaustav Dutta
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Kirat K Ganguly
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Jaydip Biswas
- Translational and Clinical Research, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, School of Pharmacy, American University of Health Sciences, Signal Hill, California
| |
Collapse
|
16
|
The pan-Aurora kinase inhibitor, PHA-739358, induces apoptosis and inhibits migration in melanoma cell lines. Melanoma Res 2014; 23:102-13. [PMID: 23344158 DOI: 10.1097/cmr.0b013e32835df5e4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Treatment of metastatic melanoma has long been a challenge because of its resistance to traditional chemotherapeutics, leading to the search for alternative strategies. Aurora kinases are key mitotic regulators that are frequently overexpressed in various cancers including melanoma, making them ideal targets for drug development. Several Aurora kinase inhibitors have been developed and tested preclinically and clinically. PHA-739358 is currently one of the most advanced clinical compounds being tested in phase II clinical trials; however, its antitumor effect has not been tested in melanoma. In this study, the antiproliferative and anti-invasive effects of PHA-739358 were investigated in melanoma cell lines. The results demonstrated that PHA-739358 produces a time-dependent and dose-dependent inhibition of cell proliferation, induction of apoptosis, and inhibition of cell migration. Downregulation of matrix metalloproteinase-2 by the inhibition of NFκB-signaling pathway may contribute to PHA-739358-induced inhibition of migration. Furthermore, PHA-739358 enhanced temozolomide and Plx4032-induced apoptosis. This study suggests that Aurora kinase inhibitors may provide a new strategy for the treatment of advanced melanoma.
Collapse
|
17
|
Rothberg BEG, Rimm DL. Construction and analysis of multiparameter prognostic models for melanoma outcome. Methods Mol Biol 2014; 1102:227-58. [PMID: 24258982 DOI: 10.1007/978-1-62703-727-3_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The outcome of Stage II melanoma is uncertain. Despite that 10-year melanoma-specific survival can approach 50 % following curative-intent wide local excision and negative sentinel lymph node biopsy, the adverse risk-benefit ratio of interferon-based adjuvant regimens precludes their use in most patients. The discovery and translation of protein-based prognostic biomarkers into the clinic offers the promise for residual risk stratification of Stage II melanoma patients beyond conventional clinicopathologic criteria to identify an additional subset of patients who, based upon tumor molecular profiles, might also derive benefit from adjuvant regimens. Despite incorporation of Ki-67 assays into clinical practice, systematic review of REMARK-compliant, immunostain-based prognostic biomarker assays in melanoma suggests that residual risk of recurrence might be best explained by a composite score derived from a small panel of proteins representing independent features of melanoma biology. Reflecting this trend, to date, five such multiparameter melanoma prognostic models have been published. Here, we review these five models and provide detailed protocols for discovering and validating multiparameter models including: appropriate cohort recruitment strategies, comprehensive laboratory protocols supporting fully quantitative chromogenic or fluorescent immunostaining platforms, statistical approaches to create composite prognostic indices recommended steps for model validation in independent cohorts.
Collapse
|
18
|
Dye DE, Medic S, Ziman M, Coombe DR. Melanoma biomolecules: independently identified but functionally intertwined. Front Oncol 2013; 3:252. [PMID: 24069584 PMCID: PMC3781348 DOI: 10.3389/fonc.2013.00252] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/09/2013] [Indexed: 01/31/2023] Open
Abstract
The majority of patients diagnosed with melanoma present with thin lesions and generally these patients have a good prognosis. However, 5% of patients with early melanoma (<1 mm thick) will have recurrence and die within 10 years, despite no evidence of local or metastatic spread at the time of diagnosis. Thus, there is a need for additional prognostic markers to help identify those patients that may be at risk of recurrent disease. Many studies and several meta-analyses have compared gene and protein expression in melanocytes, naevi, primary, and metastatic melanoma in an attempt to find informative prognostic markers for these patients. However, although a large number of putative biomarkers have been described, few of these molecules are informative when used in isolation. The best approach is likely to involve a combination of molecules. We believe one approach could be to analyze the expression of a group of interacting proteins that regulate different aspects of the metastatic pathway. This is because a primary lesion expressing proteins involved in multiple stages of metastasis may be more likely to lead to secondary disease than one that does not. This review focuses on five putative biomarkers – melanoma cell adhesion molecule (MCAM), galectin-3 (gal-3), matrix metalloproteinase 2 (MMP-2), chondroitin sulfate proteoglycan 4 (CSPG4), and paired box 3 (PAX3). The goal is to provide context around what is known about the contribution of these biomarkers to melanoma biology and metastasis. Although each of these molecules have been independently identified as likely biomarkers, it is clear from our analyses that each are closely linked with each other, with intertwined roles in melanoma biology.
Collapse
Affiliation(s)
- Danielle E Dye
- School of Biomedical Science & Curtin Health Innovation Research Institute, Faculty of Health, Curtin University , Perth, WA , Australia
| | | | | | | |
Collapse
|
19
|
Lee JH, Piao MS, Choi JY, Yun SJ, Lee JB, Lee SC. Up-regulation of cyclooxygenase 2 and matrix metalloproteinases-2 and -9 in cutaneous squamous cell carcinoma: active role of inflammation and tissue remodeling in carcinogenesis. Ann Dermatol 2013; 25:145-51. [PMID: 23717003 PMCID: PMC3662905 DOI: 10.5021/ad.2013.25.2.145] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/22/2011] [Accepted: 12/16/2011] [Indexed: 12/21/2022] Open
Abstract
Background Tissue inflammation and remodeling have been extensively studied in various tumors in relation with their invasiveness and metastasis. Objective The purpose of this study was to investigate the change in tissue inflammation and remodeling markers in cutaneous squamous cell carcinoma (SCC). Methods Expression levels of cyclooxygenase-2 (COX-2) as an inflammatory marker and matrix metalloproteinases-2 and -9 (MMPs 2/9) as remodeling markers were studied in mouse and human SCCs. Western blot analysis and RT-PCR for COX-2 and MMPs 2/9 were performed with skin samples from SCC patients and chronic ultraviolet B (UVB)-induced SCC from hairless mice. Results mRNA and protein levels of COX-2 and MMPs 2/9 were up-regulated with the higher sensitivity for MMP-9 in mouse SCCs, which were induced by chronic UVB irradiation. Consistently, COX-2 and MMPs 2/9 were up-regulated with the higher sensitivity for MMP-9 in human SCCs. Conclusion COX-2 and MMPs 2/9 are up-regulated in well-differentiated cutanous SCC. Our findings indicate that inflammatory and tissue remodeling processes are actively induced during carcinogenesis of cutaneous SCC.
Collapse
Affiliation(s)
- Jeong-Hoon Lee
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | | | | | | | | | | |
Collapse
|
20
|
Botti G, Cerrone M, Scognamiglio G, Anniciello A, Ascierto PA, Cantile M. Microenvironment and tumor progression of melanoma: New therapeutic prospectives. J Immunotoxicol 2012; 10:235-52. [DOI: 10.3109/1547691x.2012.723767] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
21
|
Rotte A, Martinka M, Li G. MMP2 expression is a prognostic marker for primary melanoma patients. Cell Oncol (Dordr) 2012; 35:207-16. [PMID: 22669775 DOI: 10.1007/s13402-012-0080-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Matrix metalloproteinase 2 (MMP2) is a collagenase, which aids tumor growth and invasion by digesting the extracellular matrix surrounding the tumor tissue. Our study examined MMP2 expression in various stages of melanoma progression and tested the prognostic significance of MMP2 expression. We also analyzed the correlation between p-Akt status and MMP2 expression in melanoma patients. METHODS Tissue microarray (TMA) and immunohistochemistry were employed to study the expression of MMP2. A total of 482 melanoma (330 primary and 152 metastatic) tumor biopsies and 149 nevi biopsies (49 normal and 100 dysplastic nevi) were used for the analysis. MMP2 expression was correlated with melanoma progression. Kaplan-Meier survival curve and multivariate Cox regression analysis were applied to verify the prognostic significance of MMP2 expression. The correlation between MMP2 and p-Akt expression was analyzed in 92 cases which were common in the present and the previous study on p-Akt expression. RESULTS Strong MMP2 expression is significantly increased in primary (25 %) and metastatic melanoma (43 %) compared to normal (5 %) and dysplastic nevi (10 %). Patients with strong MMP2 had significantly poorer survival compared to those with negative-to-moderate MMP2 expression. MMP2 expression could predict the patient survival independent of tumor thickness and ulceration. Furthermore, in our cohort study MMP2 expression was associated with p-Akt status and patient survival. CONCLUSIONS Strong MMP2 staining is associated with worse survival of melanoma patients and is an independent molecular prognostic factor for primary melanoma.
Collapse
Affiliation(s)
- Anand Rotte
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
22
|
Liu F, Gomez Garcia AM, Meyskens FL. NADPH oxidase 1 overexpression enhances invasion via matrix metalloproteinase-2 and epithelial-mesenchymal transition in melanoma cells. J Invest Dermatol 2012; 132:2033-41. [PMID: 22513785 DOI: 10.1038/jid.2012.119] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
NADPH oxidase 1 (Nox1) is a member of the NADPH oxidase family that has not been well characterized in the melanocytic cell lineage. Here we demonstrated that Nox1 and Nox4 were detected in melanocytic lineage, with only Nox1 detected in normal human melanocytes and Nox4 in a subset of metastatic melanoma cell lines. The protein level and enzymatic activity of Nox1 was elevated in all melanoma cells as compared with normal melanocytes. Overexpression of GFP-Nox1 protein in Wm3211 primary melanoma cells increased invasion rate by 4- to 6-fold as measured by Matrigel invasion assay, whereas knocking down or inhibiting Nox1 decreased invasion by approximately 40-60% in Wm3211 and SK-Mel-28 cells. Matrix metalloproteinase-2 (MMP-2) was increased by Nox1 overexpression at the mRNA, protein, and activity levels, and decreased by Nox1 knockdown. MMP-2 promoter activity was also regulated by Nox1 knockdown. In addition, stable clones overexpressing Nox1 exhibited an epithelial-mesenchymal transition (EMT) as examined by cell morphology and EMT markers; knockdown or inhibiting Nox1 led to a reversal of EMT. Supplementing MMP-2 to culture media did not induce EMT, suggesting that EMT induction by Nox1 was not through MMP-2 upregulation. In summary, Nox1 was overexpressed in all melanoma cell lines examined, and enhanced cell invasion by MMP-2 upregulation and EMT induction.
Collapse
Affiliation(s)
- Feng Liu
- Department of Medicine, University of California, Irvine, Irvine, California 92697, USA.
| | | | | |
Collapse
|
23
|
Docampo MJ, Cabrera J, Rabanal RM, Bassols A. Expression of matrix metalloproteinase-2 and -9 and membrane-type 1 matrix metalloproteinase in melanocytic tumors of dogs and canine melanoma cell lines. Am J Vet Res 2011; 72:1087-96. [PMID: 21801067 DOI: 10.2460/ajvr.72.8.1087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate expression of matrix metalloproteinase (MMP)-2 and -9 and membrane-type 1 MMP (MT1-MMP) in melanocytomas and malignant melanomas of dogs, analyze in vitro production of MMPs by canine melanoma cell lines and primary dermal fibroblasts, and investigate mutual communication between tumor cells and fibroblasts and the influence of collagen on MMP regulation. SAMPLE 35 biopsy specimens from melanocytic tumors and primary dermal fibroblasts of dogs and 3 canine melanoma cell lines (CML-1, CML-10c2, and CML-6M). PROCEDURES MMP-2, MMP-9, and MT1-MMP were detected in tumor samples by use of immunohistochemical analysis. In vitro production was analyzed via reverse transcriptase-PCR assay, immunocytochemical analysis, zymography, and immunoblotting. RESULTS MMP-9 was overexpressed in malignant melanomas, compared with expression in melanocytomas, whereas no significant differences in MMP-2 and MT1-MMP immunostaining were detected. Stromal cells also often had positive staining results. In vitro, all 3 melanoma cell lines and dermal fibroblasts had evidence of MMP-2 and MT1-MMP, but only melanoma cells had evidence of MMP-9. Coculture of CML-1 or CML-10c2 cells and dermal fibroblasts induced an increase in expression of the active form of MMP-2. Culture of melanoma cells on type I collagen increased the activation state of MT1-MMP. CONCLUSIONS AND CLINICAL RELEVANCE MMP-9 expression was increased in malignant melanomas of dogs. Stromal cells were a source for MMPs. Stromal cells, in combination with matrix components such as type I collagen, can interact with tumor cells to regulate MMP production. Information about MMP production and regulation could help in the development of new treatments.
Collapse
Affiliation(s)
- María-José Docampo
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | | | | | | |
Collapse
|
24
|
MMP-2 and TIMP-2 in cutaneous melanoma: association with prognostic factors and description in cutaneous metastases. Am J Dermatopathol 2011; 33:413-4. [PMID: 20966734 DOI: 10.1097/dad.0b013e3181e2e8d6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Enhancement of HLA class II-restricted CD4+ T cell recognition of human melanoma cells following treatment with bryostatin-1. Cell Immunol 2011; 271:392-400. [PMID: 21903207 DOI: 10.1016/j.cellimm.2011.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/11/2011] [Accepted: 08/12/2011] [Indexed: 12/31/2022]
Abstract
The majority of melanoma cells express detectable levels of HLA class II proteins, and an increased threshold of cell surface class II is crucial for the stimulation of CD4+ T cells. Bryostatin-1, a protein kinase C (PKC) activator, has been considered as a potent chemotherapeutic agent in a variety of in vitro tumor models. Little is known about the role of bryostatin-1 in HLA class II Ag presentation and immune activation in malignant tumors, especially in melanoma. In this study, we show that bryostatin-1 treatment enhances CD4+ T cell recognition of melanoma cells in the context of HLA class II molecules. We also show that bryostatin-1 treatment of melanoma cells increases class II protein levels by upregulating the class II transactivator (CIITA) gene. Flow cytometry and confocal microscopic analyses revealed that bryostatin-1 treatment upregulated the expression of costimulatory molecules (CD80 and CD86) in melanoma cells, which could prolong the interaction of immune cells and tumors. Bryostatin-1 also induced cellular differentiation in melanoma cells, and reduced tumorigenic factors such as pro-cathepsins and matrix-metalloproteinase-9. These data suggest that bryostatin-1 could be used as a chemo-immunotherapeutic agent for reducing tumorigenic potential of melanoma cells while enhancing CD4+ T cell recognition to prevent tumor recurrence.
Collapse
|
26
|
Väisänen A, Kuvaja P, Kallioinen M, Turpeenniemi-Hujanen T. A prognostic index in skin melanoma through the combination of matrix metalloproteinase-2, Ki67, and p53. Hum Pathol 2011; 42:1103-11. [DOI: 10.1016/j.humpath.2010.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 11/13/2010] [Accepted: 11/19/2010] [Indexed: 12/14/2022]
|
27
|
Neagu M, Constantin C, Tanase C. Immune-related biomarkers for diagnosis/prognosis and therapy monitoring of cutaneous melanoma. Expert Rev Mol Diagn 2011; 10:897-919. [PMID: 20964610 DOI: 10.1586/erm.10.81] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Skin melanoma, a life-threatening disease, has a recently reported worldwide increase in incidence, despite primary prevention. Skin melanoma statistics emphasize the need for finding markers related to the immune response of the host. The mechanisms that are able to over-power the local immune surveillance comprise molecules that can be valuable markers for diagnosis and prognosis. This article summarizes the immune markers that can monitor the disease stage and evaluate the efficacy of therapeutic interventions. Recent data regarding immunotherapy are presented in the context of tumor escape from immune surveillance and the immune molecules that are both targets and a means of monitoring. Perspectives for developing immune interventions for skin melanoma management and the position of tissue or soluble immune markers as a diagnostic/prognostic panel are evaluated. State-of-the-art technology is emphasized for developing immune molecular signatures for a complex characterization of the patient's immunological status.
Collapse
Affiliation(s)
- Monica Neagu
- Victor Babes' National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania.
| | | | | |
Collapse
|
28
|
Expression of matrix metalloproteinase (MMP)-2, MMP-9, and tissue inhibitor of MMP (TIMP)-1 in conjunctival melanomas and clinical implications. Jpn J Ophthalmol 2010; 54:221-6. [PMID: 20577856 DOI: 10.1007/s10384-009-0793-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 12/28/2009] [Indexed: 02/03/2023]
Abstract
PURPOSE To investigate the expression of matrix metalloproteinase (MMP)-2, MMP-9, and tissue inhibitor of matrix metalloproteinase (TIMP)-1 in conjunctival melanomas and their correlations with clinicopathologic parameters and prognosis. METHODS Fourteen conjunctival melanoma tissue samples and nine conjunctival nevus tissue samples were stained immunohistochemically for MMP-2, MMP-9, and TIMP-1. Association of MMP-2, MMP-9, and TIMP-1 expression in melanoma tissues with clinical progression in terms of metastasis, recurrence, mitotic index, thickness, base diameter, and invasion depth was analyzed. RESULTS In the melanoma group, 78.6% of samples showed a positive reaction for MMP-2, 85.7% for MMP-9, and 100% for TIMP-1. In the nevus group, 11.1% showed a positive reaction for MMP-2, 66.7% for MMP-9, and 100% for TIMP-1. MMP-2 expression was significantly more induced in conjunctival melanoma than in benign nevi (P = 0.002). In conjunctival melanoma, MMP-9 expression was higher in tumors >1.5 mm thick (P = 0.026) and TIMP-1 expression was higher in recurrent cases (P = 0.03). There was no significant correlation between the expression and metastasis during the follow-up period (mean, 5 years). CONCLUSION MMP-2, MMP-9, and TIMP-1 were expressed in the majority of conjunctival melanomas, and MMP-2 might play a role in the development and clinical behavior of conjunctival melanoma.
Collapse
|
29
|
Kubera M, Grygier B, Arteta B, Urbańska K, Basta-Kaim A, Budziszewska B, Leśkiewicz M, Kołaczkowska E, Maes M, Szczepanik M, Majewska M, Lasoń W. Age-dependent stimulatory effect of desipramine and fluoxetine pretreatment on metastasis formation by B16F10 melanoma in male C57BL/6 mice. Pharmacol Rep 2010; 61:1113-26. [PMID: 20081247 DOI: 10.1016/s1734-1140(09)70174-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 11/18/2009] [Indexed: 11/30/2022]
Abstract
Although recent data may provide theoretical support for the preventive use of antidepressants in cancer patients, so far no study has demonstrated the clinical benefits of such strategies in the general population of cancer patients [39, 41]. Moreover, an association between antidepressant use and the risk of tumor promotion could neither be excluded nor established. The aim of this study was to compare the effect of desipramine (a tricyclic antidepressant, TCA) and fluoxetine (a selective serotonin reuptake inhibitor, SSRI) on tumor growth of the mouse B16F10 transplanted melanoma in "young" 6-9 month old and "aged" 18-23 month old male C57BL/6 mice. Drugs were administered daily at a dose of 10 mg/kg, ip, for two weeks and tumor cells were inoculated 2 h after the last antidepressant administration. Control animals were treated with saline. Tumor growth was significantly slower in aged than in young saline-treated control animals. Pretreatment with desipramine dramatically promoted metastasis formation and increased mortality rate but inhibited primary tumor growth in young males. On the other hand, both antidepressants increased primary tumor growth in aged animals, whereas metastasis was only moderately promoted. To determine the effect of antidepressant drug pretreatment and tumor progress on some parameters of cell-mediated immunity (proliferative activity and cytokine production by splenocytes) and angiogenesis, vascular endothelial growth factor (VEGF) and metalloproteinase (MMP)-9 plasma levels were established. The prometastatic effect of desipramine in young animals was connected with an increase of VEGF and MMP-9 plasma levels.
Collapse
Affiliation(s)
- Marta Kubera
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343 Kraków, Poland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Buac K, Xu M, Cronin J, Weeraratna AT, Hewitt SM, Pavan WJ. NRG1 / ERBB3 signaling in melanocyte development and melanoma: inhibition of differentiation and promotion of proliferation. Pigment Cell Melanoma Res 2009; 22:773-84. [PMID: 19659570 PMCID: PMC3023175 DOI: 10.1111/j.1755-148x.2009.00616.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuregulin (NRG) signaling through the receptor tyrosine kinase, ERBB3, is required for embryonic development, and dysregulated signaling has been associated with cancer progression. Here, we show that NRG1/ERBB3 signaling inhibits melanocyte (MC) maturation and promotes undifferentiated, migratory and proliferative cellular characteristics. Embryonic analyses demonstrated that initial MC specification and distribution were not dependent on ERBB3 signaling. However NRG1/ERBB3 signaling was both necessary and sufficient to inhibit differentiation of later stages of MC development in culture. Analysis of tissue arrays of human melanoma samples suggests that ERBB3 signaling may also contribute to metastatic progression of melanoma as ERBB3 was phosphorylated in primary tumors compared with nevi or metastatic lesions. Neuregulin 1-treated MCs demonstrated increased proliferation and invasion and altered morphology concomitant with decreased levels of differentiation genes, increased levels of proliferation genes and altered levels of melanoma progression and metastases genes. ERBB3 activation in primary melanomas suggests that NRG1/ERBB3 signaling may contribute to the progression of melanoma from benign nevi to malignancies. We propose that targeting ERBB3 activation and downstream genes identified in this study may provide novel therapeutic interventions for malignant melanoma.
Collapse
Affiliation(s)
- Kristina Buac
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4472
- George Washington University, DC
| | - Mai Xu
- Laboratory of Immunology, National Institute on Aging, NIH, Baltimore, MD 21224
| | - Julie Cronin
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4472
| | | | - Stephen M. Hewitt
- Tissue Array Research Program, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4605
| | - William J. Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4472
| |
Collapse
|
31
|
Gould Rothberg BE, Berger AJ, Molinaro AM, Subtil A, Krauthammer MO, Camp RL, Bradley WR, Ariyan S, Kluger HM, Rimm DL. Melanoma prognostic model using tissue microarrays and genetic algorithms. J Clin Oncol 2009; 27:5772-80. [PMID: 19884546 DOI: 10.1200/jco.2009.22.8239] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PURPOSE As a result of the questionable risk-to-benefit ratio of adjuvant therapies, stage II melanoma is currently managed by observation because available clinicopathologic parameters cannot identify the 20% to 60% of such patients likely to develop metastatic disease. Here, we propose a multimarker molecular prognostic assay that can help triage patients at increased risk of recurrence. METHODS Protein expression for 38 candidates relevant to melanoma oncogenesis was evaluated using the automated quantitative analysis (AQUA) method for immunofluorescence-based immunohistochemistry in formalin-fixed, paraffin-embedded specimens from a cohort of 192 primary melanomas collected during 1959 to 1994. The prognostic assay was built using a genetic algorithm and validated on an independent cohort of 246 serial primary melanomas collected from 1997 to 2004. RESULTS Multiple iterations of the genetic algorithm yielded a consistent five-marker solution. A favorable prognosis was predicted by ATF2 ln(non-nuclear/nuclear AQUA score ratio) of more than -0.052, p21(WAF1) nuclear compartment AQUA score of more than 12.98, p16(INK4A) ln(non-nuclear/nuclear AQUA score ratio) of < or = -0.083, beta-catenin total AQUA score of more than 38.68, and fibronectin total AQUA score of < or = 57.93. Primary tumors that met at least four of these five conditions were considered a low-risk group, and those that met three or fewer conditions formed a high-risk group (log-rank P < .0001). Multivariable proportional hazards analysis adjusting for clinicopathologic parameters shows that the high-risk group has significantly reduced survival on both the discovery (hazard ratio = 2.84; 95% CI, 1.46 to 5.49; P = .002) and validation (hazard ratio = 2.72; 95% CI, 1.12 to 6.58; P = .027) cohorts. CONCLUSION This multimarker prognostic assay, an independent determinant of melanoma survival, might be beneficial in improving the selection of stage II patients for adjuvant therapy.
Collapse
|
32
|
Gould Rothberg BE, Bracken MB, Rimm DL. Tissue biomarkers for prognosis in cutaneous melanoma: a systematic review and meta-analysis. J Natl Cancer Inst 2009; 101:452-74. [PMID: 19318635 DOI: 10.1093/jnci/djp038] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the clinical management of early-stage cutaneous melanoma, it is critical to determine which patients are cured by surgery alone and which should be treated with adjuvant therapy. To assist in this decision, many groups have made an effort to use molecular information. However, although there are hundreds of studies that have sought to assess the potential prognostic value of molecular markers in predicting the course of cutaneous melanoma, at this time, no molecular method to improve risk stratification is part of recommended clinical practice. To help understand this disconnect, we conducted a systematic review and meta-analysis of the published literature that reported immunohistochemistry-based protein biomarkers of melanoma outcome. Three parallel search strategies were applied to the PubMed database through January 15, 2008, to identify cohort studies that reported associations between immunohistochemical expression and survival outcomes in melanoma that conformed to the REMARK criteria. Of the 102 cohort studies, we identified only 37 manuscripts, collectively describing 87 assays on 62 distinct proteins, which met all inclusion criteria. Promising markers that emerged included melanoma cell adhesion molecule (MCAM)/MUC18 (all-cause mortality [ACM] hazard ratio [HR] = 16.34; 95% confidence interval [CI] = 3.80 to 70.28), matrix metalloproteinase-2 (melanoma-specific mortality [MSM] HR = 2.6; 95% CI = 1.32 to 5.07), Ki-67 (combined ACM HR = 2.66; 95% CI = 1.41 to 5.01), proliferating cell nuclear antigen (ACM HR = 2.27; 95% CI = 1.56 to 3.31), and p16/INK4A (ACM HR = 0.29; 95% CI = 0.10 to 0.83, MSM HR = 0.4; 95% CI = 0.24 to 0.67). We further noted incomplete adherence to the REMARK guidelines: 14 of 27 cohort studies that failed to adequately report their methods and nine studies that failed to either perform multivariable analyses or report their risk estimates were published since 2005.
Collapse
|