1
|
Shao Z, Hao Q, Chen J, Lu Y. TSPAN15 enhances EMT-mediated metastasis of HCC by promoting autophagy through BTRC-mediated PDCD4 degradation. Mol Immunol 2025; 183:203-212. [PMID: 40398082 DOI: 10.1016/j.molimm.2025.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/08/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND Cumulative evidence shows that Tetraspanin 15 (TSPAN15) shows a high degree of consistency in a variety of tumor characteristics, which has attracted extensive attention from researchers. We used TSPAN15 as a starting point to explore the role and mechanism of TSPAN15 in in hepatocellular carcinoma (HCC). METHODS Using database analysis, recombinant plasmid transfection technology, transwell, autophagic flux analysis and western blotting, the effects of TSPAN15 on autophagy, invasion, epithelial-mesenchymal transition (EMT) of HCC cells, and tumor growth and metastasis were elucidated after silencing TSPAN15 in HCC cells. The effect of TSPAN15 on tumor growth was detected by using xenograft model of nude mice. RESULTS Based on the online database and immunohistochemistry analysis, it was found that the mRNA and protein expression of TSPAN15 in HCC tissues was significantly higher than that in normal liver tissues or adjacent non-cancerous tissues. High expression of TSPAN15 was an independent risk factor for poor prognosis in TCGA-LIHC patients. TSPAN15 silencing inhibited HCC autophagy and autophagy-induced migration, invasion and EMT as well as tumor growth and metastasis. Mechanistically, TSPAN15 contributed to programmed cell death 4 (PDCD4) proteasomal degradation through physical interaction with beta-transducin repeat containing (BTRC), thus activing autophagy. Rescue experiments revealed that PDCD4 effectively inhibited TSPAN15-induced autophagy, migration, invasion and EMT. CONCLUSION Abnormally expressed TSPAN15 promotes the degradation of tumor suppressor gene PDCD4 through ubiquitination, thereby promoting autophagy and autophagy-mediated EMT and metastasis of HCC cells, demonstrating the importance of TSPAN15 in the molecular etiology of HCC and its potential therapeutic value.
Collapse
Affiliation(s)
- Zicheng Shao
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215000, China; Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.
| | - Qingya Hao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Jie Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuhua Lu
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215000, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
2
|
Park H, Banegas DW, Han SY, Kim HS, Cha IH, Ryu HJ, Kim D. Primary palatal sarcoma exhibiting EWSR1::RORß fusion: a first case report and literature review. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:e113-e119. [PMID: 39069454 DOI: 10.1016/j.oooo.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
In this report, a tumor exhibited EWSR1::RORß gene fusion, to our knowledge, is the first such reported case. The Ewing sarcoma breakpoint region 1 gene (EWSR1) is known to be associated with several soft tissue tumors although its specific role remains unclear. Its fusion with a member of the ETS family, including FLI1 and ERG, results in Ewing sarcoma, and its fusion with other genes unrelated to the ETS family, including NFATC2 and PATZ1, results in round cell sarcoma with EWSR1-non-ETS fusions, previously referred to as Ewing-like sarcoma. RORß encodes retinoic acid-related orphan receptor ß, a nuclear receptor (NR), and is involved in circadian rhythm modulation and cancer regulation. The specific role of RORß in tumorigenesis remains unclear; however, this case report suggests that it may form part of a new tumorigenic entity.
Collapse
Affiliation(s)
- Haein Park
- Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Daniel Wilfredo Banegas
- Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Seung-Yong Han
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea; Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - In-Ho Cha
- Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Hyang Joo Ryu
- Department of Pathology, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Dongwook Kim
- Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Zhang Y, Xue Y, Gao Y, Zhang Y. Prognostic and predictive value of pathohistological features in gastric cancer and identification of SLITRK4 as a potential biomarker for gastric cancer. Sci Rep 2024; 14:29241. [PMID: 39587240 PMCID: PMC11589652 DOI: 10.1038/s41598-024-80292-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
The aim of this study was to develop a quantitative feature-based model from histopathologic images to assess the prognosis of patients with gastric cancer. Whole slide image (WSI) images of H&E-stained histologic specimens of gastric cancer patients from The Cancer Genome Atlas were included and randomly assigned to training and test groups in a 7:3 ratio. A systematic preprocessing approach was employed as well as a non-overlapping segmentation method that combined patch-level prediction with a multi-instance learning approach to integrate features across the slide images. Subjects were categorized into high- or low-risk groups based on the median risk score derived from the model, and the significance of this stratification was assessed using a log-rank test. In addition, combining transcriptomic data from patients and data from other large cohort studies, we further searched for genes associated with pathological features and their prognostic value. A total of 165 gastric cancer patients were included for model training, and a total of 26 features were integrated through multi-instance learning, with each process generating 11 probabilistic features and 2 predictive labeling features. We applied a 10-fold Lasso-Cox regression model to achieve dimensionality reduction of these features. The predictive accuracy of the model was verified using Kaplan-Meyer (KM) curves for stratification with a consistency index of 0.741 for the training set and 0.585 for the test set. Deep learning-based resultant supervised pathohistological features have the potential for superior prognostic stratification of gastric cancer patients, transforming image pixels into an effective and labor-saving tool to optimize the clinical management of gastric cancer patients. Also, SLITRK4 was identified as a prognostic marker for gastric cancer.
Collapse
Affiliation(s)
- Yuzhe Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China
| | - Yuhang Xue
- Henan Key Laboratory for Molecular Nuclear Medicine and Translational Medicine, Department of Nuclear Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Yongju Gao
- Henan Key Laboratory for Molecular Nuclear Medicine and Translational Medicine, Department of Nuclear Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China.
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China.
| |
Collapse
|
4
|
Schörghofer D, Vock L, Mirea MA, Eckel O, Gschwendtner A, Neesen J, Richtig E, Hengstschläger M, Mikula M. Late stage melanoma is hallmarked by low NLGN4X expression leading to HIF1A accumulation. Br J Cancer 2024; 131:468-480. [PMID: 38902533 PMCID: PMC11300789 DOI: 10.1038/s41416-024-02758-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Despite ongoing research and recent advances in therapy, metastatic melanoma remains one of the cancers with the worst prognosis. Here we studied the postsynaptic cell adhesion molecule Neuroligin 4X (NLGN4X) and investigated its role in melanoma progression. METHODS We analysed histologic samples to assess the expression and predictive value of NLGN4X in human melanoma. The oncogenic role of NLGN4X was determined by loss or gain-of-function experiments in vitro as well as by analysis of tumorspheres, which were grafted to human skin organoids derived from pluripotent stem cells. Whole genome expression analysis and validation experiments were performed to clarify the molecular mechanism. RESULTS We identified that suppression of NLGN4X down regulated the prefoldin member Von Hippel-Lindau binding protein 1 (VBP1). Moreover, loss of VBP1 was sufficient for accumulation of HIF1A and HIF1A signalling was further shown to be essential for the acquisition of migratory properties in melanoma. We re-established NLGN4X expression in late stage melanoma lines and observed decreased tumour growth after transplantation to human skin organoids generated from pluripotent stem cells. In line, we showed that high amounts of NLGN4X and its target VBP1 in human patient samples had a beneficial prognostic effect on patient survival. CONCLUSION In view of these findings, we propose that decreased amounts of NLGN4X are indicative of a metastatic melanoma phenotype and that loss of NLGN4X provides a novel mechanism for HIF induction.
Collapse
Affiliation(s)
- David Schörghofer
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Laurenz Vock
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Madalina A Mirea
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Oliver Eckel
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Anna Gschwendtner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Jürgen Neesen
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Erika Richtig
- Department of Dermatology, Medical University of Graz, 8036, Graz, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria
| | - Mario Mikula
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, 1090, Austria.
| |
Collapse
|
5
|
Dharan R, Sorkin R. Tetraspanin proteins in membrane remodeling processes. J Cell Sci 2024; 137:jcs261532. [PMID: 39051897 DOI: 10.1242/jcs.261532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Membrane remodeling is a fundamental cellular process that is crucial for physiological functions such as signaling, membrane fusion and cell migration. Tetraspanins (TSPANs) are transmembrane proteins of central importance to membrane remodeling events. During these events, TSPANs are known to interact with themselves and other proteins and lipids; however, their mechanism of action in controlling membrane dynamics is not fully understood. Since these proteins span the membrane, membrane properties such as rigidity, curvature and tension can influence their behavior. In this Review, we summarize recent studies that explore the roles of TSPANs in membrane remodeling processes and highlight the unique structural features of TSPANs that mediate their interactions and localization. Further, we emphasize the influence of membrane curvature on TSPAN distribution and membrane domain formation and describe how these behaviors affect cellular functions. This Review provides a comprehensive perspective on the multifaceted function of TSPANs in membrane remodeling processes and can help readers to understand the intricate molecular mechanisms that govern cellular membrane dynamics.
Collapse
Affiliation(s)
- Raviv Dharan
- School of Chemistry , Raymond & Beverly Sackler Faculty of Exact Sciences , Tel Aviv University, 6997801, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems , Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Raya Sorkin
- School of Chemistry , Raymond & Beverly Sackler Faculty of Exact Sciences , Tel Aviv University, 6997801, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems , Tel Aviv University, 6997801, Tel Aviv, Israel
| |
Collapse
|
6
|
Matsumoto Y, Miwa H, Katayama KI, Watanabe A, Yamada K, Ito T, Nakagawa S, Aruga J. Slitrk4 is required for the development of inhibitory neurons in the fear memory circuit of the lateral amygdala. Front Mol Neurosci 2024; 17:1386924. [PMID: 38736483 PMCID: PMC11082273 DOI: 10.3389/fnmol.2024.1386924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
The Slitrk family consists of six synaptic adhesion molecules, some of which are associated with neuropsychiatric disorders. In this study, we aimed to investigate the physiological role of Slitrk4 by analyzing Slitrk4 knockout (KO) mice. The Slitrk4 protein was widely detected in the brain and was abundant in the olfactory bulb and amygdala. In a systematic behavioral analysis, male Slitrk4 KO mice exhibited an enhanced fear memory acquisition in a cued test for classical fear conditioning, and social behavior deficits in reciprocal social interaction tests. In an electrophysiological analysis using amygdala slices, Slitrk4 KO mice showed enhanced long-term potentiation in the thalamo-amygdala afferents and reduced feedback inhibition. In the molecular marker analysis of Slitrk4 KO brains, the number of calretinin (CR)-positive interneurons was decreased in the anterior part of the lateral amygdala nuclei at the adult stage. In in vitro experiments for neuronal differentiation, Slitrk4-deficient embryonic stem cells were defective in inducing GABAergic interneurons with an altered response to sonic hedgehog signaling activation that was involved in the generation of GABAergic interneuron subsets. These results indicate that Slitrk4 function is related to the development of inhibitory neurons in the fear memory circuit and would contribute to a better understanding of osttraumatic stress disorder, in which an altered expression of Slitrk4 has been reported.
Collapse
Affiliation(s)
- Yoshifumi Matsumoto
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute, Wako-shi, Japan
| | - Hideki Miwa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kei-ichi Katayama
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute, Wako-shi, Japan
| | - Arata Watanabe
- Department of Medical Pharmacology, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| | - Kazuyuki Yamada
- Support Unit for Animal Experiments, RIKEN Brain Science Institute, Wako-shi, Japan
| | - Takashi Ito
- Department of Biochemistry, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| | - Shinsuke Nakagawa
- Department of Medical Pharmacology, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| | - Jun Aruga
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute, Wako-shi, Japan
- Department of Medical Pharmacology, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
7
|
Zhu T, Zhou P, Yang L, Fang X, Zhi X. Troponin T1 silencing inhibits paclitaxel resistance and the development of breast cancer via suppressing rat sarcoma virus/rapidly accelerated fibrosarcoma 1 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2064-2076. [PMID: 38095131 DOI: 10.1002/tox.24084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 03/09/2024]
Abstract
OBJECTIVE We aimed to determine the role of Troponin T1 (TNNT1) in paclitaxel (PTX) resistance and tumor progression in breast cancer (BC). METHODS Differentially expressed genes were obtained from the GSE4298 and GSE90564 datasets. Hub genes were isolated from protein-protein interaction networks and further validated by real-time quantitative polymerase chain reaction. The effect of TNNT1 on PTX resistance was determined using cell counting kit-8, 5-ethynyl-2'-deoxyuridine, wound healing, transwell, flow cytometry assays, and subcutaneous xenografted tumor model. Western blotting was used to detect proteins associated with PTX resistance, apoptosis, migration, invasion, and other key pathways. Hematoxylin-eosin and immunohistochemical staining were used to evaluate the role of TNNT1 in tumors. RESULTS After comprehensive bioinformatic analysis, we identified CCND1, IGF1, SFN, INHBA, TNNT1, and TNFSF11 as hub genes for PTX resistance in BC. TNNT1 plays a key role in BC and is upregulated in PTX-resistant BC cells. TNNT1 silencing inhibited PTX resistance, proliferation, migration, and invasion while promoting apoptosis of PTX-resistant BC cells. Tumor xenograft experiments revealed that TNNT1 silencing suppresses PTX resistance and tumor development in vivo. In addition, TNNT1 silencing inhibited the expression of proteins in the rat sarcoma virus (RAS)/rapidly accelerated fibrosarcoma1 (RAF1) pathway in vivo. Treatment with a RAS/RAF1 pathway activator reversed the inhibitory effect of TNNT1 silencing on proliferation, migration, and invasion while promoting apoptosis of PTX resistance BC cells. CONCLUSION Silencing of TNNT1 suppresses PTX resistance and BC progression by inhibiting the RAS/RAF1 pathway, which is a promising biomarker and therapeutic target for drug resistance in BC.
Collapse
Affiliation(s)
- Tong Zhu
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Peng Zhou
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Lu Yang
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Xuan Fang
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Xiangcheng Zhi
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| |
Collapse
|
8
|
Chatzopoulos K, Davila JI, Fadra N, Jackson RA, Minn KT, Sotiriou S, Oliveira AM, Erickson LA, Halling KC, Rumilla KM, Rivera M. Transcriptomic and immunophenotypic characterization of two cases of adamantinoma-like Ewing sarcoma of the thyroid gland. Histopathology 2023; 83:426-434. [PMID: 37195579 DOI: 10.1111/his.14961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/22/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Adamantinoma-like Ewing sarcoma (ALES) is a rare aggressive malignancy occasionally diagnosed in the thyroid gland. ALES shows basaloid cytomorphology, expresses keratins, p63, p40, frequently CD99, and harbours the t(11;22) EWSR1::FLI1 translocation. There is debate on whether ALES resembles more sarcoma or carcinoma. METHODS We performed RNA sequencing from two ALES cases and compared findings with skeletal Ewing's sarcomas and nonneoplastic thyroid tissue. ALES was investigated by in situ hybridization (ISH) for high-risk human papillomavirus (HPV) DNA and immunohistochemistry for the following antigens: keratin 7, keratin 20, keratin 5, keratins (AE1/AE3 and CAM5.2), CD45, CD20, CD5, CD99, chromogranin, synaptophysin, calcitonin, thyroglobulin, PAX8, TTF1, S100, p40, p63, p16, NUT, desmin, ER, FLI1, INI1, and myogenin. RESULTS An uncommon EWSR1::FLI transcript with retained EWSR1 exon 8 was detected in both ALES cases. Regulators of EWSR1::FLI1 splicing (HNRNPH1, SUPT6H, SF3B1) necessary for production of a functional fusion oncoprotein, as well as 53 genes (including TNNT1, NKX2.2) activated downstream to the EWSR1::FLI1 cascade, were overexpressed. Eighty-six genes were uniquely overexpressed in ALES, most of which were related to squamous differentiation. Immunohistochemically, ALES strongly expressed keratins 5, AE1/AE3 and CAM5.2, p63, p40, p16, and focally CD99. INI1 was retained. The remaining immunostains and HPV DNA ISH were negative. CONCLUSION Comparative transcriptomic profiling reveals overlapping features of ALES with skeletal Ewing's sarcoma and an epithelial carcinoma, as evidenced by immunohistochemical expression of keratin 5, p63, p40, CD99, the transcriptome profile, and detection of EWSR1::FLI1 fusion transcript by RNA sequencing.
Collapse
Affiliation(s)
- Kyriakos Chatzopoulos
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Department of General and Anatomic Pathology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jaime I Davila
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Numrah Fadra
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rory A Jackson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- NeoGenomics Laboratories, Aliso Viejo, CA, USA
| | - Kay T Minn
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Sotiris Sotiriou
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Department of General and Anatomic Pathology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andre M Oliveira
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Lori A Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kevin C Halling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kandelaria M Rumilla
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Michael Rivera
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
9
|
Aksoy O, Hantusch B, Kenner L. Emerging role of T3-binding protein μ-crystallin (CRYM) in health and disease. Trends Endocrinol Metab 2022; 33:804-816. [PMID: 36344381 DOI: 10.1016/j.tem.2022.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Thyroid hormones are essential metabolic and developmental regulators that exert a huge variety of effects in different organs. Triiodothyronine (T3) and thyroxine (T4) are synthesized in the thyroid gland and constitute unique iodine-containing hormones that are constantly regulated by a homeostatic feedback mechanism. T3/T4 activity in cells is mainly determined by specific transporters, cytosolic binding proteins, deiodinases (DIOs), and nuclear receptors. Modulation of intracellular T3/T4 level contributes to the maintenance of this regulatory feedback. μ-Crystallin (CRYM) is an important intracellular high-affinity T3-binding protein that buffers the amount of T3 freely available in the cytosol, thereby controlling its action. In this review, we focus on the molecular and pathological properties of CRYM in thyroid hormone signaling, with emphasis on its critical role in malignancies.
Collapse
Affiliation(s)
- Osman Aksoy
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Brigitte Hantusch
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria; Unit for Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria; Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Sparić R, Andjić M, Babović I, Nejković L, Mitrović M, Štulić J, Pupovac M, Tinelli A. Molecular Insights in Uterine Leiomyosarcoma: A Systematic Review. Int J Mol Sci 2022; 23:ijms23179728. [PMID: 36077127 PMCID: PMC9456512 DOI: 10.3390/ijms23179728] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/28/2022] Open
Abstract
Uterine fibroids (UFs) are the most common benign tumors of female genital diseases, unlike uterine leiomyosarcoma (LMS), a rare and aggressive uterine cancer. This narrative review aims to discuss the biology and diagnosis of LMS and, at the same time, their differential diagnosis, in order to distinguish the biological and molecular origins. The authors performed a Medline and PubMed search for the years 1990–2022 using a combination of keywords on the topics to highlight the many genes and proteins involved in the pathogenesis of LMS. The mutation of these genes, in addition to the altered expression and functions of their enzymes, are potentially biomarkers of uterine LMS. Thus, the use of this molecular and protein information could favor differential diagnosis and personalized therapy based on the molecular characteristics of LMS tissue, leading to timely diagnoses and potential better outcomes for patients.
Collapse
Affiliation(s)
- Radmila Sparić
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Koste Todorovića 26, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Mladen Andjić
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Koste Todorovića 26, 11000 Belgrade, Serbia
- Correspondence: (M.A.); (A.T.)
| | - Ivana Babović
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Koste Todorovića 26, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Lazar Nejković
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinic of Gynecology and Obstetrics Narodni Front, 11000 Belgrade, Serbia
| | - Milena Mitrović
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Koste Todorovića 26, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Štulić
- Clinic of Gynecology and Obstetrics Narodni Front, 11000 Belgrade, Serbia
| | - Miljan Pupovac
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Koste Todorovića 26, 11000 Belgrade, Serbia
| | - Andrea Tinelli
- Department of Obstetrics and Gynecology, and CERICSAL (CEntro di Ricerca Clinico SALentino), “Verisdelli Ponti Hospital”, Via Giuseppina Delli Ponti, 73020 Scorrano, LE, Italy
- Correspondence: (M.A.); (A.T.)
| |
Collapse
|
11
|
Mori JO, White J, Elhussin I, Duduyemi BM, Karanam B, Yates C, Wang H. Molecular and pathological subtypes related to prostate cancer disparities and disease outcomes in African American and European American patients. Front Oncol 2022; 12:928357. [PMID: 36033462 PMCID: PMC9399459 DOI: 10.3389/fonc.2022.928357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer (PCa) disproportionately affects African American (AA) men, yet present biomarkers do not address the observed racial disparity. The objective of this study was to identify biomarkers with potential benefits to AA PCa patients. Differentially expressed genes (DEG) analysis coupled with gene set enrichment analysis (GSEA) and leading-edge genes analysis showed that the keratin family of genes, including KRT8, KRT15, KRT19, KRT34, and KRT80, constituted the single most prominent family of genes enriched in AA compared to European American (EA) PCa cell lines. In PCa patients (TCGA and MSKCC patient cohorts), KRT8, KRT15, and KRT19 expression were relatively higher in AA than in EA patients. The differences in the expression of KRT15 and KRT19, but not KRT8, were enhanced by Gleason score and ERG fusion status; in low Gleason (Gleason ≤ 6 [TCGA cohort] and Gleason ≤ 7 [MSKCC cohort]), the expression of KRT15 and KRT19 was significantly (p ≤ 0.05) higher in AA than in EA patients. Survival analysis revealed that high expression of KRT15 and KRT19 was associated with increased risk of biochemical recurrence in low Gleason category patients in the TCGA patient cohort. Interestingly, KRT15 and KRT19 expression were also associated with an increased risk of death in the metastatic prostate adenocarcinoma cohort, suggesting the potential to predict the risks of disease recurrence and death in the low Gleason category and advanced disease conditions respectively. Gene set enrichment analysis revealed known oncogenic gene signatures, including KRAS and ERBB2, to be enriched in patients expressing high KRT15 and KRT19. Furthermore, high KRT15 and KRT19 were linked to the basal and LumA PCa subtypes, which are associated with poor postoperative androgen deprivation therapy (ADT) response compared to the LumB subtype. Taken together, the present study identifies genes with high expression in AA than in EA PCa. The identified genes are linked to oncogenic gene signatures, including KRAS and ERBB2, and to basal and LumA PCa subtypes that are associated with poor postoperative ADT response. This study, therefore, reveals biomarkers with the potential to address biomarker bias in PCa risk stratification and/or prognosis.
Collapse
Affiliation(s)
- Joakin O. Mori
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
- Department of Integrative Biosciences, Tuskegee University, Tuskegee, AL, United States
| | - Jason White
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | - Isra Elhussin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
- Department of Integrative Biosciences, Tuskegee University, Tuskegee, AL, United States
| | - Babatunde M. Duduyemi
- College of Medicine and Allied Health Sciences, University of Sierra Leone Teaching Hospital, Freetown, Sierra Leone
| | - Balasubramanyam Karanam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | - Honghe Wang
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
- *Correspondence: Honghe Wang,
| |
Collapse
|
12
|
Han P, Yang X, Li L, Bao J, Zhang W, Zai S, Zhu Z, Wu M. Identification and validation of a metabolism-related gene signature for the prognosis of colorectal cancer: a multicenter cohort study. Jpn J Clin Oncol 2022; 52:1327-1336. [PMID: 35848857 DOI: 10.1093/jjco/hyac108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Cell metabolism plays a vital role in the proliferation, metastasis and sensitivity to chemotherapy drugs of colorectal cancer. The purpose of this multicenter cohort study is to investigate the potential genes indicating clinical outcomes in colorectal cancer patients. METHODS We analyzed gene expression profiles of colorectal cancer to identify differentially expressed genes then used these differentially expressed genes to construct prognostic signature based on the least absolute shrink-age and selection operator Cox regression model. In addition, the multi-gene signature was validated in independent datasets including our multicenter cohort. Finally, nomograms were set up to evaluate the prognosis of colorectal cancer patients. RESULTS Seventeen metabolism-related genes were determined in the least absolute shrink-age and selection operator model to construct signature, with area under receiver operating characteristic curve for relapse-free survival, 0.741, 0.755 and 0.732 at 1, 3 and 5 year, respectively. External validation datasets, GSE14333, GSE37892, GSE17538 and the Cancer Genome Atlas cohorts, were analyzed and stratified, indicating that the metabolism-related signature was reliable in discriminating high- and low-risk colorectal cancer patients. Area under receiver operating characteristic curves for relapse-free survival in our multicenter validation cohort were 0.801, 0.819 and 0.857 at 1, 3 and 5 year, respectively. Nomograms incorporating the genetic biomarkers and clinical pathological features were set up, which yielded good discrimination and calibration in the prediction of prognosis for colorectal cancer patients. CONCLUSION An original metabolism-related signature was developed as a predictive model for the prognosis of colorectal cancer patients. A nomogram based on the signature was advantageous to facilitate personalized counselling and treatment of colorectal cancer patients.
Collapse
Affiliation(s)
- Ping Han
- Department of Pharmacy, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiudeng Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Shaoyang University, Shaoyang, China
| | - Lina Li
- Pediatric Department, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jie Bao
- Department of Pharmacy, Anhui Provincial Corps Hospital of Chinese People's Armed Police Forces, Hefei, China
| | - Wenqiong Zhang
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shubei Zai
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhaoqin Zhu
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Minle Wu
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Shao S, Piao L, Guo L, Wang J, Wang L, Wang J, Tong L, Yuan X, Zhu J, Fang S, Wang Y. Tetraspanin 7 promotes osteosarcoma cell invasion and metastasis by inducing EMT and activating the FAK-Src-Ras-ERK1/2 signaling pathway. Cancer Cell Int 2022; 22:183. [PMID: 35524311 PMCID: PMC9074275 DOI: 10.1186/s12935-022-02591-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/18/2022] [Indexed: 02/08/2023] Open
Abstract
Background Tetraspanins are members of the 4-transmembrane protein superfamily (TM4SF) that function by recruiting many cell surface receptors and signaling proteins into tetraspanin-enriched microdomains (TEMs) that play vital roles in the regulation of key cellular processes including adhesion, motility, and proliferation. Tetraspanin7 (Tspan7) is a member of this superfamily that plays documented roles in hippocampal neurogenesis, synaptic transmission, and malignant transformation in certain tumor types. How Tspan7 influences the onset or progression of osteosarcoma (OS), however, remains to be defined. Herein, this study aimed to explore the relationship between Tspan7 and the malignant progression of OS, and its underlying mechanism of action. Methods In this study, the levels of Tspan7 expression in human OS cell lines were evaluated via qRT-PCR and western blotting. The effect of Tspan7 on proliferation was examined using CCK-8 and colony formation assays, while metastatic role of Tspan7 was assessed by functional assays both in vitro and in vivo. In addition, mass spectrometry and co-immunoprecipitation were performed to verify the interaction between Tspan7 and β1 integrin, and western blotting was used to explore the mechanisms of Tspan7 in OS progresses. Results We found that Tspan7 is highly expressed in primary OS tumors and OS cell lines. Downregulation of Tspan7 significantly suppressed OS growth, metastasis, and attenuated epithelial-mesenchymal transition (EMT), while its overexpression had the opposite effects in vitro. Furthermore, it exhibited reduced OS pulmonary metastases in Tspan7-deleted mice comparing control mice in vivo. Additionally, we proved that Tspan7 interacted with β1 integrin to facilitate OS metastasis through the activation of integrin-mediated downstream FAK-Src-Ras-ERK1/2 signaling pathway. Conclusion In summary, this study demonstrates for the first time that Tspan7 promotes OS metastasis via interacting with β1 integrin and activating the FAK-Src-Ras-ERK1/2 pathway, which could provide rationale for a new therapeutic strategy for OS. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02591-1.
Collapse
Affiliation(s)
- Shijie Shao
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Lianhua Piao
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, 213000, People's Republic of China.
| | - Liwei Guo
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Jiangsong Wang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Luhui Wang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Jiawen Wang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Lei Tong
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Xiaofeng Yuan
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Junke Zhu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Sheng Fang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Yimin Wang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China.
| |
Collapse
|
14
|
Galetzka D, Böck J, Wagner L, Dittrich M, Sinizyn O, Ludwig M, Rossmann H, Spix C, Radsak M, Scholz-Kreisel P, Mirsch J, Linke M, Brenner W, Marron M, Poplawski A, Haaf T, Schmidberger H, Prawitt D. Hypermethylation of RAD9A intron 2 in childhood cancer patients, leukemia and tumor cell lines suggest a role for oncogenic transformation. EXCLI JOURNAL 2022; 21:117-143. [PMID: 35221838 PMCID: PMC8859646 DOI: 10.17179/excli2021-4482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022]
Abstract
Most childhood cancers occur sporadically and cannot be explained by an inherited mutation or an unhealthy lifestyle. However, risk factors might trigger the oncogenic transformation of cells. Among other regulatory signals, hypermethylation of RAD9A intron 2 is responsible for the increased expression of RAD9A protein, which may play a role in oncogenic transformation. Here, we analyzed the RAD9A intron 2 methylation in primary fibroblasts of 20 patients with primary cancer in childhood and second primary cancer (2N) later in life, 20 matched patients with only one primary cancer in childhood (1N) and 20 matched cancer-free controls (0N), using bisulfite pyrosequencing and deep bisulfite sequencing (DBS). Four 1N patients and one 2N patient displayed elevated mean methylation levels (≥ 10 %) of RAD9A. DBS revealed ≥ 2 % hypermethylated alleles of RAD9A, indicative for constitutive mosaic epimutations. Bone marrow samples of NHL and AML tumor patients (n=74), EBV (Epstein Barr Virus) lymphoblasts (n=6), tumor cell lines (n=5) and FaDu subclones (n=13) were analyzed to substantiate our findings. We find a broad spectrum of tumor entities with an aberrant methylation of RAD9A. We detected a significant difference in mean methylation of RAD9A for NHL versus AML patients (p ≤0.025). Molecular karyotyping of AML samples during therapy with hypermethylated RAD9A showed an evolving duplication of 1.8 kb on Chr16p13.3 including the PKD1 gene. Radiation, colony formation assays, cell proliferation, PCR and molecular karyotyping SNP-array experiments using generated FaDu subclones suggest that hypermethylation of RAD9A intron 2 is associated with genomic imbalances in regions with tumor-relevant genes and survival of the cells. In conclusion, this is the very first study of RAD9A intron 2 methylation in childhood cancer and Leukemia. RAD9A epimutations may have an impact on leukemia and tumorigenesis and can potentially serve as a biomarker.
Collapse
Affiliation(s)
- Danuta Galetzka
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre, Mainz, Germany
| | - Julia Böck
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany.,Institute of Pathology, Julius Maximilians University, Würzburg, Germany
| | - Lukas Wagner
- Center for Pediatrics and Adolescent Medicine, University Medical Centre, Mainz, Germany
| | - Marcus Dittrich
- Bioinformatics Department, Julius Maximilians University, Würzburg, Germany
| | - Olesja Sinizyn
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre, Mainz, Germany
| | | | - Heidi Rossmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre, Mainz, Germany
| | - Claudia Spix
- Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre, Mainz, Germany
| | - Markus Radsak
- Department of Hematology, University Medical Centre, Mainz, Germany
| | | | - Johanna Mirsch
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Germany
| | - Matthias Linke
- Institute of Human Genetics, University Medical Centre, Mainz, Germany
| | - Walburgis Brenner
- Department of Obstetrics and Women's Health, University Medical Centre, Mainz, Germany
| | - Manuela Marron
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre, Mainz, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre, Mainz, Germany
| | - Dirk Prawitt
- Center for Pediatrics and Adolescent Medicine, University Medical Centre, Mainz, Germany
| |
Collapse
|
15
|
Liang Y, Wang M, Liu Y, Wang C, Takahashi K, Naruse K. Meta-Analysis-Assisted Detection of Gravity-Sensitive Genes in Human Vascular Endothelial Cells. Front Cell Dev Biol 2021; 9:689662. [PMID: 34422812 PMCID: PMC8371407 DOI: 10.3389/fcell.2021.689662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Gravity affects the function and maintenance of organs, such as bones, muscles, and the heart. Several studies have used DNA microarrays to identify genes with altered expressions in response to gravity. However, it is technically challenging to combine the results from various microarray datasets because of their different data structures. We hypothesized that it is possible to identify common changes in gene expression from the DNA microarray datasets obtained under various conditions and methods. In this study, we grouped homologous genes to perform a meta-analysis of multiple vascular endothelial cell and skeletal muscle datasets. According to the t-distributed stochastic neighbor embedding (t-SNE) analysis, the changes in the gene expression pattern in vascular endothelial cells formed specific clusters. We also identified candidate genes in endothelial cells that responded to gravity. Further, we exposed human umbilical vein endothelial cells (HUVEC) to simulated microgravity (SMG) using a clinostat and measured the expression levels of the candidate genes. Gene expression analysis using qRT-PCR revealed that the expression level of the prostaglandin (PG) transporter gene SLCO2A1 decreased in response to microgravity, consistent with the meta-analysis of microarray datasets. Furthermore, the direction of gravity affected the expression level of SLCO2A1, buttressing the finding that its expression was affected by gravity. These results suggest that a meta-analysis of DNA microarray datasets may help identify new target genes previously overlooked in individual microarray analyses.
Collapse
Affiliation(s)
- Yin Liang
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mengxue Wang
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yun Liu
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chen Wang
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ken Takahashi
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Keiji Naruse
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
16
|
Yu Q, Wang X, Yang Y, Chi P, Huang J, Qiu S, Zheng X, Chen X. Upregulated NLGN1 predicts poor survival in colorectal cancer. BMC Cancer 2021; 21:884. [PMID: 34340665 PMCID: PMC8327451 DOI: 10.1186/s12885-021-08621-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022] Open
Abstract
Background Neuroligin1 (NLGN1) is a main component of excitatory glutamatergic synapses complex and is important for synapse assembly and function. The clinical value of NLGN1 in colorectal cancer (CRC) is not clear. Methods We obtained the expression data of 1143 CRC patients from 3 independent Gene Expression Omnibus (GEO) datasets (GSE32323, GSE24551, GSE39582) and The Cancer Genome Atlas (TCGA) to make the comparison of the NLGN1 expression level between CRC tissues and matched noncancerous tissues, and to evaluate its value in predicting survival of CRC patients. At the protein level, these results were further confirmed by immunohistochemical staining of 52 CRC samples in our own centre. Finally, the function of NLGN1 was explored by gene set enrichment analysis (GSEA). Results Increased mRNA and protein levels of NLGN1 expression were associated with worse overall survival or recurrence-free survival in CRC patients from 2 GEO datasets, the TCGA database, and our cohort. In addition, multivariate regression analysis showed that NLGN1 was an independent poor prognostic factor of survival in patients with CRC in TCGA database (OR = 2.524, P = 0.010). Functional analysis revealed that NLGN1 was correlated with function involving the Hedgehog signaling pathway, mismatch repair process, and some material metabolism processes. Conclusions This study is the first to implicate and verify NLGN1 as a new poor prognostic marker for CRC.
Collapse
Affiliation(s)
- Qian Yu
- Department of Pathology, Union Hospital, Fujian Medical University, 29 Xin-Quan Road, Fuzhou, Fujian, 350001, People's Republic of China
| | - Xiaojie Wang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, 29 Xin-Quan Road, Fuzhou, Fujian, 350001, People's Republic of China.
| | - Yinghong Yang
- Department of Pathology, Union Hospital, Fujian Medical University, 29 Xin-Quan Road, Fuzhou, Fujian, 350001, People's Republic of China.
| | - Pan Chi
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, 29 Xin-Quan Road, Fuzhou, Fujian, 350001, People's Republic of China
| | - Jianping Huang
- Department of Pathology, Union Hospital, Fujian Medical University, 29 Xin-Quan Road, Fuzhou, Fujian, 350001, People's Republic of China
| | - Shengliang Qiu
- Department of Pathology, Union Hospital, Fujian Medical University, 29 Xin-Quan Road, Fuzhou, Fujian, 350001, People's Republic of China
| | - Xin Zheng
- Department of Pathology, Union Hospital, Fujian Medical University, 29 Xin-Quan Road, Fuzhou, Fujian, 350001, People's Republic of China
| | - Xiaowen Chen
- Department of Pathology, Union Hospital, Fujian Medical University, 29 Xin-Quan Road, Fuzhou, Fujian, 350001, People's Republic of China
| |
Collapse
|
17
|
Kang X, Li W, Liu W, Liang H, Deng J, Wong CC, Zhao S, Kang W, To KF, Chiu PWY, Wang G, Yu J, Ng EKW. LIMK1 promotes peritoneal metastasis of gastric cancer and is a therapeutic target. Oncogene 2021; 40:3422-3433. [PMID: 33883692 PMCID: PMC8116207 DOI: 10.1038/s41388-021-01656-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/06/2020] [Accepted: 01/13/2021] [Indexed: 12/17/2022]
Abstract
Peritoneal metastasis is a common form of metastasis among advanced gastric cancer patients. In this study, we reported the identification of LIM domain kinase 1 (LIMK1) as a promoter of gastric cancer peritoneal metastasis, and its potential to be a therapeutic target of dabrafenib (DAB). Using transcriptomic sequencing of paired gastric cancer peritoneal metastasis, primary tumors, and normal gastric tissues, we first unveiled that LIMK1 is selectively up-regulated in metastatic tumors. Increased LIMK1 in gastric cancer peritoneal metastasis was validated by immunohistochemistry analysis of an independent patient cohort. In vitro functional studies demonstrated that LIMK1 knockout or knockdown significantly inhibited cell migration and invasion of gastric cancer cells. LIMK1 knockout also abrogated peritoneal and liver metastases of gastric cancer cells in nude mice in vivo. Dabrafenib, a small molecule targeting LIMK1, was found to decrease cell migration and invasion of gastric cancer cells in vitro and abolish peritoneal and liver metastasis formation in vivo. Mechanistically, either LIMK1 knockout or Dabrafenib inhibited LIMK1 expression and phosphorylation of its downstream target cofilin. Taken together, our results demonstrated that LIMK1 functions as a metastasis promoter in gastric cancer by inhibiting LIMK1-p-cofilin and that Dabrafenib has the potential to serve as a novel treatment for gastric cancer peritoneal metastasis.
Collapse
Affiliation(s)
- Xi Kang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Surgery, Hebei Medical University 4th Hospital, Shijiazhuang, China
| | - Weilin Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Weixin Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Han Liang
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, China
| | - Jingyu Deng
- Department of Gastroenterology, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sinan Zhao
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Endocrinology, Hebei Medical University 2nd Hospital, Shijiazhuang, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Philip Wai Yan Chiu
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Guiying Wang
- Department of Surgery, Hebei Medical University 4th Hospital, Shijiazhuang, China.
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Enders Kwok Wai Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
18
|
MiR-139-5p influences hepatocellular carcinoma cell invasion and proliferation capacities via decreasing SLITRK4 expression. Biosci Rep 2021; 40:222640. [PMID: 32285917 PMCID: PMC7199452 DOI: 10.1042/bsr20193295] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/29/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
The microRNA, miR-139-5p, has been proved to play important roles in regulating tumor progression, including prostate cancer, osteosarcoma, esophageal cancer, and so on, but its correlation of hepatocellular carcinoma (HCC) still remains unclear. Here we found that hsa-miR-139-5p (miR-139-5p) was decreased in HCC samples compared with normal liver tissues, and a lower expression of miR-139-5p was connected to a poorer prognosis. Mechanism study indicated that a decreased/increased miR-139-5p could increase/decrease HCC cells invasion and proliferation capacities via increasing SLITRK4 expression, what’s more, the reverse assays also confirmed the conclusion when we knocked down SLITRK4 in the miR-139-5p low-expression cells. Luciferase assay confirmed that miR-139-5p could directly bind to the 3′UTR of SLITRK4 mRNA to regulate its expression. Together, these findings show the importance of miR-139-5p/SLITRK4 pathway in HCC growth and progression and may provide new targets for us to better arrange the progression of HCC.
Collapse
|
19
|
Liu JC, Gao L, Li SM, Zheng JJ, Li DG, Zhi KQ, Ren WH. Upregulation of XRN2 acts as an oncogene in oral squamous cell carcinoma and correlates with poor prognosis. Pathol Res Pract 2021; 219:153355. [PMID: 33626405 DOI: 10.1016/j.prp.2021.153355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUD The 5'-3' exoribonuclease 2 (XRN2) has been reported involved in several tumors. However, the clinical significance and molecular mechanism of XRN2 in oral squamous cell carcinoma (OSCC) have not been elucidated. MATERIALS AND METHODS Immunohistochemistry (IHC) was used to investigate the expression of XRN2 in OSCC and adjacent noncancerous tissues, which was further identified by western blot and GEPIA2 database analysis. Moreover, the relationship between XRN2 expression and the clinicopathological characteristics and prognosis of OSCC patients was evaluated. In addition, in vitro, the effects of XRN2 on OSCC cells were evaluated by Cell Counting Kit-8 (CCK8) assay, colony formation assay, apoptosis assay, wound healing assay, and transwell assays. RESULTS XRN2 was overexpressed in 44 of 77 (57.1 %) OSCC tissues. High expression of XRN2 was significantly associated with tumor differentiation (P=0.003), pathological clinical stage (P=0.045), lymph node metastasis (P=0.041), and poor overall survival (P=0.0013). Furthermore, the multivariate analysis suggested that XRN2 expression(P=0.002) was determined as an independent prognostic factor for patients with OSCC. Additionally, with functional assays in vitro, we found that downregulation of XRN2 inhibited cell proliferation, migration, and invasion, while promoted apoptosis of OSCC cells. Furthermore, knockdown of XRN2 in OSCC cells could increase the expression of E-cadherin but reduce the expression of Vimentin, which changes the characteristic of epithelial-mesenchymal transition (EMT). CONCLUSION XRN2 is significantly overexpressed in OSCC tissues and its upregulation was closely associated with poor prognosis of OSCC patients. XRN2 could be a useful prognostic biomarker and a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Jia-Cheng Liu
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology of Qingdao University, Qingdao, China
| | - Ling Gao
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shao-Ming Li
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jing-Jing Zheng
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Endodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Da-Gang Li
- Department of Stomatology, Qingdao Huangdao District Central Hospital, Qingdao, Shandong, China
| | - Ke-Qian Zhi
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Wen-Hao Ren
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
20
|
Huang X, Cai W, Liu L, Yuan W. Low mutation burden and differential tumor-infiltrating immune cells correlate with lymph node metastasis in colorectal cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2259-2269. [PMID: 33042330 PMCID: PMC7539863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Tumor immunotherapy has become an important means of cancer treatment. A response depends on the interaction of tumor cells with immune regulators in the tumor microenvironment, which plays an important role in inhibiting or enhancing the immune response. However, lymph node (LN) metastasis leads to major changes in the tumor microenvironment of patients with colorectal cancer, directly affecting prognosis. METHODS Using data downloaded from the Cancer Genome Atlas (TCGA) database, we studied the microenvironmental differences between LN-negative and positive populations by bioinformatic methods. RESULTS Patients in the LN-positive group had significantly lower immune scores, cytolytic activity scores, and overall survival than the LN-negative group. In addition, a high mutation burden and a new antigen burden could inhibit lymph node metastasis of CRC. In particular, in the LN positive group, the ratio of monocytes to M1 macrophages was significantly downregulated. After the differentially expressed mRNAs between the LN positive and negative groups were determined, a new CRC model was constructed based on multivariate Cox proportional hazard regression analysis to examine the prognosis of patients. The analyses showed that the model was stable and robust. CONCLUSIONS We used multiple scores and details of immune cell infiltration as indicators to assess changes in the tumor microenvironment of CRC patients before and after lymph node metastasis, and quantify and model the immune cells in the microenvironment to predict the overall survival of CRC patients.
Collapse
Affiliation(s)
- Xiao Huang
- College of Mathematics and Computer Science, Chizhou UniversityChina
| | - Wei Cai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of EducationShanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and TechnologyShanghai, China
| | - Li Liu
- College of Mathematics and Information Engineering, Jiaxing UniversityChina
| | - Wenliang Yuan
- College of Mathematics and Information Engineering, Jiaxing UniversityChina
| |
Collapse
|
21
|
Wu M, Li X, Liu R, Yuan H, Liu W, Liu Z. Development and validation of a metastasis-related Gene Signature for predicting the Overall Survival in patients with Pancreatic Ductal Adenocarcinoma. J Cancer 2020; 11:6299-6318. [PMID: 33033514 PMCID: PMC7532518 DOI: 10.7150/jca.47629] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal, aggressive cancer characterized by invasiveness and metastasis. In this study, we aimed to propose a gene prediction model based on metastasis-related genes (MTGs) to more accurately predict PDAC prognosis. Methods: Differentially expressed MTGs (DE-MTGs) were identified via integrated analysis of gene expression omnibus (GEO) datasets and Human Cancer Metastasis Database (HCMDB). Overall survival (OS) related DE-MTGs were then identified and a prognostic gene signature was established using Lasso-Cox regression with TCGA-PAAD datasets. Tumor immunity was analyzed using ESTIMATE and CIBERSORT algorithms. Finally, a nomogram predicting 1-year, 2-year, and 3-year OS of PDAC patients was established based on the prognostic gene signature and relevant clinical parameters using a stepwise Cox regression model. Results: A total of 36 DE-MTGs related to OS were identified in PDAC. Consequently, an MTG-based gene signature comprising of RACGAP1, RARRES3, TPX2, MMP28, GPR87, KIF14, and TSPAN7 was established to predict the OS of PDAC. The MTG-based gene signature was able to distinguish high-risk patients with significantly poorer prognosis and accurately predict OS of PDAC in both the training and external validation datasets. Cox regression analysis indicated that the MTG-based gene signature was an independent prognostic factor in PDAC. The gene set enrichment analysis (GSEA) showed that molecular alterations in the high-risk group were associated with multiple oncological pathways. Moreover, analysis of tumor immunity revealed significantly higher levels of follicular helper T cells and M0 macrophage infiltration, and lower levels of infiltrating naïve B cells, CD8 T cells, monocytes, and resting dendritic cells in the high-risk group. Immune cell infiltration levels were significantly associated with the expression of the seven DE-MTGs. Finally, a nomogram was established by incorporating the prognostic gene signature and clinical parameters, which was superior to the AJCC staging system in predicting the OS of PDAC patients. Conclusions: The DE-MTGs we identified were closely associated with the progress and prognosis of PDAC and are potential therapeutic targets. The MTG-based gene signature and nomogram may serve to improve the individualized prediction of survival, assisting in clinical decision-making.
Collapse
Affiliation(s)
- Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaobin Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rui Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongwei Yuan
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Meng Z, Yuan Q, Zhao J, Wang B, Li S, Offringa R, Jin X, Wu H. The m 6A-Related mRNA Signature Predicts the Prognosis of Pancreatic Cancer Patients. Mol Ther Oncolytics 2020; 17:460-470. [PMID: 32490170 PMCID: PMC7256444 DOI: 10.1016/j.omto.2020.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/23/2020] [Indexed: 12/19/2022] Open
Abstract
N6-methyladenosine (m6A) has an important epitranscriptomic modification that controls cancer self-renewal and cell fate. The addition of m6A to mRNA is a reversible modification. The deposition of m6A is encoded by a methyltransferase complex involving three homologous factors, jargonized as "writers," "erasers," and "readers." However, their roles in pancreatic adenocarcinoma (PAAD) are underexploited. With the use of The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases, we provided an mRNA signature that may improve the prognostic prediction of PAAD patients based on the genetic status of m6A regulators. PAAD patients with genetic alteration of m6A regulators had worse disease-free and overall survival. After comparing PAAD groups with/without genetic alteration of m6A regulators, we identified 196 differentially expressed genes (DEGs). Then, we generated a 16-mRNA signature score system through least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Multivariate cox regression analysis demonstrated that a high-risk score significantly correlates with poor prognosis. Moreover, time-dependent receiver operating characteristic (ROC) curves revealed it was effective in predicting the overall survival in both training and validation sets. PAH, ZPLD1, PPFIA3, and TNNT1 from our signature also exhibited an independent prognostic value. Collectively, these findings can improve the understanding of m6A modifications in PAAD and potentially guide therapies in PAAD patients.
Collapse
Affiliation(s)
- Zibo Meng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qingchen Yuan
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingyuan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shoukang Li
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rienk Offringa
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Xin Jin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
23
|
Gu F, Liu Y, Liu Y, Cheng S, Yang J, Kang M, Duan W, Liu Y. Distinct functions and prognostic values of RORs in gastric cancer. Open Med (Wars) 2020; 15:424-434. [PMID: 33336001 PMCID: PMC7711859 DOI: 10.1515/med-2020-0406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 01/06/2020] [Accepted: 02/22/2020] [Indexed: 11/15/2022] Open
Abstract
Retinoic acid receptor-related orphan receptors (RORs) are frequently abnormally expressed in several human malignancies, including gastric cancer (GC). RORs are involved in the development and progression of GC through Wnt signaling pathway receptors and other common receptors. However, the prognostic roles of individual RORs in patients with GC remain elusive. We accessed the prognostic roles of three RORs (RORα, RORβ, and RORγ) through "The Kaplan-Meier plotter" (KM plotter) database in patients with GC. For all patients with GC who were followed for 20 years, the low mRNA expression of all three RORs showed a significant correlation with better outcomes. We further accessed the prognostic value of individual RORs in different clinical pathological features including Lauren classification, clinical stages, pathological grades, HER2 status, and different treatments methods. The RORs demonstrated critical prognostic roles in GC. Expressions of RORs were higher in GC tissues when compared with normal gastric tissues. Moreover, knockdown of RORs significantly inhibited cell proliferation and migration, suggesting an oncogenic role of RORs in human GC. These findings suggest potential roles of RORs as biomarkers for GC prognosis and as oncogenes in GC.
Collapse
Affiliation(s)
- Feng Gu
- Department of Hepatobiliary, Hospital of HeBei University, Baoding, China
| | - Yuming Liu
- General Hospital of Huabei Petroleum Administration Bureau, Renqiu, China
| | - Yuan Liu
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shujie Cheng
- Department of Hepatobiliary, Hospital of HeBei University, Baoding, China
| | - Jihong Yang
- Department of Hepatobiliary, Hospital of HeBei University, Baoding, China
| | - Ming Kang
- Department of Hepatobiliary, Hospital of HeBei University, Baoding, China
| | - Wendu Duan
- Department of Hepatobiliary, Hospital of HeBei University, Baoding, China
| | - Yan Liu
- Department of Hepatobiliary, Hospital of HeBei University, Baoding, China
| |
Collapse
|
24
|
Gu HY, Zhang C, Guo J, Yang M, Zhong HC, Jin W, Liu Y, Gao LP, Wei RX. Risk score based on expression of five novel genes predicts survival in soft tissue sarcoma. Aging (Albany NY) 2020; 12:3807-3827. [PMID: 32084007 PMCID: PMC7066896 DOI: 10.18632/aging.102847] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
In this study, The Cancer Genome Atlas and Genotype-Tissue Expression databases were used to identify potential biomarkers of soft tissue sarcoma (STS) and construct a prognostic model. The model was used to calculate risk scores based on the expression of five key genes, among which MYBL2 and FBN2 were upregulated and TSPAN7, GCSH, and DDX39B were downregulated in STS patients. We also examined gene signatures associated with the key genes and evaluated the model’s clinical utility. The key genes were found to be involved in the cell cycle, DNA replication, and various cancer pathways, and gene alterations were associated with a poor prognosis. According to the prognostic model, risk scores negatively correlated with infiltration of six types of immune cells. Furthermore, age, margin status, presence of metastasis, and risk score were independent prognostic factors for STS patients. A nomogram that incorporated the risk score and other independent prognostic factors accurately predicted survival in STS patients. These findings may help to improve prognostic prediction and aid in the identification of effective treatments for STS patients.
Collapse
Affiliation(s)
- Hui-Yun Gu
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chao Zhang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jia Guo
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Yang
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hou-Cheng Zhong
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Jin
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yang Liu
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li-Ping Gao
- The Third Clinical School, Hubei University of Medicine, Shiyan, China
| | - Ren-Xiong Wei
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Vaz J, Tian C, Richardson MT, Chan JK, Mysona D, Rao UN, Powell MA, Shriver CD, Hamilton CA, Casablanca Y, Maxwell GL, Darcy KM. Impact of adjuvant treatment and prognostic factors in stage I uterine leiomyosarcoma patients treated in Commission on Cancer®-accredited facilities. Gynecol Oncol 2020; 157:121-130. [PMID: 31954536 DOI: 10.1016/j.ygyno.2019.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Determine the impact of adjuvant chemotherapy (ACT) and prognostic factors in surgically managed patients with stage I uterine leiomyosarcoma (ULMS). METHODS Women who underwent hysterectomy and were diagnosed with stage I ULMS between 2010 and 2014 in the National Cancer Database were eligible for this observation study. Inverse probability of treatment weighting based on propensity score was used to balance clinical characteristics between ACT and no ACT patients. Hazard ratio (HR) and 95% confidence interval (CI) were estimated from Cox modeling. RESULTS There were 1059 eligible patients with stage I ULMS including 514 treated with ACT and 545 with no ACT. Patient characteristics and tumor features varied in patients treated with ACT vs. no ACT (P < .0001). Multivariate survival analysis demonstrated that patient age, comorbidity score, tumor size, lymphovascular space invasion (LVSI) and grade were independent prognostic factors. After propensity score weighting to control for imbalance of prognostic clinical factors, adjusted five-year survival was 61.7% vs. 61.3% and restricted mean survival time was 39.7 vs. 40.6 months for ACT vs. no ACT, respectively. Risk of death in a weighted Cox analysis of overall survival was similar (HR = 1.08, 95% CI = 0.85-1.37, P = .054) for ACT vs. no ACT patients. Subset analysis demonstrated that survival was similar in ACT vs. no ACT patients categorized by age, tumor size and LVSI or with high grade or ungraded tumors. In contrast, patients with low grade tumors had worse 5-year survival (82.3% vs. 91.5%) and an increased risk of death (HR = 3.79, 95% CI = 1.15-12.40, P = .028) following ACT vs. no ACT. CONCLUSIONS ACT did not improve survival over no ACT in patients with stage I ULMS and was inferior in patients with low grade tumors.
Collapse
Affiliation(s)
- Jennifer Vaz
- Department of Obstetrics and Gynecology, Inova Fairfax Hospital, Falls Church, VA, USA.
| | - Chunqiao Tian
- Gynecologic Cancer Center of Excellence, Department of Obstetrics & Gynecology, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA; The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| | | | - John K Chan
- Palo Alto Medical Foundation, California Pacific Medical Center, Sutter Health, San Francisco, CA, USA.
| | - David Mysona
- Medical College of Georgia and College of Allied Health Sciences, Augusta University, Augusta, GA, USA.
| | - Uma N Rao
- Gynecologic Cancer Center of Excellence, Department of Obstetrics & Gynecology, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA; The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Matthew A Powell
- Division of Gynecologic Oncology and Siteman Cancer Center, Washington University, St Louis, MO, USA.
| | - Craig D Shriver
- John P Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Chad A Hamilton
- Department of Obstetrics and Gynecology, Inova Fairfax Hospital, Falls Church, VA, USA; Gynecologic Cancer Center of Excellence, Department of Obstetrics & Gynecology, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA; John P Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Inova Schar Cancer Institute, Inova Center for Personalized Health, Falls Church, VA, USA.
| | - Yovanni Casablanca
- Gynecologic Cancer Center of Excellence, Department of Obstetrics & Gynecology, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA; John P Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - G Larry Maxwell
- Department of Obstetrics and Gynecology, Inova Fairfax Hospital, Falls Church, VA, USA; Gynecologic Cancer Center of Excellence, Department of Obstetrics & Gynecology, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA; John P Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Inova Schar Cancer Institute, Inova Center for Personalized Health, Falls Church, VA, USA.
| | - Kathleen M Darcy
- Gynecologic Cancer Center of Excellence, Department of Obstetrics & Gynecology, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA; The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; John P Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
26
|
Deng Y, Xie Q, Zhang G, Li S, Wu Z, Ma Z, He X, Gao Y, Wang Y, Kang X, Wang J. Slow skeletal muscle troponin T, titin and myosin light chain 3 are candidate prognostic biomarkers for Ewing's sarcoma. Oncol Lett 2019; 18:6431-6442. [PMID: 31807166 PMCID: PMC6876326 DOI: 10.3892/ol.2019.11044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/17/2019] [Indexed: 11/29/2022] Open
Abstract
Ewing's sarcoma (ES) is a common malignant bone tumor in children and adolescents. Although great efforts have been made to understand the pathogenesis and development of ES, the underlying molecular mechanism remains unclear. The present study aimed to identify new key genes as potential biomarkers for the diagnosis, targeted therapy or prognosis of ES. mRNA expression profile chip data sets GSE17674, GSE17679 and GSE45544 were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened using the R software limma package, and functional and pathway enrichment analyses were performed using the enrichplot package and GSEA software. The NetworkAnalyst online tool, as well as Cytoscape and its plug-ins cytoHubba and NetworkAnalyzer, were used to construct a protein-protein interaction network (PPI) and conduct module analysis to screen key (hub) genes. LABSO COX regression and overall survival (OS) analysis of the Hub genes were performed. A total of 211 DEGs were obtained by integrating and analyzing the three data sets. The functions and pathways of the DEGs were mainly associated with the regulation of small-molecule metabolic processes, cofactor-binding, amino acid, proteasome and ribosome biosynthesis in eukaryotes, as well as the Rac1, cell cycle and P53 signaling pathways. A total of one important module and 20 hub genes were screened from the PPI network using the Maximum Correlation Criteria algorithm of cytoHubba. LASSO COX regression results revealed that titin (TTN), fast skeletal muscle troponin T, skeletal muscle actin α-actin, nebulin, troponin C type 2 (fast), myosin light-chain 3 (MYL3), slow skeletal muscle troponin T (TNNT1), myosin-binding protein C1 slow-type, tropomyosin 3 and myosin heavy-chain 7 were associated with prognosis in patients with ES. The Kaplan-Meier curves demonstrated that high mRNA expression levels of TNNT1 (P<0.001), TTN (P=0.049), titin-cap (P=0.04), tropomodulin 1 (P=0.011), troponin I2 fast skeletal type (P=0.021) and MYL3 (P=0.017) were associated with poor OS in patients with ES. In conclusion, the DEGs identified in the present study may be key genes in the pathogenesis of ES, three of which, namely TNNT1, TTN and MYL3, may be potential prognostic biomarkers for ES.
Collapse
Affiliation(s)
- Yajun Deng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Qiqi Xie
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Shaoping Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Zuolong Wu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Zhanjun Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Xuegang He
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yicheng Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yonggang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Jing Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
27
|
Dou C, Xu Q, Liu J, Wang Y, Zhou Z, Yao W, Jiang K, Cheng J, Zhang C, Tu K. SHMT1 inhibits the metastasis of HCC by repressing NOX1-mediated ROS production. J Exp Clin Cancer Res 2019. [DOI: 10.1186/s13046-019-1067-5 pmid:307552432019-02-12]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
28
|
Epigenetic loss of AOX1 expression via EZH2 leads to metabolic deregulations and promotes bladder cancer progression. Oncogene 2019; 39:6265-6285. [PMID: 31383940 DOI: 10.1038/s41388-019-0902-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/24/2022]
Abstract
Advanced Bladder Cancer (BLCA) remains a clinical challenge that lacks effective therapeutic measures. Here, we show that distinct, stage-wise metabolic alterations in BLCA are associated with the loss of function of aldehyde oxidase (AOX1). AOX1 associated metabolites have a high predictive value for advanced BLCA and our findings demonstrate that AOX1 is epigenetically silenced during BLCA progression by the methyltransferase activity of EZH2. Knockdown (KD) of AOX1 in normal bladder epithelial cells re-wires the tryptophan-kynurenine pathway resulting in elevated NADP levels which may increase metabolic flux through the pentose phosphate (PPP) pathway, enabling increased nucleotide synthesis, and promoting cell invasion. Inhibition of NADP synthesis rescues the metabolic effects of AOX1 KD. Ectopic AOX1 expression decreases NADP production, PPP flux and nucleotide synthesis, while decreasing invasion in cell line models and suppressing growth in tumor xenografts. Further gain and loss of AOX1 confirm the EZH2-dependent activation, metabolic deregulation, and tumor growth in BLCA. Our findings highlight the therapeutic potential of AOX1 and provide a basis for the development of prognostic markers for advanced BLCA.
Collapse
|
29
|
Dvorská D, Škovierová H, Braný D, Halašová E, Danková Z. Liquid Biopsy as a Tool for Differentiation of Leiomyomas and Sarcomas of Corpus Uteri. Int J Mol Sci 2019; 20:E3825. [PMID: 31387281 PMCID: PMC6695893 DOI: 10.3390/ijms20153825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 01/10/2023] Open
Abstract
Utilization of liquid biopsy in the management of cancerous diseases is becoming more attractive. This method can overcome typical limitations of tissue biopsies, especially invasiveness, no repeatability, and the inability to monitor responses to medication during treatment as well as condition during follow-up. Liquid biopsy also provides greater possibility of early prediction of cancer presence. Corpus uteri mesenchymal tumors are comprised of benign variants, which are mostly leiomyomas, but also a heterogenous group of malignant sarcomas. Pre-surgical differentiation between these tumors is very difficult and the final description of tumor characteristics usually requires excision and histological examination. The leiomyomas and malignant leiomyosarcomas are especially difficult to distinguish and can, therefore, be easily misdiagnosed. Because of the very aggressive character of sarcomas, liquid biopsy based on early diagnosis and differentiation of these tumors would be extremely helpful. Moreover, after excision of the tumor, liquid biopsy can contribute to an increased knowledge of sarcoma behavior at the molecular level, especially on the formation of metastases which is still not well understood. In this review, we summarize the most important knowledge of mesenchymal uterine tumors, the possibilities and benefits of liquid biopsy utilization, the types of molecules and cells that can be analyzed with this approach, and the possibility of their isolation and capture. Finally, we review the typical abnormalities of leiomyomas and sarcomas that can be searched and analyzed in liquid biopsy samples with the final aim to pre-surgically differentiate between benign and malignant mesenchymal tumors.
Collapse
Affiliation(s)
- Dana Dvorská
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Henrieta Škovierová
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Dušan Braný
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia.
| | - Erika Halašová
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Zuzana Danková
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|
30
|
D'Antona L, Dattilo V, Catalogna G, Scumaci D, Fiumara CV, Musumeci F, Perrotti G, Schenone S, Tallerico R, Spoleti CB, Costa N, Iuliano R, Cuda G, Amato R, Perrotti N. In Preclinical Model of Ovarian Cancer, the SGK1 Inhibitor SI113 Counteracts the Development of Paclitaxel Resistance and Restores Drug Sensitivity. Transl Oncol 2019; 12:1045-1055. [PMID: 31163384 PMCID: PMC6545392 DOI: 10.1016/j.tranon.2019.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer is the second most common gynecological malignancy worldwide. Paclitaxel is particularly important in the therapy of ovarian carcinomas, but the treatment efficacy is counteracted by the development of resistance to chemotherapy. The identification of target molecules that can prevent or control the development of chemoresistance might provide important tools for the management of patients affected by ovarian cancer. Serum- and glucocorticoid-regulated kinase 1 (SGK1) appears to be a key determinant of resistance to chemo- and radiotherapy. Specifically, SGK1 affects paclitaxel sensitivity in RKO colon carcinoma cells by modulating the specificity protein 1 (SP1)–dependent expression of Ran-specific GTPase-activating protein (RANBP1), a member of the GTP-binding nuclear protein Ran (RAN) network that is required for the organization and function of the mitotic spindle. SGK1 inhibition might thus be useful for counteracting the development of paclitaxel resistance. Here, we present in vitro data obtained using ovarian carcinoma cell lines that indicate that the SGK1 inhibitor SI113 inhibits cancer cell proliferation, potentiates the effects of paclitaxel-based chemotherapy, counteracts the development of paclitaxel resistance, and restores paclitaxel sensitivity in paclitaxel-resistant A2780 ovarian cancer cells. The results were corroborated by preclinical studies of xenografts generated in nude mice through the implantation of paclitaxel-resistant human ovarian cancer cells. The SGK1 inhibitor SI113 synergizes with paclitaxel in the treatment of xenografted ovarian cancer cells. Taken together, these data suggest that SGK1 inhibition should be investigated in clinical trials for the treatment of paclitaxel-resistant ovarian cancer.
Collapse
Affiliation(s)
- Lucia D'Antona
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Vincenzo Dattilo
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Giada Catalogna
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Domenica Scumaci
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Claudia Vincenza Fiumara
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | | | - Giuseppe Perrotti
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | | | - Rossana Tallerico
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Cristina B Spoleti
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Nicola Costa
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Rodolfo Iuliano
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Giovanni Cuda
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Rosario Amato
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro.
| | - Nicola Perrotti
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro.
| |
Collapse
|
31
|
Dou C, Xu Q, Liu J, Wang Y, Zhou Z, Yao W, Jiang K, Cheng J, Zhang C, Tu K. SHMT1 inhibits the metastasis of HCC by repressing NOX1-mediated ROS production. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:70. [PMID: 30755243 PMCID: PMC6373090 DOI: 10.1186/s13046-019-1067-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/30/2019] [Indexed: 12/17/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is the most major type of primary hepatic cancer. Serine hydroxymethyltransferase 1 (SHMT1) is recently found to play critical roles in human cancers including lung cancer, ovarian cancer and intestinal cancer. However, the expression, function and the underlying mechanisms of SHMT1 in HCC remain uncovered. Methods qRT-PCR, immunohistochemistry and immunoblotting were performed to detect the expression of SHMT1 in HCC tissues and cell lines. HCC cell migration and invasion were determined by Boyden chamber and Transwell assay in vitro, and tumor metastasis was assessed via lung metastasis model in mice. The expression of key factors involved in epithelial-to-mesenchymal transition (EMT) process was evaluated by western blotting. Results In this study, data mining of public databases and analysis of clinical specimens demonstrated that SHMT1 expression was decreased in HCC. Reduced SHMT1 level was correlated with unfavorable clinicopathological features and poor prognosis of HCC patients. Gain- and loss-of-function experiments showed that SHMT1 overexpression inhibited the migration and invasion of HCCLM3 cells while SHMT1 knockdown enhanced the metastatic ability of Hep3B cells. Furthermore, qRT-PCR and western blotting showed that SHMT1 inhibited EMT and matrix metallopeptidase 2 (MMP2) expression. In vivo experiments showed that SHMT1 suppressed the lung metastasis of HCC cells in mice. Mechanistically, SHMT1 knockdown enhanced reactive oxygen species (ROS) production, and thus promoted the motility, EMT and MMP2 expression in Hep3B cells. Furthermore, NADPH oxidase 1 (NOX1) was identified to be the downstream target of SHMT1 in HCC. NOX1 expression was negatively correlated with SHMT1 expression in HCC. Rescue experiments revealed that NOX1 mediated the functional influence of SHMT1 on HCC cells. Conclusions These data indicate that SHMT1 inhibits the metastasis of HCC by repressing NOX1 mediated ROS production. Electronic supplementary material The online version of this article (10.1186/s13046-019-1067-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Changwei Dou
- Department of Hepatopancreatobiliary Surgery & Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, Zhejiang Province, China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, Zhejiang Province, China
| | - Jie Liu
- Department of Hepatopancreatobiliary Surgery & Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, Zhejiang Province, China
| | - Yufeng Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Zhenyu Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong Province, China
| | - Weifeng Yao
- Department of Hepatopancreatobiliary Surgery & Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, Zhejiang Province, China
| | - Kai Jiang
- Department of Hepatopancreatobiliary Surgery & Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, Zhejiang Province, China
| | - Jian Cheng
- Department of Hepatopancreatobiliary Surgery & Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, Zhejiang Province, China
| | - Chengwu Zhang
- Department of Hepatopancreatobiliary Surgery & Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, Zhejiang Province, China.
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
32
|
Wu JI, Wang LH. Emerging roles of gap junction proteins connexins in cancer metastasis, chemoresistance and clinical application. J Biomed Sci 2019; 26:8. [PMID: 30642339 PMCID: PMC6332853 DOI: 10.1186/s12929-019-0497-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Connexin, a four-pass transmembrane protein, contributes to assembly of gap junctions among neighboring cells and thus facilitates gap junctional intercellular communication (GJIC). Traditionally, the roles of connexins were thought to mediate formation of hemichannels and GJIC assembly for transportation of ions and small molecules. Many studies have observed loss of GJIC, due to reduced expression or altered cytoplasmic localization of connexins, in primary tumor cells. Connexins are generally considered tumor-suppressive. However, recent studies of clinical samples suggested a different role of connexins in that expression levels and membrane localization of connexins, including Connexin 43 (Cx43, GJA1) and Connexin 26 (Cx26, GJB2), were found to be enhanced in metastatic lesions of cancer patients. Cx43- and Cx26-mediated GJIC was found to promote cancer cell migration and adhesion to the pulmonary endothelium. Regulatory circuits involved in the induction of connexins and their functional effects have also been reported in various types of cancer. Connexins expressed in stromal cells were correlated with metastasis and were implicated in regulating metastatic behaviors of cancer cells. Recent studies have revealed that connexins can contribute to cellular phenotypes via multiple ways, namely 1) GJIC, 2) C-terminal tail-mediated signaling, and 3) cell-cell adhesion during gap junction formation. Both expression levels and the subcellular localization could participate determining the functional roles of connexins in cancer. Compounds targeting connexins were thus tested as potential therapeutics intervening metastasis or chemoresistance. This review focuses on the recent findings in the correlation between the expression of connexins and patients’ prognosis, their roles in metastasis and chemoresistance, as well as the implications and concerns of using connexin-targeting drugs as anti-metastatic therapeutics. Overall, connexins may serve as biomarkers for cancer prognosis and as therapeutic targets for intervening metastasis and chemoresistance.
Collapse
Affiliation(s)
- Jun-I Wu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan.,Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Lu-Hai Wang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan. .,Department of Life Sciences, National Central University, Taoyuan, Taiwan. .,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan. .,Chinese Medical Research Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
33
|
Pan Z, Li L, Fang Q, Zhang Y, Hu X, Qian Y, Huang P. Analysis of dynamic molecular networks for pancreatic ductal adenocarcinoma progression. Cancer Cell Int 2018; 18:214. [PMID: 30598639 PMCID: PMC6303882 DOI: 10.1186/s12935-018-0718-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/18/2018] [Indexed: 12/29/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest solid tumors. The rapid progression of PDAC results in an advanced stage of patients when diagnosed. However, the dynamic molecular mechanism underlying PDAC progression remains far from clear. Methods The microarray GSE62165 containing PDAC staging samples was obtained from Gene Expression Omnibus and the differentially expressed genes (DEGs) between normal tissue and PDAC of different stages were profiled using R software, respectively. The software program Short Time-series Expression Miner was applied to cluster, compare, and visualize gene expression differences between PDAC stages. Then, function annotation and pathway enrichment of DEGs were conducted by Database for Annotation Visualization and Integrated Discovery. Further, the Cytoscape plugin DyNetViewer was applied to construct the dynamic protein–protein interaction networks and to analyze different topological variation of nodes and clusters over time. The phosphosite markers of stage-specific protein kinases were predicted by PhosphoSitePlus database. Moreover, survival analysis of candidate genes and pathways was performed by Kaplan–Meier plotter. Finally, candidate genes were validated by immunohistochemistry in PDAC tissues. Results Compared with normal tissues, the total DEGs number for each PDAC stage were 994 (stage I), 967 (stage IIa), 965 (stage IIb), 1027 (stage III), 925 (stage IV), respectively. The stage-course gene expression analysis showed that 30 distinct expressional models were clustered. Kyoto Encyclopedia of Genes and Genomes analysis indicated that the up-regulated DEGs were commonly enriched in five fundamental pathways throughout five stages, including pathways in cancer, small cell lung cancer, ECM-receptor interaction, amoebiasis, focal adhesion. Except for amoebiasis, these pathways were associated with poor PDAC overall survival. Meanwhile, LAMA3, LAMB3, LAMC2, COL4A1 and FN1 were commonly shared by these five pathways and were unfavorable factors for prognosis. Furthermore, by constructing the stage-course dynamic protein interaction network, 45 functional molecular modules and 19 nodes were identified as featured regulators for all PDAC stages, among which the collagen family and integrins were considered as two main regulators for facilitating aggressive progression. Additionally, the clinical relevance analysis suggested that the stage IV featured nodes MLF1IP and ITGB4 were significantly correlated with shorter overall survival. Moreover, 15 stage-specific protein kinases were identified from the dynamic network and CHEK1 was particularly activated at stage IV. Experimental validation showed that MLF1IP, LAMA3 and LAMB3 were progressively increased from tumor initiation to progression. Conclusions Our study provided a view for a better understanding of the dynamic landscape of molecular interaction networks during PDAC progression and offered potential targets for therapeutic intervention. Electronic supplementary material The online version of this article (10.1186/s12935-018-0718-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zongfu Pan
- 1Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022 China
| | - Lu Li
- 2Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Qilu Fang
- 1Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022 China
| | - Yiwen Zhang
- 1Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022 China
| | - Xiaoping Hu
- 1Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022 China
| | - Yangyang Qian
- 3Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, 310022 China
| | - Ping Huang
- 1Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022 China
| |
Collapse
|
34
|
Involvement of natriuretic peptide system in C2C12 myocytes. Mol Cell Biochem 2018; 456:15-27. [PMID: 30519782 DOI: 10.1007/s11010-018-3486-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022]
Abstract
The natriuretic peptide system, a key regulator of cGMP signaling, comprises three types of natriuretic peptides, osteocrin/musclin (OSTN), and their natriuretic peptide receptors. Although this system plays important roles in many organs, its physiological roles in skeletal muscle have not been clearly described. In the present study, we investigated the role of the natriuretic peptide system in C2C12 myocytes. All three natriuretic peptide receptors were expressed by cells differentiating from myoblasts to myotubes, and natriuretic peptide receptor B (NPR-B) transcripts were detected at the highest levels. Further, higher levels of cGMP were generated in response to stimulation with C-type natriuretic peptide (CNP) versus atrial natriuretic peptide (ANP), which reflected receptor expression levels. A cGMP analog downregulated the expression of a few ER stress-related genes. Furthermore, OSTN gene expression was strongly upregulated after 20 days of differentiation. Augmented gene expression was found to correlate closely with endoplasmic reticulum (ER) stress, and C/EBP [CCAAT-enhancer-binding protein] homologous protein (CHOP), which is known to be activated by ER stress, affected the expression of OSTN. Together, these results suggest a role for natriuretic peptide signaling in the ER stress response of myocytes.
Collapse
|
35
|
Connexin 43 (Cx43) in cancer: Implications for therapeutic approaches via gap junctions. Cancer Lett 2018; 442:439-444. [PMID: 30472182 DOI: 10.1016/j.canlet.2018.10.043] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/30/2018] [Accepted: 10/25/2018] [Indexed: 01/11/2023]
Abstract
Gap junctions are membrane channels found in all cells of the human body that are essential to cellular physiology. Gap junctions are formed from connexin proteins and are responsible for transfer of biologically active molecules, metabolites, and salts between neighboring cells or cells and their extracellular environment. Over the last few years, aberrant connexin 43 (Cx43) expression has been associated with cancer recurrence, metastatic spread, and poor survival. Here we provide an overview of the general structure and function of gap junctions and review their roles in different cancer types. We discuss new therapeutic approaches targeting Cx43 and potential new ways of exploiting gap junction transfer for drug delivery and anti-cancer treatment. The permeability of Cx43 channels to small molecules and macromolecules makes them highly attractive targets for delivering drugs directly into the cytoplasm. Cancer cells overexpressing Cx43 may be more permeable and sensitive to chemotherapeutics. Because Cx43 can either act as a tumor suppressor or oncogene, biomarker analysis and a better understanding of how Cx43 contextually mediates cancer phenotypes will be required to develop clinically viable Cx43-based therapies.
Collapse
|
36
|
Shi Y, Zhao Y, Zhang Y, AiErken N, Shao N, Ye R, Lin Y, Wang S. TNNT1 facilitates proliferation of breast cancer cells by promoting G 1/S phase transition. Life Sci 2018; 208:161-166. [PMID: 30031058 DOI: 10.1016/j.lfs.2018.07.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/11/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022]
Abstract
AIMS Breast cancer is the major diagnosed cancer and the leading reason of cancer related death among women, and the tumor size is one of the risk factors. Therefore, it is significant to reveal the principle of breaking the subtle homeostasis of cell cycle and sustaining chronic proliferation of cancer cells. MAIN METHODS The expression of TNNT1 was examined by qPCR and western blotting. The effect of TNNT1 on cell proliferation was detected by MTT, colony formation and anchorage-independent growth assay. The percent of cells in different cell phase was analyzed by Flow cytometry. The mRNA and protein expression of genes involved in G1/S transition was assayed using qPCR and western blotting, respectively. KEY FINDINGS The results showed that TNNT1 expression is significantly increased in breast cancer tissues and closely correlated with clinical stage, T and N classification. Further experiments demonstrate that TNNT1 contributes to proliferation of breast cells by promoting G1/S transition. SIGNIFICANCE Our results extend the mechanisms of controlling cell cycle and may provide a novel therapeutic target to therapy breast cancer.
Collapse
Affiliation(s)
- Yawei Shi
- The Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Two Road, Guangzhou, Guangdong 510080, China
| | - Yang Zhao
- The Department of Vascular Surgery, The Third Affiliated Hospital of Sun Yat-sen University, 600# Tianhe Road, Guangzhou, Guangdong 510000, China
| | - Yunjian Zhang
- The Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Two Road, Guangzhou, Guangdong 510080, China
| | - NiJiati AiErken
- The Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, 628# Zhenyuan Road, Shenzhen, Guangdong 518100, China
| | - Nan Shao
- The Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Two Road, Guangzhou, Guangdong 510080, China
| | - Runyi Ye
- The Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Two Road, Guangzhou, Guangdong 510080, China
| | - Ying Lin
- The Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Two Road, Guangzhou, Guangdong 510080, China.
| | - Shenming Wang
- The Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Two Road, Guangzhou, Guangdong 510080, China
| |
Collapse
|
37
|
Fan J, Lv Z, Yang G, Liao TT, Xu J, Wu F, Huang Q, Guo M, Hu G, Zhou M, Duan L, Liu S, Jin Y. Retinoic Acid Receptor-Related Orphan Receptors: Critical Roles in Tumorigenesis. Front Immunol 2018; 9:1187. [PMID: 29904382 PMCID: PMC5990620 DOI: 10.3389/fimmu.2018.01187] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/14/2018] [Indexed: 12/30/2022] Open
Abstract
Retinoic acid receptor-related orphan receptors (RORs) include RORα (NR1F1), RORβ (NR1F2), and RORγ (NR1F3). These receptors are reported to activate transcription through ligand-dependent interactions with co-regulators and are involved in the development of secondary lymphoid tissues, autoimmune diseases, inflammatory diseases, the circadian rhythm, and metabolism homeostasis. Researches on RORs contributing to cancer-related processes have been growing, and they provide evidence that RORs are likely to be considered as potential therapeutic targets in many cancers. RORα has been identified as a potential therapeutic target for breast cancer and has been investigated in melanoma, colorectal colon cancer, and gastric cancer. RORβ is mainly expressed in the central nervous system, but it has also been studied in pharyngeal cancer, uterine leiomyosarcoma, and colorectal cancer, in addition to neuroblastoma, and recent studies suggest that RORγ is involved in various cancers, including lymphoma, melanoma, and lung cancer. Some studies found RORγ to be upregulated in cancer tissues compared with normal tissues, while others indicated the opposite results. With respect to the mechanisms of RORs in cancer, previous studies on the regulatory mechanisms of RORs in cancer were mostly focused on immune cells and cytokines, but lately there have been investigations concentrating on RORs themselves. Thus, this review summarizes reports on the regulation of RORs in cancer and highlights potential therapeutic targets in cancer.
Collapse
Affiliation(s)
- Jinshuo Fan
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhilei Lv
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanghai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Ting Liao
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juanjuan Xu
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wu
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Huang
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengfei Guo
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guorong Hu
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Zhou
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Limin Duan
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuqing Liu
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Jin
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Tsuyoshi H, Yoshida Y. Molecular biomarkers for uterine leiomyosarcoma and endometrial stromal sarcoma. Cancer Sci 2018; 109:1743-1752. [PMID: 29660202 PMCID: PMC5989874 DOI: 10.1111/cas.13613] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 12/13/2022] Open
Abstract
Uterine leiomyosarcoma (u‐LMS) and endometrial stromal sarcoma (ESS) are among the most frequent soft tissue sarcomas, which, in adults, lead to fatal lung metastases and patients have an extremely poor prognosis. Due to their rarity and heterogeneity, there are no suitable biomarkers for diagnosis and prognosis, although some biomarker candidates have appeared. In 2017, The Cancer Genome Atlas (TCGA) Research Network's work on u‐LMS has confirmed mutations and deletions in RB1,TP53 and PTEN. In addition, whole‐exome sequencing of u‐LMS has confirmed and demonstrated frequent alterations in TP53,RB1, α‐thalassemia/mental retardation syndrome X‐linked (ATRX) and mediator complex subunit 12 (MED12). MED12 is a useful biomarker to diagnose uterine‐derived LMS and tumors arising from (LM) with a relatively favorable prognosis. TP53 and ATRX mutations can be important mechanisms in the pathogenesis of u‐LMS and are correlated with a poor prognosis. In an update based on the 2014 WHO classification, low‐grade ESS is often associated with gene rearrangement bringing about the JAZF 1‐SUZ12 (formerly JAZF1‐JJAZ1) fusion gene, whereas high‐grade ESS is associated with the YWHAE‐NUTM fusion gene. Low‐grade ESS with JAZF1 rearrangement may correlate with metastasis. However, high‐grade ESS with metastasis with YWHAE rearrangement shows a relatively favorable prognosis. The genetic/molecular genetic aberrations in u‐LMS and ESS are reviewed, focusing on molecular biomarkers for these primary and metastatic tumors.
Collapse
Affiliation(s)
- Hideaki Tsuyoshi
- Faculty of Medical Sciences, Department of Obstetrics and Gynecology, University of Fukui, Fukui, Japan
| | - Yoshio Yoshida
- Faculty of Medical Sciences, Department of Obstetrics and Gynecology, University of Fukui, Fukui, Japan
| |
Collapse
|
39
|
TSPAN15 interacts with BTRC to promote oesophageal squamous cell carcinoma metastasis via activating NF-κB signaling. Nat Commun 2018; 9:1423. [PMID: 29650964 PMCID: PMC5897412 DOI: 10.1038/s41467-018-03716-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 03/07/2018] [Indexed: 01/01/2023] Open
Abstract
Beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) is crucial for the degradation of IκBα. Our previous transcriptome sequencing analysis revealed that tetraspanin 15 (TSPAN15) was significantly upregulated in clinical oesophageal squamous cell carcinoma (OSCC) tissues. Here, we show that high TSPAN15 expression in OSCC tissues is significantly associated with lymph node and distant metastasis, advanced clinical stage, and poor prognosis. Elevated TSPAN15 expression is, in part, caused by the reduction of miR-339-5p. Functional studies demonstrate that TSPAN15 promotes metastatic capabilities of OSCC cells. We further show that TSPAN15 specifically interacts with BTRC to promote the ubiquitination and proteasomal degradation of p-IκBα, and thereby triggers NF-κB nuclear translocation and subsequent activation of transcription of several metastasis-related genes, including ICAM1, VCAM1, uPA, MMP9, TNFα, and CCL2. Collectively, our findings indicate that TSPAN15 may serve as a new biomarker and/or provide a novel therapeutic target to OSCC patients. BTRC can activate NF-κB signaling through the ubiquitination and degradation of IκB-α. Here the authors show that TSPAN15 promotes metastasis of oesophageal squamous cell cancer by enhancing BTRC induced degradation of IκB-α and subsequent activation of NF-κB.
Collapse
|
40
|
Shostak A. Human Clock Genes and Cancer. CURRENT SLEEP MEDICINE REPORTS 2018. [DOI: 10.1007/s40675-018-0102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Novel circulating peptide biomarkers for esophageal squamous cell carcinoma revealed by a magnetic bead-based MALDI-TOFMS assay. Oncotarget 2018; 7:23569-80. [PMID: 26993605 PMCID: PMC5029648 DOI: 10.18632/oncotarget.8123] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/28/2016] [Indexed: 12/31/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant neoplasms worldwide. Patients are often diagnosed at advanced stages with poor prognosis due to the absence of obvious early symptoms. Here, we applied a high-throughput serum peptidome analysis to identify circulating peptide markers of ESCC. Weak cationic exchange magnetic beads coupled to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used for two-stage proteotypic peptide profiling in complex serum samples collected from 477 cancer patients and healthy controls. We established a genetic algorithm model containing three significantly differentially expressed peptides at 1,925.5, 2,950.6 and 5,900.0 Da with a sensitivity and specificity of 97.00% and 95.92% in the training set and 97.03% and 100.00% in the validation set, respectively. The model's diagnostic capability was significantly better than SCC-Ag and Cyfra 21-1, especially for early stage ESCC, with an achieved sensitivity of 96.94%. Subsequently, these peptides were identified as fragments of AHSG, TSP1 and FGA by linear ion trap-orbitrap hybrid tandem mass spectrometry. Notably, increased tissue and serum levels of TSP1 in ESCC were verified and correlated with disease progression. In addition, tissue TSP1 was an independent poor prognostic factor in ESCC. In conclusion, the newly established circulating peptide panel and identified proteins could serve as potential biomarkers for the early detection and diagnosis of ESCC. Nevertheless, a larger cohort will be required for further unequivocal validation of their clinical application.
Collapse
|
42
|
Larson NB, Fogarty ZC, Larson MC, Kalli KR, Lawrenson K, Gayther S, Fridley BL, Goode EL, Winham SJ. An integrative approach to assess X-chromosome inactivation using allele-specific expression with applications to epithelial ovarian cancer. Genet Epidemiol 2017; 41:898-914. [PMID: 29119601 PMCID: PMC5726546 DOI: 10.1002/gepi.22091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/06/2017] [Accepted: 09/27/2017] [Indexed: 01/05/2023]
Abstract
X-chromosome inactivation (XCI) epigenetically silences transcription of an X chromosome in females; patterns of XCI are thought to be aberrant in women's cancers, but are understudied due to statistical challenges. We develop a two-stage statistical framework to assess skewed XCI and evaluate gene-level patterns of XCI for an individual sample by integration of RNA sequence, copy number alteration, and genotype data. Our method relies on allele-specific expression (ASE) to directly measure XCI and does not rely on male samples or paired normal tissue for comparison. We model ASE using a two-component mixture of beta distributions, allowing estimation for a given sample of the degree of skewness (based on a composite likelihood ratio test) and the posterior probability that a given gene escapes XCI (using a Bayesian beta-binomial mixture model). To illustrate the utility of our approach, we applied these methods to data from tumors of ovarian cancer patients. Among 99 patients, 45 tumors were informative for analysis and showed evidence of XCI skewed toward a particular parental chromosome. For 397 X-linked genes, we observed tumor XCI patterns largely consistent with previously identified consensus states based on multiple normal tissue types. However, 37 genes differed in XCI state between ovarian tumors and the consensus state; 17 genes aberrantly escaped XCI in ovarian tumors (including many oncogenes), whereas 20 genes were unexpectedly inactivated in ovarian tumors (including many tumor suppressor genes). These results provide evidence of the importance of XCI in ovarian cancer and demonstrate the utility of our two-stage analysis.
Collapse
MESH Headings
- Adult
- Alleles
- Bayes Theorem
- Carcinoma, Ovarian Epithelial
- Chromosomes, Human, X
- Female
- Genes, X-Linked
- Genotype
- Humans
- Models, Genetic
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/pathology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Polymorphism, Single Nucleotide
- RNA, Neoplasm/chemistry
- RNA, Neoplasm/isolation & purification
- RNA, Neoplasm/metabolism
- Sequence Analysis, RNA
- X Chromosome Inactivation
Collapse
Affiliation(s)
- Nicholas B. Larson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Zachary C. Fogarty
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Melissa C. Larson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Kate Lawrenson
- Women’s Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Bioinformatics and Functional Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Simon Gayther
- Center for Bioinformatics and Functional Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brooke L. Fridley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Ellen L. Goode
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Stacey J. Winham
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
43
|
Cuppens T, Moisse M, Depreeuw J, Annibali D, Colas E, Gil-Moreno A, Huvila J, Carpén O, Zikán M, Matias-Guiu X, Moerman P, Croce S, Lambrechts D, Amant F. Integrated genome analysis of uterine leiomyosarcoma to identify novel driver genes and targetable pathways. Int J Cancer 2017; 142:1230-1243. [DOI: 10.1002/ijc.31129] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/31/2017] [Accepted: 09/28/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Tine Cuppens
- Department of Oncology, Gynecologic Oncology; KU Leuven (University of Leuven); Leuven 3000 Belgium
- VIB Center for Cancer Biology, VIB; Leuven Belgium
| | - Matthieu Moisse
- Laboratory for Translational Genetics, Department of Human Genetics; KU Leuven; Leuven Belgium
| | - Jeroen Depreeuw
- Department of Oncology, Gynecologic Oncology; KU Leuven (University of Leuven); Leuven 3000 Belgium
- VIB Center for Cancer Biology, VIB; Leuven Belgium
- Laboratory for Translational Genetics, Department of Human Genetics; KU Leuven; Leuven Belgium
| | - Daniela Annibali
- Department of Oncology, Gynecologic Oncology; KU Leuven (University of Leuven); Leuven 3000 Belgium
| | - Eva Colas
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, CIBERONC; Barcelona Spain
| | - Antonio Gil-Moreno
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, CIBERONC; Barcelona Spain
- Gynecological Oncology Department; Vall Hebron University Hospital; Barcelona Spain
| | - Jutta Huvila
- Department of Pathology; University of Turku and Turku University Hospital; Turku Finland
| | - Olli Carpén
- Department of Pathology; University of Turku and Turku University Hospital; Turku Finland
- Department of Pathology and Genome Scale Research Program; University of Helsinki and HUSLAB, Helsinki University Hospital; Helsinki Finland
| | - Michal Zikán
- Department of Obstetrics and Gynecology; Gynecological Oncology Center, Charles University in Prague, 1st Faculty of Medicine and General University Hospital in Prague; Prague Czech Republic
| | - Xavier Matias-Guiu
- Pathological Oncology Group and Pathology Department; Hospital U Arnau de Vilanova, and Hospital U de Bellvitge, IRBLLEIDA and Idibell, University of Lleida, CIBERONC; Lleida Spain
| | - Philippe Moerman
- Department of Pathology; UZ Leuven - KU Leuven (University of Leuven); Leuven B-3000 Belgium
| | - Sabrina Croce
- Department of Biopathology; Institut Bergonié; Bordeaux F-33000 France
| | - Diether Lambrechts
- VIB Center for Cancer Biology, VIB; Leuven Belgium
- Laboratory for Translational Genetics, Department of Human Genetics; KU Leuven; Leuven Belgium
| | - Frédéric Amant
- Department of Oncology, Gynecologic Oncology; KU Leuven (University of Leuven); Leuven 3000 Belgium
- Centre for Gynecologic Oncology Amsterdam (CGOA), Antoni Van Leeuwenhoek - Netherlands Cancer Institute; Amsterdam The Netherlands
| |
Collapse
|
44
|
Benna C, Helfrich-Förster C, Rajendran S, Monticelli H, Pilati P, Nitti D, Mocellin S. Genetic variation of clock genes and cancer risk: a field synopsis and meta-analysis. Oncotarget 2017; 8:23978-23995. [PMID: 28177907 PMCID: PMC5410358 DOI: 10.18632/oncotarget.15074] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/27/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The number of studies on the association between clock genes’ polymorphisms and cancer susceptibility has increased over the last years but the results are often conflicting and no comprehensive overview and quantitative summary of the evidence in this field is available. RESULTS Literature search identified 27 eligible studies comprising 96756 subjects (cases: 38231) and investigating 687 polymorphisms involving 14 clock genes. Overall, 1025 primary and subgroup meta-analyses on 366 gene variants were performed. Study distribution by tumor was as follows: breast cancer (n=15), prostate cancer (n=3), pancreatic cancer (n=2), non-Hodgkin's lymphoma (n=2), glioma (n=1), chronic lymphocytic leukemia (n=1), colorectal cancer (n=1), non-small cell lung cancer (n=1) and ovarian cancer (n=1). We identified 10 single nucleotide polymorphisms (SNPs) significantly associated with cancer risk: NPAS2 rs10165970 (mixed and breast cancer shiftworkers), rs895520 (mixed), rs17024869 (breast) and rs7581886 (breast); CLOCK rs3749474 (breast) and rs11943456 (breast); RORA rs7164773 (breast and breast cancer postmenopausal), rs10519097 (breast); RORB rs7867494 (breast cancer postmenopausal), PER3 rs1012477 (breast cancer subgroups) and assessed the level of quality evidence to be intermediate. We also identified polymorphisms with lower quality statistically significant associations (n=30). CONCLUSIONS Our work supports the hypothesis that genetic variation of clock genes might affect cancer risk. These findings also highlight the need for more efforts in this research field in order to fully establish the contribution of clock gene variants to the risk of developing cancer. METHODS We conducted a systematic review and meta-analysis of the evidence on the association between clock genes’ germline variants and the risk of developing cancer. To assess result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate result noteworthiness. Subgroup meta-analysis was also performed based on participant features and tumor type. The breast cancer subgroup was further stratified by work conditions, estrogen receptor/progesterone receptor status and menopausal status, conditions associated with the risk of breast cancer in different studies.
Collapse
Affiliation(s)
- Clara Benna
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Senthilkumar Rajendran
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | | | | | - Donato Nitti
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy.,Clinica Chirurgica I, Azienda Ospedaliera Padova, Padova, Italy
| | - Simone Mocellin
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy.,Istituto Oncologico Veneto, IOV-IRCSS, Padova, Italy
| |
Collapse
|
45
|
Villalaín-González C, Tejerizo-García Á, Lopez-Garcia P, López-González G, Oliver-Perez MR, Jiménez-López JS. Vaginal metastasis as the initial presentation of leiomyosarcoma: a case report. BMC Cancer 2017; 17:503. [PMID: 28747229 PMCID: PMC5530533 DOI: 10.1186/s12885-017-3484-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 07/13/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Uterine leiomyosarcomas are very rare and highly aggressive tumors that have a high rate of recurrence and poor prognosis, even when early diagnosed. Due to their relative rarity, there is limited research on optimal management strategies. CASE PRESENTATION A 60-year-old woman with a history of an asymptomatic uterine leiomyoma presented in October 2015 with postmenopausal bleeding and a friable vaginal cyst that bled when palpated. A partial cystectomy was performed, and malignant-like cystic and solid components were identified. Histopathology diagnosed an unclassifiable malignant epithelioid tumor. Subsequent imaging studies identified a malignant uterine tumor, a metabolically active vaginal lesion, and two benign leiomyomas. An anterior pelvic exenteration (colpectomy, hysterectomy, bilateral adnexectomy, total cystectomy, and cutaneous ureteroileostomy ad modum Bricker) were performed by laparotomy in March 2016. Examination of the surgical specimens identified a 75 × 75-mm leiomyoma, an 80 × 30-mm infiltrating mesenchymal uterine lesion with vascular invasion and tumor emboli, and a 60 × 30-mm perivascular vaginal tumor. Immunohistochemistry indicated a phenotypic transition from a uterine leiomyosarcoma to a vaginal epithelioid lesion; marker expression changed from the uterine tumor actin+/desmin+/caldesmon+/CD10- phenotype, through the tumor emboli, to an actin-/desmin-/caldesmon-/CD10+ phenotype in the vaginal lesion. A high-grade uterine mesenchymal tumor and vaginal metastasis were diagnosed. Adjuvant chemotherapy with docetaxel, gemcitabine, and doxorubicin commenced in May 2016 and treatment has been well tolerated. CONCLUSIONS Differentiating leiomyosarcoma from leiomyoma is challenging and few tools other than microscopic evaluation are available. Vaginal compromise in leiomyosarcoma usually results from tumor extension, not hematogenous metastasis. A vaginal metastasis is a very rare initial presentation. We have found only two cases like this described on published literature. The atypical clinical and histological presentation in our case complicated diagnosis and delayed treatment. An early diagnosis and complete surgical clearance gives the best chance of survival, and imaging tools should be applied early in instances of new suspicious malignant lesions.
Collapse
Affiliation(s)
- Cecilia Villalaín-González
- Service of Obstetrics and Gynecology, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, E-, 28041 Madrid, Spain
| | - Álvaro Tejerizo-García
- Service of Obstetrics and Gynecology, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, E-, 28041 Madrid, Spain
| | | | - Gregorio López-González
- Service of Obstetrics and Gynecology, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, E-, 28041 Madrid, Spain
| | - Ma. Reyes Oliver-Perez
- Service of Obstetrics and Gynecology, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, E-, 28041 Madrid, Spain
| | - Jesús S. Jiménez-López
- Service of Obstetrics and Gynecology, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, E-, 28041 Madrid, Spain
| |
Collapse
|
46
|
Oncopig Soft-Tissue Sarcomas Recapitulate Key Transcriptional Features of Human Sarcomas. Sci Rep 2017; 7:2624. [PMID: 28572589 PMCID: PMC5453942 DOI: 10.1038/s41598-017-02912-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Human soft-tissue sarcomas (STS) are rare mesenchymal tumors with a 5-year survival rate of 50%, highlighting the need for further STS research. Research has been hampered by limited human sarcoma cell line availability and the large number of STS subtypes, making development of STS cell lines and animal models representative of the diverse human STS subtypes critical. Pigs represent ideal human disease models due to their similar size, anatomy, metabolism, and genetics compared to humans. The Oncopig encodes inducible KRASG12D and TP53R167H transgenes, allowing for STS modeling in a spatial and temporal manner. This study utilized Oncopig STS cell line (fibroblast) and tumor (leiomyosarcoma) RNA-seq data to compare Oncopig and human STS expression profiles. Altered expression of 3,360 and 7,652 genes was identified in Oncopig STS cell lines and leiomyosarcomas, respectively. Transcriptional hallmarks of human STS were observed in Oncopig STS, including altered TP53 signaling, Wnt signaling activation, and evidence of epigenetic reprogramming. Furthermore, master regulators of Oncopig STS expression were identified, including FOSL1, which was previously identified as a potential human STS therapeutic target. These results demonstrate the Oncopig STS model’s ability to mimic human STS transcriptional profiles, providing a valuable resource for sarcoma research and cell line development.
Collapse
|
47
|
Molecular Evidence for Monoclonal Skip Progression in Main Duct Intraductal Papillary Mucinous Neoplasms of the Pancreas. Ann Surg 2017; 265:969-977. [DOI: 10.1097/sla.0000000000001755] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Abstract
INTRODUCTION Uterine sarcomas are rare cancers, of which the most common entities are leiomyosarcoma and endometrial stromal sarcoma. These two tumors may have overlapping clinical presentation, morphology and immunohistochemical profile, but are increasingly recognized to be two molecularly distinct entities. Endometrial stromal sarcomas are further currently divided into a low-grade and high-grade group based on molecular characteristics. Area covered: This review discusses recent data which shed light on the molecular profile of these two cancers and may aid in understanding their evolution and progression, in the aim of improving their diagnosis and management. Search was through PubMed, with focus on studies published in the last 5 years. Expert commentary: The literature presented and discussed documents rapidly expanding knowledge of the genetic characteristics of leiomyosarcoma and endometrial stromal sarcoma, with an array of molecules and pathways implicated in the biology of these cancers. Several of these molecules are potential therapeutic targets. Assessment of their predictive and prognostic role awaits larger studies.
Collapse
Affiliation(s)
- Ben Davidson
- a Department of Pathology , Norwegian Radium Hospital, Oslo University Hospital , Oslo , Norway.,b Institute of Clinical Medicine , University of Oslo , Oslo , Norway
| | - Francesca Micci
- c Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, Norwegian Radium Hospital , Oslo University Hospital , Oslo , Norway.,d Centre for Cancer Biomedicine , University of Oslo , Oslo , Norway
| |
Collapse
|
49
|
Hsueh YP, Gronquist MR, Schwarz EM, Nath RD, Lee CH, Gharib S, Schroeder FC, Sternberg PW. Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. eLife 2017; 6. [PMID: 28098555 PMCID: PMC5243009 DOI: 10.7554/elife.20023] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 12/28/2016] [Indexed: 12/19/2022] Open
Abstract
To study the molecular basis for predator-prey coevolution, we investigated how Caenorhabditis elegans responds to the predatory fungus Arthrobotrys oligospora. C. elegans and other nematodes were attracted to volatile compounds produced by A. oligospora. Gas-chromatographic mass-spectral analyses of A. oligospora-derived volatile metabolites identified several odors mimicking food cues attractive to nematodes. One compound, methyl 3-methyl-2-butenoate (MMB) additionally triggered strong sex- and stage-specific attraction in several Caenorhabditis species. Furthermore, when MMB is present, it interferes with nematode mating, suggesting that MMB might mimic sex pheromone in Caenorhabditis species. Forward genetic screening suggests that multiple receptors are involved in sensing MMB. Response to fungal odors involves the olfactory neuron AWCs. Single-cell RNA-seq revealed the GPCRs expressed in AWC. We propose that A. oligospora likely evolved the means to use olfactory mimicry to attract its nematode prey through the olfactory neurons in C. elegans and related species. DOI:http://dx.doi.org/10.7554/eLife.20023.001
Collapse
Affiliation(s)
- Yen-Ping Hsueh
- Division of Biology and Biological Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Matthew R Gronquist
- Department of Chemistry, State University of New York at Fredonia, Fredonia, United States
| | - Erich M Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Ravi David Nath
- Division of Biology and Biological Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| | - Ching-Han Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shalha Gharib
- Division of Biology and Biological Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, United States.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| |
Collapse
|
50
|
Wang Z, Shi N, Naing A, Janku F, Subbiah V, Araujo DM, Patel SR, Ludwig JA, Ramondetta LM, Levenback CF, Ramirez PT, Piha‐Paul SA, Hong D, Karp DD, Tsimberidou AM, Meric‐Bernstam F, Fu S. Survival of patients with metastatic leiomyosarcoma: the MD Anderson Clinical Center for targeted therapy experience. Cancer Med 2016; 5:3437-3444. [PMID: 27882721 PMCID: PMC5224847 DOI: 10.1002/cam4.956] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 12/13/2022] Open
Abstract
Advanced stage leiomyosarcoma (LMS) is incurable with current systemic antitumor therapies. Therefore, there is clinical interest in exploring novel therapeutic regimens to treat LMS. We reviewed the medical records of 75 consecutive patients with histologically confirmed metastatic LMS, who had been referred to the Clinical Center for Targeted Therapy at MD Anderson Cancer Center. To lay the foundation for potential phase I trials for the treatment of advanced LMS, we analyzed tumor response and survival outcome data. The frequent hotspot gene aberrations that we observed were the TP53 mutation (65%) and RB1 loss/mutation (45%) detected by Sequenom or next-generation sequencing. Among patients treated with gene aberration-related phase I trial therapy, the median progression-free survival was 5.8 months and the median overall survival was 15.9 months, significantly better than in patients without therapy (1.9 months, P = 0.001; and 8.7 months, P = 0.013, respectively). Independent risk factors that predicted shorter overall survival included hemoglobin <10 g/dL, body mass index <30 kg/m2 , serum albumin <3.5 g/dL, and neutrophil above upper limit of normal. The median survivals were 19.9, 7.6, and 0.9 months for patients with 0, 1 or 2, and ≥3 of the above risk factors, respectively (P < 0.001). A prognostic scoring system that included four independent risk factors might predict survival in patients with metastatic LMS who were treated in a phase I trial. Gene aberration-related therapies led to significantly better clinical benefits, supporting that further exploration with novel mechanism-driven therapeutic regimens is warranted.
Collapse
Affiliation(s)
- Zhijie Wang
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexas
- Department of Medical OncologyCancer HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Naiyi Shi
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Aung Naing
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Filip Janku
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Vivek Subbiah
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Dejka M. Araujo
- Department of Sarcoma Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Shreyaskumar R. Patel
- Department of Sarcoma Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Joseph A. Ludwig
- Department of Sarcoma Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Lois M. Ramondetta
- Department of Gynecologic Oncology and Reproductive MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Charles F. Levenback
- Department of Gynecologic Oncology and Reproductive MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Pedro T. Ramirez
- Department of Gynecologic Oncology and Reproductive MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Sarina A. Piha‐Paul
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - David Hong
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Daniel D. Karp
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Apostolia M. Tsimberidou
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Funda Meric‐Bernstam
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Siqing Fu
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexas
| |
Collapse
|