1
|
Haberecker M, Kuerten P, Vetter VK, Malega F, Moch H, Pauli C. A practical approach to better identify NTRK 1-3 fusion-positive mesenchymal neoplasms by pan-Trk immunohistochemistry. Virchows Arch 2025:10.1007/s00428-025-04102-9. [PMID: 40232379 DOI: 10.1007/s00428-025-04102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/19/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
Pan-Trk immunohistochemistry has become an affordable screening tool for tumors harboring NTRK1 - 3-rearrangements. However, false positive staining has been addressed especially in tumors with mesenchymal origin. As a positive staining triggers reflex testing, a better understanding about pan-Trk immunohistochemistry in these tumors has become necessary. In this work, we extensively studied pan-Trk IHC in a large cohort of mesenchymal neoplasms using two antibody clones: EPR17341 (RTU Assay, Roche/Ventana) and A7H6R (Cell Signaling Technologies). Whole slide sections of 809 individual cases, including 35 subtypes of mesenchymal neoplasms, were analyzed by two different pan-Trk antibodies. Any positivity above background in > 1% of tumor cells was classified as positive. Positive stained cases were molecularly analyzed. The specificity of clone EPR17341 was 78% and showed 21.9% false positive staining (177/809). Forty-five percent (80/177) of the false positive stained cases harbored a non-NTRK-gene fusion. When comparing the two antibodies in mesenchymal neoplasms, clone A7H6R showed 80% less false positive stains compared to clone EPR17341. Additionally, three tumors harboring a NTRK1-fusion were newly identified (0.4%) and reclassified in our cohort. Our work showed a high false positive rate in mesenchymal neoplasms using clone EPR17341. Clone A7H6R demonstrated a higher specificity and therefore could be considered in clinical practice for screening mesenchymal tumors for NTRK1 - 3-rearrangements, eventually leading to less unnecessary reflex testing.
Collapse
Affiliation(s)
- Martina Haberecker
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Pauline Kuerten
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Viola Katharina Vetter
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Francesca Malega
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Medical Faculty, University Zurich, Zurich, Switzerland
| | - Chantal Pauli
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
- Medical Faculty, University Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Fernandes I, Macedo D, Gouveia E, Ferreira A, Lima J, Lopez D, Melo-Alvim C, Carvalho A, Tavares P, Rodrigues-Santos P, Cardoso P, Magalhães M, Vieira P, Brito J, Mendes C, Rodrigues J, Netto E, Oliveira V, Sousa C, Henriques Abreu M, Pina F, Vasques H. [Practical Guidance on the Detection of NTRK Fusions in Sarcomas: Current Status and Diagnostic Challenges]. ACTA MEDICA PORT 2025; 38:266-275. [PMID: 40185143 DOI: 10.20344/amp.21925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/26/2024] [Indexed: 04/07/2025]
Abstract
Sarcomas are a rare and heterogeneous group of mesenchymal malignant tumors and account for approximately 1% of all adult cancers and around 20% of all pediatric solid tumors in Europe. Technology advances have enabled a more accurate and efficient characterization of the molecular mechanisms underlying the pathogenesis of sarcoma subtypes and revealed novel and unexpected therapeutic targets with prognostic/predictive biomarkers, namely the neurotrophic tyrosine receptor kinase (NTRK) gene fusion. The NTRK fusion assessment has recently become a standard part of management for patients with unresectable locally advanced or metastatic cancers and has been identified in various tumor types. In the more prevalent adult and pediatric sarcomas, NTRK fusions are present in 1% and 20%, respectively, and in more than 90% of very rare subsets of tumors. The inhibition of TRK activity with first-generation TRK inhibitors has been found to be effective and well tolerated in adult and pediatric patients, independently of the tumor type. Overall, the therapeutic benefit to those patients compensates for the difficulties of identifying NTRK gene fusions. However, the rarity and diagnostic complexity of NTRK gene fusions raise several questions and challenges for clinicians. To address these issues, an expert panel of medical and pediatric oncologists, radiologists, surgeons, orthopedists, and pathologists reviewed the recent literature and discussed the current status and challenges, proposing a diagnostic algorithm for identifying NTRK fusion sarcomas. The aim of this article is to review the updated information on this issue and to provide the experts' recommendations and practical guidance on the optimal management of patients with soft tissue sarcomas, infantile fibrosarcoma, gastrointestinal stromal tumors, and osteosarcoma.
Collapse
Affiliation(s)
- Isabel Fernandes
- EpiDoC Unit. Comprehensive Health Research Center (CHRC). NOVA Medical School. Universidade NOVA de Lisboa. Lisbon. Portugal
| | - Daniela Macedo
- Department of Medical Oncology. Hospital dos Lusíadas. Lisbon. Portugal
| | - Emanuel Gouveia
- Department of Medical Oncology. Instituto Português de Oncologia de Lisboa Francisco Gentil. Lisbon. Portugal
| | - Ana Ferreira
- Department of Medical Oncology. Instituto Português de Oncologia do Porto Francisco Gentil. Porto. Portugal
| | - Jorge Lima
- Instituto de Patologia e Imunologia Molecular (IPATIMUP). Universidade do Porto. Porto. Portugal
| | - Dolores Lopez
- Department of Medical Oncology. Hospital de Santa Maria. Unidade Local de Saúde Santa Maria. Lisbon. Portugal
| | - Cecília Melo-Alvim
- Department of Medical Oncology. Hospital de Santo António. Unidade Local de Saúde (ULS) de Santo António. Porto. Portugal
| | - Alice Carvalho
- Department of Pediatrics. Unidade Local de Saúde de Coimbra. Coimbra. Portugal
| | - Paulo Tavares
- Sarcoma and Bone tumors Unit. Unidade Local de Saúde de Coimbra. Coimbra. Portugal
| | - Paulo Rodrigues-Santos
- Immunology and oncology laboratory. Centro de Neurociências e Biologia Celular (CNC). Universidade de Coimbra. Coimbra. Portugal
| | - Pedro Cardoso
- Department of Orthopedics. Hospital Geral de Santo António. Unidade Local de Saúde Santo António. Porto. Portugal
| | - Manuel Magalhães
- Department of Medical Oncology. Hospital de Santo António. Unidade Local de Saúde Santo António. Porto. Portugal
| | - Paula Vieira
- Department of Medical Oncology. Hospital Dr. Nélio Mendonça. Serviço de Saúde da Região Autónoma da Madeira. Funchal. Portugal
| | - Joaquim Brito
- Department of Orthopedics. Hospital de Santa Maria. Unidade Local de Saúde Santa Maria. Lisbon. Portugal
| | - Cristina Mendes
- Department of Pediatrics. Instituto Português de Oncologia de Lisboa Francisco Gentil. Lisbon. Portugal
| | - Joana Rodrigues
- Department of Medical Oncology. Unidade Local de Saúde de Coimbra. Coimbra. Portugal
| | - Eduardo Netto
- EpiDoC Unit. Comprehensive Health Research Center (CHRC). NOVA Medical School. Universidade NOVA de Lisboa. Lisbon. Portugal; Department of Radiotherapy. Instituto Português de Oncologia de Lisboa Francisco Gentil. Lisbon. Portugal
| | - Vânia Oliveira
- Department of Orthopedics. Hospital de Santo António. Unidade Local de Saúde Santo António. Porto. Portugal
| | - Catarina Sousa
- Department of Pediatrics. Instituto Português de Oncologia do Porto Francisco Gentil. Porto. Portugal
| | - Miguel Henriques Abreu
- Department of Medical Oncology. Instituto Português de Oncologia do Porto Francisco Gentil. Porto. Portugal
| | - Filomena Pina
- Department of Radiotherapy. Hospital de Santa Maria. Unidade Local de Saúde Santa Maria. Lisbon. Portugal
| | - Hugo Vasques
- Department of General Surgery. Instituto Português de Oncologia do Porto Francisco Gentil. Porto. Portugal
| |
Collapse
|
3
|
Jafari P, Forrest M, Segal J, Wang P, Tjota MY. Pan-Cancer Molecular Biomarkers: Practical Considerations for the Surgical Pathologist. Mod Pathol 2025; 38:100752. [PMID: 40058460 DOI: 10.1016/j.modpat.2025.100752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Traditional anatomic pathologic classification of cancer is based on tissue of origin and morphologic and immunohistochemical characterization of the malignant cells. With the technological improvements of massively parallel or next-generation sequencing, oncogenic drivers that are shared across different tumor types are increasingly being identified and used as pan-cancer biomarkers. This approach is reflected in the growing list of Food and Drug Administration-approved tumor-agnostic therapies, including pembrolizumab in the setting of microsatellite instability and high tumor mutational burden, larotrectinib and entrectinib for solid tumors with NTRK fusions, and combined dabrafenib-trametinib for BRAF V600E-mutated neoplasms. Several other biomarkers are currently under investigation, including fibroblast growth factor receptor (FGFR), RET, and ROS1 fusions; ERBB2 amplification; and mutations in the AKT1/2/3, NF1, RAS pathway and (mitogen-activated protein kinase (MAPK) pathway. As molecular assays are increasingly incorporated into routine tumor workup, the emergence of additional pan-cancer biomarkers is likely to be a matter more of "when" than "if." In this review, we first explore some of the conceptual and technical considerations at the intersection of surgical and molecular pathology, followed by a brief overview of both established and emerging molecular pan-cancer biomarkers and their diagnostic and clinical applications.
Collapse
Affiliation(s)
- Pari Jafari
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Megan Forrest
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Jeremy Segal
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Peng Wang
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | | |
Collapse
|
4
|
Lee S, Jeon YR, Shin C, Kwon SY, Shin S. Pan-TRK positive uterine sarcoma in immunohistochemistry without neurotrophic tyrosine receptor kinase gene fusions: A case report. World J Clin Cases 2025; 13:96876. [PMID: 39823101 PMCID: PMC11577503 DOI: 10.12998/wjcc.v13.i2.96876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics, increasingly supported by molecular genetic diagnostics. Data on neurotrophic tyrosine receptor kinase (NTRK) gene fusion-positive uterine sarcoma, potentially aggressive and morphologically similar to fibrosarcoma, are limited due to its recent recognition. Pan-TRK immunohistochemistry (IHC) analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies. CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix, which was pan-TRK IHC-positive but lacked NTRK gene fusions, accompanied by a brief literature review. A 55-year-old woman presented to the emergency department with abdominal pain and distension, exhibiting significant ascites and multiple solid pelvic masses. Pelvic examination revealed a tumor encompassing the uterine cervix, extending to the vagina and uterine corpus. A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain. However, subsequent next generation sequencing revealed no NTRK gene fusion, leading to a diagnosis of poorly differentiated, advanced-stage sarcoma. CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas. Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment.
Collapse
Affiliation(s)
- Seungmee Lee
- Department of Obstetrics and Gynecology, Keimyung University School of Medicine, Daegu 42601, South Korea
| | - Yu-Ra Jeon
- Department of Obstetrics and Gynecology, Keimyung University School of Medicine, Daegu 42601, South Korea
| | - Changmin Shin
- Department of Obstetrics and Gynecology, Keimyung University School of Medicine, Daegu 42601, South Korea
| | - Sun-Young Kwon
- Department of Pathology and Institute for Cancer Research, Keimyung University School of Medicine, Daegu 42601, South Korea
| | - Sojin Shin
- Department of Obstetrics and Gynecology, Keimyung University School of Medicine, Daegu 42601, South Korea
| |
Collapse
|
5
|
Broggi G, Attanasio G, Bonanno A, La Mantia I, Barresi S, Alaggio R, Magro G. NTRK3-EML4-rearranged spindle cell tumor with co-expression of S100 and CD34: an unusual mesenchymal tumor in the spectrum of the bland-looking spindle cell lesions of the oral cavity. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:635-640. [PMID: 38926044 DOI: 10.1016/j.oooo.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
A novel category of spindle cell tumors characterized by Neurotrophic Tyrosine Receptor Kinase (NTRK) rearrangements with a dual immunoreactivity for S-100 and CD34 has emerged in the last years as a distinct entity among soft tissue neoplasms. These genetic alterations lead to the continuous activation of NTRK genes, driving tumorigenesis and offering a unique prospect for targeted therapy. We herein present a rare case of NTRK3-rearranged spindle cell tumor with a hitherto unreported gene fusion involving the exon 14 of NTRK3 with the exon 2 of Echinoderm Microtubule-Associated Protein-Like 4, arising in the head and neck region. Tumor occurred in a 45-year-old patient who presented with a painful nodule in the oral mucosa. Due to the possibility of personalizing the treatment strategy for such tumors, pathologists should be aware of this emerging group of spindle cell tumors to promptly recognize them even when they occur in uncommon locations, including the oral cavity.
Collapse
Affiliation(s)
- Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy.
| | - Giulio Attanasio
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Antonio Bonanno
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia" ENT Section, University of Catania, Catania, Italy
| | - Ignazio La Mantia
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia" ENT Section, University of Catania, Catania, Italy
| | - Sabina Barresi
- Pathology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Rita Alaggio
- Pathology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy; Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, Rome, Italy
| | - Gaetano Magro
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| |
Collapse
|
6
|
Jiang Z, Meyer AN, Yang W, Donoghue DJ. The oncogenic fusion protein EML4-NTRK3 requires three salt bridges for stability and biological activity. Heliyon 2024; 10:e36278. [PMID: 39253179 PMCID: PMC11381775 DOI: 10.1016/j.heliyon.2024.e36278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Aim of study Chromosomal translocations involving neurotrophic receptor tyrosine kinases (NTRKs) have been identified in 20 % of soft tissue sarcomas. This work focuses on the EML4-NTRK3 translocation identified in cases of Infantile Fibrosarcoma, which contains the coiled-coil multimerization domain of Echinoderm Microtubule-like protein 4 (EML4) fused with the tyrosine kinase domain of Neurotrophic Receptor Tyrosine Kinase 3 (NTRK3). The aim of the study was to test the importance of tyrosine kinase activity and multimerization for the oncogenic activity of EML4-NTRK3. Methods These studies examined EML4-NTRK3 proteins containing a kinase-dead or WT kinase domain, together with mutations in specific salt bridge residues within the coiled-coil domain. Biological activity was assayed using focus assays in NIH3T3 cells. The MAPK/ERK, JAK/STAT3 and PI3K/AKT pathways were analyzed for downstream activation of signaling pathways. Localization of EML4-NTRK3 proteins was examined by immunofluorescence microscopy, and the ability of the EML4 coiled-coil domain to drive protein multimerization was examined by biochemical assays. Results Activation of EML4-NTRK3 relies on both the tyrosine kinase activity of NTRK3 and salt-bridge stabilization within the coiled-coil domain of EML4. The tyrosine kinase activity of NTRK3 is essential for the biological activation of EML4-NTRK3. Furthermore, EML4-NTRK3 activates downstream signaling pathways MAPK/ERK, JAK/STAT3 and PKC/PLCγ. The disruption of three specific salt bridge interactions within the EML4 coiled-coil domain of EML4-NTRK3 blocks downstream activation, biological activity, and the ability to hetero-multimerize with EML4. We also demonstrate that EML4-NTRK3 is localized in the cytoplasm and fails to associate with microtubules. Concluding statement These data suggest potential therapeutic strategies for Infantile Fibrosarcoma cases bearing EML4-NTRK3 fusion through inhibition of salt bridge interactions and disruption of multimerization.
Collapse
Affiliation(s)
- Zian Jiang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093-0367 USA
| | - April N Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093-0367 USA
| | - Wei Yang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093-0367 USA
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093-0367 USA
- UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093-0367, USA
| |
Collapse
|
7
|
Cuello M, García-Rivello H, Huamán-Garaicoa F, Irigoyen-Piñeiros P, Lara-Torres CO, Rizzo MM, Ticona-Castro M, Trejo R, Zoroquiain P. Detection of NTRK gene fusions in solid tumors: recommendations from a Latin American group of oncologists and pathologists. Future Oncol 2023; 19:2669-2682. [PMID: 38088163 DOI: 10.2217/fon-2023-0552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
NTRK gene fusions have been detected in more than 25 types of tumors and their prevalence is approximately 0.3% in solid tumors. This low prevalence makes identifying patients who could benefit from TRK inhibitors a considerable challenge. Furthermore, while numerous papers on the evaluation of NTRK fusion genes are available, not all countries have guidelines that are suitable for their setting, as is the case with Latin America. Therefore, a group of oncologists and pathologists from several countries in Latin America (Argentina, Chile, Ecuador, Mexico, Peru and Uruguay) met to discuss and reach consensus on how to identify patients with NTRK gene fusions in solid tumors. To do so, they developed a practical algorithm, considering their specific situation and limitations.
Collapse
Affiliation(s)
- Mauricio Cuello
- Academic Unit of Oncology, Hospital de Clínicas Dr. Manuel Quintela, Montevideo, Uruguay
| | - Hernán García-Rivello
- Departmento of Clinical Pathology, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), Hospital Italiano, Buenos Aires, Argentina
| | - Fuad Huamán-Garaicoa
- Instituto de Salud Integral (ISAIN), Universidad Católica, Santiago de Guayaquil (Ecuador), Department of Pathology, Sociedad de Lucha Contra el Cáncer del Ecuador (SOLCA), Guayaquil, Ecuador
| | | | - César O Lara-Torres
- Laboratory of Molecular Pathology, Instituto Nacional de Cancerología, Ciudad de México, México
| | - Manglio M Rizzo
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Austral, Derqui-Pilar, Argentina
- Department of Medical Oncology, Hospital Universitario Austral, Derqui-Pilar, Argentina
| | - Miguel Ticona-Castro
- Service of Medical Oncology, Hospital Nacional Edgardo Rebagliati Martins, EsSalud - Jesús María, Lima (Perú), Clínica Montefiori, La Molina, Lima, Perú
| | - Rogelio Trejo
- Department of Medical Oncology, Centro Médico Nacional Siglo XXI, Ciudad de México, México
| | - Pablo Zoroquiain
- Pathology Department, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Tang X, Hu X, Wen Y, Min L. Progressive insights into fibrosarcoma diagnosis and treatment: leveraging fusion genes for advancements. Front Cell Dev Biol 2023; 11:1284428. [PMID: 37920823 PMCID: PMC10618559 DOI: 10.3389/fcell.2023.1284428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
Fibrosarcoma, originating from fibroblast cells, represents a malignant neoplasm that can manifest across all genders and age groups. Fusion genes are notably prevalent within the landscape of human cancers, particularly within the subtypes of fibrosarcoma, where they exert substantial driving forces in tumorigenesis. Many fusion genes underlie the pathogenic mechanisms triggering the onset of this disease. Moreover, a close association emerges between the spectrum of fusion gene types and the phenotypic expression of fibrosarcoma, endowing fusion genes not only as promising diagnostic indicators for fibrosarcoma but also as pivotal foundations for its subcategorization. Concurrently, an increasing number of chimeric proteins encoded by fusion genes have been substantiated as specific targets for treating fibrosarcoma, consequently significantly enhancing patient prognoses. This review comprehensively delineates the mechanisms behind fusion gene formation in fibrosarcoma, the lineage of fusion genes, methodologies employed in detecting fusion genes within fibrosarcoma, and the prospects of targeted therapeutic interventions driven by fusion genes within the fibrosarcoma domain.
Collapse
Affiliation(s)
- Xiaodi Tang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan, China
| | - Xin Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan, China
| | - Yang Wen
- Department of Orthopedics, Zigong Fourth People’s Hospital, Zigong, China
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Romanko AA, Mulkidjan RS, Tiurin VI, Saitova ES, Preobrazhenskaya EV, Krivosheyeva EA, Mitiushkina NV, Shestakova AD, Belogubova EV, Ivantsov AO, Iyevleva AG, Imyanitov EN. Cost-Efficient Detection of NTRK1/2/3 Gene Fusions: Single-Center Analysis of 8075 Tumor Samples. Int J Mol Sci 2023; 24:14203. [PMID: 37762506 PMCID: PMC10531831 DOI: 10.3390/ijms241814203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/26/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The majority of NTRK1, NTRK2, and NTRK3 rearrangements result in increased expression of the kinase portion of the involved gene due to its fusion to an actively transcribed gene partner. Consequently, the analysis of 5'/3'-end expression imbalances is potentially capable of detecting the entire spectrum of NTRK gene fusions. Archival tumor specimens obtained from 8075 patients were subjected to manual dissection of tumor cells, DNA/RNA isolation, and cDNA synthesis. The 5'/3'-end expression imbalances in NTRK genes were analyzed by real-time PCR. Further identification of gene rearrangements was performed by variant-specific PCR for 44 common NTRK fusions, and, whenever necessary, by RNA-based next-generation sequencing (NGS). cDNA of sufficient quality was obtained in 7424/8075 (91.9%) tumors. NTRK rearrangements were detected in 7/6436 (0.1%) lung carcinomas, 11/137 (8.0%) pediatric tumors, and 13/851 (1.5%) adult non-lung malignancies. The highest incidence of NTRK translocations was observed in pediatric sarcomas (7/39, 17.9%). Increased frequency of NTRK fusions was seen in microsatellite-unstable colorectal tumors (6/48, 12.5%), salivary gland carcinomas (5/93, 5.4%), and sarcomas (7/143, 4.9%). None of the 1293 lung carcinomas with driver alterations in EGFR/ALK/ROS1/RET/MET oncogenes had NTRK 5'/3'-end expression imbalances. Variant-specific PCR was performed for 744 tumors with a normal 5'/3'-end expression ratio: there were no rearrangements in 172 EGFR/ALK/ROS1/RET/MET-negative lung cancers and 125 pediatric tumors, while NTRK3 fusions were detected in 2/447 (0.5%) non-lung adult malignancies. In conclusion, this study describes a diagnostic pipeline that can be used as a cost-efficient alternative to conventional methods of NTRK1-3 analysis.
Collapse
Affiliation(s)
- Aleksandr A. Romanko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Rimma S. Mulkidjan
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Vladislav I. Tiurin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Evgeniya S. Saitova
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Elena V. Preobrazhenskaya
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Elena A. Krivosheyeva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Natalia V. Mitiushkina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Anna D. Shestakova
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Evgeniya V. Belogubova
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Alexandr O. Ivantsov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Aglaya G. Iyevleva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St.-Petersburg, Russia
| |
Collapse
|
10
|
Richardson ET, Jo VY, Schnitt SJ. Salivary Gland-like Tumors of the Breast. Arch Pathol Lab Med 2023; 147:1014-1024. [PMID: 37651394 DOI: 10.5858/arpa.2023-0038-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 09/02/2023]
Abstract
CONTEXT The World Health Organization classification of tumors of the breast recognizes several special type carcinomas and benign lesions with features comparable to those of salivary gland tumors. OBJECTIVE To discuss the histologic, immunophenotypic, molecular, and clinical features of salivary gland-like carcinomas of the breast. These breast tumors are often negative for hormone receptors and human epidermal growth factor receptor 2 (HER2), that is, triple-negative, but they generally have a much better prognosis than triple-negative breast carcinomas of no special type. We compare the immunophenotypic, molecular, and clinical features of these breast tumors with their salivary gland counterparts, highlighting similarities and differences. We also discuss benign salivary gland-like breast tumors. Finally, we highlight recent developments in understanding the molecular pathogenesis of these breast tumors and novel ancillary studies that can be used to support their diagnosis. DATA SOURCES A literature review was conducted, and papers were selected for further analysis and discussion by the authors of this review based on their novelty, applicability, and impact in the field. CONCLUSIONS Breast tumors that exhibit morphologic overlap with salivary gland tumors have been recognized by pathologists for decades, but the similarities and differences in their molecular pathogenesis have not been understood until more recently. These developments have led to novel diagnostic tools and further knowledge of these rare breast lesions.
Collapse
Affiliation(s)
- Edward T Richardson
- From the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- The Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Vickie Y Jo
- From the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- The Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Stuart J Schnitt
- From the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- The Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
11
|
Adam J, Stang NL, Uguen A, Badoual C, Chenard MP, Lantuéjoul S, Maran-Gonzalez A, Robin YM, Rochaix P, Sabourin JC, Soubeyran I, Sturm N, Svrcek M, Vincent-Salomon A, Radosevic-Robin N, Penault-Llorca F. Multicenter Harmonization Study of Pan-Trk Immunohistochemistry for the Detection of NTRK3 Fusions. Mod Pathol 2023; 36:100192. [PMID: 37084942 DOI: 10.1016/j.modpat.2023.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/14/2023] [Accepted: 04/12/2023] [Indexed: 04/23/2023]
Abstract
Pan-Trk immunohistochemistry has been described as a screening test for the detection of NTRK fusions in a broad spectrum of tumor types. However, pan-Trk testing in the clinical setting may be limited by many factors, including analytical parameters such as clones, platforms, and protocols used. This study aimed to harmonize pan-Trk testing using various clones and immunohistochemical (IHC) platforms and to evaluate the level of analytical variability across pathology laboratories. We developed several IHC pan-Trk assays using clones EPR17341 (Abcam) and A7H6R (Cell Signaling Technology) on Ventana/Roche, Agilent, and Leica platforms. To compare them, we sent unstained sections of a tissue microarray containing 9 cases with NTRK3 fusions to participating laboratories, to perform staining on Ventana/Roche (10 centers), Agilent (4 centers), and Leica (3 centers) platforms. A ready-to-use pan-Trk IVD assay (Ventana/Roche) was also performed in 3 centers. All slides were centrally and blindly reviewed for the percentage of stained tumor cells. Laboratory-developed tests with clone EPR17341 were able to detect pan-Trk protein expression in all cases, whereas lower rates of positivity were observed with clone A7H6R. Moderate to strong variability of the positive cases rate was observed with both antibodies in each IHC platforms type and each of the positivity cut points evaluated (≥1%, ≥10%, and ≥50% of stained tumor cells). The rate of false-negative cases was lower when pan-Trk staining was assessed with the lowest positivity threshold (≥1%). In conclusion, most evaluated pan-Trk IHC laboratory-developed tests were able to detect NTRK3-fusion proteins; however, a significant analytical variability was observed between antibodies, platforms, and centers.
Collapse
Affiliation(s)
- Julien Adam
- Pathology Department, Groupe Hospitalier Paris Saint-Joseph, Paris, and Inserm U1186, Gustave Roussy, Villejuif, France.
| | - Nolwenn Le Stang
- National Reference Center Mesopath, Centre Leon Berard, Lyon, France; Now with General Cancer Registry of Poitou-Charentes, Biology, Pharmacy and Public Health Unit, University Hospital, Poitiers, France
| | - Arnaud Uguen
- LBAI-UMR1227 - Inserm & Department of Pathology, CHU de Brest, Université de Brest, Brest, France
| | | | | | - Sylvie Lantuéjoul
- Université de Grenoble Alpes, Grenoble and Pathology Department, Centre Leon Berard, Lyon, France
| | | | | | | | | | | | | | - Magali Svrcek
- Pathology Department, Hôpital Saint-Antoine, AP-HP, Paris, France
| | | | - Nina Radosevic-Robin
- Pathology Department, Centre Jean Perrin, Clermont-Ferrand, France; University Clermont Auvergne, INSERM U1240, Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- Pathology Department, Centre Jean Perrin, Clermont-Ferrand, France; University Clermont Auvergne, INSERM U1240, Clermont-Ferrand, France
| |
Collapse
|
12
|
Naito Y, Mishima S, Akagi K, Hayashi N, Hirasawa A, Hishiki T, Igarashi A, Ikeda M, Kadowaki S, Kajiyama H, Kato M, Kenmotsu H, Kodera Y, Komine K, Koyama T, Maeda O, Miyachi M, Nishihara H, Nishiyama H, Ohga S, Okamoto W, Oki E, Ono S, Sanada M, Sekine I, Takano T, Tao K, Terashima K, Tsuchihara K, Yatabe Y, Yoshino T, Baba E. Japanese Society of Medical Oncology/Japan Society of Clinical Oncology/Japanese Society of Pediatric Hematology/Oncology-led clinical recommendations on the diagnosis and use of tropomyosin receptor kinase inhibitors in adult and pediatric patients with neurotrophic receptor tyrosine kinase fusion-positive advanced solid tumors. Int J Clin Oncol 2023:10.1007/s10147-023-02345-7. [PMID: 37212982 DOI: 10.1007/s10147-023-02345-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/13/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Clinical trials have reported the efficacy of tropomyosin receptor kinase (TRK) inhibitors against neurotrophic receptor tyrosine kinase (NTRK) fusion gene-positive advanced solid tumors. The accumulated evidence of tumor-agnostic agent has made since TRK inhibitors were approved and used in clinical practice. Therefore, we have revised the 'Japan Society of Clinical Oncology (JSCO)/Japanese Society of Medical Oncology (JSMO)-led clinical recommendations on the diagnosis and use of tropomyosin receptor kinase inhibitors in adult and pediatric patients with neurotrophic receptor tyrosine kinase fusion-positive advanced solid tumors, cooperated by the Japanese Society of Pediatric Hematology/Oncology (JSPHO)'. METHODS Clinical questions regarding medical care were formulated for patients with NTRK fusion-positive advanced solid tumors. Relevant publications were searched by PubMed and Cochrane Database. Critical publications and conference reports were added manually. Systematic reviews were performed for each clinical question for the purpose of developing clinical recommendations. The committee members identified by JSCO, JSMO, and JSPHO voted to determine the level of each recommendation considering the strength of evidence, expected risks and benefits to patients, and other related factors. Thereafter, a peer review by experts nominated from JSCO, JSMO, and JSPHO, and the public comments among all societies' members was done. RESULTS The current guideline describes 3 clinical questions and 14 recommendations for whom, when, and how NTRK fusion should be tested, and what is recommended for patients with NTRK fusion-positive advanced solid tumors. CONCLUSION The committee proposed 14 recommendations for performing NTRK testing properly to select patients who are likely to benefit from TRK inhibitors.
Collapse
Affiliation(s)
- Yoichi Naito
- National Cancer Center Hospital East, Kashiwa, Japan
| | - Saori Mishima
- National Cancer Center Hospital East, Kashiwa, Japan
| | | | - Naomi Hayashi
- The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | | | - Ataru Igarashi
- Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Eiji Oki
- Kyushu University, Fukuoka, Japan
| | | | - Masashi Sanada
- National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | | | | | - Kayoko Tao
- National Cancer Center Hospital, Tokyo, Japan
| | - Keita Terashima
- National Center for Child Health and Development, Tokyo, Japan
| | | | | | | | - Eishi Baba
- Department of Oncology and Social Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
13
|
Yin L, Shi C, He X, Qiu Y, Chen H, Chen M, Zhang Z, Chen Y, Zhou Y, Zhang H. NTRK-rearranged spindle cell neoplasms: a clinicopathological and molecular study of 13 cases with peculiar characteristics at one of the largest institutions in China. Pathology 2023; 55:362-374. [PMID: 36641377 DOI: 10.1016/j.pathol.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/20/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022]
Abstract
NTRK-rearranged spindle cell neoplasms (NTRK-RSCNs) represent an emerging group of rare tumours defined using molecular means. To the best of our knowledge, there have been no large series of reports about this tumour in the Chinese population in English full-text articles. Herein, we present 13 NTRK-RSCNs with peculiar characteristics. Ten of the 13 (77%) patients were children without sex differences. The tumour locations included six trunks, four extremities, two recta, and one small bowel. The histological morphology included four lipofibromatosis-like neural tumour (LPF-NT)-like, eight malignant peripheral nerve sheath tumours (MPNST)/fibrosarcoma-like, and one extremely rare myxofibrosarcoma-like pattern. Immunohistochemically, all cases were CD34, pan-TRK and TRK-A positive, SOX-10 negative, and H3K27me3 intact. S-100 protein expression was identified in 11 of 13 (85%) cases. Genetically, NTRK1 rearrangements were considered positive (7/13, 54%) or suspicious for positivity (6/13, 46%) by fluorescence in situ hybridisation. Next-generation sequencing and Sanger sequencing confirmed NTRK1 fusions with a variety of partner genes, including five LMNA, three TPM3, one SQSTM1, three novel CPSF6, IGR (downstream PMVK), and GAS2L1 genes. Interestingly, the last tumour concurrently harboured a second EWSR1-PBX1 fusion, which has never been reported. Four patients developed local recurrence and two of them suffered metastasis. In our study, NTRK-RSCNs had peculiar fusions that displayed unusual or complicated clinicopathological features. Histological clues and IHC helped streamline a small subset of potential candidates. Although FISH is a powerful technology for identifying NTRK rearrangements, RNA-/DNA-based NGS is recommended for highly suspected cases in which FISH signal patterns are not discernible as classic positive patterns, particularly if targeted therapy is considered.
Collapse
Affiliation(s)
- Lijuan Yin
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Changle Shi
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin He
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Qiu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huijiao Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhang Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yihua Chen
- Department of Pathology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Yanyan Zhou
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongying Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Ma Y, Zhang Q, Zhang K, Liang Y, Ren F, Zhang J, Kan C, Han F, Sun X. NTRK fusions in thyroid cancer: Pathology and clinical aspects. Crit Rev Oncol Hematol 2023; 184:103957. [PMID: 36907364 DOI: 10.1016/j.critrevonc.2023.103957] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023] Open
Abstract
Thyroid cancer is the most common endocrine cancer. Neurotrophic tyrosine receptor kinase (NTRK) fusions are oncogenic drivers in multiple solid tumors, including thyroid cancer. NTRK fusion thyroid cancer has unique pathological features such as mixed structure, multiple nodes, lymph node metastasis, and a background of chronic lymphocytic thyroiditis. Currently, RNA-based next-generation sequencing is the gold standard for the detection of NTRK fusions. Tropomyosin receptor kinase inhibitors have shown promising efficacy in patients with NTRK fusion-positive thyroid cancer. Efforts to overcome acquired drug resistance are the focus of research concerning next-generation TRK inhibitors. However, there are no authoritative recommendations or standardized procedures for the diagnosis and treatment of NTRK fusions in thyroid cancer. This review discusses current research progress regarding NTRK fusion-positive thyroid cancer, summarizes the clinicopathological features of the disease, and outlines the current statuses of NTRK fusion detection and targeted therapeutic agents.
Collapse
Affiliation(s)
- Yanhui Ma
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Qi Zhang
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yunzi Liang
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fangbing Ren
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
15
|
Lei T, Yang Y, Shi Y, Deng X, Peng Y, Wang H, Chen T. Clinicopathological features and genomic profiles of a group of secretory breast carcinomas in which progressive cases have more complex genomic features. Diagn Pathol 2022; 17:101. [PMID: 36585729 PMCID: PMC9805283 DOI: 10.1186/s13000-022-01284-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Secretory breast carcinoma (SBC) is a rare malignant breast neoplasm with distinct histological features, including solid, microcystic, tubular, and rarely papillary structures, traditionally characterized by a t (12;15) (p13:q25) translocation, which usually leads to ETV6-NTRK3 fusion, suggesting an early event in tumorigenesis. Due to the rarity of this disease, very few genome sequencing studies have been performed on a series of cases, especially progressive cases. METHODS Seven lesions from 5 patients diagnosed at the Third Affiliated Hospital of Soochow University from 2007 to 2021 were included. Clinicopathological features and prognosis/survival data were collected. Next-generation DNA sequencing was performed on six of the seven lesions. RESULTS In total, 3/7 (42.9%) lesions demonstrated estrogen receptor (ER) expression, including weak, moderate to strong staining, and no lesion demonstrated progesterone receptor (PR) expression. There were no cases of human epidermal growth factor (HER2) overexpression, and the Ki-67 index was low. S-100 and pan-TRK protein were diffusely positively expressed in all cases. All lesions were characterized by a t(12;15) (p13:q25) translocation, leading to ETV6-NTRK3 fusion confirmed by fluorescence in situ hybridization (FISH). The sequencing results showed that ETV6-NTRK3 fusion was the main driver of early tumorigenesis, while SBC with invasive biological behavior had more complex genomic variation in which TERT promoter mutation was detected. CONCLUSIONS Immunohistochemical staining of a biomarker panel, including ER, PR, HER2, Ki-67, S-100 and pan-TRK, can be used as an auxiliary diagnostic tool, and FISH detection can be used as a diagnostic tool. ETV6-NTRK3 gene fusion involving multiple sites may drive tumorigenesis, while mutations in the TERT promoter region may be a factor driving tumor progression.
Collapse
Affiliation(s)
- Ting Lei
- grid.452253.70000 0004 1804 524XDepartment of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003 P.R. China
| | - Yuyan Yang
- grid.412648.d0000 0004 1798 6160Department of Pathology, The Second Hospital of Tianjin Medical University, Tianjin, 300211 P.R. China
| | - Yongqiang Shi
- grid.452253.70000 0004 1804 524XDepartment of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003 P.R. China
| | - Xu Deng
- grid.452253.70000 0004 1804 524XDepartment of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003 P.R. China
| | - Yan Peng
- grid.452253.70000 0004 1804 524XDepartment of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003 P.R. China
| | - Hui Wang
- grid.452253.70000 0004 1804 524XDepartment of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003 P.R. China
| | - Tongbing Chen
- grid.452253.70000 0004 1804 524XDepartment of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003 P.R. China
| |
Collapse
|
16
|
Andrzejewska M, Czarny J, Derwich K. Latest Advances in the Management of Pediatric Gastrointestinal Stromal Tumors. Cancers (Basel) 2022; 14:4989. [PMID: 36291774 PMCID: PMC9599787 DOI: 10.3390/cancers14204989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022] Open
Abstract
Gastrointestinal stromal tumor is the most common mesenchymal neoplasm of the gastrointestinal tract, usually found in elderly adults. It is infrequent among pediatric patients and usually differs biologically from adult-type diseases presenting mutations of KIT and PDGFR genes. In this population, more frequent is the wild-type GIST possessing SDH, TRK, RAS, NF1 mutations, among others. Both tumor types require individualized treatment with kinase inhibitors that are still being tested in the pediatric population due to the different neoplasm biology. We review the latest updates to the management of pediatric gastrointestinal tumors with a particular focus on the advances in molecular biology of the disease that enables the definition of possible resistance. Emerging treatment with kinase inhibitors that could serve as targeted therapy is discussed, especially with multikinase inhibitors of higher generation, the effectiveness of which has already been confirmed in the adult population.
Collapse
Affiliation(s)
- Marta Andrzejewska
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland or
| | - Jakub Czarny
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland or
| | - Katarzyna Derwich
- Department of Pediatric Oncology, Hematology and Transplantology, Institute of Pediatrics, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
17
|
Çocukluk Çağı Kanserlerinde NTRK Somatik Füzyonları ve Tümör Agnostik Tedavi. JOURNAL OF CONTEMPORARY MEDICINE 2022. [DOI: 10.16899/jcm.1113357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nörotrofik tirozin reseptör kinaz (NTRK) geni yeniden düzenlemeleri yakın zamanda kanser tedavisi için yeni hedefler olarak ortaya konulan biyobelirteçlerden (biyomarker) bir tanesi olarak tanımlanmış ve geliştirilmiştir. NTRK gen füzyonları öngörücü (prediktif-tanısal) bir biyobelirteç olarak kullanılmasının yanı sıra tedavi hedefi olarak da kullanılarak bireyselleştirilmiş hedef tedavide yerini almıştır. NTRK füzyon proteinlerinin selektif inhibitörleri, NTRK füzyon pozitif solid tümörlerin tedavisinde güçlü etkinliğe sahiptir (tümör-agnostik tedavi). Tümörlerinde NTRK füzyonları saptanan hastaların tedavisinde etkili olan FDA (Amerika Birleşik Devletleri Gıda ve İlaç Yönetimi) onaylı yeni tedavilerle birlikte, bu füzyonların test edilmesi önemli hale gelmiştir. Yapılan klinik çalışmalar birinci nesil tirozin reseptör kinaz (TRK) inhibitörleri olan larotrectinib ve entrectinibin NTRK füzyonu pozitif kanserlerin tedavisinde yüksek oranda başarılı olduğu görülmüştür. İlerleyen zamanlarda bu ilaçlar üzerine geniş kapsamlı araştırmaların sayısının artması bu ilaçlar hakkında daha fazla bilgiyi mevcut kılacak ve faydalı olacaktır.
Collapse
|
18
|
Montella L, Del Gaudio N, Bove G, Cuomo M, Buonaiuto M, Costabile D, Visconti R, Facchini G, Altucci L, Chiariotti L, Della Monica R. Looking Beyond the Glioblastoma Mask: Is Genomics the Right Path? Front Oncol 2022; 12:926967. [PMID: 35875139 PMCID: PMC9306486 DOI: 10.3389/fonc.2022.926967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/09/2022] [Indexed: 11/15/2022] Open
Abstract
Glioblastomas are the most frequent and malignant brain tumor hallmarked by an invariably poor prognosis. They have been classically differentiated into primary isocitrate dehydrogenase 1 or 2 (IDH1 -2) wild-type (wt) glioblastoma (GBM) and secondary IDH mutant GBM, with IDH wt GBMs being commonly associated with older age and poor prognosis. Recently, genetic analyses have been integrated with epigenetic investigations, strongly implementing typing and subtyping of brain tumors, including GBMs, and leading to the new WHO 2021 classification. GBM genomic and epigenomic profile influences evolution, resistance, and therapeutic responses. However, differently from other tumors, there is a wide gap between the refined GBM profiling and the limited therapeutic opportunities. In addition, the different oncogenes and tumor suppressor genes involved in glial cell transformation, the heterogeneous nature of cancer, and the restricted access of drugs due to the blood–brain barrier have limited clinical advancements. This review will summarize the more relevant genetic alterations found in GBMs and highlight their potential role as potential therapeutic targets.
Collapse
Affiliation(s)
- Liliana Montella
- Oncology Operative Unit, "Santa Maria delle Grazie" Hospital, ASL Napoli 2 NORD-, Pozzuoli, Italy
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Guglielmo Bove
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Mariella Cuomo
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Napoli, Italy
| | - Michela Buonaiuto
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Napoli, Italy
| | - Davide Costabile
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,SEMM-European School of Molecular Medicine, Milano, Italy
| | - Roberta Visconti
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,Institute of Experimental Endocrinology and Oncology, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Gaetano Facchini
- Oncology Operative Unit, "Santa Maria delle Grazie" Hospital, ASL Napoli 2 NORD-, Pozzuoli, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy.,BIOGEM, Ariano Irpino, Italy
| | - Lorenzo Chiariotti
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Napoli, Italy
| | - Rosa Della Monica
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Napoli, Italy
| |
Collapse
|
19
|
Manea CA, Badiu DC, Ploscaru IC, Zgura A, Bacinschi X, Smarandache CG, Serban D, Popescu CG, Grigorean VT, Botnarciuc V. A review of NTRK fusions in cancer. Ann Med Surg (Lond) 2022; 79:103893. [PMID: 35860155 PMCID: PMC9289232 DOI: 10.1016/j.amsu.2022.103893] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/25/2022] Open
|
20
|
Hou Y, Peng Y, Li Z. Update on prognostic and predictive biomarkers of breast cancer. Semin Diagn Pathol 2022; 39:322-332. [PMID: 35752515 DOI: 10.1053/j.semdp.2022.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 11/11/2022]
Abstract
Breast cancer represents a heterogeneous group of human cancer at both histological and molecular levels. Estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) are the most commonly used biomarkers in clinical practice for making treatment plans for breast cancer patients by oncologists. Recently, PD-L1 testing plays an important role for immunotherapy for triple-negative breast cancer. With the increased understanding of the molecular characterization of breast cancer and the emergence of novel targeted therapies, more potential biomarkers are needed for the development of more personalized treatments. In this review, we summarized several main prognostic and predictive biomarkers in breast cancer at genomic, transcriptomic and proteomic levels, including hormone receptors, HER2, Ki67, multiple gene expression assays, PD-L1 testing, mismatch repair deficiency/microsatellite instability, tumor mutational burden, PIK3CA, ESR1 andNTRK and briefly introduced the roles of digital imaging analysis in breast biomarker evaluation.
Collapse
Affiliation(s)
- Yanjun Hou
- Department of Pathology, Atrium Health Wake Forest Baptist Medical Center, Winston Salem, NC
| | - Yan Peng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zaibo Li
- Department of pathology, The Ohio State University Wexner Medical Center, Columbus OH.
| |
Collapse
|
21
|
Sorber L, Van Dorst B, Bellon E, Zwaenepoel K, Lambin S, De Winne K, Lardon F, Pauwels P, Siozopoulou V. NTRK Gene Fusion Detection in a Pan-Cancer Setting Using the Idylla GeneFusion Assay. J Mol Diagn 2022; 24:750-759. [PMID: 35550184 DOI: 10.1016/j.jmoldx.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022] Open
Abstract
Recently, approval of tyrosine receptor kinase (TRK) inhibitors by Food and Drug Administration and European Medicines Agency in NTRK fusion-positive cancer types has led to a variety of proposed testing algorithms. In this study, performance of the fully automated Idylla GeneFusion Assay was assessed in a set of clinically relevant cancer types, including glioblastoma, non-small-cell lung cancer, microsatellite instability-positive colorectal cancer, and thyroid carcinoma. Analysis with the Idylla GeneFusion Assay revealed significant differences in baseline RNA expression profile between the different cancer types, which corresponded to both literature and pan-TRK immunohistochemistry staining. Compared with the RNA-based Oncomine Focus Assay, the Idylla GeneFusion Assay demonstrated an overall percentage agreement, positive percentage agreement, and negative percentage agreement of 92.7%, 81.8%, and 93.8%, respectively; and the pan-TRK immunohistochemistry demonstrated an overall percentage agreement, positive percentage agreement, and negative percentage agreement of 82.1%, 45.5%, and 85.7%, respectively. These findings highlighted the importance of tailoring NTRK testing algorithms per cancer type. In a small subset, data from the RNA-based Archer FusionPlex Assay were also available. NTRK fusion detection efficiency was compared between the four NTRK testing modalities, with a high concordance between the PCR-based methods. Last, RNA degradation was observed when using the Idylla GeneFusion Assay on snap frozen tissue samples as these are nonfixated. This might be countered by increasing the amount of sample input. To conclude, the Idylla GeneFusion Assay has shown a clear potential in identifying NTRK fusions.
Collapse
Affiliation(s)
- Laure Sorber
- Center for Oncological Research, Integrated Personalized and Precision Oncology Network, University of Antwerp, Wilrijk, Belgium.
| | | | | | - Karen Zwaenepoel
- Center for Oncological Research, Integrated Personalized and Precision Oncology Network, University of Antwerp, Wilrijk, Belgium; Department of Pathology, University Hospital Antwerp, Edegem, Belgium
| | - Suzan Lambin
- Department of Pathology, University Hospital Antwerp, Edegem, Belgium
| | - Koen De Winne
- Department of Pathology, University Hospital Antwerp, Edegem, Belgium
| | - Filip Lardon
- Center for Oncological Research, Integrated Personalized and Precision Oncology Network, University of Antwerp, Wilrijk, Belgium
| | - Patrick Pauwels
- Department of Pathology, University Hospital Antwerp, Edegem, Belgium
| | - Vasiliki Siozopoulou
- Center for Oncological Research, Integrated Personalized and Precision Oncology Network, University of Antwerp, Wilrijk, Belgium; Department of Pathology, University Hospital Antwerp, Edegem, Belgium
| |
Collapse
|
22
|
Zhou X, Jian W, Luo Q, Zheng W, Deng X, Wang X, Borkhuu O, Ji C, Li D, Fang L. Circular RNA_0006014 promotes breast cancer progression through sponging miR-885-3p to regulate NTRK2 and PIK3/AKT pathway. Aging (Albany NY) 2022; 14:3105-3128. [PMID: 35383130 PMCID: PMC9037253 DOI: 10.18632/aging.203996] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/25/2022] [Indexed: 11/25/2022]
Abstract
Breast cancer is the most common cancer in women worldwide. Numerous reports have demonstrated that circRNAs play an essential role in regulating the biological characteristics of breast cancer. However, there are currently no reports regarding the role of hsa_circ_0006014 in breast cancer. In this study, qRT-PCR was used to detect the expression of hsa_circ_0006014 and related genes. MTT, colony formation and Transwell assays were used to explore the potential biological functions of hsa_circ_0006014 in breast cancer cells. Western blotting was used to explore the potential molecular mechanisms involving hsa_circ_0006014. In vivo experiments were used to evaluate the influence of hsa_circ_0006014 on animal tumors. In this study, we found higher expression of hsa_circ_0006014 in breast tumor samples than in matched adjacent normal samples, and its expression was positively correlated with histological grade (grade iii). Phenotypically, hsa_circ_0006014 promoted the proliferation of MDA-MB-231 and MCF-7 breast cancer cells. Mechanistically, there were confirmed binding sites between hsa_circ_0006014 and miR-885-3p, and hsa_circ_0006014 promoted breast cancer cell proliferation partially by sponging miR-885-3p and influenced CDK2/CCNE1 and CDK4/6/CCND1. Furthermore, we found that hsa_circ_0006014 regulated NTRK2 through miR-885-3p to modulate the PIK3/AKT signaling pathway. Our results demonstrated that hsa_circ_0006014 promotes breast cancer progression by sponging miR-885-3p to regulate the NTRK2/PIK3CA/AKT axis.
Collapse
Affiliation(s)
- Xiqian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wei Jian
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Qifeng Luo
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wenfang Zheng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaochong Deng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xuehui Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Oyungerel Borkhuu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Changle Ji
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Dengfeng Li
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lin Fang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
23
|
Van Bockstal MR, Beniuga G, Craciun L, Creytens D, Dedeurwaerdere F, Delvenne P, Demetter P, De Wiest B, Dewinne K, Habran L, Pauwels P, Theate I, Vander Borght S, Van Der Steen K, Weynand B. The Use of Pan-Tropomyosin Receptor Kinase Immunohistochemistry as a Screening Tool for the Detection of Neurotrophic Tropomyosin-Related Kinase Fusions: Real-World Data from a National Multicentric Retrospective Study. Pathobiology 2022; 89:393-406. [PMID: 35350025 DOI: 10.1159/000522426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 02/02/2022] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION The neurotrophic tropomyosin-related kinase (NTRK) genes encode the tropomyosin receptor kinases (TRKs). Patients with solid tumors harboring an oncogenic NTRK fusion are eligible for treatment with TRK inhibitors. NTRK fusion is often associated with TRK overexpression. Pan-TRK immunohistochemistry (IHC) is used to screen for NTRK fusions, but immunoreactivity patterns are poorly defined. METHODS Data on pan-TRK immunoreactivity patterns in 2,669 solid tumors (comprising carcinomas, sarcomas, and melanocytic lesions) were retrospectively collected by nine laboratories and comprised tumor type, percentage of pan-TRK-positive tumor cells, staining intensity, cytoplasmic, membrane and/or nuclear staining pattern, and the presence or absence of NTRK fusion. RESULTS Overall, 2,457 tumors (92%) were pan-TRK negative and 212 neoplasms (8%) were pan-TRK positive. Twenty-two pan-TRK-positive tumors (0.8%) harbored an NTRK fusion, representing 10% of all pan-TRK-positive tumors. Cytoplasmic immunoreactivity was most often observed, followed by membrane immunoreactivity. Nuclear pan-TRK positivity was least frequent, but was most often (33%) associated with NTRK fusion. CONCLUSION Pan-TRK IHC can be used to screen for NTRK fusions, especially in commonly diagnosed solid tumors with low NTRK fusion prevalence. In case of pan-TRK immunoreactivity, regardless of its intensity and tumor cell percentage, subsequent molecular tests should be performed to formally confirm the presence or absence of NTRK fusions.
Collapse
Affiliation(s)
- Mieke R Van Bockstal
- Department of Pathology, Cliniques Universitaires Saint-Luc (CUSL), Woluwé-Saint-Lambert, Brussels, Belgium.,Institute of Clinical and Experimental Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Gabriela Beniuga
- Institut de Pathologie et de Génétique (IPG), Charleroi, Belgium
| | - Ligia Craciun
- Department of Pathology, Institut Jules Bordet, Brussels, Belgium
| | - David Creytens
- Department of Pathology, Ghent University Hospital (UZG), Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, CRIG, Ghent University Hospital, Ghent University, Ghent, Belgium
| | | | - Philippe Delvenne
- Anatomopathology Department, University Hospital of Liège (CHU Liège), Liège, Belgium
| | - Pieter Demetter
- Department of Pathology, Institut Jules Bordet, Brussels, Belgium
| | - Bart De Wiest
- Department of Pathology, Onze-Lieve-Vrouwziekenhuis (OLV) Aalst, Aalst, Belgium
| | - Koen Dewinne
- Department of Pathology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Lionel Habran
- Anatomopathology Department, University Hospital of Liège (CHU Liège), Liège, Belgium
| | - Patrick Pauwels
- Department of Pathology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Ivan Theate
- Institut de Pathologie et de Génétique (IPG), Charleroi, Belgium
| | - Sara Vander Borght
- Department of Pathology, University Hospitals Leuven (UZL), Leuven, Belgium
| | - Kris Van Der Steen
- Department of Pathology, Onze-Lieve-Vrouwziekenhuis (OLV) Aalst, Aalst, Belgium
| | - Birgit Weynand
- Department of Pathology, University Hospitals Leuven (UZL), Leuven, Belgium
| |
Collapse
|
24
|
Li W, Zhang J, Wang M, Dong R, Zhou X, Zheng X, Sun L. Pyrimidine-fused Dinitrogenous Penta-heterocycles as a Privileged Scaffold for Anti-Cancer Drug Discovery. Curr Top Med Chem 2022; 22:284-304. [PMID: 35021973 DOI: 10.2174/1568026622666220111143949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Pyrimidine-fused derivatives that are the inextricable part of DNA and RNA play a key role in the normal life cycle of cells. Pyrimidine-fused dinitrogenous penta-heterocycles including pyrazolopyrimidines and imidazopyrimidines is a special class of pyrimidine-fused compounds contributing to an important portion in anti-cancer drug discovery, which have been discovered as core structure for promising anti-cancer agents used in clinic or clinical evaluations. Pyrimidine-fused dinitrogenous penta-heterocycles have become one privileged scaffold for anti-cancer drug discovery. This review consists of the recent progress of pyrimidine-fused dinitrogenous penta-heterocycles as anti-cancer agents and their synthetic strategies. In addition, this review also summarizes some key structure-activity relationships (SARs) of pyrimidine-fused dinitrogenous penta-heterocycle derivatives as anti-cancer agents.
Collapse
Affiliation(s)
- Wen Li
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jinyang Zhang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Min Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ru Dong
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xin Zhou
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xin Zheng
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Liping Sun
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
25
|
Kazdal D, Hofman V, Christopoulos P, Ilié M, Stenzinger A, Hofman P. Fusion-positive non-small cell lung carcinoma: Biological principles, clinical practice, and diagnostic implications. Genes Chromosomes Cancer 2022; 61:244-260. [PMID: 34997651 DOI: 10.1002/gcc.23022] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Based on superior efficacy and tolerability, targeted therapy is currently preferred over chemotherapy and/or immunotherapy for actionable gene fusions that occur in late-stage non-small cell lung carcinoma (NSCLC). Consequently, current clinical practice guidelines mandate testing for ALK, ROS1, NTRK, and RET gene fusions in all patients with newly diagnosed advanced non-squamous NSCLC (NS-NSCLC). Gene fusions can be detected using different approaches, but today RNA next-generation sequencing (NGS) or combined DNA/RNA NGS is the method of choice. The discovery of other gene fusions (involving, eg, NRG1, NUT, FGFR1, FGFR2, MET, BRAF, EGFR, SMARC fusions) and their partners has increased progressively in recent years, leading to the development of new and promising therapies and mandating the development and implementation of comprehensive detection methods. The purpose of this review is to focus on recent data concerning the main gene fusions identified in NSCLC, followed by the discussion of major challenges in this domain.
Collapse
Affiliation(s)
- Daniel Kazdal
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC) Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Heidelberg, Germany
| | - Véronique Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, FHU OncoAge, Nice, France.,Centre Antoine Lacassagne Cancer Center, Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU OncoAge, Nice, France.,Hospital-Integrated Biobank BB-0033-00025, Université Côte d'Azur, CHU Nice, FHU OncoAge, Nice, France
| | - Petros Christopoulos
- Translational Lung Research Center (TLRC) Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Heidelberg, Germany.,Thoraxklinik and National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Marius Ilié
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, FHU OncoAge, Nice, France.,Centre Antoine Lacassagne Cancer Center, Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU OncoAge, Nice, France.,Hospital-Integrated Biobank BB-0033-00025, Université Côte d'Azur, CHU Nice, FHU OncoAge, Nice, France
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, FHU OncoAge, Nice, France.,Centre Antoine Lacassagne Cancer Center, Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU OncoAge, Nice, France.,Hospital-Integrated Biobank BB-0033-00025, Université Côte d'Azur, CHU Nice, FHU OncoAge, Nice, France
| |
Collapse
|
26
|
Kulka J, Madaras L, Floris G, Lax SF. Papillary lesions of the breast. Virchows Arch 2022; 480:65-84. [PMID: 34734332 PMCID: PMC8983543 DOI: 10.1007/s00428-021-03182-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
Papillary lesions of the breast represent a heterogeneous group of lesions including benign papillomas, papillomas with focal epithelial atypia, fully fledged ductal carcinoma in situ (DCIS) or lobular neoplasia, papillary DCIS, encapsulated papillary carcinomas without or with invasion, solid papillary carcinomas, and invasive papillary carcinomas. A micropapillary pattern characterized by lack of fibrous stalks within the papillae is observed in micropapillary DCIS and invasive micropapillary carcinoma. In addition, a variety of other rare breast lesions reveals a papillary architecture such as tall cell carcinoma with reversed polarity (TCCRP) and mucinous cystadenocarcinoma, adenomyoepithelioma, and secretory carcinoma. In addition, benign lesions such as usual ductal hyperplasia, apocrine metaplasia, gynecomastia, and juvenile papillomatosis may show a papillary or micropapillary architecture. Fragments of a benign papilloma in a breast biopsy are considered a lesion of uncertain malignant potential (B3 in the European classification) and excision is mostly recommended. Although the knowledge about molecular pathology of papillary breast lesions has increased, there is not sufficient evidence for diagnostically useful molecular features, yet. The aim of this review is to provide an update on papillary and micropapillary lesions with emphasis on problematic areas for daily diagnostic work including biopsies.
Collapse
Affiliation(s)
- Janina Kulka
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, 1091, Budapest, Hungary, E.U..
| | - Lilla Madaras
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, 1091, Budapest, Hungary, E.U
- Department of Pathology, Uzsoki Hospital, Budapest, Hungary
| | - Giuseppe Floris
- Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research, KU Leuven, University of Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Sigurd F Lax
- Department of Pathology, Hospital Graz II, Graz, Austria
- School of Medicine, Johannes Kepler University, Linz, Austria
| |
Collapse
|
27
|
Emerging Biomarkers in Thyroid Practice and Research. Cancers (Basel) 2021; 14:cancers14010204. [PMID: 35008368 PMCID: PMC8744846 DOI: 10.3390/cancers14010204] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Tumor biomarkers are molecules at genetic or protein level, or certain evaluable characteristics. These help in perfecting patient management. Over the past decade, advanced and more sensitive techniques have led to the identification of many new biomarkers in the field of oncology. A knowledge of the recent developments is essential for their application to clinical practice, and furthering research. This review provides a comprehensive account of such various markers identified in thyroid carcinoma, the most common endocrine malignancy. While some of these have been brought into use in routine patient management, others are novel and need more research before clinical application. Abstract Thyroid cancer is the most common endocrine malignancy. Recent developments in molecular biological techniques have led to a better understanding of the pathogenesis and clinical behavior of thyroid neoplasms. This has culminated in the updating of thyroid tumor classification, including the re-categorization of existing and introduction of new entities. In this review, we discuss various molecular biomarkers possessing diagnostic, prognostic, predictive and therapeutic roles in thyroid cancer. A comprehensive account of epigenetic dysregulation, including DNA methylation, the function of various microRNAs and long non-coding RNAs, germline mutations determining familial occurrence of medullary and non-medullary thyroid carcinoma, and single nucleotide polymorphisms predisposed to thyroid tumorigenesis has been provided. In addition to novel immunohistochemical markers, including those for neuroendocrine differentiation, and next-generation immunohistochemistry (BRAF V600E, RAS, TRK, and ALK), the relevance of well-established markers, such as Ki-67, in current clinical practice has also been discussed. A tumor microenvironment (PD-L1, CD markers) and its influence in predicting responses to immunotherapy in thyroid cancer and the expanding arena of techniques, including liquid biopsy based on circulating nucleic acids and plasma-derived exosomes as a non-invasive technique for patient management, are also summarized.
Collapse
|
28
|
Aref-Eshghi E, Lin F, Li MM, Zhong Y. The oncogenic roles of NTRK fusions and methods of molecular diagnosis. Cancer Genet 2021; 258-259:110-119. [PMID: 34710798 DOI: 10.1016/j.cancergen.2021.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/23/2021] [Accepted: 10/16/2021] [Indexed: 10/20/2022]
Abstract
The NTRK gene family is composed of NTRK1, NTRK2, and NTRK3, which encode three tropomyosin-receptor kinases, belonging to a class of tyrosine kinase receptors. These proteins are known to play roles in cell proliferation, differentiation, apoptosis, and survival. Fusions involving the NTRK genes are long known as drivers in many tumors. Although they occur in less than 5% of all malignancies, their occurrence in a great diversity of tumors has been documented. Several rare tumors including infantile fibrosarcoma, secretory breast carcinoma, and mammary analogue secretory carcinoma are accompanied by NTRK fusions in more than 90% of cases, demonstrating a diagnostic value for the NTRK fusion testing in these tumors. More recently, the development of effective targeted therapies has created a demand for their detection in all malignancies. A variety of approaches are available for testing including immunohistochemistry, fluorescence in situ hybridization (FISH), reverse transcription polymerase chain reaction (RT-PCR), and DNA- and RNA-based next-generation sequencing (NGS). This article reviews the molecular biology and tumorigenesis of NTRK fusions, their prevalence and clinical significance with a focus on available methods for fusion detection. The advantages and limitations of different technologies, the best practice algorithms for NTRK fusion detection, and the future direction of NTRK testing are also discussed.
Collapse
Affiliation(s)
- Erfan Aref-Eshghi
- Department of Pathology and Laboratory Medicine, Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Fumin Lin
- Department of Pathology and Laboratory Medicine, Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Marilyn M Li
- Department of Pathology and Laboratory Medicine, Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Yiming Zhong
- Department of Pathology and Laboratory Medicine, Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|