1
|
Zhu X, Kao X, Liu L, Wang X, Li Y, Li Q. Daxx Variation as a Potential Predictive Marker of the Therapeutic Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Cancer Med 2025; 14:e70815. [PMID: 40130316 PMCID: PMC11933753 DOI: 10.1002/cam4.70815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/26/2025] Open
Abstract
OBJECTIVE The response to neoadjuvant chemoradiotherapy (NACRT) for locally advanced rectal cancer (LARC) varies from achieving a complete pathological response to encountering resistance to treatment. Therefore, biomarkers for predicting the NACRT responses should be identified. This prospective study aimed to identify key genomic biomarkers as the predictors of the NACRT response with LARC. METHODS Overall, 67 patients with LARC treated with NACRT and proctectomy were divided into two groups based on the tumor regression grade (TRG) for identifying key biomarkers. Patients with a TRG of 0 or 1 were assigned to the sensitive response group, and patients with a TRG of 2 or 3 were the resistant response group. Twenty-nine postsurgical tumor samples were collected for whole exome sequencing (WES) to identify genomic variation biomarkers. The other 38 pairs of tumor specimens from pretreatment and postsurgery samples were evaluated by immunohistochemistry (IHC) to examine the biomarker features. RESULTS In the WES subcohort, 11 genes showed copy number variation, including FNKBIA, ARID1A, CCND2, CDK4, LYN, MDM2, RAD51B, RARA, SPEN, STAT3, and Daxx, which has the highest copy number variation. For the IHC subcohort, Daxx was initially highly expressed in the nuclei of tumor cells, particularly in the sensitive response group, while varying its expression after NACRT, demonstrating that Daxx levels were related to treatment responses and the survival benefit, especially a better disease-free survival (DFS). CONCLUSION We identified multiple genomic variations between sensitive and resistant responders and verified that Daxx is a potential predictive biomarker of the response to NACRT in LARC.
Collapse
Affiliation(s)
- Xi Zhu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of General Surgery, Jinling HospitalNanjing Medical UniversityNanjingChina
| | - Xiaoming Kao
- Research Institute of General Surgery, Jinling HospitalNanjing Medical UniversityNanjingChina
| | - Leilei Liu
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xuan Wang
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yang Li
- Research Institute of General Surgery, Jinling HospitalNanjing Medical UniversityNanjingChina
| | - Qiurong Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of General Surgery, Jinling HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
2
|
Jiaerken B, Liu W, Zheng J, Qu W, Wu Q, Ai Z. The SUMO Family: Mechanisms and Implications in Thyroid Cancer Pathogenesis and Therapy. Biomedicines 2024; 12:2408. [PMID: 39457720 PMCID: PMC11505470 DOI: 10.3390/biomedicines12102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Background: Small ubiquitin-like modifiers (SUMOs) are pivotal in post-translational modifications, influencing various cellular processes, such as protein localization, stability, and genome integrity. (2) Methods: This review explores the SUMO family, including its isoforms and catalytic cycle, highlighting their significance in regulating key biological functions in thyroid cancer. We discuss the multifaceted roles of SUMOylation in DNA repair mechanisms, protein stability, and the modulation of receptor activities, particularly in the context of thyroid cancer. (3) Results: The aberrant SUMOylation machinery contributes to tumorigenesis through altered gene expression and immune evasion mechanisms. Furthermore, we examine the therapeutic potential of targeting SUMOylation pathways in thyroid cancer treatment, emphasizing the need for further research to develop effective SUMOylation inhibitors. (4) Conclusions: By understanding the intricate roles of SUMOylation in cancer biology, we can pave the way for innovative therapeutic strategies to improve outcomes for patients with advanced tumors.
Collapse
Affiliation(s)
- Bahejuan Jiaerken
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Liu
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiaojiao Zheng
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weifeng Qu
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiao Wu
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhilong Ai
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Pergaris A, Levidou G, Mandrakis G, Christodoulou MI, Karamouzis MV, Klijanienko J, Theocharis S. The Impact of DAXX, HJURP and CENPA Expression in Uveal Melanoma Carcinogenesis and Associations with Clinicopathological Parameters. Biomedicines 2024; 12:1772. [PMID: 39200236 PMCID: PMC11351862 DOI: 10.3390/biomedicines12081772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Uveal melanomas (UMs) represent rare malignant tumors associated with grim prognosis for the majority of patients. DAXX (Death Domain-Associated Protein), HJURP (Holliday Junction Recognition Protein) and CENPA (Centromere Protein A) proteins are implicated in epigenetic mechanisms, now in the spotlight of cancer research to better understand the molecular background of tumorigenesis. Herein, we investigated their expression in UM tissues using immunohistochemistry and explored possible correlations with a multitude of clinicopathological and survival parameters. The Cancer Genome Atlas Program (TCGA) was used for the investigation of their mRNA levels in UM cases. Nuclear DAXX expression correlated with an advanced T-stage (p = 0.004), while cytoplasmic expression marginally with decreased disease-free survival (DFS) (p = 0.084). HJURP nuclear positivity also correlated with advanced T-status (p = 0.054), chromosome 3 loss (p = 0.042) and increased tumor size (p = 0.03). More importantly, both nuclear and cytoplasmic HJURP immunopositivity correlated with decreased overall survival (OS) (p = 0.011 and 0.072, respectively) and worse DFS (p = 0.071 and 0.019, respectively). Lastly, nuclear CENPA overexpression was correlated with presence of irido-corneal angle involvement (p = 0.015) and loss of chromosome 3 (p = 0.041). Nuclear and cytoplasmic CENPA immunopositivity associated with decreased OS (p = 0.028) and DFS (p = 0.018), respectively. HJURP and CENPA mRNA overexpression exhibited strong association with tumor epithelioid histology and was linked to worse prognosis. Our results show the compounding role of DAXX, HJURP and CENPA in UM carcinogenesis, designating them as potential biomarkers for assessing prognosis and possible targets for novel therapeutic interventions.
Collapse
Affiliation(s)
- Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.P.); (G.M.)
| | - Georgia Levidou
- Department of Pathology, Paracelsus Medical University, 90419 Nuremberg, Germany;
| | - Georgios Mandrakis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.P.); (G.M.)
| | - Maria-Ioanna Christodoulou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus;
| | - Michail V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | | | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.P.); (G.M.)
| |
Collapse
|
4
|
Ding S, Wang H, Liao Y, Chen R, Hu Y, Wu H, Shen H, Tang S. HPV16 E7 protein antagonizes TNF-α-induced apoptosis of cervical cancer cells via Daxx/JNK pathway. Microb Pathog 2023; 185:106423. [PMID: 37871853 DOI: 10.1016/j.micpath.2023.106423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Human papillomavirus (HPV) E7 protein as an important viral factor was involved in the progression of cervical cancer by mediating the cellular signaling pathways. Daxx (Death domain-associated protein) can interact with a variety of proteins to affect the viral infection process. However, the interaction and its related function between HPV16 E7 and Daxx have not been adequately investigated. Here, it was found that HPV16 E7 can interact with Daxx in HeLa or C33A cells by co-immunoprecipitation. HPV16 E7 protein treatment can up-regulate Daxx protein expression, while the interference in Daxx expression and the agonists for JNK can both reduce the antagonistic effects of HPV16 E7 on TNF-α-induced apoptosis, suggesting that Daxx/JNK pathway may be involved in the anti-apoptotic activity of HPV16 E7.
Collapse
Affiliation(s)
- Shuang Ding
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China; Department of Clinical Laboratory, The Seventh Affiliated Hospital, University of South China / Hunan Provincial Veterans Administration Hospital, Changsha, China
| | - Hanmeng Wang
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China
| | - Yaqi Liao
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China
| | - Ranzhong Chen
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China
| | - Yu Hu
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China
| | - Hongrong Wu
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China
| | - Haiyan Shen
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China
| | - Shuangyang Tang
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China.
| |
Collapse
|
5
|
Pergaris A, Genaris I, Stergiou IE, Klijanienko J, Papadakos SP, Theocharis S. The Clinical Impact of Death Domain-Associated Protein and Holliday Junction Recognition Protein Expression in Cancer: Unmasking the Driving Forces of Neoplasia. Cancers (Basel) 2023; 15:5165. [PMID: 37958340 PMCID: PMC10650673 DOI: 10.3390/cancers15215165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Death domain-associated protein (DAXX) and Holliday junction recognition protein (HJURP) act as chaperones of H3 histone variants H3.3 and centromere protein A (CENPA), respectively, and are implicated in many physiological processes, including aging and epigenetic regulation, by controlling various genes' transcription and subsequently protein expression. Research has highlighted both these biomolecules as participants in key procedures of tumorigenesis, including cell proliferation, chromosome instability, and oncogene expression. As cancer continues to exert a heavy impact on patients' well-being and bears substantial socioeconomic ramifications, the discovery of novel biomarkers for timely disease detection, estimation of prognosis, and therapy monitoring remains of utmost importance. In the present review, we present data reported from studies investigating DAXX and HJURP expression, either on mRNA or protein level, in human tissue samples from various types of neoplasia. Of note, the expression of DAXX and HJURP has been associated with a multitude of clinicopathological parameters, including disease stage, tumor grade, patients' overall and disease-free survival, as well as lymphovascular invasion. The data reveal the tumor-promoting properties of DAXX and HJURP in a number of organs as well as their potential use as diagnostic biomarkers and underline the important association between aberrations in their expression and patients' prognosis, rendering them as possible targets of future, personalized and precise therapeutic interventions.
Collapse
Affiliation(s)
- Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece; (A.P.); (I.G.); (S.P.P.)
| | - Ioannis Genaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece; (A.P.); (I.G.); (S.P.P.)
| | - Ioanna E. Stergiou
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | | | - Stavros P. Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece; (A.P.); (I.G.); (S.P.P.)
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece; (A.P.); (I.G.); (S.P.P.)
| |
Collapse
|
6
|
Cao Y, Huang C, Zhao X, Yu J. Regulation of SUMOylation on RNA metabolism in cancers. Front Mol Biosci 2023; 10:1137215. [PMID: 36911524 PMCID: PMC9998694 DOI: 10.3389/fmolb.2023.1137215] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/15/2023] [Indexed: 03/14/2023] Open
Abstract
Post-translational modifications of proteins play very important roles in regulating RNA metabolism and affect many biological pathways. Here we mainly summarize the crucial functions of small ubiquitin-like modifier (SUMO) modification in RNA metabolism including transcription, splicing, tailing, stability and modification, as well as its impact on the biogenesis and function of microRNA (miRNA) in particular. This review also highlights the current knowledge about SUMOylation regulation in RNA metabolism involved in many cellular processes such as cell proliferation and apoptosis, which is closely related to tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Yingting Cao
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Huang YS, Wu CC, Chang CC, Huang SF, Kuo HY, Shih HM. Reciprocal regulation of Daxx and PIK3CA promotes colorectal cancer cell growth. Cell Mol Life Sci 2022; 79:367. [PMID: 35718818 PMCID: PMC11072676 DOI: 10.1007/s00018-022-04399-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Upregulation of death-domain-associated protein (Daxx) is strongly associated with diverse cancer types. Among these, the clinicopathological significance and molecular mechanisms of Daxx overexpression in colorectal cancer (CRC) remain unknown. Here, we showed that Daxx expression was increased in both clinical CRC samples and CRC cell lines. Daxx knockdown significantly reduced proliferation activity in CRC cells and tumor growth in a xenograft model. Further studies revealed that Daxx expression could be attenuated by either treatment with the PIK3CA inhibitor PIK-75 or PIK3CA depletion in CRC cells. Conversely, expression of PIK3CA constitutively active mutants could increase Daxx expression. These data suggest that PIK3CA positively regulates Daxx expression. Consistently, the expression levels of PIK3CA and Daxx were positively correlated in sporadic CRC samples. Interestingly, Daxx knockdown or overexpression yielded decreased or increased levels of PIK3CA, respectively, in CRC cells. We further demonstrated that Daxx activates the promoter activity and expression of PIK3CA. Altogether, our results identify a mechanistic pathway of Daxx overexpression in CRC and suggest a reciprocal regulation between Daxx and PIK3CA for CRC cell growth.
Collapse
Affiliation(s)
- Yen-Sung Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Chang-Chieh Wu
- Department of Surgery, Tri-Service General Hospital Keelung Branch, National Defense Medical Center, Keelung, 20244, Taiwan
| | - Che-Chang Chang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Shiu-Feng Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan
| | - Hong-Yi Kuo
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan
| | - Hsiu-Ming Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan.
| |
Collapse
|
8
|
Abstract
Cancer is a complex disease characterized by loss of cellular homeostasis through genetic and epigenetic alterations. Emerging evidence highlights a role for histone variants and their dedicated chaperones in cancer initiation and progression. Histone variants are involved in processes as diverse as maintenance of genome integrity, nuclear architecture and cell identity. On a molecular level, histone variants add a layer of complexity to the dynamic regulation of transcription, DNA replication and repair, and mitotic chromosome segregation. Because these functions are critical to ensure normal proliferation and maintenance of cellular fate, cancer cells are defined by their capacity to subvert them. Hijacking histone variants and their chaperones is emerging as a common means to disrupt homeostasis across a wide range of cancers, particularly solid tumours. Here we discuss histone variants and histone chaperones as tumour-promoting or tumour-suppressive players in the pathogenesis of cancer.
Collapse
Affiliation(s)
| | - Dan Filipescu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
9
|
Death domain-associated protein (DAXX) expression is associated with poor survival in metastatic high-grade serous carcinoma. Virchows Arch 2020; 477:857-864. [PMID: 32533344 PMCID: PMC7683463 DOI: 10.1007/s00428-020-02842-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/03/2022]
Abstract
The objective of this study was to analyze the expression and clinical role of mitosis regulators α-thalassemia/mental retardation syndrome X-linked (ATRX) and death-domain-associated protein (DAXX) in metastatic high-grade serous carcinoma (HGSC). ATRX and DAXX protein expression by immunohistochemistry was analyzed in 400 HGSC effusions. DAXX expression was additionally studied in 15 cancer cell lines, including 4 ovarian carcinoma lines, and in 81 of the 400 HGSC effusions using Western blotting. ATRX and DAXX were expressed in HGSC cells in 386/400 (96%) and 348/400 (87%) effusions, respectively. Western blotting showed DAXX expression in all 15 cell lines and in 70/81 (86%) HGSC effusions. DAXX expression by immunohistochemistry was higher in pleural compared to peritoneal effusions (p = 0.006) and in post-chemotherapy compared to pre-chemotherapy effusions (p = 0.004), and its expression was significantly associated with poor overall survival in univariate of the entire cohort (p = 0.014), as well as analysis limited to chemo-naïve effusions tapped at diagnosis (p = 0.038). The former association retained its prognostic role in Cox multivariate survival analysis (p = 0.011). ATRX expression was unrelated to clinicopathologic parameters or survival. In conclusion, DAXX is associated with disease progression and could be a prognostic marker in metastatic HGSC. Silencing this molecule may have therapeutic relevance in this cancer.
Collapse
|
10
|
He L, Shi X, Chen R, Wu Z, Yang Z, Li Z. Association of Mental Health-Related Proteins DAXX, DRD3, and DISC1 With the Progression and Prognosis of Chondrosarcoma. Front Mol Biosci 2019; 6:134. [PMID: 31850367 PMCID: PMC6888811 DOI: 10.3389/fmolb.2019.00134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Chondrosarcoma is the second most common malignant bone tumor. Current therapies remain ineffective, resulting in poor prognoses. Biomarkers for chondrosarcoma and predictors of its prognosis have not been established. Mental health-related proteins have been associated with the pathogenesis, progression, and prognosis of many cancers, but their association with chondrosarcoma has not been reported. In this study, the expression and clinicopathological significance of the mental health-related proteins DAXX, DRD3, and DISC1 in chondrosarcoma tissue samples were examined, over an 84-months follow-up period. In immunohistochemical analysis, the rates of positive DAXX, DRD3, and DISC1 expression were significantly higher in chondrosarcoma than in osteochondroma tissue (P < 0.01). The percentages of positive DAXX, DRD3, and DISC1 expression were significantly lower in tissues with good differentiation (P < 0.01), AJCC stage I/ II (P < 0.01), Enneking stage I (P < 0.01), and non-metastasis (P < 0.05), respectively. In Kaplan-Meier survival analysis, significantly shorter mean survival times were associated with moderate and poor differentiation (P = 0.000), AJCC stage III/IV (P = 0.000), Enneking stage II/III (P = 0.000), metastasis (P = 0.019), invasion (P = 0.013), and positive DAXX (P = 0.012), and/or DRD3 (P = 0.018) expression. In Cox regression analysis, moderate and poor differentiation (P = 0.006), AJCC stage III/IV (P = 0.013), Enneking stage II/III (P = 0.016), metastasis (P = 0.033), invasion (P = 0.011), and positive DAXX (P = 0.033), and/or DRD3 (P = 0.025) staining correlated negatively with the postoperative survival rate and positively with mortality. In competing-risks regression analysis, differentiation (P = 0.005), metastasis (P = 0.014), invasion (P = 0.028), AJCC stage (P = 0.003), Enneking stage (P = 0.036), and DAXX (P = 0.039), and DRD3(P = 0.019) expression were independent predictors of death from chondrosarcoma. The areas under receiver operating characteristic curves for DAXX, DRD3, and DISC1 expression were 0.673 (95% CI, 0.557-0.788; P = 0.010), 0.670 (95% CI, 0.556-0.784; P = 0.011), and 0.688 (95% CI, 0.573-0.802; P = 0.005), respectively. These results suggest that DAXX, DRD3, and DISC1 could serve as biomarkers of chondrosarcoma progression and predictors of its prognosis.
Collapse
Affiliation(s)
- Lile He
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, China
| | - Xiangyu Shi
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ruiqi Chen
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, China
| | - Zhengchun Wu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhulin Yang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, China
| |
Collapse
|
11
|
Eggener SE, Rumble RB, Armstrong AJ, Morgan TM, Crispino T, Cornford P, van der Kwast T, Grignon DJ, Rai AJ, Agarwal N, Klein EA, Den RB, Beltran H. Molecular Biomarkers in Localized Prostate Cancer: ASCO Guideline. J Clin Oncol 2019; 38:1474-1494. [PMID: 31829902 DOI: 10.1200/jco.19.02768] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE This guideline provides recommendations for available tissue-based prostate cancer biomarkers geared toward patient selection for active surveillance, identification of clinically significant disease, choice of postprostatectomy adjuvant versus salvage radiotherapy, and to address emerging questions such as the relative value of tissue biomarkers compared with magnetic resonance imaging. METHODS An ASCO multidisciplinary Expert Panel, with representatives from the European Association of Urology, American Urological Association, and the College of American Pathologists, conducted a systematic literature review of localized prostate cancer biomarker studies between January 2013 and January 2019. Numerous tissue-based molecular biomarkers were evaluated for their prognostic capabilities and potential for improving management decisions. Here, the Panel makes recommendations regarding the clinical use and indications of these biomarkers. RESULTS Of 555 studies identified, 77 were selected for inclusion plus 32 additional references selected by the Expert Panel. Few biomarkers had rigorous testing involving multiple cohorts and only 5 of these tests are commercially available currently: Oncotype Dx Prostate, Prolaris, Decipher, Decipher PORTOS, and ProMark. With various degrees of value and validation, multiple biomarkers have been shown to refine risk stratification and can be considered for select men to improve management decisions. There is a paucity of prospective studies assessing short- and long-term outcomes of patients when these markers are integrated into clinical decision making. RECOMMENDATIONS Tissue-based molecular biomarkers (evaluating the sample with the highest volume of the highest Gleason pattern) may improve risk stratification when added to standard clinical parameters, but the Expert Panel endorses their use only in situations in which the assay results, when considered as a whole with routine clinical factors, are likely to affect a clinical decision. These assays are not recommended for routine use as they have not been prospectively tested or shown to improve long-term outcomes-for example, quality of life, need for treatment, or survival. Additional information is available at www.asco.org/genitourinary-cancer-guidelines.
Collapse
Affiliation(s)
| | | | | | - Todd M Morgan
- University of Michigan School of Medicine, Ann Arbor, MI
| | | | - Philip Cornford
- Royal Liverpool University Hospital, Liverpool, United Kingdom
| | | | | | - Alex J Rai
- Columbia University Irving Medical Center, New York, NY
| | | | | | | | | |
Collapse
|
12
|
Mahmud I, Liao D. DAXX in cancer: phenomena, processes, mechanisms and regulation. Nucleic Acids Res 2019; 47:7734-7752. [PMID: 31350900 PMCID: PMC6735914 DOI: 10.1093/nar/gkz634] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022] Open
Abstract
DAXX displays complex biological functions. Remarkably, DAXX overexpression is a common feature in diverse cancers, which correlates with tumorigenesis, disease progression and treatment resistance. Structurally, DAXX is modular with an N-terminal helical bundle, a docking site for many DAXX interactors (e.g. p53 and ATRX). DAXX's central region folds with the H3.3/H4 dimer, providing a H3.3-specific chaperoning function. DAXX has two functionally critical SUMO-interacting motifs. These modules are connected by disordered regions. DAXX's structural features provide a framework for deciphering how DAXX mechanistically imparts its functions and how its activity is regulated. DAXX modulates transcription through binding to transcription factors, epigenetic modifiers, and chromatin remodelers. DAXX's localization in the PML nuclear bodies also plays roles in transcriptional regulation. DAXX-regulated genes are likely important effectors of its biological functions. Deposition of H3.3 and its interactions with epigenetic modifiers are likely key events for DAXX to regulate transcription, DNA repair, and viral infection. Interactions between DAXX and its partners directly impact apoptosis and cell signaling. DAXX's activity is regulated by posttranslational modifications and ubiquitin-dependent degradation. Notably, the tumor suppressor SPOP promotes DAXX degradation in phase-separated droplets. We summarize here our current understanding of DAXX's complex functions with a focus on how it promotes oncogenesis.
Collapse
Affiliation(s)
- Iqbal Mahmud
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, 1333 Center Drive, Gainesville, FL 32610-0235, USA
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, 1333 Center Drive, Gainesville, FL 32610-0235, USA
| |
Collapse
|
13
|
Sharma AB, Dimitrov S, Hamiche A, Van Dyck E. Centromeric and ectopic assembly of CENP-A chromatin in health and cancer: old marks and new tracks. Nucleic Acids Res 2019; 47:1051-1069. [PMID: 30590707 PMCID: PMC6379705 DOI: 10.1093/nar/gky1298] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022] Open
Abstract
The histone H3 variant CENP-A confers epigenetic identity to the centromere and plays crucial roles in the assembly and function of the kinetochore, thus ensuring proper segregation of our chromosomes. CENP-A containing nucleosomes exhibit unique structural specificities and lack the complex profile of gene expression-associated histone posttranslational modifications found in canonical histone H3 and the H3.3 variant. CENP-A mislocalization into noncentromeric regions resulting from its overexpression leads to chromosomal segregation aberrations and genome instability. Overexpression of CENP-A is a feature of many cancers and is associated with malignant progression and poor outcome. The recent years have seen impressive progress in our understanding of the mechanisms that orchestrate CENP-A deposition at native centromeres and ectopic loci. They have witnessed the description of novel, heterotypic CENP-A/H3.3 nucleosome particles and the exploration of the phenotypes associated with the deregulation of CENP-A and its chaperones in tumor cells. Here, we review the structural specificities of CENP-A nucleosomes, the epigenetic features that characterize the centrochromatin and the mechanisms and factors that orchestrate CENP-A deposition at centromeres. We then review our knowledge of CENP-A ectopic distribution, highlighting experimental strategies that have enabled key discoveries. Finally, we discuss the implications of deregulated CENP-A in cancer.
Collapse
Affiliation(s)
- Abhishek Bharadwaj Sharma
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| | - Stefan Dimitrov
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé-Allée des Alpes, 38700 La Tronche, France.,Izmir Biomedicine and Genome Center, İzmir, Turkey
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS, INSERM, 67404 Illkirch Cedex, France
| | - Eric Van Dyck
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| |
Collapse
|
14
|
Cimadamore A, Gasparrini S, Santoni M, Cheng L, Lopez-Beltran A, Battelli N, Massari F, Giunchi F, Fiorentino M, Scarpelli M, Montironi R. Biomarkers of aggressiveness in genitourinary tumors with emphasis on kidney, bladder, and prostate cancer. Expert Rev Mol Diagn 2018; 18:645-655. [PMID: 29912582 DOI: 10.1080/14737159.2018.1490179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Over the last decade, the improvement in molecular techniques and the acquisition of genomic information has transformed and increased the quality of patient care and our knowledge of diseases. Areas covered: Protein expression levels in immunohistochemistry and molecular biomarkers are reported for their ability to predict recurrence, progression, development of metastases, or patient survival. In particular, for renal cell carcinoma, we take into consideration the biomarkers applicable to immunohistochemistry and with molecular and genetic analyses. In urothelial carcinoma, there is great interest in the possibility of distinguishing the basal vs. luminal subtypes and to acquire deeper insight into the tumor biology through examining exosomes in urine and biomarkers in the serum. In prostate cancer, single gene expression and multiple gene expression classifiers are reviewed as a tool to distinguish indolent vs. aggressive disease. Expert commentary: The genomic information along with the application of ancillary techniques allow the definition of a neoplasia not only by its morphology but also by its biological signature. This continuous increase in knowledge will result in a better comprehension of oncogenesis, development of targeted therapies and optimizing decision-making processes related to patient care.
Collapse
Affiliation(s)
- Alessia Cimadamore
- a Section of Pathological Anatomy, School of Medicine, United Hospitals , Polytechnic University of the Marche Region , Ancona , Italy
| | - Silvia Gasparrini
- a Section of Pathological Anatomy, School of Medicine, United Hospitals , Polytechnic University of the Marche Region , Ancona , Italy
| | | | - Liang Cheng
- c Department of Pathology and Laboratory Medicine , Indiana University School of Medicine , Indianapolis , IN , USA
| | | | | | - Francesco Massari
- e Division of Oncology , S. Orsola-Malpighi Hospital , Bologna , Italy
| | - Francesca Giunchi
- f Laboratory of Oncologic Molecular Pathology , S. Orsola-Malpighi Hospital , Bologna , Italy
| | - Michelangelo Fiorentino
- f Laboratory of Oncologic Molecular Pathology , S. Orsola-Malpighi Hospital , Bologna , Italy
| | - Marina Scarpelli
- a Section of Pathological Anatomy, School of Medicine, United Hospitals , Polytechnic University of the Marche Region , Ancona , Italy
| | - Rodolfo Montironi
- a Section of Pathological Anatomy, School of Medicine, United Hospitals , Polytechnic University of the Marche Region , Ancona , Italy
| |
Collapse
|
15
|
Ko TY, Kim JI, Park ES, Mun JM, Park SD. The Clinical Implications of Death Domain-Associated Protein (DAXX) Expression. THE KOREAN JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2018; 51:187-194. [PMID: 29854663 PMCID: PMC5973215 DOI: 10.5090/kjtcs.2018.51.3.187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 01/10/2023]
Abstract
Background Death domain-associated protein (DAXX), originally identified as a pro-apoptotic protein, is now understood to be either a pro-apoptotic or an anti-apoptotic factor with a chromatin remodeler, depending on the cell type and context. This study evaluated DAXX expression and its clinical implications in squamous cell carcinoma of the esophagus. Methods Paraffin-embedded tissues from 60 cases of esophageal squamous carcinoma were analyzed immunohistochemically. An immune reaction with more than 10% of tumor cells was interpreted as positive. Positive reactions were sorted into 2 groups: reactions in 11%–50% of tumor cells and reactions in more than 51% of tumor cells, and the correlations between expression and survival and clinical prognosticators were analyzed. Results Forty-three of the 60 cases (71.7%) showed strong nuclear DAXX expression, among which 19 cases showed a positive reaction (31.7%) in 11%–50% of tumor cells, and 24 cases (40.0%) showed a positive reaction in more than 51% of tumor cells. A negative reaction was found in 17 cases (28.3%). These patterns of immunostaining were significantly associated with the N stage (p=0.005) and American Joint Committee on Cancer stage (p=0.001), but overall survival showed no significant difference. There were no correlations of DAXX expression with age, gender, or T stage. However, in stage IIB (p=0.046) and stage IV (p=0.014) disease, DAXX expression was significantly correlated with survival. Conclusion This investigation found upregulation of DAXX in esophageal cancer, with a 71.7% expression rate. DAXX immunostaining could be used in clinical practice to predict aggressive tumors with lymph node metastasis in advanced-stage disease, especially in stages IIB and IV.
Collapse
Affiliation(s)
- Taek Yong Ko
- Department of Thoracic and Cardiovascular Surgery, Kosin University Gospel Hospital, Kosin University College of Medicine
| | - Jong In Kim
- Department of Thoracic and Cardiovascular Surgery, Kosin University Gospel Hospital, Kosin University College of Medicine
| | - Eok Sung Park
- Department of Thoracic and Cardiovascular Surgery, Haeundae Bumin Hospital
| | - Jeong Min Mun
- Department of Thoracic and Cardiovascular Surgery, Kosin University Gospel Hospital, Kosin University College of Medicine
| | - Sung Dal Park
- Department of Thoracic and Cardiovascular Surgery, Kosin University Gospel Hospital, Kosin University College of Medicine
| |
Collapse
|
16
|
Burdelski C, Borcherding L, Kluth M, Hube-Magg C, Melling N, Simon R, Möller-Koop C, Weigand P, Minner S, Haese A, Michl HU, Tsourlakis MC, Jacobsen F, Hinsch A, Wittmer C, Lebok P, Steurer S, Izbicki JR, Sauter G, Krech T, Büscheck F, Clauditz T, Schlomm T, Wilczak W. Family with sequence similarity 13C (FAM13C) overexpression is an independent prognostic marker in prostate cancer. Oncotarget 2018; 8:31494-31508. [PMID: 28415558 PMCID: PMC5458224 DOI: 10.18632/oncotarget.16357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/08/2017] [Indexed: 11/28/2022] Open
Abstract
FAM13C, a gene with unknown function is included in several mRNA signatures for prostate cancer aggressiveness. To understand the impact of FAM13C on prognosis and its relationship to molecularly defined subsets, we analyzed FAM13C expression by immunohistochemistry on a tissue microarray containing 12,400 prostate cancer specimens. Results were compared to phenotype, ERG status, genomic deletions of 3p, 5q, 6q and PTEN, and biochemical recurrence. FAM13C was detectable in cell nuclei of cancerous and non-neoplastic prostate cells. 67.5% of 9,633 interpretable cancers showed FAM13C expression: strong in 28.3%, moderate in 24.6% and weak in 14.6%. Strong FAM13C expression was linked to advanced pT stage, high Gleason grade, positive lymph node status, and early biochemical recurrence (p < 0.0001 each). FAM13C expression was associated with TMPRSS2:ERG fusions. It was present in 85% of ERG positive but in only 54% of ERG negative cancers (p < 0.0001), and in 91.1% of PTEN deleted but in only 69.2% of PTEN non-deleted cancers (p < 0.0001). The prognostic role of FAM13C expression was independent of classical and quantitative Gleason grade, pT stage, pN stage, surgical margin status and preoperative PSA. In conclusion, the results of our study demonstrate that expression of FAM13C is an independent prognostic marker in prostate cancer. Finding FAM13C also in non-neoplastic prostate tissues highlights the importance of properly selecting cancer-rich areas for RNA-based FAM13C expression analysis.
Collapse
Affiliation(s)
- Christoph Burdelski
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| | - Laura Borcherding
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Nathaniel Melling
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany.,General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Philipp Weigand
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany
| | - Hans Uwe Michl
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany
| | | | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Corinna Wittmer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Jakob R Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Till Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany.,Department of Urology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
17
|
Lin GJ, Huang YS, Lin CK, Huang SH, Shih HM, Sytwu HK, Chen YW. Daxx and TCF4 interaction links to oral squamous cell carcinoma growth by promoting cell cycle progression via induction of cyclin D1 expression. Clin Oral Investig 2016; 20:533-540. [PMID: 26205068 PMCID: PMC4799237 DOI: 10.1007/s00784-015-1536-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/13/2015] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Death domain-associated protein (Daxx) has been recently implicated as a positive factor in ovarian cancer and prostate cancer, but the role of Daxx in oral squamous cell carcinoma (OSCC) has never been addressed. Herein, we investigate the expression and function of Daxx in OSCC. MATERIALS AND METHODS RT-quantitative PCR, Western blotting, and immunohistochemistry were used to evaluation of the expression of Daxx in human OSCC cell lines and clinical surgical specimens. Short hairpin RNA targeting Daxx was transduced by lentivirus infection to knockdown the expression of Daxx in SAS and SCC25 cell lines, and the influence of this knockdown was evaluated by analyzing the growth and the cell cycle in transduced cells. Immunoprecipitation and sequential chromatin immunoprecipitation-quantitative PCR were used to analyze the associations between Daxx, TCF4, and cyclin D1 promoter. Xenograft tumor model was used to evaluate the in vivo tumorigenicity of Daxx in OSCC. RESULTS Daxx mRNA and protein expression are elevated in several OSCC cell lines and human OSCC samples in comparison to those in normal tissue. We further find that depletion of Daxx decreases OSCC cell growth activity through G1 cell cycle arrest. Daxx silencing reduces cyclin D1 expression via a Daxx-TCF4 interaction, whereas the Daxx depletion-mediated G1 arrest can be relieved by ectopic expression of cyclin D1. Moreover, we show that in OSCC clinical samples, the expression of Daxx is significantly correlated with that of cyclin D1. CONCLUSION Our data demonstrate the importance of Daxx in regulation of cyclin D1 expression and provide the first evidence that Daxx exhibits tumor-promoting activity in OSCC. CLINICAL RELEVANCE Daxx plays an important role in malignant transformation of OSCC and may serves as a target for cancer prevention and treatment.
Collapse
Affiliation(s)
- Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Yen-Sung Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Kung Lin
- Department of Pathology, Taipei Tzu Chi general Hospital, New Taipei City, Taiwan
| | - Shing-Hwa Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
- Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsiu-Ming Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Huey-Kang Sytwu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Wu Chen
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei, Taiwan.
- School of Dentistry, National Defense Medical Center, 325 Cheng-Kung Road, Section 2, Nei-Hu, Taipei, 11490, Taiwan.
| |
Collapse
|
18
|
Zabalza CV, Adam M, Burdelski C, Wilczak W, Wittmer C, Kraft S, Krech T, Steurer S, Koop C, Hube-Magg C, Graefen M, Heinzer H, Minner S, Simon R, Sauter G, Schlomm T, Tsourlakis MC. HOXB13 overexpression is an independent predictor of early PSA recurrence in prostate cancer treated by radical prostatectomy. Oncotarget 2016; 6:12822-34. [PMID: 25825985 PMCID: PMC4494977 DOI: 10.18632/oncotarget.3431] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/24/2015] [Indexed: 01/30/2023] Open
Abstract
HOXB13 is a prostate cancer susceptibility gene which shows a cancer predisposing (G84E) mutation in 0.1–0.6% of males. We analyzed the prognostic impact of HOXB13 expression by immunohistochemistry on a tissue microarray containing more than 12,400 prostate cancers. Results were compared to tumor phenotype, biochemical recurrence, androgen receptor (AR) and prostate specific antigen (PSA) as well as molecular subtypes defined by ERG status and genomic deletions of 3p, 5q, 6q, and PTEN. HOXB13 immunostaining was detectable in 51.7% of 10,216 interpretable cancers and considered strong in 9.6%, moderate in 19.7% and weak in 22.3% of cases. HOXB13 expression was linked to advanced pT stage, high Gleason grade, positive lymph node status (p < 0.0001 each), high pre-operative PSA levels (p = 0.01), TMPRSS2:ERG fusion, PTEN deletions, AR expression, cell proliferation, reduced PSA expression and early PSA recurrence (p < 0.0001 each). The prognostic value of HOXB13 was independent from established parameters including Gleason, stage, nodal stage and PSA. Co-expression analysis identified a subset of tumors with high HOXB13 and AR but low PSA expression that had a particularly poor prognosis. HOXB13 appears to be a promising candidate for clinical routine tests either alone or in combination with other markers, including AR and PSA.
Collapse
Affiliation(s)
| | - Meike Adam
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Christoph Burdelski
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Corina Wittmer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Stefan Kraft
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Christina Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany.,Department of Urology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Germany
| | | |
Collapse
|
19
|
A New Combinatorial Optimization Approach for Integrated Feature Selection Using Different Datasets: A Prostate Cancer Transcriptomic Study. PLoS One 2015; 10:e0127702. [PMID: 26106884 PMCID: PMC4480358 DOI: 10.1371/journal.pone.0127702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/17/2015] [Indexed: 12/26/2022] Open
Abstract
Background The joint study of multiple datasets has become a common technique for increasing statistical power in detecting biomarkers obtained from smaller studies. The approach generally followed is based on the fact that as the total number of samples increases, we expect to have greater power to detect associations of interest. This methodology has been applied to genome-wide association and transcriptomic studies due to the availability of datasets in the public domain. While this approach is well established in biostatistics, the introduction of new combinatorial optimization models to address this issue has not been explored in depth. In this study, we introduce a new model for the integration of multiple datasets and we show its application in transcriptomics. Methods We propose a new combinatorial optimization problem that addresses the core issue of biomarker detection in integrated datasets. Optimal solutions for this model deliver a feature selection from a panel of prospective biomarkers. The model we propose is a generalised version of the (α,β)-k-Feature Set problem. We illustrate the performance of this new methodology via a challenging meta-analysis task involving six prostate cancer microarray datasets. The results are then compared to the popular RankProd meta-analysis tool and to what can be obtained by analysing the individual datasets by statistical and combinatorial methods alone. Results Application of the integrated method resulted in a more informative signature than the rank-based meta-analysis or individual dataset results, and overcomes problems arising from real world datasets. The set of genes identified is highly significant in the context of prostate cancer. The method used does not rely on homogenisation or transformation of values to a common scale, and at the same time is able to capture markers associated with subgroups of the disease.
Collapse
|
20
|
Puto LA, Brognard J, Hunter T. Transcriptional Repressor DAXX Promotes Prostate Cancer Tumorigenicity via Suppression of Autophagy. J Biol Chem 2015; 290:15406-15420. [PMID: 25903140 PMCID: PMC4505457 DOI: 10.1074/jbc.m115.658765] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 12/20/2022] Open
Abstract
The DAXX transcriptional repressor was originally associated with apoptotic cell death. However, recent evidence that DAXX represses several tumor suppressor genes, including the DAPK1 and DAPK3 protein kinases, and is up-regulated in many cancers argues that a pro-survival role may predominate in a cancer context. Here, we report that DAXX has potent growth-enhancing effects on primary prostatic malignancy through inhibition of autophagy. Through stable gene knockdown and mouse subcutaneous xenograft studies, we demonstrate that DAXX promotes tumorigenicity of human ALVA-31 and PC3 prostate cancer (PCa) cells in vivo. Importantly, DAXX represses expression of essential autophagy modulators DAPK3 and ULK1 in vivo, revealing autophagy suppression as a mechanism through which DAXX promotes PCa tumorigenicity. Furthermore, DAXX knockdown increases autophagic flux in cultured PCa cells. Finally, interrogation of the Oncomine(TM) database suggests that DAXX overexpression is associated with malignant transformation in several human cancers, including prostate and pancreatic cancers. Thus, DAXX may represent a new cancer biomarker for the detection of aggressive disease, whose tissue-specific down-regulation can serve as an improved therapeutic modality. Our results establish DAXX as a pro-survival protein in PCa and reveal that, in the early stages of tumorigenesis, autophagy suppresses prostate tumor formation.
Collapse
Affiliation(s)
- Lorena A Puto
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - John Brognard
- Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, United Kingdom
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037.
| |
Collapse
|
21
|
Montes de Oca R, Gurard-Levin ZA, Berger F, Rehman H, Martel E, Corpet A, de Koning L, Vassias I, Wilson LOW, Meseure D, Reyal F, Savignoni A, Asselain B, Sastre-Garau X, Almouzni G. The histone chaperone HJURP is a new independent prognostic marker for luminal A breast carcinoma. Mol Oncol 2014; 9:657-74. [PMID: 25497280 DOI: 10.1016/j.molonc.2014.11.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/12/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Breast cancer is a heterogeneous disease with different molecular subtypes that have varying responses to therapy. An ongoing challenge in breast cancer research is to distinguish high-risk patients from good prognosis patients. This is particularly difficult in the low-grade, ER-positive luminal A tumors, where robust diagnostic tools to aid clinical treatment decisions are lacking. Recent data implicating chromatin regulators in cancer initiation and progression offers a promising avenue to develop new tools to help guide clinical decisions. METHODS Here we exploit a published transcriptome dataset and an independent validation cohort to correlate the mRNA expression of selected chromatin regulators with respect to the four intrinsic breast cancer molecular subtypes. We then perform univariate and multivariate analyses to compare the prognostic value of a panel of chromatin regulators to Ki67, a currently utilized proliferation marker. RESULTS Unsupervised hierarchical clustering revealed a gene cluster containing several histone chaperones and histone variants highly-expressed in the proliferative subtypes (basal-like, HER2-positive, luminal B) but not in the luminal A subtype. Several chromatin regulators, including the histone chaperones CAF-1 (subunits p150 and p60), ASF1b, and HJURP, and the centromeric histone variant CENP-A, associated with local and metastatic relapse and poor patient outcome. Importantly, we find that HJURP can discriminate favorable and unfavorable outcome within the luminal A subtype, outperforming the currently utilized proliferation marker Ki67, as an independent prognostic marker for luminal A patients. CONCLUSIONS The integration of chromatin regulators as clinical biomarkers, in particular the histone chaperone HJURP, will help guide patient substratification and treatment options for low-risk luminal A breast carcinoma patients.
Collapse
Affiliation(s)
- Rocío Montes de Oca
- Institut Curie, Centre de Recherche, Paris F-75248, France; CNRS, UMR3664, Paris F-75248, France; Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris F-75248, France; UPMC, UMR3664, Paris F-75248, France; Sorbonne University, PSL*, France.
| | - Zachary A Gurard-Levin
- Institut Curie, Centre de Recherche, Paris F-75248, France; CNRS, UMR3664, Paris F-75248, France; Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris F-75248, France; UPMC, UMR3664, Paris F-75248, France; Sorbonne University, PSL*, France.
| | - Frédérique Berger
- Sorbonne University, PSL*, France; Institut Curie, U900, Paris F-75248, France; INSERM, U900, Mines Paris-Tech, Paris F-75248, France; Institut Curie, Department of Biostatistics, Paris F-75248, France.
| | - Haniya Rehman
- Institut Curie, Centre de Recherche, Paris F-75248, France; CNRS, UMR3664, Paris F-75248, France; Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris F-75248, France; UPMC, UMR3664, Paris F-75248, France; Sorbonne University, PSL*, France.
| | - Elise Martel
- Institut Curie, Investigative Pathology Platform, Paris F-75248, France.
| | - Armelle Corpet
- Institut Curie, Centre de Recherche, Paris F-75248, France; CNRS, UMR3664, Paris F-75248, France; Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris F-75248, France; UPMC, UMR3664, Paris F-75248, France; Sorbonne University, PSL*, France.
| | - Leanne de Koning
- Institut Curie, Centre de Recherche, Paris F-75248, France; CNRS, UMR3664, Paris F-75248, France; Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris F-75248, France; UPMC, UMR3664, Paris F-75248, France; Sorbonne University, PSL*, France.
| | - Isabelle Vassias
- Institut Curie, Centre de Recherche, Paris F-75248, France; CNRS, UMR3664, Paris F-75248, France; Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris F-75248, France; UPMC, UMR3664, Paris F-75248, France; Sorbonne University, PSL*, France.
| | - Laurence O W Wilson
- Institut Curie, Centre de Recherche, Paris F-75248, France; CNRS, UMR3664, Paris F-75248, France; Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris F-75248, France; UPMC, UMR3664, Paris F-75248, France; Sorbonne University, PSL*, France.
| | - Didier Meseure
- Institut Curie, Investigative Pathology Platform, Paris F-75248, France.
| | - Fabien Reyal
- Institut Curie, Department of Surgery, Paris F-75248, France.
| | - Alexia Savignoni
- Institut Curie, U900, Paris F-75248, France; INSERM, U900, Mines Paris-Tech, Paris F-75248, France; Institut Curie, Department of Biostatistics, Paris F-75248, France.
| | - Bernard Asselain
- Institut Curie, U900, Paris F-75248, France; INSERM, U900, Mines Paris-Tech, Paris F-75248, France; Institut Curie, Department of Biostatistics, Paris F-75248, France.
| | | | - Geneviève Almouzni
- Institut Curie, Centre de Recherche, Paris F-75248, France; CNRS, UMR3664, Paris F-75248, France; Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris F-75248, France; UPMC, UMR3664, Paris F-75248, France; Sorbonne University, PSL*, France.
| |
Collapse
|
22
|
Filipescu D, Müller S, Almouzni G. Histone H3 Variants and Their Chaperones During Development and Disease: Contributing to Epigenetic Control. Annu Rev Cell Dev Biol 2014; 30:615-46. [DOI: 10.1146/annurev-cellbio-100913-013311] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dan Filipescu
- Institut Curie, Centre de Recherche, Paris, F-75248 France; , ,
| | | | | |
Collapse
|
23
|
Severi G, FitzGerald LM, Muller DC, Pedersen J, Longano A, Southey MC, Hopper JL, English DR, Giles GG, Mills J. A three-protein biomarker panel assessed in diagnostic tissue predicts death from prostate cancer for men with localized disease. Cancer Med 2014; 3:1266-74. [PMID: 24909936 PMCID: PMC4302676 DOI: 10.1002/cam4.281] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 01/11/2023] Open
Abstract
Only a minority of prostate cancers lead to death. Because no tissue biomarkers of aggressiveness other than Gleason score are available at diagnosis, many nonlethal cancers are treated aggressively. We evaluated whether a panel of biomarkers, associated with a range of disease outcomes in previous studies, could predict death from prostate cancer for men with localized disease. Using a case-only design, subjects were identified from three Australian epidemiological studies. Men who had died of their disease, “cases” (N = 83), were matched to “referents” (N = 232), those who had not died of prostate cancer, using incidence density sampling. Diagnostic tissue was retrieved to assess expression of AZGP1, MUC1, NKX3.1, p53, and PTEN by semiquantitative immunohistochemistry (IHC). Poisson regression was used to estimate mortality rate ratios (MRRs) adjusted for age, Gleason score, and stage and to estimate survival probabilities. Expression of MUC1 and p53 was associated with increased mortality (MRR 2.51, 95% CI 1.14–5.54, P = 0.02 and 3.08, 95% CI 1.41–6.95, P = 0.005, respectively), whereas AZGP1 expression was associated with decreased mortality (MRR 0.44, 95% CI 0.20–0.96, P = 0.04). Analyzing all markers under a combined model indicated that the three markers were independent predictors of prostate cancer death and survival. For men with localized disease at diagnosis, assessment of AZGP1, MUC1, and p53 expression in diagnostic tissue by IHC could potentially improve estimates of risk of dying from prostate cancer based only on Gleason score and clinical stage.
Collapse
Affiliation(s)
- Gianluca Severi
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria, 3004, Australia; Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, School of Population Health, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|