1
|
Martins LA, Bensaoud C, Kotál J, Chmelař J, Kotsyfakis M. Tick salivary gland transcriptomics and proteomics. Parasite Immunol 2020; 43:e12807. [PMID: 33135186 DOI: 10.1111/pim.12807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022]
Abstract
'Omics' technologies have facilitated the identification of hundreds to thousands of tick molecules that mediate tick feeding and play a role in the transmission of tick-borne diseases. Deep sequencing methodologies have played a key role in this knowledge accumulation, profoundly facilitating the study of the biology of disease vectors lacking reference genomes. For example, the nucleotide sequences of the entire set of tick salivary effectors, the so-called tick 'sialome', now contain at least one order of magnitude more transcript sequences compared to similar projects based on Sanger sequencing. Tick feeding is a complex and dynamic process, and while the dynamic 'sialome' is thought to mediate tick feeding success, exactly how transcriptome dynamics relate to tick-host-pathogen interactions is still largely unknown. The identification and, importantly, the functional analysis of the tick 'sialome' is expected to shed light on this 'black box'. This information will be crucial for developing strategies to block pathogen transmission, not only for anti-tick vaccine development but also the discovery and development of new, pharmacologically active compounds for human diseases.
Collapse
Affiliation(s)
- Larissa Almeida Martins
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 37005, Czech Republic
| | - Chaima Bensaoud
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 37005, Czech Republic
| | - Jan Kotál
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 37005, Czech Republic.,Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 37005, Czech Republic.,Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
2
|
Mans BJ. Quantitative Visions of Reality at the Tick-Host Interface: Biochemistry, Genomics, Proteomics, and Transcriptomics as Measures of Complete Inventories of the Tick Sialoverse. Front Cell Infect Microbiol 2020; 10:574405. [PMID: 33042874 PMCID: PMC7517725 DOI: 10.3389/fcimb.2020.574405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Species have definitive genomes. Even so, the transcriptional and translational products of the genome are dynamic and subject to change over time. This is especially true for the proteins secreted by ticks at the tick-host feeding interface that represent a complex system known as the sialoverse. The sialoverse represent all of the proteins derived from tick salivary glands for all tick species that may be involved in tick-host interaction and the modulation of the host's defense mechanisms. The current study contemplates the advances made over time to understand and describe the complexity present in the sialoverse. Technological advances at given periods in time allowed detection of functions, genes, and proteins enabling a deeper insight into the complexity of the sialoverse and a concomitant expansion in complexity with as yet, no end in sight. The importance of systematic classification of the sialoverse is highlighted with the realization that our coverage of transcriptome and proteome space remains incomplete, but that complete descriptions may be possible in the future. Even so, analysis and integration of the sialoverse into a comprehensive understanding of tick-host interactions may require further technological advances given the high level of expected complexity that remains to be uncovered.
Collapse
Affiliation(s)
- Ben J Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa.,Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa.,Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| |
Collapse
|
3
|
Martins LA, Kotál J, Bensaoud C, Chmelař J, Kotsyfakis M. Small protease inhibitors in tick saliva and salivary glands and their role in tick-host-pathogen interactions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140336. [DOI: 10.1016/j.bbapap.2019.140336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022]
|
4
|
Hernandez EP, Talactac MR, Fujisaki K, Tanaka T. The case for oxidative stress molecule involvement in the tick-pathogen interactions -an omics approach. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 100:103409. [PMID: 31200008 DOI: 10.1016/j.dci.2019.103409] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
The blood-feeding behavior of ticks has resulted in them becoming one of the most important vectors of disease-causing pathogens. Ticks possess a well-developed innate immune system to counter invading pathogens. However, the coevolution of ticks with tick-borne pathogens has adapted these pathogens to the tick's physiology and immune response through several mechanisms including transcriptional regulation. The recent development in tick and tick-borne disease research greatly involved the "omics" approach. The omics approach takes a look en masse at the different genes, proteins, metabolomes, and the microbiome of the ticks that could be differentiated during pathogen infection. Data from this approach revealed that oxidative stress-related molecules in ticks are differentiated and possibly being exploited by the pathogens to evade the tick's immune response. In this study, we review and discuss transcriptomic and proteomic data for some oxidative stress molecules differentially expressed during pathogen infection. We also discuss metabolomics and microbiome data as well as functional genomics in order to provide insight into the tick-pathogen interaction.
Collapse
Affiliation(s)
- Emmanuel Pacia Hernandez
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan; Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan
| | - Melbourne Rio Talactac
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan; Department of Clinical and Population Health, College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Cavite, 4122, Philippines
| | - Kozo Fujisaki
- National Agricultural and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan; Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
5
|
Boulanger N. [Immunomodulatory effect of tick saliva in pathogen transmission]. Biol Aujourdhui 2019; 212:107-117. [PMID: 30973140 DOI: 10.1051/jbio/2019001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 12/29/2022]
Abstract
Ticks are the most important vectors of pathogens in human and veterinary medicine. These strictly haematophagous acarines produce a saliva containing a variety of bioactive molecules affecting host pharmacology and immunity. This process is vital for hard ticks to prevent rejection by the host during the blood meal that lasts several days. All actors involved in the immunity interplay are impacted by this saliva, the innate immunity being represented by resident and migrating immune cells, as well as the T and B lymphocytes of the adaptive immune system. The skin plays a key role in vector-borne diseases. During the long co-evolution with the tick, the infectious agents benefit from this favorable environment to be transmitted efficiently into the skin and to multiply in the vertebrate host. Therefore, the saliva is an important virulence booster, which enhances substantially their pathogenicity.
Collapse
Affiliation(s)
- Nathalie Boulanger
- EA7290, Virulence Bactérienne Précoce, Groupe Borrelia, Facultés de Pharmacie et Médecine, Université de Strasbourg, Institut de bactériologie, 3 rue Koeberlé, 67000 Strasbourg, France - Centre National de Référence Borrelia, Plateau technique de Microbiologie, CHRU Strasbourg, 1 rue Koeberlé, 67000 Strasbourg, France
| |
Collapse
|
6
|
Antunes S, Couto J, Ferrolho J, Rodrigues F, Nobre J, Santos AS, Santos-Silva MM, de la Fuente J, Domingos A. Rhipicephalus bursa Sialotranscriptomic Response to Blood Feeding and Babesia ovis Infection: Identification of Candidate Protective Antigens. Front Cell Infect Microbiol 2018; 8:116. [PMID: 29780749 PMCID: PMC5945973 DOI: 10.3389/fcimb.2018.00116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/23/2018] [Indexed: 02/03/2023] Open
Abstract
Ticks are among the most prevalent blood-feeding arthropods, and they act as vectors and reservoirs for numerous pathogens. Sialotranscriptomic characterizations of tick responses to blood feeding and pathogen infections can offer new insights into the molecular interplay occurring at the tick-host-pathogen interface. In the present study, we aimed to identify and characterize Rhipicephalus bursa salivary gland (SG) genes that were differentially expressed in response to blood feeding and Babesia ovis infection. Our experimental approach consisted of RNA sequencing of SG from three different tick samples, fed-infected, fed-uninfected, and unfed-uninfected, for characterization and inter-comparison. Overall, 7,272 expressed sequence tags (ESTs) were constructed from unfed-uninfected, 13,819 ESTs from fed-uninfected, and 15,292 ESTs from fed-infected ticks. Two catalogs of transcripts that were differentially expressed in response to blood feeding and B. ovis infection were produced. Four genes coding for a putative vitellogenin-3, lachesin, a glycine rich protein, and a secreted cement protein were selected for RNA interference functional studies. A reduction of 92, 65, and 51% was observed in vitellogenin-3, secreted cement, and lachesin mRNA levels in SG, respectively. The vitellogenin-3 knockdown led to increased tick mortality, with 77% of ticks dying post-infestation. The reduction of the secreted cement protein-mRNA levels resulted in 46% of ticks being incapable of correctly attaching to the host and significantly lower female weights post-feeding in comparison to the control group. The lachesin knockdown resulted in a 70% reduction of the levels associated with B. ovis infection in R. bursa SG and 70% mortality. These results improved our understanding of the role of tick SG genes in Babesia infection/proliferation and tick feeding. Moreover, lachesin, vitellogenin-3, and secreted cement proteins were validated as candidate protective antigens for the development of novel tick and tick-borne disease control measures.
Collapse
Affiliation(s)
- Sandra Antunes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.,Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joana Couto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.,Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joana Ferrolho
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.,Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Fábio Rodrigues
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - João Nobre
- Instituto Nacional de Investigação Agrária e Veterinária, Pólo de Santarém, Vale de Santarém, Portugal
| | - Ana S Santos
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Centro de Estudos de Vectores e Doenças Infecciosas Dr. Francisco Cambournac (CEVDI/INSA), Águas de Moura, Portugal
| | - M Margarida Santos-Silva
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Centro de Estudos de Vectores e Doenças Infecciosas Dr. Francisco Cambournac (CEVDI/INSA), Águas de Moura, Portugal
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Ana Domingos
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.,Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
In Silico Characterization and Structural Modeling of Dermacentor andersoni p36 Immunosuppressive Protein. Adv Bioinformatics 2018; 2018:7963401. [PMID: 29849611 PMCID: PMC5911333 DOI: 10.1155/2018/7963401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 02/14/2018] [Indexed: 01/13/2023] Open
Abstract
Ticks cause approximately $17–19 billion economic losses to the livestock industry globally. Development of recombinant antitick vaccine is greatly hindered by insufficient knowledge and understanding of proteins expressed by ticks. Ticks secrete immunosuppressant proteins that modulate the host's immune system during blood feeding; these molecules could be a target for antivector vaccine development. Recombinant p36, a 36 kDa immunosuppressor from the saliva of female Dermacentor andersoni, suppresses T-lymphocytes proliferation in vitro. To identify potential unique structural and dynamic properties responsible for the immunosuppressive function of p36 proteins, this study utilized bioinformatic tool to characterize and model structure of D. andersoni p36 protein. Evaluation of p36 protein family as suitable vaccine antigens predicted a p36 homolog in Rhipicephalus appendiculatus, the tick vector of East Coast fever, with an antigenicity score of 0.7701 that compares well with that of Bm86 (0.7681), the protein antigen that constitute commercial tick vaccine Tickgard™. Ab initio modeling of the D. andersoni p36 protein yielded a 3D structure that predicted conserved antigenic region, which has potential of binding immunomodulating ligands including glycerol and lactose, found located within exposed loop, suggesting a likely role in immunosuppressive function of tick p36 proteins. Laboratory confirmation of these preliminary results is necessary in future studies.
Collapse
|
8
|
Esteves E, Maruyama SR, Kawahara R, Fujita A, Martins LA, Righi AA, Costa FB, Palmisano G, Labruna MB, Sá-Nunes A, Ribeiro JMC, Fogaça AC. Analysis of the Salivary Gland Transcriptome of Unfed and Partially Fed Amblyomma sculptum Ticks and Descriptive Proteome of the Saliva. Front Cell Infect Microbiol 2017; 7:476. [PMID: 29209593 PMCID: PMC5702332 DOI: 10.3389/fcimb.2017.00476] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/31/2017] [Indexed: 12/22/2022] Open
Abstract
Ticks are obligate blood feeding ectoparasites that transmit a wide variety of pathogenic microorganisms to their vertebrate hosts. Amblyomma sculptum is vector of Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever (RMSF), the most lethal rickettsiosis that affects humans. It is known that the transmission of pathogens by ticks is mainly associated with the physiology of the feeding process. Pathogens that are acquired with the blood meal must first colonize the tick gut and later the salivary glands (SG) in order to be transmitted during a subsequent blood feeding via saliva. Tick saliva contains a complex mixture of bioactive molecules with anticlotting, antiplatelet aggregation, vasodilatory, anti-inflammatory, and immunomodulatory properties to counteract both the hemostasis and defense mechanisms of the host. Besides facilitating tick feeding, the properties of saliva may also benefits survival and establishment of pathogens in the host. In the current study, we compared the sialotranscriptome of unfed A. sculptum ticks and those fed for 72 h on rabbits using next generation RNA sequencing (RNA-seq). The total of reads obtained were assembled in 9,560 coding sequences (CDSs) distributed in different functional classes. CDSs encoding secreted proteins, including lipocalins, mucins, protease inhibitors, glycine-rich proteins, metalloproteases, 8.9 kDa superfamily members, and immunity-related proteins were mostly upregulated by blood feeding. Selected CDSs were analyzed by real-time quantitative polymerase chain reaction preceded by reverse transcription (RT-qPCR), corroborating the transcriptional profile obtained by RNA-seq. Finally, high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis revealed 124 proteins in saliva of ticks fed for 96–120 h. The corresponding CDSs of 59 of these proteins were upregulated in SG of fed ticks. To the best of our knowledge, this is the first report on the proteome of A. sculptum saliva. The functional characterization of the identified proteins might reveal potential targets to develop vaccines for tick control and/or blocking of R. rickettsii transmission as well as pharmacological bioproducts with antihemostatic, anti-inflammatory and antibacterial activities.
Collapse
Affiliation(s)
- Eliane Esteves
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sandra R Maruyama
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Rebeca Kawahara
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - André Fujita
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Larissa A Martins
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Adne A Righi
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Francisco B Costa
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo B Labruna
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Anderson Sá-Nunes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Andréa C Fogaça
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Šimo L, Kazimirova M, Richardson J, Bonnet SI. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front Cell Infect Microbiol 2017; 7:281. [PMID: 28690983 PMCID: PMC5479950 DOI: 10.3389/fcimb.2017.00281] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/08/2017] [Indexed: 12/30/2022] Open
Abstract
As long-term pool feeders, ticks have developed myriad strategies to remain discreetly but solidly attached to their hosts for the duration of their blood meal. The critical biological material that dampens host defenses and facilitates the flow of blood-thus assuring adequate feeding-is tick saliva. Saliva exhibits cytolytic, vasodilator, anticoagulant, anti-inflammatory, and immunosuppressive activity. This essential fluid is secreted by the salivary glands, which also mediate several other biological functions, including secretion of cement and hygroscopic components, as well as the watery component of blood as regards hard ticks. When salivary glands are invaded by tick-borne pathogens, pathogens may be transmitted via saliva, which is injected alternately with blood uptake during the tick bite. Both salivary glands and saliva thus play a key role in transmission of pathogenic microorganisms to vertebrate hosts. During their long co-evolution with ticks and vertebrate hosts, microorganisms have indeed developed various strategies to exploit tick salivary molecules to ensure both acquisition by ticks and transmission, local infection and systemic dissemination within the vertebrate host.
Collapse
Affiliation(s)
- Ladislav Šimo
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of SciencesBratislava, Slovakia
| | - Jennifer Richardson
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| | - Sarah I. Bonnet
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| |
Collapse
|
10
|
de la Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG, Estrada-Peña A, Johnson N, Kocan KM, Mansfield KL, Nijhof AM, Papa A, Rudenko N, Villar M, Alberdi P, Torina A, Ayllón N, Vancova M, Golovchenko M, Grubhoffer L, Caracappa S, Fooks AR, Gortazar C, Rego ROM. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases. Front Cell Infect Microbiol 2017; 7:114. [PMID: 28439499 PMCID: PMC5383669 DOI: 10.3389/fcimb.2017.00114] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/22/2017] [Indexed: 01/10/2023] Open
Abstract
Ticks and the pathogens they transmit constitute a growing burden for human and animal health worldwide. Vector competence is a component of vectorial capacity and depends on genetic determinants affecting the ability of a vector to transmit a pathogen. These determinants affect traits such as tick-host-pathogen and susceptibility to pathogen infection. Therefore, the elucidation of the mechanisms involved in tick-pathogen interactions that affect vector competence is essential for the identification of molecular drivers for tick-borne diseases. In this review, we provide a comprehensive overview of tick-pathogen molecular interactions for bacteria, viruses, and protozoa affecting human and animal health. Additionally, the impact of tick microbiome on these interactions was considered. Results show that different pathogens evolved similar strategies such as manipulation of the immune response to infect vectors and facilitate multiplication and transmission. Furthermore, some of these strategies may be used by pathogens to infect both tick and mammalian hosts. Identification of interactions that promote tick survival, spread, and pathogen transmission provides the opportunity to disrupt these interactions and lead to a reduction in tick burden and the prevalence of tick-borne diseases. Targeting some of the similar mechanisms used by the pathogens for infection and transmission by ticks may assist in development of preventative strategies against multiple tick-borne diseases.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos CSIC-UCLM-JCCMCiudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State UniversityStillwater, OK, USA
| | - Sandra Antunes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de LisboaLisboa, Portugal
| | | | - Alejandro Cabezas-Cruz
- UMR BIPAR INRA-ANSES-ENVAMaisons-Alfort, France.,Biology Centre, Czech Academy of Sciences, Institute of ParasitologyCeske Budejovice, Czechia.,Faculty of Science, University of South BohemiaČeské Budějovice, Czechia
| | - Ana G Domingos
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de LisboaLisboa, Portugal
| | | | - Nicholas Johnson
- Animal and Plant Health AgencySurrey, UK.,Faculty of Health and Medicine, University of SurreyGuildford, UK
| | - Katherine M Kocan
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State UniversityStillwater, OK, USA
| | - Karen L Mansfield
- Animal and Plant Health AgencySurrey, UK.,Institute of Infection and Global Health, University of LiverpoolLiverpool, UK
| | - Ard M Nijhof
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität BerlinBerlin, Germany
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Nataliia Rudenko
- Biology Centre, Czech Academy of Sciences, Institute of ParasitologyCeske Budejovice, Czechia
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos CSIC-UCLM-JCCMCiudad Real, Spain
| | - Pilar Alberdi
- SaBio. Instituto de Investigación en Recursos Cinegéticos CSIC-UCLM-JCCMCiudad Real, Spain
| | - Alessandra Torina
- National Center of Reference for Anaplasma, Babesia, Rickettsia and Theileria, Intituto Zooprofilattico Sperimentale della SiciliaSicily, Italy
| | - Nieves Ayllón
- SaBio. Instituto de Investigación en Recursos Cinegéticos CSIC-UCLM-JCCMCiudad Real, Spain
| | - Marie Vancova
- Biology Centre, Czech Academy of Sciences, Institute of ParasitologyCeske Budejovice, Czechia
| | - Maryna Golovchenko
- Biology Centre, Czech Academy of Sciences, Institute of ParasitologyCeske Budejovice, Czechia
| | - Libor Grubhoffer
- Biology Centre, Czech Academy of Sciences, Institute of ParasitologyCeske Budejovice, Czechia.,Faculty of Science, University of South BohemiaČeské Budějovice, Czechia
| | - Santo Caracappa
- National Center of Reference for Anaplasma, Babesia, Rickettsia and Theileria, Intituto Zooprofilattico Sperimentale della SiciliaSicily, Italy
| | - Anthony R Fooks
- Animal and Plant Health AgencySurrey, UK.,Institute of Infection and Global Health, University of LiverpoolLiverpool, UK
| | - Christian Gortazar
- SaBio. Instituto de Investigación en Recursos Cinegéticos CSIC-UCLM-JCCMCiudad Real, Spain
| | - Ryan O M Rego
- Biology Centre, Czech Academy of Sciences, Institute of ParasitologyCeske Budejovice, Czechia.,Faculty of Science, University of South BohemiaČeské Budějovice, Czechia
| |
Collapse
|
11
|
Wang F, Lu X, Guo F, Gong H, Zhang H, Zhou Y, Cao J, Zhou J. The immunomodulatory protein RH36 is relating to blood-feeding success and oviposition in hard ticks. Vet Parasitol 2017; 240:49-59. [PMID: 28449954 DOI: 10.1016/j.vetpar.2017.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 11/30/2022]
Abstract
An immunomodulatory protein designated RH36 was identified in the tick Rhipicephalus haemaphysaloides. The cDNA sequence of RH36 has 844bp and encodes a deduced protein with a predicted molecular weight of 24kDa. Bioinformatics analysis indicated that RH36 presented a degree of similarity of 34.36% with the immunomodulatory protein p36 from the tick Dermacentor andersoni. The recombinant RH36 (rRH36) expressed in Sf9 insect cells suppressed the T-lymphocyte mitogen-driven in vitro proliferation of splenocytes and the expression of several cytokines such as IL-2, IL-12, and TNF-α. Furthermore, the proliferation of splenocytes isolated from rRH36-inoculated mice was significantly lower than that in control mice, suggesting that rRH36 could directly suppress immune responses in vivo. In addition, microarray analysis of splenocytes indicated that the expression of several immunomodulatory genes was downregulated by rRH36. The silencing of the RH36 gene by RNAi led to a 37.5% decrease in the tick attachment rate 24h after placement into the rabbit ears, whereas vaccination with RH36 caused a 53.06% decrease in the tick engorgement rate. Unexpectedly, RNAi induced a significant decrease in the oviposition rate, ovary weight at day 12 after engorgement, and egg-hatching rate. The effects of RH36 on blood feeding and oviposition were further confirmed by vaccination tests using the recombinant protein. These results indicate that RH36 is a novel member of immunosuppressant proteins and affects tick blood feeding and oviposition.
Collapse
Affiliation(s)
- Fangfang Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiaojuan Lu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Fengxun Guo
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
12
|
de Castro MH, de Klerk D, Pienaar R, Latif AA, Rees DJG, Mans BJ. De novo assembly and annotation of the salivary gland transcriptome of Rhipicephalus appendiculatus male and female ticks during blood feeding. Ticks Tick Borne Dis 2016; 7:536-48. [DOI: 10.1016/j.ttbdis.2016.01.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/23/2015] [Accepted: 01/20/2016] [Indexed: 01/19/2023]
|
13
|
Mans BJ, de Castro MH, Pienaar R, de Klerk D, Gaven P, Genu S, Latif AA. Ancestral reconstruction of tick lineages. Ticks Tick Borne Dis 2016; 7:509-35. [DOI: 10.1016/j.ttbdis.2016.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 01/15/2023]
|
14
|
Jore MM, Johnson S, Sheppard D, Barber NM, Li YI, Nunn MA, Elmlund H, Lea SM. Structural basis for therapeutic inhibition of complement C5. Nat Struct Mol Biol 2016; 23:378-86. [PMID: 27018802 PMCID: PMC5771465 DOI: 10.1038/nsmb.3196] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/02/2016] [Indexed: 01/03/2023]
Abstract
Activation of complement C5 generates the potent anaphylatoxin C5a and leads to pathogen lysis, inflammation and cell damage. The therapeutic potential of C5 inhibition has been demonstrated by eculizumab, one of the world's most expensive drugs. However, the mechanism of C5 activation by C5 convertases remains elusive, thus limiting development of therapeutics. Here we identify and characterize a new protein family of tick-derived C5 inhibitors. Structures of C5 in complex with the new inhibitors, the phase I and phase II inhibitor OmCI, or an eculizumab Fab reveal three distinct binding sites on C5 that all prevent activation of C5. The positions of the inhibitor-binding sites and the ability of all three C5-inhibitor complexes to competitively inhibit the C5 convertase conflict with earlier steric-inhibition models, thus suggesting that a priming event is needed for activation.
Collapse
Affiliation(s)
- Matthijs M Jore
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Devon Sheppard
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Natalie M Barber
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Yang I Li
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Miles A Nunn
- Centre for Ecology and Hydrology, Wallingford, UK
| | - Hans Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Chmelař J, Kotál J, Karim S, Kopacek P, Francischetti IMB, Pedra JHF, Kotsyfakis M. Sialomes and Mialomes: A Systems-Biology View of Tick Tissues and Tick-Host Interactions. Trends Parasitol 2015; 32:242-254. [PMID: 26520005 DOI: 10.1016/j.pt.2015.10.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/24/2015] [Accepted: 10/02/2015] [Indexed: 12/22/2022]
Abstract
Tick saliva facilitates tick feeding and infection of the host. Gene expression analysis of tick salivary glands and other tissues involved in host-pathogen interactions has revealed a wide range of bioactive tick proteins. Transcriptomic analysis has been a milestone in the field and has recently been enhanced by next-generation sequencing (NGS). Furthermore, the application of quantitative proteomics to ticks with unknown genomes has provided deeper insights into the molecular mechanisms underlying tick hematophagy, pathogen transmission, and tick-host-pathogen interactions. We review current knowledge on the transcriptomics and proteomics of tick tissues from a systems-biology perspective and discuss future challenges in the field.
Collapse
Affiliation(s)
- Jindřich Chmelař
- Faculty of Science, University of South Bohemia in České Budějovice, Budweis, Czech Republic; Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany
| | - Jan Kotál
- Faculty of Science, University of South Bohemia in České Budějovice, Budweis, Czech Republic; Institute of Parasitology, Biology Center, Czech Academy of Sciences, Budweis, Czech Republic
| | - Shahid Karim
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Petr Kopacek
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, Budweis, Czech Republic
| | - Ivo M B Francischetti
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, Budweis, Czech Republic.
| |
Collapse
|
16
|
Domingos A, Antunes S, Villar M, de la Fuente J. Functional genomics of tick vectors challenged with the cattle parasite Babesia bigemina. Methods Mol Biol 2015; 1247:475-489. [PMID: 25399115 DOI: 10.1007/978-1-4939-2004-4_32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ticks are obligate hematophagous ectoparasites considered as vectors of animal diseases, having a huge economic impact in cattle industry. Babesia spp. are tick-borne pathogens that cause a disease called babesiosis in a wide range of animals and in humans. Control of tick infestations is mainly based on the use of acaricides, which have limited efficacy reducing tick infestations, mostly due to wrong usage, and is often accompanied by the selection of acaricide-resistant ticks, environmental contamination, and contamination of milk and meat products. Vaccines affecting both vector and pathogens constitute new control strategies for tick and tick-borne diseases and are, therefore, a good alternative to chemical control. In this chapter we describe the identification of Rhipicephalus (Boophilus) annulatus genes differentially expressed in response to infection with B. bigemina by using suppression-subtractive hybridization (SSH), which allows the identification of differentially expressed genes. The results of the SSH studies are validated by real-time reverse transcription (RT)-PCR. Functional analyses are conducted by RNAi on selected R. annulatus genes to determine their putative role in B. bigemina-tick interactions. Gathered data may be useful for the future development of improved vaccines and vaccination strategies to control babesiosis.
Collapse
Affiliation(s)
- Ana Domingos
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal,
| | | | | | | |
Collapse
|
17
|
Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva. Int J Parasitol 2014; 44:1029-37. [DOI: 10.1016/j.ijpara.2014.07.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022]
|
18
|
Molecular characterization of two vitellogenin genes from the tick, Amblyomma hebraeum (Acari: Ixodidae). Ticks Tick Borne Dis 2014; 5:821-33. [DOI: 10.1016/j.ttbdis.2014.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 12/19/2022]
|
19
|
Radulović ŽM, Kim TK, Porter LM, Sze SH, Lewis L, Mulenga A. A 24-48 h fed Amblyomma americanum tick saliva immuno-proteome. BMC Genomics 2014; 15:518. [PMID: 24962723 PMCID: PMC4099483 DOI: 10.1186/1471-2164-15-518] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/12/2014] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Multiple tick saliva proteins, the majority of which are unknown, confer tick resistance in repeatedly infested animals. The objective of this study was to identify the 24-48 h fed Amblyomma americanum tick saliva immuno-proteome. The 24-48 h tick-feeding phase is critical to tick parasitism as it precedes important events in tick biology, blood meal feeding and disease agent transmission. Fed male, 24 and 96 h fed female phage display cDNA expression libraries were biopanned using rabbit antibodies to 24 and 48 h fed A. americanum female tick saliva proteins. Biopanned immuno-cDNA libraries were subjected to next generation sequencing, de novo assembly, and bioinformatic analysis. RESULTS More than 800 transcripts that code for 24-48 h fed A. americanum immuno-proteins are described. Of the 895 immuno-proteins, 52% (464/895) were provisionally identified based on matches in GenBank. Of these, ~19% (86/464) show high level of identity to other tick hypothetical proteins, and the rest include putative proteases (serine, cysteine, leukotriene A-4 hydrolase, carboxypeptidases, and metalloproteases), protease inhibitors (serine and cysteine protease inhibitors, tick carboxypeptidase inhibitor), and transporters and/or ligand binding proteins (histamine binding/lipocalin, fatty acid binding, calreticulin, hemelipoprotein, IgG binding protein, ferritin, insulin-like growth factor binding proteins, and evasin). Others include enzymes (glutathione transferase, cytochrome oxidase, protein disulfide isomerase), ribosomal proteins, and those of miscellaneous functions (histamine release factor, selenoproteins, tetraspanin, defensin, heat shock proteins). CONCLUSIONS Data here demonstrate that A. americanum secretes a complex cocktail of immunogenic tick saliva proteins during the first 24-48 h of feeding. Of significance, previously validated immunogenic tick saliva proteins including AV422 protein, calreticulin, histamine release factor, histamine binding/lipocalins, selenoproteins, and paramyosin were identified in this screen, supporting the specificity of the approach in this study. While descriptive, this study opens opportunities for in-depth tick feeding physiology studies.
Collapse
Affiliation(s)
- Željko M Radulović
- />Department of Entomology, AgriLife Research, Texas A & M University, 2475 TAMU, College Station, TX77843 USA
| | - Tae K Kim
- />Department of Entomology, AgriLife Research, Texas A & M University, 2475 TAMU, College Station, TX77843 USA
| | - Lindsay M Porter
- />Department of Entomology, AgriLife Research, Texas A & M University, 2475 TAMU, College Station, TX77843 USA
| | - Sing-Hoi Sze
- />Department of Computer Sciences and Engineering, Texas A & M University, College Station, TX77843 USA
- />Department of Biochemistry & Biophysics, Texas A & M University, College Station, TX77843 USA
| | - Lauren Lewis
- />Department of Entomology, AgriLife Research, Texas A & M University, 2475 TAMU, College Station, TX77843 USA
| | - Albert Mulenga
- />Department of Entomology, AgriLife Research, Texas A & M University, 2475 TAMU, College Station, TX77843 USA
| |
Collapse
|
20
|
Wang X, Huang Y, Niu SB, Jiang BG, Jia N, van der Geest L, Ni XB, Sun Y, Cao WC. Genetic diversity of Salp15 in the Ixodes ricinus complex (Acari: Ixodidae). PLoS One 2014; 9:e94131. [PMID: 24714063 PMCID: PMC3979764 DOI: 10.1371/journal.pone.0094131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 03/13/2014] [Indexed: 11/18/2022] Open
Abstract
Salp15, a 15-kDa tick salivary gland protein, is both essential for ticks to successfully obtain host blood and also facilitates transmission of Lyme borreliosis. To determine whether the Salp15 gene is expressed in Ixodes persulcatus and Ixodes sinensis, principle vectors of Lyme borreliosis in China, we studied transcriptions of this gene in semi-engorged larvae, nymph and adults of these two species. A total of eight Salp15 homologues, five in I. persulcatus and three in I. sinensis, were identified by reverse transcriptase–polymerase chain reaction (RT-PCR). Interestingly, the intra-species similarity of Salp15 is approximately equal to its interspecies similarity and more than one Salp15 protein is expressed in a certain tick developmental stage. Comparison of DNA and proteins with other available tick Salp15 homologues suggests that the Salp15 superfamily is genetically conserved and diverse in the Ixodes ricinus complex. These findings indicate that Salp15 proteins in the I. ricinus complex may play an essential role in interacting with the host immune system and transmission of Borrelia genospecies.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
- Wenzhou Center for Disease Control and Prevention, Wenzhou, P. R. China
| | - Yong Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Si-bo Niu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Leo van der Geest
- Institute for Biodiversity and Ecosystem Dynamics, Section Population Ecology, The University of Amsterdam, Amsterdam, Netherlands
| | - Xue-bing Ni
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
- Wenzhou Center for Disease Control and Prevention, Wenzhou, P. R. China
- * E-mail:
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| |
Collapse
|
21
|
Ibelli AMG, Kim TK, Hill CC, Lewis LA, Bakshi M, Miller S, Porter L, Mulenga A. A blood meal-induced Ixodes scapularis tick saliva serpin inhibits trypsin and thrombin, and interferes with platelet aggregation and blood clotting. Int J Parasitol 2014; 44:369-79. [PMID: 24583183 DOI: 10.1016/j.ijpara.2014.01.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/29/2013] [Accepted: 01/06/2014] [Indexed: 01/22/2023]
Abstract
Ixodes scapularis is a medically important tick species that transmits causative agents of important human tick-borne diseases including borreliosis, anaplasmosis and babesiosis. An understanding of how this tick feeds is needed prior to the development of novel methods to protect the human population against tick-borne disease infections. This study characterizes a blood meal-induced I. scapularis (Ixsc) tick saliva serine protease inhibitor (serpin (S)), in-house referred to as IxscS-1E1. The hypothesis that ticks use serpins to evade the host's defense response to tick feeding is based on the assumption that tick serpins inhibit functions of protease mediators of the host's anti-tick defense response. Thus, it is significant that consistent with hallmark characteristics of inhibitory serpins, Pichia pastoris-expressed recombinant IxscS-1E1 (rIxscS-1E1) can trap thrombin and trypsin in SDS- and heat-stable complexes, and reduce the activity of the two proteases in a dose-responsive manner. Additionally, rIxscS-1E1 also inhibited, but did not apparently form detectable complexes with, cathepsin G and factor Xa. Our data also show that rIxscS-1E1 may not inhibit chymotrypsin, kallikrein, chymase, plasmin, elastase and papain even at a much higher rIxscS-1E1 concentration. Native IxscS-1E1 potentially plays a role(s) in facilitating I. scapularis tick evasion of the host's hemostatic defense as revealed by the ability of rIxscS-1E1 to inhibit adenosine diphosphate- and thrombin-activated platelet aggregation, and delay activated partial prothrombin time and thrombin time plasma clotting in a dose-responsive manner. We conclude that native IxscS-1E1 is part of the tick saliva protein complex that mediates its anti-hemostatic, and potentially inflammatory, functions by inhibiting the actions of thrombin, trypsin and other yet unknown trypsin-like proteases at the tick-host interface.
Collapse
Affiliation(s)
- Adriana M G Ibelli
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, USA; Federal University of São Carlos, Graduate Program in Genetics and Evolution, Brazil
| | - Tae K Kim
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, USA
| | - Creston C Hill
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, USA
| | - Lauren A Lewis
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, USA
| | - Mariam Bakshi
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, USA
| | - Stephanie Miller
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, USA; College Station High School, Science Department-Biology, 4002 Victoria Ave, College Station, TX 77845, USA
| | - Lindsay Porter
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, USA
| | - Albert Mulenga
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
22
|
Abstract
Ticks are the most common arthropod vector, after mosquitoes, and are capable of transmitting the greatest variety of pathogens. For both humans and animals, the worldwide emergence or re-emergence of tick-borne disease is becoming increasingly problematic. Despite being such an important issue, our knowledge of pathogen transmission by ticks is incomplete. Several recent studies, reviewed here, have reported that the expression of some tick factors can be modulated in response to pathogen infection, and that some of these factors can impact on the pathogenic life cycle. Delineating the specific tick factors required for tick-borne pathogen transmission should lead to new strategies in the disruption of pathogen life cycles to combat emerging tick-borne disease.
Collapse
Affiliation(s)
- Xiang Ye Liu
- USC INRA Bartonella-tiques, UMR BIPAR ENVA-ANSES, Maisons-Alfort, France
| | - Sarah I. Bonnet
- USC INRA Bartonella-tiques, UMR BIPAR ENVA-ANSES, Maisons-Alfort, France
- * E-mail:
| |
Collapse
|
23
|
Lees K, Jones AK, Matsuda K, Akamatsu M, Sattelle DB, Woods DJ, Bowman AS. Functional characterisation of a nicotinic acetylcholine receptor α subunit from the brown dog tick, Rhipicephalus sanguineus. Int J Parasitol 2013; 44:75-81. [PMID: 24291321 PMCID: PMC4029082 DOI: 10.1016/j.ijpara.2013.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/01/2013] [Accepted: 11/04/2013] [Indexed: 12/16/2022]
Abstract
Ticks and tick-borne diseases have a major impact on human and animal health worldwide. Current control strategies rely heavily on the use of chemical acaricides, most of which target the CNS and with increasing resistance, new drugs are urgently needed. Nicotinic acetylcholine receptors (nAChRs) are targets of highly successful insecticides. We isolated a full-length nAChR α subunit from a normalised cDNA library from the synganglion (brain) of the brown dog tick, Rhipicephalus sanguineus. Phylogenetic analysis has shown this R. sanguineus nAChR to be most similar to the insect α1 nAChR group and has been named Rsanα1. Rsanα1 is distributed in multiple tick tissues and is present across all life-stages. When expressed in Xenopus laevis oocytes Rsanα1 failed to function as a homomer, with and without the addition of either Caenorhabditis elegans resistance-to-cholinesterase (RIC)-3 or X. laevis RIC-3. When co-expressed with chicken β2 nAChR, Rsanα1 evoked concentration-dependent, inward currents in response to acetylcholine (ACh) and showed sensitivity to nicotine (100 μM) and choline (100 μM). Rsanα1/β2 was insensitive to both imidacloprid (100 μM) and spinosad (100 μM). The unreliable expression of Rsanα1 in vitro suggests that additional subunits or chaperone proteins may be required for more robust expression. This study enhances our understanding of nAChRs in arachnids and may provide a basis for further studies on the interaction of compounds with the tick nAChR as part of a discovery process for novel acaricides.
Collapse
Affiliation(s)
- Kristin Lees
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Ave, Aberdeen AB24 2TZ, UK; Faculty of Life Sciences, University of Manchester, Oxford Rd, Manchester M13 9PT, UK
| | - Andrew K Jones
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Miki Akamatsu
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - David B Sattelle
- Wolfson Institute for Biomedical Research, Cruciform Building, University College London, Gower Street, London WC1E 6BT
| | - Debra J Woods
- Pfizer Animal Health, Pfizer Ltd, Sandwich, Kent CT13 9NJ, UK
| | - Alan S Bowman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Ave, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
24
|
Gibson AK, Smith Z, Fuqua C, Clay K, Colbourne JK. Why so many unknown genes? Partitioning orphans from a representative transcriptome of the lone star tick Amblyomma americanum. BMC Genomics 2013; 14:135. [PMID: 23445305 PMCID: PMC3616916 DOI: 10.1186/1471-2164-14-135] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/21/2013] [Indexed: 11/10/2022] Open
Abstract
Background Genomic resources within the phylum Arthropoda are largely limited to the true insects but are beginning to include unexplored subphyla, such as the Crustacea and Chelicerata. Investigations of these understudied taxa uncover high frequencies of orphan genes, which lack detectable sequence homology to genes in pre-existing databases. The ticks (Acari: Chelicerata) are one such understudied taxon for which genomic resources are urgently needed. Ticks are obligate blood-feeders that vector major diseases of humans, domesticated animals, and wildlife. In analyzing a transcriptome of the lone star tick Amblyomma americanum, one of the most abundant disease vectors in the United States, we find a high representation of unannotated sequences. We apply a general framework for quantifying the origin and true representation of unannotated sequences in a dataset and for evaluating the biological significance of orphan genes. Results Expressed sequence tags (ESTs) were derived from different life stages and populations of A. americanum and combined with ESTs available from GenBank to produce 14,310 ESTs, over twice the number previously available. The vast majority (71%) has no sequence homology to proteins archived in UniProtKB. We show that poor sequence or assembly quality is not a major contributor to this high representation by orphan genes. Moreover, most unannotated sequences are functional: a microarray experiment demonstrates that 59% of functional ESTs are unannotated. Lastly, we attempt to further annotate our EST dataset using genomic datasets from other members of the Acari, including Ixodes scapularis, four other tick species and the mite Tetranychus urticae. We find low homology with these species, consistent with significant divergence within this subclass. Conclusions We conclude that the abundance of orphan genes in A. americanum likely results from 1) taxonomic isolation stemming from divergence within the tick lineage and limited genomic resources for ticks and 2) lineage-specific genes needing functional genomic studies to evaluate their association with the unique biology of ticks. The EST sequences described here will contribute substantially to the development of tick genomics. Moreover, the framework provided for the evaluation of orphan genes can guide analyses of future transcriptome sequencing projects.
Collapse
Affiliation(s)
- Amanda K Gibson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | | | |
Collapse
|
25
|
Mulenga A, Kim TK, Ibelli AMG. Deorphanization and target validation of cross-tick species conserved novel Amblyomma americanum tick saliva protein. Int J Parasitol 2013; 43:439-51. [PMID: 23428900 DOI: 10.1016/j.ijpara.2012.12.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 01/20/2023]
Abstract
We previously identified a cross-tick species conserved tick feeding stimuli responsive Amblyomma americanum (Aam) AV422 gene. This study demonstrates that AamAV422 belongs to a novel group of arthropod proteins that is characterized by 14 cysteine amino acid residues: C(23)-X7/9-C(33)-X23/24-C(58)-X8-C(67)-X7-C(75)-X23-C(99)-X15-C(115)-X10-C(126)-X24/25/33-C(150)C(151)-X7-C(159)-X8-C(168)-X23/24-C(192)-X9/10-C(202) predicted to form seven disulfide bonds. We show that AamAV422 protein is a ubiquitously expressed protein that is injected into the host within the first 24h of the tick attaching onto the host as revealed by Western blotting analyses of recombinant (r)AamAV422, tick saliva and dissected tick organ protein extracts using antibodies to 24 and 48 h tick saliva proteins. Native AamAV422 is apparently involved with mediating tick anti-hemostasis and anti-complement functions in that rAamAV422 delayed plasma clotting time in a dose responsive manner by up to ≈ 160 s, prevented platelet aggregation by up to ≈ 16% and caused ≈ 24% reduction in production of terminal complement complexes. Target validation analysis revealed that rAamAV422 is a potential candidate for a cocktail or multivalent tick vaccine preparation in that RNA interference (RNAi)-mediated silencing of AamAV422 mRNA caused a statistically significant (≈ 44%) reduction in tick engorgement weights, which is proxy for amounts of ingested blood. We speculate that AamAV422 is a potential target antigen for development of the highly desired universal tick vaccine in that consistent with high conservation among ticks, antibodies to 24h Ixodes scapularis tick saliva proteins specifically bound rAamAV422. We discuss data in this study in the context of advancing the biology of tick feeding physiology and discovery of potential target antigens for tick vaccine development.
Collapse
Affiliation(s)
- Albert Mulenga
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, USA.
| | | | | |
Collapse
|
26
|
Patramool S, Choumet V, Surasombatpattana P, Sabatier L, Thomas F, Thongrungkiat S, Rabilloud T, Boulanger N, Biron DG, Missé D. Update on the proteomics of major arthropod vectors of human and animal pathogens. Proteomics 2012; 12:3510-23. [DOI: 10.1002/pmic.201200300] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/13/2012] [Accepted: 10/02/2012] [Indexed: 12/12/2022]
Affiliation(s)
| | - Valérie Choumet
- Unité de Génétique Moléculaire des Bunyavirus; Institut Pasteur; Paris; France
| | | | - Laurence Sabatier
- Département des Sciences Analytiques Institut Pluridisciplinaire Hubert Curien; Strasbourg; France
| | - Frédéric Thomas
- Laboratoire MIVEGEC; UMR CNRS 5290/IRD 224/UM1; Montpellier; France
| | - Supatra Thongrungkiat
- Department of Medical Entomology; Faculty of Tropical Medicine; Mahidol University; Bangkok; Thailand
| | - Thierry Rabilloud
- CNRS UMR 5249; Chemistry and Biology of Metals; CEA; Grenoble; France
| | - Nathalie Boulanger
- EA4438 Physiopathologie et médecine translationnelle; Faculté de Pharmacie; Illkirch; France
| | - David G. Biron
- CNRS UMR 6023; Laboratoire Microorganismes: Génome et Environnement; Aubière; France
| | - Dorothée Missé
- Laboratoire MIVEGEC; UMR CNRS 5290/IRD 224/UM1; Montpellier; France
| |
Collapse
|
27
|
Mika A, Reynolds SL, Mohlin FC, Willis C, Swe PM, Pickering DA, Halilovic V, Wijeyewickrema LC, Pike RN, Blom AM, Kemp DJ, Fischer K. Novel scabies mite serpins inhibit the three pathways of the human complement system. PLoS One 2012; 7:e40489. [PMID: 22792350 PMCID: PMC3394726 DOI: 10.1371/journal.pone.0040489] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 06/07/2012] [Indexed: 01/06/2023] Open
Abstract
Scabies is a parasitic infestation of the skin by the mite Sarcoptes scabiei that causes significant morbidity worldwide, in particular within socially disadvantaged populations. In order to identify mechanisms that enable the scabies mite to evade human immune defenses, we have studied molecules associated with proteolytic systems in the mite, including two novel scabies mite serine protease inhibitors (SMSs) of the serpin superfamily. Immunohistochemical studies revealed that within mite-infected human skin SMSB4 (54 kDa) and SMSB3 (47 kDa) were both localized in the mite gut and feces. Recombinant purified SMSB3 and SMSB4 did not inhibit mite serine and cysteine proteases, but did inhibit mammalian serine proteases, such as chymotrypsin, albeit inefficiently. Detailed functional analysis revealed that both serpins interfered with all three pathways of the human complement system at different stages of their activation. SMSB4 inhibited mostly the initial and progressing steps of the cascades, while SMSB3 showed the strongest effects at the C9 level in the terminal pathway. Additive effects of both serpins were shown at the C9 level in the lectin pathway. Both SMSs were able to interfere with complement factors without protease function. A range of binding assays showed direct binding between SMSB4 and seven complement proteins (C1, properdin, MBL, C4, C3, C6 and C8), while significant binding of SMSB3 occurred exclusively to complement factors without protease function (C4, C3, C8). Direct binding was observed between SMSB4 and the complement proteases C1s and C1r. However no complex formation was observed between either mite serpin and the complement serine proteases C1r, C1s, MASP-1, MASP-2 and MASP-3. No catalytic inhibition by either serpin was observed for any of these enzymes. In summary, the SMSs were acting at several levels mediating overall inhibition of the complement system and thus we propose that they may protect scabies mites from complement-mediated gut damage.
Collapse
Affiliation(s)
- Angela Mika
- Infectious Diseases Program, Biology Department, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kanduma EG, Mwacharo JM, Sunter JD, Nzuki I, Mwaura S, Kinyanjui PW, Kibe M, Heyne H, Hanotte O, Skilton RA, Bishop RP. Micro- and minisatellite-expressed sequence tag (EST) markers discriminate between populations of Rhipicephalus appendiculatus. Ticks Tick Borne Dis 2012; 3:128-36. [DOI: 10.1016/j.ttbdis.2012.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 05/09/2012] [Accepted: 05/11/2012] [Indexed: 11/28/2022]
|
29
|
Marcelino I, de Almeida AM, Ventosa M, Pruneau L, Meyer DF, Martinez D, Lefrançois T, Vachiéry N, Coelho AV. Tick-borne diseases in cattle: applications of proteomics to develop new generation vaccines. J Proteomics 2012; 75:4232-50. [PMID: 22480908 DOI: 10.1016/j.jprot.2012.03.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 01/11/2023]
Abstract
Tick-borne diseases (TBDs) affect 80% of the world's cattle population, hampering livestock production throughout the world. Livestock industry is important to rural populations not only as food supply, but also as a source of income. Tick control is usually achieved by using acaricides which are expensive, deleterious to the environment and can induce chemical resistance of vectors; the development of more effective and sustainable control methods is therefore required. Theileriosis, babesiosis, anaplasmosis and heartwater are the most important TBDs in cattle. Immunization strategies are currently available but with variable efficacy. To develop a new generation of vaccines which are more efficient, cheaper and safer, it is first necessary to better understand the mechanisms by which these parasites are transmitted, multiply and cause disease; this becomes especially difficult due to their complex life cycles, in vitro culture conditions and the lack of genetic tools to manipulate them. Proteomics and other complementary post-genomic tools such as transcriptomics and metabolomics in a systems biology context are becoming key tools to increase knowledge on the biology of infectious diseases. Herein, we present an overview of the so called "Omics" studies currently available on these tick-borne pathogens, giving emphasis to proteomics and how it may help to discover new vaccine candidates to control TBDs.
Collapse
|
30
|
McNally KL, Mitzel DN, Anderson JM, Ribeiro JMC, Valenzuela JG, Myers TG, Godinez A, Wolfinbarger JB, Best SM, Bloom ME. Differential salivary gland transcript expression profile in Ixodes scapularis nymphs upon feeding or flavivirus infection. Ticks Tick Borne Dis 2012; 3:18-26. [PMID: 22309855 PMCID: PMC3275779 DOI: 10.1016/j.ttbdis.2011.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/06/2011] [Indexed: 12/24/2022]
Abstract
Ixodid ticks are vectors of human diseases such as Lyme disease, babesiosis, anaplasmosis, and tick-borne encephalitis. These diseases cause significant morbidity and mortality worldwide and are transmitted to humans during tick feeding. The tick-host-pathogen interface is a complex environment where host responses are modulated by the molecules in tick saliva to enable the acquisition of a blood meal. Disruption of host responses at the site of the tick bite may also provide an advantage for pathogens to survive and replicate. Thus, the molecules in tick saliva not only aid the tick in securing a nutrient-rich blood meal, but can also enhance the transmission and acquisition of pathogens. To investigate the effect of feeding and flavivirus infection on the salivary gland transcript expression profile in ticks, a first-generation microarray was developed using ESTs from a cDNA library derived from Ixodes scapularis salivary glands. When the salivary gland transcript profile in ticks feeding over the course of 3 days was compared to that in unfed ticks, a dramatic increase in transcripts related to metabolism was observed. Specifically, 578 transcripts were up-regulated compared to 151 down-regulated transcripts in response to feeding. When specific time points post attachment were analyzed, a temporal pattern of gene expression was observed. When Langat virus-infected ticks were compared to mock-infected ticks, transcript expression changes were observed at all 3 days of feeding. Differentially regulated transcripts include putative secreted proteins, lipocalins, Kunitz domain-containing proteins, anti-microbial peptides, and transcripts of unknown function. These studies identify salivary gland transcripts that are differentially regulated during feeding or in the context of flavivirus infection in Ixodes scapularis nymphs, a medically important disease vector. Further analysis of these transcripts may identify salivary factors that affect the transmission or replication of tick-borne flaviviruses.
Collapse
Affiliation(s)
- Kristin L. McNally
- Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, 903 S Fourth St, Hamilton MT USA 59840
| | - Dana N. Mitzel
- Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, 903 S Fourth St, Hamilton MT USA 59840
| | | | - José M. C. Ribeiro
- Laboratory of Malaria and Vector Research, NIAID, NIH, Bethesda, MD USA 20892
| | - Jesus G. Valenzuela
- Laboratory of Malaria and Vector Research, NIAID, NIH, Bethesda, MD USA 20892
| | - Timothy G. Myers
- Genomic Technologies Section, Research Technologies Branch, NIAID, NIH, Bethesda, MD USA 20892
| | - Alvaro Godinez
- Genomic Technologies Section, Research Technologies Branch, NIAID, NIH, Bethesda, MD USA 20892
| | - James B. Wolfinbarger
- Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, 903 S Fourth St, Hamilton MT USA 59840
| | - Sonja M. Best
- Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, 903 S Fourth St, Hamilton MT USA 59840
| | - Marshall E. Bloom
- Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, 903 S Fourth St, Hamilton MT USA 59840
| |
Collapse
|
31
|
Functional genomics studies of Rhipicephalus (Boophilus) annulatus ticks in response to infection with the cattle protozoan parasite, Babesia bigemina. Int J Parasitol 2012; 42:187-95. [PMID: 22265898 DOI: 10.1016/j.ijpara.2011.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 11/22/2022]
Abstract
Ticks are obligate haematophagous ectoparasites of wild and domestic animals as well as humans, considered to be second worldwide to mosquitoes as vectors of human diseases, but the most important vectors of disease-causing pathogens in domestic and wild animals. Babesia spp. are tick-borne pathogens that cause a disease called babesiosis in a wide range of animals and in humans. In particular, Babesia bovis and Babesia bigemina are transmitted by cattle ticks, Rhipicephalus (Boophilus) annulatus and Rhipicephalus microplus, which are considered the most important cattle ectoparasites with major economic impacts on cattle production. The objectives of this study were to identify R. annulatus genes differentially expressed in response to infection with B. bigemina. Functional analyses were conducted on selected genes by RNA interference in both R. annulatus and R. microplus ticks. Eight hundred randomly selected suppression-subtractive hybridisation library clones were sequenced and analysed. Molecular function Gene Ontology assignments showed that the obtained tick sequences encoded for proteins with different cellular functions. Differentially expressed genes with putative functions in tick-pathogen interactions were selected for validation of SSH results by real-time reverse transcription-PCR. Genes encoding for TROSPA, calreticulin, ricinusin and serum amyloid A were over-expressed in B. bigemina-infected ticks while Kunitz-type protease inhibitor 5 mRNA levels were down-regulated in infected ticks. Functional analysis of differentially expressed genes by double stranded RNA-mediated RNAi showed that under the conditions of the present study knockdown of TROSPA and serum amyloid A significantly reduced B. bigemina infection levels in R. annulatus while in R. microplus, knockdown of TROSPA, serum amyloid A and calreticulin also reduced pathogen infection levels when compared with controls. Several studies have characterised the tick-pathogen interface at the molecular level. However, to our knowledge this is the first report of functional genomics studies in R. annulatus infected with B. bigemina. The results reported here increase our understanding of the role of tick genes in Babesia infection/multiplication.
Collapse
|
32
|
Francischetti IMB, Anderson JM, Manoukis N, Pham VM, Ribeiro JMC. An insight into the sialotranscriptome and proteome of the coarse bontlegged tick, Hyalomma marginatum rufipes. J Proteomics 2011; 74:2892-908. [PMID: 21851864 PMCID: PMC3215792 DOI: 10.1016/j.jprot.2011.07.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 01/28/2023]
Abstract
Ticks are mites specialized in acquiring blood from vertebrates as their sole source of food and are important disease vectors to humans and animals. Among the specializations required for this peculiar diet, ticks evolved a sophisticated salivary potion that can disarm their host's hemostasis, inflammation, and immune reactions. Previous transcriptome analysis of tick salivary proteins has revealed many new protein families indicative of fast evolution, possibly due to host immune pressure. The hard ticks (family Ixodidae) are further divided into two basal groups, of which the Metastriata have 11 genera. While salivary transcriptomes and proteomes have been described for some of these genera, no tick of the genus Hyalomma has been studied so far. The analysis of 2084 expressed sequence tags (EST) from a salivary gland cDNA library allowed an exploration of the proteome of this tick species by matching peptide ions derived from MS/MS experiments to this data set. We additionally compared these MS/MS derived peptide sequences against the proteins from the bovine host, finding many host proteins in the salivary glands of this tick. This annotated data set can assist the discovery of new targets for anti-tick vaccines as well as help to identify pharmacologically active proteins.
Collapse
Affiliation(s)
- Ivo MB Francischetti
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville MD 20852, USA
| | - Jennifer M Anderson
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville MD 20852, USA
| | - Nicholas Manoukis
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville MD 20852, USA
| | - Van M Pham
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville MD 20852, USA
| | - José MC Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville MD 20852, USA
| |
Collapse
|
33
|
Moolhuijzen PM, Lew-Tabor AE, Morgan JAT, Valle MR, Peterson DG, Dowd SE, Guerrero FD, Bellgard MI, Appels R. The complexity of Rhipicephalus (Boophilus) microplus genome characterised through detailed analysis of two BAC clones. BMC Res Notes 2011; 4:254. [PMID: 21777481 PMCID: PMC3160391 DOI: 10.1186/1756-0500-4-254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 07/22/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rhipicephalus (Boophilus) microplus (Rmi) a major cattle ectoparasite and tick borne disease vector, impacts on animal welfare and industry productivity. In arthropod research there is an absence of a complete Chelicerate genome, which includes ticks, mites, spiders, scorpions and crustaceans. Model arthropod genomes such as Drosophila and Anopheles are too taxonomically distant for a reference in tick genomic sequence analysis. This study focuses on the de-novo assembly of two R. microplus BAC sequences from the understudied R microplus genome. Based on available R. microplus sequenced resources and comparative analysis, tick genomic structure and functional predictions identify complex gene structures and genomic targets expressed during tick-cattle interaction. RESULTS In our BAC analyses we have assembled, using the correct positioning of BAC end sequences and transcript sequences, two challenging genomic regions. Cot DNA fractions compared to the BAC sequences confirmed a highly repetitive BAC sequence BM-012-E08 and a low repetitive BAC sequence BM-005-G14 which was gene rich and contained short interspersed elements (SINEs). Based directly on the BAC and Cot data comparisons, the genome wide frequency of the SINE Ruka element was estimated. Using a conservative approach to the assembly of the highly repetitive BM-012-E08, the sequence was de-convoluted into three repeat units, each unit containing an 18S, 5.8S and 28S ribosomal RNA (rRNA) encoding gene sequence (rDNA), related internal transcribed spacer and complex intergenic region.In the low repetitive BM-005-G14, a novel gene complex was found between to 2 genes on the same strand. Nested in the second intron of a large 9 Kb papilin gene was a helicase gene. This helicase overlapped in two exonic regions with the papilin. Both these genes were shown expressed in different tick life stage important in ectoparasite interaction with the host. Tick specific sequence differences were also determined for the papilin gene and the protein binding sites of the 18S subunit in a comparison to Bos taurus. CONCLUSION In the absence of a sequenced reference genome we have assembled two complex BAC sequences, characterised novel gene structure that was confirmed by gene expression and sequencing analyses. This is the first report to provide evidence for 2 eukaryotic genes with exon regions that overlap on the same strand, the first to describe Rhipicephalinae papilin, and the first to report the complete ribosomal DNA repeated unit sequence structure for ticks. The Cot data estimation of genome wide sequence frequency means this research will underpin future efforts for genome sequencing and assembly of the R. microplus genome.
Collapse
Affiliation(s)
- Paula M Moolhuijzen
- Centre for Comparative Genomics, Murdoch University, South St,, Perth, Western Australia, 6150, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kamau L, Skilton RA, Odongo DO, Mwaura S, Githaka N, Kanduma E, Obura M, Kabiru E, Orago A, Musoke A, Bishop RP. Differential transcription of two highly divergent gut-expressed Bm86 antigen gene homologues in the tick Rhipicephalus appendiculatus (Acari: Ixodida). INSECT MOLECULAR BIOLOGY 2011; 20:105-114. [PMID: 20854482 DOI: 10.1111/j.1365-2583.2010.01043.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The transcriptional control of gene expression is not well documented in the Arthropoda. We describe transcriptional analysis of two exceptionally divergent homologues (Ra86) of the Bm86 gut antigen from Rhipicephalus appendiculatus. Bm86 forms the basis of a commercial vaccine for the control of Rhipicephalus (Boophilus) microplus. The R. appendiculatus Ra86 proteins contain 654 and 693 amino acids, with only 80% amino acid sequence identity. Reverse-transcription PCR of gut cDNA showed transcription of only one genotype in individual female ticks. PCR amplification of 3' untranslated sequences from genomic DNA indicated that both variants could be encoded within a single genome. When both variants were present, one of the two Ra86 genotypes was transcriptionally dominant.
Collapse
Affiliation(s)
- L Kamau
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Anatriello E, Ribeiro JMC, de Miranda-Santos IKF, Brandão LG, Anderson JM, Valenzuela JG, Maruyama SR, Silva JS, Ferreira BR. An insight into the sialotranscriptome of the brown dog tick, Rhipicephalus sanguineus. BMC Genomics 2010; 11:450. [PMID: 20650005 PMCID: PMC3091647 DOI: 10.1186/1471-2164-11-450] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 07/22/2010] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Rhipicephalus sanguineus, known as the brown dog tick, is a common ectoparasite of domestic dogs and can be found worldwide. R.sanguineus is recognized as the primary vector of the etiological agent of canine monocytic ehrlichiosis and canine babesiosis. Here we present the first description of a R. sanguineus salivary gland transcriptome by the production and analysis of 2,034 expressed sequence tags (EST) from two cDNA libraries, one consctructed using mRNA from dissected salivary glands from female ticks fed for 3-5 days (early to mid library, RsSGL1) and the another from ticks fed for 5 days (mid library, RsSGL2), identifying 1,024 clusters of related sequences. RESULTS Based on sequence similarities to nine different databases, we identified transcripts of genes that were further categorized according to function. The category of putative housekeeping genes contained approximately 56% of the sequences and had on average 2.49 ESTs per cluster, the secreted protein category contained 26.6% of the ESTs and had 2.47 EST's/clusters, while 15.3% of the ESTs, mostly singletons, were not classifiable, and were annotated as "unknown function". The secreted category included genes that coded for lipocalins, proteases inhibitors, disintegrins, metalloproteases, immunomodulatory and antiinflammatory proteins, as Evasins and Da-p36, as well as basic-tail and 18.3 kDa proteins, cement proteins, mucins, defensins and antimicrobial peptides. Comparison of the abundance of ESTs from similar contigs of the two salivary gland cDNA libraries allowed the identification of differentially expressed genes, such as genes coding for Evasins and a thrombin inhibitor, which were over expressed in the RsSGL1 (early to mid library) versus RsSGL2 (mid library), indicating their role in inhibition of inflammation at the tick feeding site from the very beginning of the blood meal. Conversely, sequences related to cement (64P), which function has been correlated with tick attachment, was largely expressed in the mid library. CONCLUSIONS Our survey provided an insight into the R. sanguineus sialotranscriptome, which can assist the discovery of new targets for anti-tick vaccines, as well as help to identify pharmacologically active proteins.
Collapse
Affiliation(s)
- Elen Anatriello
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - José MC Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - Isabel KF de Miranda-Santos
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
- Embrapa Recursos Genéticos e Biotecnologia, 70770-900, Brasília, DF, Brazil
| | - Lucinda G Brandão
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
- Universidade Paulista, Avenida Baguaçu, 1939, 16018-280, Araçatuba, SP, Brasil
| | - Jennifer M Anderson
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - Jesus G Valenzuela
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - Sandra R Maruyama
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - João S Silva
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Beatriz R Ferreira
- Department of Maternal and Child and Public Health Nursing, Ribeirão Preto School of Nursing, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| |
Collapse
|
36
|
Lees K, Woods DJ, Bowman AS. Transcriptome analysis of the synganglion from the brown dog tick, Rhipicephalus sanguineus. INSECT MOLECULAR BIOLOGY 2010; 19:273-282. [PMID: 20002796 DOI: 10.1111/j.1365-2583.2009.00968.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Tick control strategies rely heavily on chemicals (acaricides), most of which target the central nervous system. With increasing resistance, new acaricides are urgently needed but knowledge of tick neurobiology is surprisingly limited, notably the number of neural-specific gene sequences. One thousand and eight expressed sequence tags (ESTs) were obtained from a normalized cDNA library from Rhipicephalus sanguineus synganglia. Putative functional identities were assigned to 44% whereas 34% were unknown/novel sequences. Of particular interest were ESTs encoding a chitinase-like enzyme, an acetylcholinesterase and four transmembrane receptors including two glutamate-gated chloride channel receptors, a leucokinin-like receptor and a nicotinic acetylcholine receptor alpha-subunit. This study highlights the benefits of using both neural tissues and normalized libraries in an EST-approach for identifying potential acaricide targets expressed as rare transcripts.
Collapse
Affiliation(s)
- K Lees
- School of Biological Sciences (Zoology), University of Aberdeen, Aberdeen, UK
| | | | | |
Collapse
|
37
|
Identification and Functional Analysis of Differentially Expressed Genes of Ascaris suum Goeze, 1782 from Ascaris lumbricoides Linnaeus, 1758. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1671-2927(09)60170-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Zivkovic Z, Esteves E, Almazán C, Daffre S, Nijhof AM, Kocan KM, Jongejan F, de la Fuente J. Differential expression of genes in salivary glands of male Rhipicephalus (Boophilus)microplus in response to infection with Anaplasma marginale. BMC Genomics 2010; 11:186. [PMID: 20298599 PMCID: PMC2848250 DOI: 10.1186/1471-2164-11-186] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 03/18/2010] [Indexed: 12/31/2022] Open
Abstract
Background Bovine anaplasmosis, caused by the rickettsial tick-borne pathogen Anaplasma marginale (Rickettsiales: Anaplasmataceae), is vectored by Rhipicephalus (Boophilus)microplus in many tropical and subtropical regions of the world. A. marginale undergoes a complex developmental cycle in ticks which results in infection of salivary glands from where the pathogen is transmitted to cattle. In previous studies, we reported modification of gene expression in Dermacentor variabilis and cultured Ixodes scapularis tick cells in response to infection with A. marginale. In these studies, we extended these findings by use of a functional genomics approach to identify genes differentially expressed in R. microplus male salivary glands in response to A. marginale infection. Additionally, a R. microplus-derived cell line, BME26, was used for the first time to also study tick cell gene expression in response to A. marginale infection. Results Suppression subtractive hybridization libraries were constructed from infected and uninfected ticks and used to identify genes differentially expressed in male R. microplus salivary glands infected with A. marginale. A total of 279 ESTs were identified as candidate differentially expressed genes. Of these, five genes encoding for putative histamine-binding protein (22Hbp), von Willebrand factor (94Will), flagelliform silk protein (100Silk), Kunitz-like protease inhibitor precursor (108Kunz) and proline-rich protein BstNI subfamily 3 precursor (7BstNI3) were confirmed by real-time RT-PCR to be down-regulated in tick salivary glands infected with A. marginale. The impact of selected tick genes on A. marginale infections in tick salivary glands and BME26 cells was characterized by RNA interference. Silencing of the gene encoding for putative flagelliform silk protein (100Silk) resulted in reduced A. marginale infection in both tick salivary glands and cultured BME26 cells, while silencing of the gene encoding for subolesin (4D8) significantly reduced infection only in cultured BME26 cells. The knockdown of the gene encoding for putative metallothionein (93 Meth), significantly up-regulated in infected cultured BME26 cells, resulted in higher A. marginale infection levels in tick cells. Conclusions Characterization of differential gene expression in salivary glands of R. microplus in response to A. marginale infection expands our understanding of the molecular mechanisms at the tick-pathogen interface. Functional studies suggested that differentially expressed genes encoding for subolesin, putative von Willebrand factor and flagelliform silk protein could play a role in A. marginale infection and multiplication in ticks. These tick genes found to be functionally relevant for tick-pathogen interactions will likely be candidates for development of vaccines designed for control of both ticks and tick-borne pathogens.
Collapse
Affiliation(s)
- Zorica Zivkovic
- Department of Infectious Diseases and Immunology, Utrecht Centre for Tick-borne Diseases (UCTD), Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lew-Tabor AE, Moolhuijzen PM, Vance ME, Kurscheid S, Valle MR, Jarrett S, Minchin CM, Jackson LA, Jonsson NN, Bellgard MI, Guerrero FD. Suppressive subtractive hybridization analysis of Rhipicephalus (Boophilus) microplus larval and adult transcript expression during attachment and feeding. Vet Parasitol 2010; 167:304-20. [DOI: 10.1016/j.vetpar.2009.09.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Nijhof AM, Balk JA, Postigo M, Jongejan F. Selection of reference genes for quantitative RT-PCR studies in Rhipicephalus (Boophilus) microplus and Rhipicephalus appendiculatus ticks and determination of the expression profile of Bm86. BMC Mol Biol 2009; 10:112. [PMID: 20040102 PMCID: PMC2809063 DOI: 10.1186/1471-2199-10-112] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 12/29/2009] [Indexed: 11/17/2022] Open
Abstract
Background For accurate and reliable gene expression analysis, normalization of gene expression data against reference genes is essential. In most studies on ticks where (semi-)quantitative RT-PCR is employed, normalization occurs with a single reference gene, usually β-actin, without validation of its presumed expression stability. The first goal of this study was to evaluate the expression stability of commonly used reference genes in Rhipicephalus appendiculatus and Rhipicephalus (Boophilus) microplus ticks. To demonstrate the usefulness of these results, an unresolved issue in tick vaccine development was examined. Commercial vaccines against R. microplus were developed based on the recombinant antigen Bm86, but despite a high degree of sequence homology, these vaccines are not effective against R. appendiculatus. In fact, Bm86-based vaccines give better protection against some tick species with lower Bm86 sequence homology. One possible explanation is the variation in Bm86 expression levels between R. microplus and R. appendiculatus. The most stable reference genes were therefore used for normalization of the Bm86 expression profile in all life stages of both species to examine whether antigen abundance plays a role in Bm86 vaccine susceptibility. Results The transcription levels of nine potential reference genes: β-actin (ACTB), β-tubulin (BTUB), elongation factor 1α (ELF1A), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), glutathione S-transferase (GST), H3 histone family 3A (H3F3A), cyclophilin (PPIA), ribosomal protein L4 (RPL4) and TATA box binding protein (TBP) were measured in all life stages of R. microplus and R. appendiculatus. ELF1A was found to be the most stable expressed gene in both species following analysis by both geNorm and Normfinder software applications, GST showed the least stability. The expression profile of Bm86 in R. appendiculatus and R. microplus revealed a more continuous Bm86 antigen abundance in R. microplus throughout its one-host life cycle compared to the three-host tick R. appendiculatus where large variations were observed between different life stages. Conclusion Based on these results, ELF1A can be proposed as an initial reference gene for normalization of quantitative RT-PCR data in whole R. microplus and R. appendiculatus ticks. The observed differences in Bm86 expression profile between the two species alone can not adequately explain the lack of a Bm86 vaccination effect in R. appendiculatus.
Collapse
Affiliation(s)
- Ard M Nijhof
- Faculty of Veterinary Medicine, Utrecht University, Utrecht Centre for Tick-borne Diseases, 3584 CL Utrecht, the Netherlands.
| | | | | | | |
Collapse
|
41
|
Havlíková S, Roller L, Koči J, Trimnell AR, Kazimírová M, Klempa B, Nuttall PA. Functional role of 64P, the candidate transmission-blocking vaccine antigen from the tick, Rhipicephalus appendiculatus. Int J Parasitol 2009; 39:1485-94. [DOI: 10.1016/j.ijpara.2009.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 05/01/2009] [Accepted: 05/04/2009] [Indexed: 11/17/2022]
|
42
|
Donohue KV, Khalil SMS, Sonenshine DE, Roe RM. Heme-binding storage proteins in the Chelicerata. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:287-296. [PMID: 19183556 DOI: 10.1016/j.jinsphys.2009.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 01/02/2009] [Accepted: 01/05/2009] [Indexed: 05/27/2023]
Abstract
Lipoglycoproteins in the Chelicerata that bind and store heme appear to represent a unique evolutionary strategy to both mitigate the toxicity of heme and utilize the molecule as a prosthetic group. Knowledge of heme-binding storage proteins in these organisms is in its infancy and much of what is known is from studies with vitellogenins (Vg) and more recently the main hemolymph storage protein in ixodid ticks characterized as a hemelipoglyco-carrier protein (CP). Data have also been reported from another arachnid, the black widow spider, Latrodectus mirabilis, and seem to suggest that the heme-binding capability of these large multimeric proteins is not a phenomenon found only in the Acari. CP appears to be most closely related to Vg in ticks in terms of primary structure but post-translational processing is different. Tick CP and L. mirabilis high-density lipoprotein 1 (HDL1) are similar in that they consist of two subunits of approximate molecular masses of 90 and 100 kDa, are found in the hemolymph as the dominant protein, and bind lipids, carbohydrates and cholesterol. CP binds heme which may also be the case for HDL1 since the protein was found to contain a brown pigment when analyzed by native polyacrylamide gel electrophoresis. Vgs in ticks are composed of multiple subunits and are the precursor of the yolk protein, vitellin. The phylogeny of these proteins, regulation of gene expression and putative functions of binding and storing heme throughout reproduction, blood-feeding and development are discussed. Comparisons with non-chelicerate arthropods are made in order to highlight the mechanisms and putative functions of heme-binding storage proteins and their possible critical function in the evolution of hematophagy.
Collapse
Affiliation(s)
- Kevin V Donohue
- Department of Entomology, Campus Box 7647, North Carolina State University, Raleigh, NC 27695-7647, USA
| | | | | | | |
Collapse
|
43
|
Ball A, Campbell EM, Jacob J, Hoppler S, Bowman AS. Identification, functional characterization and expression patterns of a water-specific aquaporin in the brown dog tick, Rhipicephalus sanguineus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:105-112. [PMID: 19000768 DOI: 10.1016/j.ibmb.2008.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 10/13/2008] [Accepted: 10/13/2008] [Indexed: 05/27/2023]
Abstract
Much is known about the physiology of tick salivation, but nothing is known about the movement of water through the cell membranes of salivary glands, a phenomenon usually associated with water channels or aquaporins (AQPs). An AQP, RsAQP1, was identified in a salivary gland cDNA library of Rhipicephalus sanguineus. In the first functional characterization of an acarine AQP, Xenopus oocytes expressing RsAQP1 became water permeable, whereas RsAQP1 did not transport glycerol or urea. RsAQP1 was inhibited by Hg(2+) but not by triethylammonium. Treatment with a protein kinase A activator (cAMP) had no effect on RsAQP1 transport, whereas treatment with a protein kinase C activator (phorbol 12,13-dibutyrate) reduced water flux by 60%. RsAQP1 transcript was present in unfed larvae, nymphs and adult R. sanguineus, but absent in embryos. Partially fed female R. sanguineus expressed RsAQP1 in gut, Malpighian tubules and was particularly abundant in salivary gland tissue, but absent in ovary and synganglion tissues. Because of the importance of water management in tick biology for both the off-host and on-host phases of the life cycle, our findings on tick AQP1 represent a major advancement in our understanding of tick osmoregulation that could potentially be exploited in tick control.
Collapse
Affiliation(s)
- Andrew Ball
- School of Biological Sciences (Zoology), University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | | | | | | | | |
Collapse
|
44
|
Francischetti IMB, Meng Z, Mans BJ, Gudderra N, Hall M, Veenstra TD, Pham VM, Kotsyfakis M, Ribeiro JMC. An insight into the salivary transcriptome and proteome of the soft tick and vector of epizootic bovine abortion, Ornithodoros coriaceus. J Proteomics 2008; 71:493-512. [PMID: 18725333 PMCID: PMC2617759 DOI: 10.1016/j.jprot.2008.07.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 07/25/2008] [Accepted: 07/28/2008] [Indexed: 11/27/2022]
Abstract
The salivary glands of blood-sucking arthropods contain a redundant 'magic potion' that counteracts their vertebrate host's hemostasis, inflammation, and immunity. We here describe the salivary transcriptome and proteomics (sialome) of the soft tick Ornithodoros coriaceus. The resulting analysis helps to consolidate the classification of common proteins found in both soft and hard ticks, such as the lipocalins, Kunitz, cystatin, basic tail, hebraein, defensin, TIL domain, metalloprotease, 5'-nucleotidase/apyrase, and phospholipase families, and also to identify protein families uniquely found in the Argasidae, such as the adrenomedullin/CGRP peptides, 7DB, 7 kDa, and the RGD-containing single-Kunitz proteins. Additionally, we found a protein belonging to the cytotoxin protein family that has so far only been identified in hard ticks. Three other unique families common only to the Ornithodoros genus were discovered. Edman degradation, 2D and 1D-PAGE of salivary gland homogenates followed by tryptic digestion and HPLC MS/MS of results confirms the presence of several proteins. These results indicate that each genus of hematophagous arthropods studied to date evolved unique protein families that assist blood feeding, thus characterizing potentially new pharmacologically active components or antimicrobial agents.
Collapse
Affiliation(s)
- Ivo M B Francischetti
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892-8132, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Konnai S, Nakajima C, Imamura S, Yamada S, Nishikado H, Kodama M, Onuma M, Ohashi K. Suppression of cell proliferation and cytokine expression by HL-p36, a tick salivary gland-derived protein of Haemaphysalis longicornis. Immunology 2008; 126:209-19. [PMID: 18624730 DOI: 10.1111/j.1365-2567.2008.02890.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Previously, a putative immunosuppressant-coding gene was identified from a complementary DNA library derived from the salivary glands of partially-fed Haemaphysalis longicornis. Using real-time polymerase chain reaction, the gene was shown to be predominantly expressed during blood feeding with the site of expression being mainly in the salivary glands; this was confirmed by Western blotting analysis. To investigate the function of this novel protein, in this study, we examined the proliferative responses of bovine mononuclear cells and murine splenic cells as well as the expression of profiles of several cytokines in these cells in the presence of the recombinant protein (H. longicornis-derived 36 000 molecular weight protein: rHL-p36). The addition of rHL-p36 at the beginning of the 72 hr cultivation period clearly inhibited proliferation of several mitogen-stimulated cells in a dose-dependent manner, with concomitantly significant down-regulation of messenger RNA levels for interleukin-2. The inhibitory response could be abrogated by blockage of HL-p36 with antibody, suggesting the direct involvement of rHL-p36 in the cell proliferation. Furthermore, the proliferative response of splenocytes isolated from rHL-p36-inoculated mice was significantly lower than for those from control mice, suggesting that rHL-p36 could also directly suppress immune responses in vivo. Interestingly, microarray analysis of the splenocytes showed that the expression of several immunomodulating genes was down-regulated by rHL-p36 inoculation. In conclusion, these results suggest that HL-p36 is an immunosuppressor that might play an important role in the modulation of host immune responses.
Collapse
Affiliation(s)
- Satoru Konnai
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Donohue KV, Khalil SMS, Mitchell RD, Sonenshine DE, Roe RM. Molecular characterization of the major hemelipoglycoprotein in ixodid ticks. INSECT MOLECULAR BIOLOGY 2008; 17:197-208. [PMID: 18477238 DOI: 10.1111/j.1365-2583.2008.00794.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The major hemelipoglyco-carrier protein (CP) found throughout the development of male and female adult American dog ticks, Dermacentor variabilis (Say) was sequenced. DvCP is a single transcript coding for two protein subunits that together contain three motifs: (1) a lipoprotein n-terminal domain that is a common attribute of proteins that bind lipids, carbohydrates and metals; (2) a domain of unknown function characteristic of proteins with several large open beta sheets; and (3) a von Willebrand factor type D domain near the carboxy-terminus apparently important for multimerization. These motifs, which are also found in tick vitellogenin, are not shared by heme-binding proteins studied thus far in other hematophagous insects. DvCP message was highest in fat body and salivary gland but was also found in midgut and ovary tissue. Expression was initiated by blood feeding in virgin females and not by mating, as is typical of tick vitellogenin; and the message was found in fed males at levels similar to part fed, virgin females. CP appears to be highly conserved among the Ixodida. The closest match by BlastP to DvCP is vitellogenin from Caenorhabditis elegans (AAC04423), suggesting that CP is a novel protein. The role of CP in heme sequestration, the evolution of hematophagy and host complementation are discussed.
Collapse
Affiliation(s)
- K V Donohue
- Department of Entomology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
47
|
Sunter JD, Patel SP, Skilton RA, Githaka N, Knowles DP, Scoles GA, Nene V, de Villiers E, Bishop RP. A novel SINE family occurs frequently in both genomic DNA and transcribed sequences in ixodid ticks of the arthropod sub-phylum Chelicerata. Gene 2008; 415:13-22. [PMID: 18394826 DOI: 10.1016/j.gene.2008.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 01/14/2008] [Accepted: 01/30/2008] [Indexed: 11/18/2022]
Abstract
Reassociation kinetics and flow cytometry data indicate that ixodid tick genomes are large, relative to most arthropods, containing>or=10(9) base pairs. The molecular basis for this is unknown. We have identified a novel small interspersed element with features of a tRNA-derived SINE, designated Ruka, in genomic sequences of Rhipicephalus appendiculatus and Boophilus (Rhipicephalus) microplus ticks. The SINE was also identified in expressed sequence tag (EST) databases derived from several tissues in four species of ixodid ticks, namely R. appendiculatus, B. (R.) microplus, Amblyomma variegatum and also the more distantly related Ixodes scapularis. Secondary structure predictions indicated that Ruka could adopt a tRNA structure that was, atypically, most similar to a serine tRNA. By extrapolation the frequency of occurrence in the randomly selected BAC clone sequences is consistent with approximately 65,000 copies of Ruka in the R. appendiculatus genome. Real time PCR analyses on genomic DNA indicate copy numbers for specific Ruka subsets between 5800 and 38,000. Several putative conserved Ruka insertion sites were identified in EST sequences of three ixodid tick species based on the flanking sequences associated with the SINEs, indicating that some Ruka transpositions probably occurred prior to speciation within the metastriate division of the Ixodidae. The data strongly suggest that Class I transposable elements form a significant component of tick genomes and may partially account for the large genome sizes observed.
Collapse
Affiliation(s)
- Jack D Sunter
- The International Livestock Research Institute (ILRI), PO Box 30709, Nairobi, Kenya
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mans BJ, Andersen JF, Francischetti IM, Valenzuela JG, Schwan TG, Pham VM, Garfield MK, Hammer CH, Ribeiro JM. Comparative sialomics between hard and soft ticks: implications for the evolution of blood-feeding behavior. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:42-58. [PMID: 18070664 PMCID: PMC2211429 DOI: 10.1016/j.ibmb.2007.09.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/07/2007] [Accepted: 09/18/2007] [Indexed: 05/15/2023]
Abstract
Ticks evolved various mechanisms to modulate their host's hemostatic and immune defenses. Differences in the anti-hemostatic repertoires suggest that hard and soft ticks evolved anti-hemostatic mechanisms independently, but raise questions on the conservation of salivary gland proteins in the ancestral tick lineage. To address this issue, the sialome (salivary gland secretory proteome) from the soft tick, Argas monolakensis, was determined by proteomic analysis and cDNA library construction of salivary glands from fed and unfed adult female ticks. The sialome is composed of approximately 130 secretory proteins of which the most abundant protein folds are the lipocalin, BTSP, BPTI and metalloprotease families which also comprise the most abundant proteins found in the salivary glands. Comparative analysis indicates that the major protein families are conserved in hard and soft ticks. Phylogenetic analysis shows, however, that most gene duplications are lineage specific, indicating that the protein families analyzed possibly evolved most of their functions after divergence of the two major tick families. In conclusion, the ancestral tick may have possessed a simple (few members for each family), but diverse (many different protein families) salivary gland protein domain repertoire.
Collapse
Affiliation(s)
- Ben J. Mans
- Laboratory for Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - John F. Andersen
- Laboratory for Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Ivo M.B. Francischetti
- Laboratory for Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Jesus G. Valenzuela
- Laboratory for Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Tom G. Schwan
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Van M. Pham
- Laboratory for Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Mark K. Garfield
- Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Carl H. Hammer
- Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - José M.C. Ribeiro
- Laboratory for Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
- *Corresponding author. Tel.: +1301 496 9389; fax: 1+301 480 2571. E-mail address: (J.M.C. Ribeiro)
| |
Collapse
|
49
|
Francischetti IM, Mans BJ, Meng Z, Guderra N, Veenstra TD, Pham VM, Ribeiro JM. An insight into the sialome of the soft tick, Ornithodorus parkeri. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:1-21. [PMID: 18070662 PMCID: PMC2233652 DOI: 10.1016/j.ibmb.2007.09.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/10/2007] [Accepted: 09/18/2007] [Indexed: 05/15/2023]
Abstract
While hard ticks (Ixodidae) take several days to feed on their hosts, soft ticks (Argasidae) feed faster, usually taking less than 1h per meal. Saliva assists in the feeding process by providing a cocktail of anti-hemostatic, anti-inflammatory and immunomodullatory compounds. Saliva of hard ticks has been shown to contain several families of genes each having multiple members, while those of soft ticks are relatively unexplored. Analysis of the salivary transcriptome of the soft tick Ornithodorus parkeri, the vector of the relapsing fever agent Borrelia parkeri, indicates that gene duplication events have led to a large expansion of the lipocalin family, as well as of several genes containing Kunitz domains indicative of serine protease inhibitors, and several other gene families also found in hard ticks. Novel protein families with sequence homology to insulin growth factor-binding protein (prostacyclin-stimulating factor), adrenomedulin, serum amyloid A protein precursor and similar to HIV envelope protein were also characterized for the first time in the salivary gland of a blood-sucking arthropod. The sialotranscriptome of O. parkeri confirms that gene duplication events are an important driving force in the creation of salivary cocktails of blood-feeding arthropods, as was observed with hard ticks and mosquitoes. Most of the genes coding for expanded families are homologous to those found in hard ticks, indicating a strong common evolutionary path between the two families. As happens to all genera of blood-sucking arthropods, several new proteins were also found, indicating the process of adaptation to blood feeding still continues to recent times.
Collapse
Affiliation(s)
- Ivo M.B. Francischetti
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - Ben J. Mans
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - Zhaojing Meng
- Laboratory of Proteomics and Analytical Technologies, Advanced Technologies Program, SAIC-Frederick, Inc., P.O. Box B, Frederick, Maryland 21702, USA
| | - Nanda Guderra
- Biomedical Research Laboratory, George Mason University, Manassas, Virginia 20110
| | - Timothy D. Veenstra
- Laboratory of Proteomics and Analytical Technologies, Advanced Technologies Program, SAIC-Frederick, Inc., P.O. Box B, Frederick, Maryland 21702, USA
| | - Van M. Pham
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - José M.C. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA
- * Corresponding author. Tel.: + 1 301 496 9389 fax: + 1 301 480 2571
| |
Collapse
|
50
|
Functional genomic studies of tick cells in response to infection with the cattle pathogen, Anaplasma marginale. Genomics 2007; 90:712-22. [PMID: 17964755 DOI: 10.1016/j.ygeno.2007.08.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 08/25/2007] [Accepted: 08/28/2007] [Indexed: 11/20/2022]
Abstract
The coevolution of ticks and the pathogens that they transmit has ensured their mutual survival. In these studies, we used a functional genomics approach to characterize tick genes regulated in response to Anaplasma marginale infection. Differentially regulated genes/proteins were identified by suppression-subtractive hybridization and differential in-gel electrophoresis analyses of cultured IDE8 tick cells infected with A. marginale. Nine of 17 of these genes were confirmed by real-time RT-PCR to be differentially regulated in ticks and/or IDE8 tick cells in response to A. marginale infection. RNA interference was used for functional studies. Six genes, which encode putative selenoprotein W2a, hematopoietic stem/progenitor cells protein-like, proteasome 26S subunit, ferritin, GST, and subolesin control, were found to affect A. marginale infection in IDE8 tick cells. Four genes, which encode putative GST, salivary selenoprotein M, vATPase, and ubiquitin, affected A. marginale infection in different sites of development in ticks. The results of these studies demonstrated that a molecular mechanism occurs by which tick cell gene expression mediates the A. marginale developmental cycle and trafficking through ticks.
Collapse
|