1
|
Piou V, Vilarem C, Blanchard S, Strub JM, Bertile F, Bocquet M, Arafah K, Bulet P, Vétillard A. Honey Bee Larval Hemolymph as a Source of Key Nutrients and Proteins Offers a Promising Medium for Varroa destructor Artificial Rearing. Int J Mol Sci 2023; 24:12443. [PMID: 37569818 PMCID: PMC10419257 DOI: 10.3390/ijms241512443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Varroa destructor, a major ectoparasite of the Western honey bee Apis mellifera, is a widespread pest that damages colonies in the Northern Hemisphere. Throughout their lifecycle, V. destructor females feed on almost every developmental stage of their host, from the last larval instar to the adult. The parasite is thought to feed on hemolymph and fat body, although its exact diet and nutritional requirements are poorly known. Using artificial Parafilm™ dummies, we explored the nutrition of V. destructor females and assessed their survival when fed on hemolymph from bee larvae, pupae, or adults. We compared the results with mites fed on synthetic solutions or filtered larval hemolymph. The results showed that the parasites could survive for several days or weeks on different diets. Bee larval hemolymph yielded the highest survival rates, and filtered larval plasma was sufficient to maintain the mites for 14 days or more. This cell-free solution therefore theoretically contains all the necessary nutrients for mite survival. Because some bee proteins are known to be hijacked without being digested by the parasite, we decided to run a proteomic analysis of larval honey bee plasma to highlight the most common proteins in our samples. A list of 54 proteins was compiled, including several energy metabolism proteins such as Vitellogenin, Hexamerin, or Transferrins. These molecules represent key nutrient candidates that could be crucial for V. destructor survival.
Collapse
Affiliation(s)
- Vincent Piou
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD—Université Paul Sabatier, 31077 Toulouse, France; (V.P.); (S.B.)
| | - Caroline Vilarem
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD—Université Paul Sabatier, 31077 Toulouse, France; (V.P.); (S.B.)
- M2i Biocontrol–Entreprise SAS, 46140 Parnac, France
| | - Solène Blanchard
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD—Université Paul Sabatier, 31077 Toulouse, France; (V.P.); (S.B.)
| | - Jean-Marc Strub
- Laboratoire de Spectrométrie de Masse Bio-Organique, Département des Sciences Analytiques, Institut Pluridisciplinaire Hubert Curien, UMR 7178 (CNRS-UdS), 67037 Strasbourg, France (F.B.)
| | - Fabrice Bertile
- Laboratoire de Spectrométrie de Masse Bio-Organique, Département des Sciences Analytiques, Institut Pluridisciplinaire Hubert Curien, UMR 7178 (CNRS-UdS), 67037 Strasbourg, France (F.B.)
| | | | - Karim Arafah
- Plateforme BioPark d’Archamps, 74160 Archamps, France
| | - Philippe Bulet
- Plateforme BioPark d’Archamps, 74160 Archamps, France
- Institute pour l’Avancée des Biosciences, CR Université Grenoble Alpes, Inserm U1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Angélique Vétillard
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD—Université Paul Sabatier, 31077 Toulouse, France; (V.P.); (S.B.)
- Conservatoire National des Arts et Métiers (CNAM), Unité Métabiot, 22440 Ploufragan, France
| |
Collapse
|
2
|
Li J, Li F, Gao H, Zhang Y, Liu Z. Characterization of cuticular proteins in CPR family in the wolf spider, Pardosa pseudoannulata, and the response of one subfamily genes to environmental stresses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 150:103859. [PMID: 36265807 DOI: 10.1016/j.ibmb.2022.103859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Cuticular protein (CP) plays an essential role in the construction and function of exoskeleton in arthropods. CPR family, CP with Rebers and Riddiford (R&R) Consensus, is the largest CP family in insects, but it lacks systematic research in non-insect arthropods. In this study, we explored CPRs in the wolf spider, Pardosa pseudoannulata, a predator to many insect pests. We totally identified 152 CPRs in P. pseudoannulata genome, which were divided into two subgroups based on R&R Consensus sequences, with 12 CPRs in RR-1 and 140 in RR-2. All RR-2 members presented a novel Consensus with 34 amino acids, G-x(8)-G-x(6)-Y-x-A-x(3)-G-x(7)-N-E-x-G, which was a common characteristic for RR-2 CPRs in chelicerates. Transcriptome data was used to document the expression patterns of CPR genes in different tissues and ecdysis processes. The specific expressions were found for part CPR genes, such as five RR-2 genes that were specifically expressed in male genital bulbs and eleven RR-1 genes that were highly expressed in the integument. Due to the limited number and integument-specific expression of RR-1 genes, we further analyzed their responses to different environmental stresses at the transcriptional level. Except for PapsCPR11, ten RR-1 genes responded to at least one environmental stress, among with the expression of PapsCPR12 was significantly changed by three stresses (dryness, low temperature and imidacloprid treatments). Silencing PapsCPR12 increased the tolerance of P. pseudoannulata to imidacloprid. Overall, the results presented novel Consensus characteristics of CPRs in P. pseudoannulata, which was helpful for the identification and evolution analysis of CPRs in non-insect arthropods.
Collapse
Affiliation(s)
- Jingjing Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fangfang Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haoli Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Tan YA, Zhao XD, Zhao J, Zhu-Salzman K, Ji QQ, Xiao LB, Hao DJ. iTRAQ Proteomic Analysis of Interactions Between 20E and Phospholipase C in Apolygus lucorum (Meyer-Dür). Front Physiol 2022; 13:845087. [PMID: 35250643 PMCID: PMC8894726 DOI: 10.3389/fphys.2022.845087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Polyphagous Apolygus lucorum has become the dominant insect in Bacillus thuringiensis (Bt) cotton fields. Hormone 20-hydroxyecdysone (20E) regulates multiple insect development and physiology events. 20E responses are controlled by pathways triggered by phospholipase C (PLC)-associated proteins. However, 20E-modulated genes and related proteins that can be affected by PLC still remain unknown. Here, isobaric tag for relative and absolute quantitation (iTRAQ) and immunoblotting techniques were used to compare differentially expressed proteins (DEPs) in A. lucorum in response to the treatment of 20E and the PLC inhibitor U73122 as well as their combination. A total of 1,624 non-redundant proteins and 97, 248, 266 DEPs were identified in the 20E/control, U73122/control, and 20E + U73122/control groups, respectively. Only 8 DEPs, including pathogenesis-related protein 5-like, cuticle protein 19.8, trans-sialidase, larval cuticle protein A2B-like, cathepsin L1, hemolymph juvenile hormone-binding protein, ATP-dependent RNA helicase p62-like, and myosin-9 isoform X1, were detected in all three groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEPs were involved in diverse signaling pathways. The results were validated by immunoblotting, which highlighted the reliability of proteomics analysis. These findings provided novel insights into the function of PLC in 20E signaling pathway in A. lucorum.
Collapse
Affiliation(s)
- Yong-An Tan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xu-Dong Zhao
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jing Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Keyan Zhu-Salzman
- Department of Entomology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Qin-Qin Ji
- Taizhou Customs of the People’s Republic of China, Taizhou, China
| | - Liu-Bin Xiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Liu-Bin Xiao,
| | - De-Jun Hao
- College of Forestry, Nanjing Forestry University, Nanjing, China
- De-Jun Hao,
| |
Collapse
|
4
|
Castro-Bustos S, Maruri-López I, Ortega-Amaro MA, Serrano M, Ovando-Vázquez C, Jiménez-Bremont JF. An interactome analysis reveals that Arabidopsis thaliana GRDP2 interacts with proteins involved in post-transcriptional processes. Cell Stress Chaperones 2021; 27:165-176. [PMID: 35174430 PMCID: PMC8943079 DOI: 10.1007/s12192-022-01261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/27/2022] Open
Abstract
The Arabidopsis thaliana glycine-rich domain protein 2 (AtGRDP2) gene encodes a protein of unknown function that is involved in plant growth and salt stress tolerance. The AtGRDP2 protein (787 aa, At4g37900) is constituted by three domains: a DUF1399 located at the N-terminus, a potential RNA Recognition Motif (RRM) in the central region, and a short glycine-rich domain at the C-terminus. Herein, we analyzed the subcellular localization of AtGRDP2 protein as a GFP translational fusion and found it was localized in the cytosol and the nucleus of tobacco leaf cells. Truncated versions of AtGRDP2 showed that the DUF1399 or the RRM domains were sufficient for nuclear localization. In addition, we performed a yeast two-hybrid split-ubiquitin assay (Y2H) to identify potential interactors for AtGRDP2 protein. The Y2H assay identified proteins associated with RNA binding functions such as PABN3 (At5g65260), EF-1α (At1g07920), and CL15 (At3g25920). Heterodimeric associations in planta between AtGRDP2 and its interactors were carried out by Bimolecular Fluorescence Complementation (BiFC) assays. The data revealed heterodimeric interactions between AtGRDP2 and PABN3 in the nucleus and AtGRDP2 with EF-1α in the cytosol, while AtGRDP2-CL15 associations occurred only in the chloroplasts. Finally, functional characterization of the protein-protein interaction regions revealed that both DUF1399 and RRM domains were key for heterodimerization with its interactors. The AtGRDP2 interaction with these proteins in different compartments suggests that this glycine-rich domain protein is involved in post-transcriptional processes.
Collapse
Affiliation(s)
- Saraí Castro-Bustos
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C, San Luis Potosí, SLP, Mexico
| | - Israel Maruri-López
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Biological and Environmental Science and Engineering Division, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - María Azucena Ortega-Amaro
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C, San Luis Potosí, SLP, Mexico
- Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Salinas de Hidalgo, SLP, Mexico
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Cesaré Ovando-Vázquez
- CONACyT-Centro Nacional de Supercómputo, Instituto Potosino de Investigación Científica y Tecnológica, A.C, San Luis Potosí, SLP, Mexico
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
5
|
Sanches GS, Villar M, Couto J, Ferrolho J, Fernández de Mera IG, André MR, Barros-Battesti DM, Machado RZ, Bechara GH, Mateos-Hernández L, de la Fuente J, Antunes S, Domingos A. Comparative Proteomic Analysis of Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) Tropical and Temperate Lineages: Uncovering Differences During Ehrlichia canis Infection. Front Cell Infect Microbiol 2021; 10:611113. [PMID: 33585280 PMCID: PMC7879575 DOI: 10.3389/fcimb.2020.611113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 01/03/2023] Open
Abstract
The tick vector Rhipicephalus sanguineus is established as a complex of closely related species with high veterinary-medical significance, in which the presence of different genetic, morphological, and biological traits has resulted in the recognition of different lineages within taxa. One of the most striking differences in the "temperate" and "tropical" lineages of R. sanguineus (s.l.) is the vector competence to Ehrlichia canis, suggesting that these ticks tolerate and react differently to pathogen infection. The present study addresses the SG and MG proteome of the R. sanguineus tropical and temperate lineages and compares their proteomic profile during E. canis infection. Batches of nymphs from the two lineages were allowed to feed on naïve and experimentally E. canis infected dogs and after molting, adults were dissected, and salivary glands and midgut tissues separated. Samples were screened for the presence of E. canis before proteomic analyses. The representation of the proteins identified in infected and non-infected tissues of each lineage was compared and gene ontology used for protein classification. Results highlight important differences in those proteomic profiles that added to previous reported genetic, biological, behavioral, and morphological differences, strengthening the hypothesis of the existence of two different species. Comparing infected and non-infected tissues, the results show that, while in midgut tissues the response to E. canis infection is similar in the salivary glands, the two lineages show a different pattern of protein representation. Focusing on the proteins found only in the infected condition, the data suggests that the cement cone produced during tick feeding may be implicated in pathogen infection. This study adds useful information to the debate on the controversial R. sanguineus systematic status, to the discussion related with the different vectorial competence occurring between the two lineages and identifies potential targets for efficient tick and tick-borne disease control.
Collapse
Affiliation(s)
- Gustavo Seron Sanches
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM-IHMT-UNL), Lisboa, Portugal
- Escola de Ciências da Vida, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research [CRIB], University of Castilla-La Mancha, Ciudad Real, Spain
| | - Joana Couto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM-IHMT-UNL), Lisboa, Portugal
| | - Joana Ferrolho
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM-IHMT-UNL), Lisboa, Portugal
| | | | - Marcos Rogério André
- Departamento de Patologia Veterinária, Universidade Estadual Paulista (FCAV-UNESP), Jaboticabal, Brazil
| | | | | | | | - Lourdes Mateos-Hernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- UMR BIPAR, INRAE, ANSES, École Nationale Vétérinaire d’Alfort, Université Paris-Est, Paris, France
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Sandra Antunes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM-IHMT-UNL), Lisboa, Portugal
| | - Ana Domingos
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM-IHMT-UNL), Lisboa, Portugal
| |
Collapse
|
6
|
Liu X, Zhang J, Zhu KY. Chitin in Arthropods: Biosynthesis, Modification, and Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:169-207. [PMID: 31102247 DOI: 10.1007/978-981-13-7318-3_9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chitin is a structural constituent of extracellular matrices including the cuticle of the exoskeleton and the peritrophic matrix (PM) of the midgut in arthropods. Chitin chains are synthesized through multiple biochemical reactions, organized in several hierarchical levels and associated with various proteins that give their unique physicochemical characteristics of the cuticle and PM. Because, arthropod growth and morphogenesis are dependent on the capability of remodeling chitin-containing structures, chitin biosynthesis and degradation are highly regulated, allowing ecdysis and regeneration of the cuticle and PM. Over the past 20 years, much progress has been made in understanding the physiological functions of chitinous matrices. In this chapter, we mainly discussed the biochemical processes of chitin biosynthesis, modification and degradation, and various enzymes involved in these processes. We also discussed cuticular proteins and PM proteins, which largely determine the physicochemical properties of the cuticle and PM. Although rapid advances in genomics, proteomics, RNA interference, and other technologies have considerably facilitated our research in chitin biosynthesis, modification, and metabolism in recent years, many aspects of these processes are still partially understood. Further research is needed in understanding how the structural organization of chitin synthase in plasma membrane accommodate chitin biosynthesis, transport of chitin chain across the plasma membrane, and release of the chitin chain from the enzyme. Other research is also needed in elucidating the roles of chitin deacetylases in chitin organization and the mechanism controlling the formation of different types of chitin in arthropods.
Collapse
Affiliation(s)
- Xiaojian Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
7
|
Microscopic cuticle structure comparison of pupal melanic and wild strain of Spodoptera exigua and their gene expression profiles in three time points. Microb Pathog 2017; 114:483-493. [PMID: 29196168 DOI: 10.1016/j.micpath.2017.11.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 11/20/2022]
Abstract
The beet armyworm, Spodoptera exigua (Hubner), is one of the major crop pests and is a target for current pest control approaches using insecticides. S. exigua melanic mutants (SEM) spontaneously occurred in the S. exigua wild type (SEW) strain and have been maintained under laboratory conditions on an artificial diet. Scanning electron microscopy showed that the inner cuticle of the SEM had a denser and less orderly structure. We investigated the cuticle protein genes using RNA-seq at three different developmental stages of both SEM and SEW. Comparison of cDNA libraries showed that 7257 CPs were significantly up-regulated and 664 genes were significantly downregulated in SEM at the developmental stage of 46-h in the fifth instar. In addition, 460 genes were significantly up-regulated and 439 genes were significantly down-regulated in the SEM at the development stage of 4-h before pupation. Moreover, 162 genes were significantly up-regulated and 293 genes were significantly downregulated in the SEM, just after pupation. Two genes CPR63 and CPR97 were identified from RNA sequences to verify the differentially expressed gene (DEG) results through quantitative real-time PCR (qRT-PCR). The results show that expression of both CPR63 and CPR97 structural cuticular proteins were significantly different between SEM and SEW. This functional analysis may help in understanding the role that these genes play in the cuticle pattern of the SEM.
Collapse
|
8
|
Characterization of a glycine-rich protein from Rhipicephalus microplus: tissue expression, gene silencing and immune recognition. Parasitology 2017; 145:927-938. [DOI: 10.1017/s0031182017001998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractSalivary molecules, as glycine-rich proteins (GRPs), are essential to tick attachment and feeding on the host and are suggested to be involved in the host's immune system evasion, therefore representing natural candidates in the search for protective vaccine antigens. This work shows the molecular characterization of a GRP from Rhipicephalus microplus (RmGRP). The cDNA and putative amino acid sequences were analysed, as well as the transcription level in tick tissues/developmental stages, showing the highest levels of gene expression in 1-day-old larvae and salivary glands of fully engorged females. RmGRP gene silencing resulted in a lower hatching rate of larvae from treated females. In addition, recombinant RmGRP (rRmGRP) was recognized by sera from naturally and experimentally infested bovines, displaying considerable differences among the individuals tested. rRmGRP was recognized by anti-saliva and anti-salivary glands sera, while anti-rRmGRP serum recognized RmGRP in saliva and salivary glands, indicating its secretion into the host. The data collected indicate that RmGRP may present roles other than in the tick–host relationship, especially in embryo development. In addition, the high expression in adult females, antigenicity and presence of shared characteristics with other tick protective GRPs turns RmGRP a potential candidate to compose an anti-tick vaccine cocktail.
Collapse
|
9
|
Wang P, Bi S, Wu F, Xu P, Shen X, Zhao Q. Differentially expressed genes in the head of the 2nd instar pre-molting larvae of the nm2 mutant of the silkworm, Bombyx mori. PLoS One 2017; 12:e0180160. [PMID: 28727825 PMCID: PMC5519023 DOI: 10.1371/journal.pone.0180160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/10/2017] [Indexed: 12/20/2022] Open
Abstract
Molting is an important physiological process in the larval stage of Bombyx mori and is controlled by various hormones and peptides. The silkworm mutant that exhibits the phenotype of non-molting in the 2nd instar (nm2) is incapable of molting in the 2nd instar and dies after seven or more days. The ecdysone titer in the nm2 mutant is lower than that in the wildtype, and the mutant can be rescued by feeding with 20E and cholesterol. The results of positional cloning indicated that structural alteration of BmCPG10 is responsible for the phenotype of the nm2 mutant. To explore the possible relationship between BmCPG10 and the ecdysone titer as well as the genes affected by BmCPG10, digital gene expression (DGE) profile analysis was conducted in the nm2 mutant, with the wildtype strain C603 serving as the control. The results revealed 1727 differentially expressed genes, among which 651 genes were upregulated and 1076 were downregulated in nm2. BLASTGO analysis showed that these differentially expressed genes were involved in various biological processes, cellular components and molecular functions. KEGG analysis indicated an enrichment of these differentially expressed genes in 240 pathways, including metabolic pathways, pancreatic secretion, protein digestion and absorption, fat digestion and absorption and glycerolipid metabolism. To verify the accuracy of the DGE results, quantitative reverse transcription PCR (qRT-PCR) was performed, focusing on key genes in several related pathways, and the results were highly consistent with the DGE results. Our findings indicated significant differences in cuticular protein genes, ecdysone biosynthesis genes and ecdysone-related nuclear receptors genes, but no significant difference in juvenile hormone and chitin biosynthesis genes was detected. Our research findings lay the foundation for further research on the formation mechanism of the nm2 mutant.
Collapse
Affiliation(s)
- Pingyang Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang Jiangsu, China
| | - Simin Bi
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang Jiangsu, China
| | - Fan Wu
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Pingzhen Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang Jiangsu, China
| | - Xingjia Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang Jiangsu, China
| | - Qiaoling Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang Jiangsu, China
- * E-mail:
| |
Collapse
|
10
|
Su X, Liu H, Yang X, Chen J, Zhang H, Xing L, Zhang X. Characterization of the transcriptomes and cuticular protein gene expression of alate adult, brachypterous neotenic and adultoid reproductives of Reticulitermes labralis. Sci Rep 2016; 6:34183. [PMID: 27690209 PMCID: PMC5044703 DOI: 10.1038/srep34183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/08/2016] [Indexed: 01/22/2023] Open
Abstract
The separation of primary reproductive and secondary reproductive roles based on the differentiation of alate adults and neotenic reproductives is the most prominent characteristic of termites. To clarify the mechanism underlying this differentiation, we sequenced the transcriptomes of alate adults (ARs), brachypterous neotenics (BNs) and adultoid reproductives (ANs) from the last instar nymphs of Reticulitermes labralis. A total of 404,152,188 clean sequencing reads was obtained and 61,953 unigenes were assembled. Of the 54 identified cuticular protein (CP) genes of the reproductives, 22 were classified into the CPR family and 7 were classified into the CPG family. qRT-PCR analyses of the 6 CP genes revealed that the CP genes involved in exocuticle sclerotization were highly expressed in the ARs and RR-1 involved in soft endocuticle was highly expressed in the ARs and ANs. These results suggest that the alate adults might increase cuticular component deposition to adapt to new or changing environments and that the development of reproductive individuals into primary or secondary reproductives is controlled by the expression of cuticular protein genes involved in the hardening of the exocuticle. In addition, the AN caste is a transitional type between the BN and AR castes in the process of evolution.
Collapse
Affiliation(s)
- Xiaohong Su
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China.,Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China.,College of Life Sciences, Northwest University, Xi'an, China
| | - He Liu
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaojuan Yang
- College of Life Sciences, Northwest University, Xi'an, China
| | - Jiaoling Chen
- College of Life Sciences, Northwest University, Xi'an, China
| | - Honggui Zhang
- College of Life Sciences, Northwest University, Xi'an, China
| | - Lianxi Xing
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China.,Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China.,College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaojing Zhang
- College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
11
|
Mutation of a Cuticle Protein Gene, BmCPG10, Is Responsible for Silkworm Non-Moulting in the 2nd Instar Mutant. PLoS One 2016; 11:e0153549. [PMID: 27096617 PMCID: PMC4838254 DOI: 10.1371/journal.pone.0153549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/31/2016] [Indexed: 01/27/2023] Open
Abstract
In the silkworm, metamorphosis and moulting are regulated by ecdysone hormone and juvenile hormone. The subject in the present study is a silkworm mutant that does not moult in the 2nd instar (nm2). Genetic analysis indicated that the nm2 mutation is controlled by a recessive gene and is homozygous lethal. Based on positional cloning, nm2 was located in a region approximately 275 kb on the 5th linkage group by eleven SSR polymorphism markers. In this specific range, according to the transcriptional expression of thirteen genes and cloning, the relative expression level of the BmCPG10 gene that encodes a cuticle protein was lower than the expression level of the wild-type gene. Moreover, this gene’s structure differs from that of the wild-type gene: there is a deletion of 217 bp in its open reading frame, which resulted in a change in the protein it encoded. The BmCPG10 mRNA was detectable throughout silkworm development from the egg to the moth. This mRNA was low in the pre-moulting and moulting stages of each instar but was high in the gluttonous stage and in newly exuviated larvae. The BmCPG10 mRNA showed high expression levels in the epidermis, head and trachea, while the expression levels were low in the midgut, Malpighian tubule, prothoracic gland, haemolymph and ventral nerve cord. The ecdysone titre was determined by ELISA, and the results demonstrated that the ecdysone titre of nm2 larvae was lower than that of the wild-type larvae. The nm2 mutant could be rescued by feeding 20-hydroxyecdysone, cholesterol and 7—dehydrocholesterol (7dC), but the rescued nm2 only developed to the 4th instar and subsequently died. The moulting time of silkworms could be delayed by BmCPG10 RNAi. Thus, we speculated that the mutation of BmCPG10 was responsible for the silkworm mutant that did not moult in the 2nd instar.
Collapse
|
12
|
Shahin R, Iwanaga M, Kawasaki H. Cuticular protein and transcription factor genes expressed during prepupal-pupal transition and by ecdysone pulse treatment in wing discs of Bombyx mori. INSECT MOLECULAR BIOLOGY 2016; 25:138-152. [PMID: 26748620 DOI: 10.1111/imb.12207] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We aimed to understand the underlying mechanism that regulates successively expressed cuticular protein (CP) genes around pupation in Bombyx mori. Quantitative PCR was conducted to clarify the expression profile of CP genes and ecdysone-responsive transcription factor (ERTF) genes around pupation. Ecdysone pulse treatment was also conducted to compare the developmental profiles and the ecdysone induction of the CP and ERTF genes. Fifty-two CP genes (RR-1 13, RR-2 18, CPG 8, CPT 3, CPFL 2, CPH 8) in wing discs of B. mori were examined. Different expression profiles were found, which suggests the existence of a mechanism that regulates CP genes. We divided the genes into five groups according to their peak stages of expression. RR-2 genes were expressed until the day of pupation and RR-1 genes were expressed before and after pupation and for longer than RR-2 genes; this suggests different construction of exo- and endocuticular layers. CPG, CPT, CPFL and CPH genes were expressed before and after pupation, which implies their involvement in both cuticular layers. Expression profiles of ERTFs corresponded with previous reports. Ecdysone pulse treatment showed that the induction of CP and ERTF genes in vitro reflected developmental expression, from which we speculated that ERTFs regulate CP gene expression around pupation.
Collapse
Affiliation(s)
- R Shahin
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - M Iwanaga
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
| | - H Kawasaki
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
| |
Collapse
|
13
|
Chang H, Cheng T, Wu Y, Hu W, Long R, Liu C, Zhao P, Xia Q. Transcriptomic Analysis of the Anterior Silk Gland in the Domestic Silkworm (Bombyx mori) - Insight into the Mechanism of Silk Formation and Spinning. PLoS One 2015; 10:e0139424. [PMID: 26418001 PMCID: PMC4587926 DOI: 10.1371/journal.pone.0139424] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/14/2015] [Indexed: 01/08/2023] Open
Abstract
Silk proteins are synthesized in the middle and posterior silk glands of silkworms, then transit into the anterior of the silk gland, where the silk fibers are produced, stored and processed. The mechanism of formation and spinning of the silk fibers has not been fully elucidated, and transcriptome analyses specific to the anterior silk gland have not been reported. In the present study, we explored gene expression profiles in five regions of silk gland samples using the RNA-Seq method. As a result, there were 959,979,570 raw reads obtained, of which 583,068,172 reads were mapped to the silkworm genome. A total of 7419 genes were found to be expressed in terms of reads per kilobase of exon model per million mapped reads ≥ 5 in at least one sample. The gene numbers and expression levels of the expressed genes differed between these regions. The differentially expressed genes were analyzed, and 282 genes were detected as up-regulated in the anterior silk gland, compared with the other parts. Functions of these genes were addressed using the gene ontology and Kyoto Encyclopedia of Genes and Genomes databases, and seven key pathways were enriched. It suggested that the ion transportation, energy metabolism, protease inhibitors and cuticle proteins played essential roles in the process of silk formation and spinning in the anterior silk gland. In addition, 210 genes were found differently expressed between males and females, which should help to elucidate the mechanism of the quality difference in silk fibers from male and female silkworms.
Collapse
Affiliation(s)
- Huaipu Chang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
- College of Biotechnology, Southwest University, Beibei, Chongqing, China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
| | - Yuqian Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
| | - Wenbo Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
| | - Renwen Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
- * E-mail:
| |
Collapse
|
14
|
Starvation-responsive glycine-rich protein gene in the silkworm Bombyx mori. J Comp Physiol B 2014; 184:827-34. [PMID: 25095972 PMCID: PMC4171585 DOI: 10.1007/s00360-014-0846-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/18/2014] [Accepted: 07/09/2014] [Indexed: 11/21/2022]
Abstract
Four glycine-rich protein (GRP) genes were identified from expressed sequence tags of the maxillary galea of the silkworm. All four genes were expressed in the maxillary pulp, antenna, labrum, and labium, but none of the genes were expressed in most internal organs. Expression of one of the genes, termed bmSIGRP, was further increased approximately fivefold in the mouth region (including the maxilla, antenna, labrum, labium, and mandible) after 24 h of starvation. bmSIGRP expression peaked at 24 h and gradually declined during the subsequent 2 days. When a synthetic diet not containing proteins was fed, bmSIGRP expression increased significantly in the mouth region to levels similar to that observed in starved larvae. Synthetic diets that lacked vitamins or salts but contained amino acids did not significantly affect bmSIGRP expression. These results suggest that amino acid depletion increases bmSIGRP expression.
Collapse
|
15
|
Guerette PA, Hoon S, Ding D, Amini S, Masic A, Ravi V, Venkatesh B, Weaver JC, Miserez A. Nanoconfined β-sheets mechanically reinforce the supra-biomolecular network of robust squid Sucker Ring Teeth. ACS NANO 2014; 8:7170-9. [PMID: 24911543 DOI: 10.1021/nn502149u] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The predatory efficiency of squid and cuttlefish (superorder Decapodiformes) is enhanced by robust Sucker Ring Teeth (SRT) that perform grappling functions during prey capture. Here, we show that SRT are composed entirely of related structural “suckerin” proteins whose modular designs enable the formation of nanoconfined β-sheet-reinforced polymer networks. Thirty-seven previously undiscovered suckerins were identified from transcriptomes assembled from three distantly related decapodiform cephalopods. Similarity in modular sequence design and exon–intron architecture suggests that suckerins are encoded by a multigene family. Phylogenetic analysis supports this view, revealing that suckerin genes originated in a common ancestor ~350 MYa and indicating that nanoconfined β-sheet reinforcement is an ancient strategy to create robust bulk biomaterials. X-ray diffraction, nanomechanical, and micro-Raman spectroscopy measurements confirm that the modular design of the suckerins facilitates the formation of β-sheets of precise nanoscale dimensions and enables their assembly into structurally robust supramolecular networks stabilized by cooperative hydrogen bonding. The suckerin gene family has likely played a key role in the evolutionary success of decapodiform cephalopods and provides a large molecular toolbox for biomimetic materials engineering.
Collapse
|
16
|
Liu A, Zhang M, Kong L, Wu D, Weng X, Wang D, Zhao Y. Cloning and expression profiling of a cuticular protein gene in Daphnia carinata. Dev Genes Evol 2014; 224:129-35. [PMID: 24619580 DOI: 10.1007/s00427-014-0469-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/07/2014] [Indexed: 11/30/2022]
Abstract
The cladoceran Daphnia carinata undergoes an unusual transition from asexual to sexual reproduction in response to environmental stimuli. Previously, a D. carinata cuticular protein (CP) was identified in an EST library. In this study, the full-length CP cDNA was cloned and sequenced (GenBank accession number: KF551931), and the expression levels in different reproductive states were assessed. Parthenogenetic and sexual female D. carinata were isolated, and CP expression was investigated using semiquantitative reverse transcription polymerase chain reaction (RT-PCR). CP was expressed during both reproductive stages, but expression was higher in sexual females. Cellular localization was also investigated using digoxin-labeled RNA probes in RNA whole-mount in situ hybridization assays, and CP was mainly expressed in the first pair of thoracic appendages, the surface of the head, shell spines, and other parts of the epidermis in parthenogenetic organisms. In contrast, CP expression was restricted to the thoracic appendages in sexual females.
Collapse
Affiliation(s)
- Ajing Liu
- School of Life Science, East China Normal University, Dong-chuang Road, Shanghai, 200241, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Charrier M, Marie A, Guillaume D, Bédouet L, Le Lannic J, Roiland C, Berland S, Pierre JS, Le Floch M, Frenot Y, Lebouvier M. Soil calcium availability influences shell ecophenotype formation in the sub-antarctic land snail, Notodiscus hookeri. PLoS One 2013; 8:e84527. [PMID: 24376821 PMCID: PMC3869943 DOI: 10.1371/journal.pone.0084527] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 11/15/2013] [Indexed: 11/30/2022] Open
Abstract
Ecophenotypes reflect local matches between organisms and their environment, and show plasticity across generations in response to current living conditions. Plastic responses in shell morphology and shell growth have been widely studied in gastropods and are often related to environmental calcium availability, which influences shell biomineralisation. To date, all of these studies have overlooked micro-scale structure of the shell, in addition to how it is related to species responses in the context of environmental pressure. This study is the first to demonstrate that environmental factors induce a bi-modal variation in the shell micro-scale structure of a land gastropod. Notodiscus hookeri is the only native land snail present in the Crozet Archipelago (sub-Antarctic region). The adults have evolved into two ecophenotypes, which are referred to here as MS (mineral shell) and OS (organic shell). The MS-ecophenotype is characterised by a thick mineralised shell. It is primarily distributed along the coastline, and could be associated to the presence of exchangeable calcium in the clay minerals of the soils. The Os-ecophenotype is characterised by a thin organic shell. It is primarily distributed at high altitudes in the mesic and xeric fell-fields in soils with large particles that lack clay and exchangeable calcium. Snails of the Os-ecophenotype are characterised by thinner and larger shell sizes compared to snails of the MS-ecophenotype, indicating a trade-off between mineral thickness and shell size. This pattern increased along a temporal scale; whereby, older adult snails were more clearly separated into two clusters compared to the younger adult snails. The prevalence of glycine-rich proteins in the organic shell layer of N. hookeri, along with the absence of chitin, differs to the organic scaffolds of molluscan biominerals. The present study provides new insights for testing the adaptive value of phenotypic plasticity in response to spatial and temporal environmental variations.
Collapse
Affiliation(s)
- Maryvonne Charrier
- Université de Rennes 1, Université Européenne de Bretagne, UMR CNRS 6553, Campus de Beaulieu, Rennes, France
| | - Arul Marie
- Muséum National d’Histoire Naturelle, Plateforme de Spectrométrie de Masse et de Protéomique, UMR CNRS 7245, Département Régulation Développement et Diversité Moléculaire, Paris, France
| | - Damien Guillaume
- Université de Toulouse, Observatoire Midi-Pyrénées, Géosciences Environnement Toulouse, UMR 5563 (CNRS/UPS/IRD/CNES), Toulouse, France.
| | - Laurent Bédouet
- Muséum National d’Histoire Naturelle, Biologie des Organismes et Ecosystèmes Aquatiques, UMR CNRS 7208 / IRD 207, Paris, France
| | - Joseph Le Lannic
- Université de Rennes 1, Université Européenne de Bretagne, Service Commun de Microscopie Electronique à Balayage et micro-Analyse, Rennes, France
| | - Claire Roiland
- Université de Rennes 1, Université Européenne de Bretagne, Sciences Chimiques de Rennes, UMR CNRS 6226, Campus de Beaulieu, Rennes, France
| | - Sophie Berland
- Muséum National d’Histoire Naturelle, Biologie des Organismes et Ecosystèmes Aquatiques, UMR CNRS 7208 / IRD 207, Paris, France
| | - Jean-Sébastien Pierre
- Université de Rennes 1, Université Européenne de Bretagne, UMR CNRS 6553, Campus de Beaulieu, Rennes, France
| | - Marie Le Floch
- Université de Rennes 1, Université Européenne de Bretagne, Sciences Chimiques de Rennes, UMR CNRS 6226, Campus de Beaulieu, Rennes, France
| | - Yves Frenot
- Institut Polaire Français Paul Émile Victor, Technopôle Brest-Iroise, Plouzané, France
| | - Marc Lebouvier
- Université de Rennes 1, Université Européenne de Bretagne, UMR CNRS 6553, Station Biologique, Paimpont, France
| |
Collapse
|
18
|
Odman-Naresh J, Duevel M, Muthukrishnan S, Merzendorfer H. A lepidopteran-specific gene family encoding valine-rich midgut proteins. PLoS One 2013; 8:e82015. [PMID: 24312395 PMCID: PMC3843731 DOI: 10.1371/journal.pone.0082015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/28/2013] [Indexed: 12/27/2022] Open
Abstract
Many lepidopteran larvae are serious agricultural pests due to their feeding activity. Digestion of the plant diet occurs mainly in the midgut and is facilitated by the peritrophic matrix (PM), an extracellular sac-like structure, which lines the midgut epithelium and creates different digestive compartments. The PM is attracting increasing attention to control lepidopteran pests by interfering with this vital function. To identify novel PM components and thus potential targets for insecticides, we performed an immunoscreening with anti-PM antibodies using an expression library representing the larval midgut transcriptome of the tobacco hornworm, Manduca sexta. We identified three cDNAs encoding valine-rich midgut proteins of M. sexta (MsVmps), which appear to be loosely associated with the PM. They are members of a lepidopteran-specific family of nine VMP genes, which are exclusively expressed in larval stages in M. sexta. Most of the MsVMP transcripts are detected in the posterior midgut, with the highest levels observed for MsVMP1. To obtain further insight into Vmp function, we expressed MsVMP1 in insect cells and purified the recombinant protein. Lectin staining and glycosidase treatment indicated that MsVmp1 is highly O-glycosylated. In line with results from qPCR, immunoblots revealed that MsVmp1 amounts are highest in feeding larvae, while MsVmp1 is undetectable in starving and molting larvae. Finally using immunocytochemistry, we demonstrated that MsVmp1 localizes to the cytosol of columnar cells, which secrete MsVmp1 into the ectoperitrophic space in feeding larvae. In starving and molting larvae, MsVmp1 is found in the gut lumen, suggesting that the PM has increased its permeability. The present study demonstrates that lepidopteran species including many agricultural pests have evolved a set of unique proteins that are not found in any other taxon and thus may reflect an important adaptation in the highly specialized lepidopteran digestive tract facing particular immune challenges.
Collapse
Affiliation(s)
| | - Margret Duevel
- Department of Biology, Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Hans Merzendorfer
- Department of Biology, Chemistry, University of Osnabrück, Osnabrück, Germany
- * E-mail:
| |
Collapse
|
19
|
Sun R, Zhang Y, Xu B. Characterization of the response to ecdysteroid of a novel cuticle protein R&R gene in the honey bee, Apis cerana cerana. Comp Biochem Physiol B Biochem Mol Biol 2013; 166:73-80. [DOI: 10.1016/j.cbpb.2013.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 01/17/2023]
|
20
|
Ali MS, Iwanaga M, Kawasaki H. Ecdysone-responsive transcriptional regulation determines the temporal expression of cuticular protein genes in wing discs of Bombyx mori. Gene 2013; 512:337-47. [DOI: 10.1016/j.gene.2012.09.126] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 01/09/2023]
|
21
|
Ali MS, Wang HB, Iwanaga M, Kawasaki H. Expression of cuticular protein genes, BmorCPG11 and BMWCP5 is differently regulated at the pre-pupal stage in wing discs of Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 2012; 162:44-50. [DOI: 10.1016/j.cbpb.2012.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/13/2012] [Accepted: 02/13/2012] [Indexed: 01/02/2023]
|
22
|
Bae N, Lödl M, Pollak A, Lubec G. Mass spectrometrical analysis of cuticular proteins from the wing of Hebemoia glaucippe (Linnaeus, 1758) (Lepidoptera: Pieridae). J Proteomics 2011; 75:517-31. [DOI: 10.1016/j.jprot.2011.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/02/2011] [Accepted: 08/22/2011] [Indexed: 12/29/2022]
|
23
|
Soares MPM, Silva-Torres FA, Elias-Neto M, Nunes FMF, Simões ZLP, Bitondi MMG. Ecdysteroid-dependent expression of the tweedle and peroxidase genes during adult cuticle formation in the honey bee, Apis mellifera. PLoS One 2011; 6:e20513. [PMID: 21655217 PMCID: PMC3105072 DOI: 10.1371/journal.pone.0020513] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 05/02/2011] [Indexed: 12/16/2022] Open
Abstract
Cuticle renewal is a complex biological process that depends on the cross talk between hormone levels and gene expression. This study characterized the expression of two genes encoding cuticle proteins sharing the four conserved amino acid blocks of the Tweedle family, AmelTwdl1 and AmelTwdl2, and a gene encoding a cuticle peroxidase containing the Animal haem peroxidase domain, Ampxd, in the honey bee. Gene sequencing and annotation validated the formerly predicted tweedle genes, and revealed a novel gene, Ampxd, in the honey bee genome. Expression of these genes was studied in the context of the ecdysteroid-coordinated pupal-to-adult molt, and in different tissues. Higher transcript levels were detected in the integument after the ecdysteroid peak that induces apolysis, coinciding with the synthesis and deposition of the adult exoskeleton and its early differentiation. The effect of this hormone was confirmed in vivo by tying a ligature between the thorax and abdomen of early pupae to prevent the abdominal integument from coming in contact with ecdysteroids released from the prothoracic gland. This procedure impaired the natural increase in transcript levels in the abdominal integument. Both tweedle genes were expressed at higher levels in the empty gut than in the thoracic integument and trachea of pharate adults. In contrast, Ampxd transcripts were found in higher levels in the thoracic integument and trachea than in the gut. Together, the data strongly suggest that these three genes play roles in ecdysteroid-dependent exoskeleton construction and differentiation and also point to a possible role for the two tweedle genes in the formation of the cuticle (peritrophic membrane) that internally lines the gut.
Collapse
Affiliation(s)
- Michelle P. M. Soares
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernanda A. Silva-Torres
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Moysés Elias-Neto
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Francis M. F. Nunes
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Zilá L. P. Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Márcia M. G. Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
24
|
Deng H, Zheng S, Yang X, Liu L, Feng Q. Transcription factors BmPOUM2 and BmβFTZ-F1 are involved in regulation of the expression of the wing cuticle protein gene BmWCP4 in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2011; 20:45-60. [PMID: 20825506 DOI: 10.1111/j.1365-2583.2010.01041.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In Bombyx mori, the wing cuticle protein gene BmWCP4 is expressed specifically in the epidermis at the onset and mid-stage of pupation and is responsible for the formation of the pupal cuticle during the larval-pupal metamorphosis. The gene consists of four exons and three introns and is present as a single copy in the genome. Its expression was up-regulated by 20-hydroxyecdysone (20E) and the 20E-induced expression was suppressed by juvenile hormone (JH) III. The upstream regulatory sequence region of the BmWCP4 gene was cloned and the regulatory elements responsible for 20E induction were identified. Two cis-regulatory elements (CREs) bound by the transcription factors BmPOUM2 and BmβFTZ-F1 were identified that mediated 20E-regulated expression of this gene. An electrophoretic mobility shift assay detected two nuclear proteins isolated from the epidermis and the BmN cell line that specifically bound to the POU and βFTZ-F1 CREs, respectively. BmPOUM2 recombinant protein explicitly bound to the POU CRE. Developmental and 20E-induced expression of the BmWCP4, BmPOUM2 and BmβFTZ-F1 genes showed that BmPOUM2 and BmβFTZ-F1 were initially expressed, followed by BmWCP4. These data suggest that the 20E-induced expression of BmWCP4 is mediated by the transcription factors BmPOUM2 and BmβFTZ-F1 binding to their CREs in the regulatory sequence region of the BmWCP4 gene.
Collapse
Affiliation(s)
- H Deng
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | | | | | | | | |
Collapse
|
25
|
Francis F, Guillonneau F, Leprince P, De Pauw E, Haubruge E, Jia L, Goggin FL. Tritrophic interactions among Macrosiphum euphorbiae aphids, their host plants and endosymbionts: investigation by a proteomic approach. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:575-585. [PMID: 19962988 DOI: 10.1016/j.jinsphys.2009.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 05/28/2023]
Abstract
The Mi-1.2 gene in tomato confers resistance against certain clones of the potato aphid (Macrosiphum euphorbiae). This study used 2D-DIGE coupled with protein identification by MALDI-TOF-MS to compare the proteome patterns of avirulent and semivirulent potato aphids and their bacterial endosymbionts on resistant (Mi-1.2+) and susceptible (Mi-1.2-) tomato lines. Avirulent aphids had low survival on resistant plants, whereas the semivirulent clone could colonize these plants. Eighty-two protein spots showed significant quantitative differences among the four treatment groups, and of these, 48 could be assigned putative identities. Numerous structural proteins and enzymes associated with primary metabolism were more abundant in the semivirulent than in the avirulent aphid clone. Several proteins were also up-regulated in semivirulent aphids when they were transferred from susceptible to resistant plants. Nearly 25% of the differentially regulated proteins originated from aphid endosymbionts and not the aphid itself. Six were assigned to the primary endosymbiont Buchnera aphidicola, and 5 appeared to be derived from a Rickettsia-like secondary symbiont. These results indicate that symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance.
Collapse
Affiliation(s)
- F Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Liege, Belgium
| | | | | | | | | | | | | |
Collapse
|
26
|
Wang HB, Moriyama M, Iwanaga M, Kawasaki H. Ecdysone directly and indirectly regulates a cuticle protein gene, BMWCP10, in the wing disc of Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:453-459. [PMID: 20399856 DOI: 10.1016/j.ibmb.2010.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/05/2010] [Accepted: 04/09/2010] [Indexed: 05/29/2023]
Abstract
The hormonal regulation of cuticle protein genes is a good model to study the molecular mechanism of signaling by ecdysteroids, which initiates each of the major developmental transitions in insects. This study was conducted to clarify the regulation of the expression of an ecdysone-inducible cuticle protein gene, BMWCP10. Induction of the BMWCP10 transcript by ecdysone was partly inhibited in the presence of cycloheximide, which implies that the BMWCP10 promoter is directly and indirectly activated by ecdysone. Using electrophoretic mobility shift analysis and a competition experiment, we identified a putative ecdysone response element (EcRE1) located at positions -93 to -81 relative to the transcription start site. Site-directed mutagenesis of this site, followed by introduction into wing discs, dramatically abolished the reporter activity. This EcRE1 is necessary for the activation of the promoter by 20-hydroxyecdysone (20E) in the wing disc, since the mutation of EcRE1 caused loss of responsiveness to 20E. Collectively, the data obtained in our current and previous work indicate that ecdysone receptor and Broad-Complex Z2 (BR-Z2) are required for maximal BMWCP10 expression in wing disc.
Collapse
Affiliation(s)
- Hua-Bing Wang
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | | | | | | |
Collapse
|
27
|
Charles JP. The regulation of expression of insect cuticle protein genes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:205-213. [PMID: 20060042 DOI: 10.1016/j.ibmb.2009.12.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 12/09/2009] [Accepted: 12/11/2009] [Indexed: 05/28/2023]
Abstract
The exoskeleton of insects (cuticle) is an assembly of chitin and cuticle proteins. Its physical properties are determined largely by the proteins it contains, and vary widely with developmental stages and body regions. The genes encoding cuticle proteins are therefore good models to study the molecular mechanisms of signalling by ecdysteroids and juvenile hormones, which regulate molting and metamorphosis in insects. This review summarizes the studies of hormonal regulation of insect cuticle protein genes, and the recent progress in the analysis of the regulatory sequences and transcription factors important for their expression.
Collapse
Affiliation(s)
- J P Charles
- UMR CNRS 5548 Développement-Communication Chimique des Insectes (DCCI), Université de Bourgogne, Faculté des Sciences Gabriel, 6, Bd Gabriel 21000 Dijon, France.
| |
Collapse
|
28
|
Willis JH. Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:189-204. [PMID: 20171281 PMCID: PMC2872936 DOI: 10.1016/j.ibmb.2010.02.001] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 05/03/2023]
Abstract
The availability of whole genome sequences of several arthropods has provided new insights into structural cuticular proteins (CPs), in particular the distribution of different families, the recognition that these proteins may comprise almost 2% of the protein coding genes of some species, and the identification of features that should aid in the annotation of new genomes and EST libraries as they become available. Twelve CP families are described: CPR (named after the Rebers and Riddiford Consensus); CPF (named because it has a highly conserved region consisting of about forty-four amino acids); CPFL (like the CPFs in a conserved C-terminal region); the TWDL family, named after a picturesque phenotype of one mutant member; four families in addition to TWDL with a preponderance of low complexity sequence that are not member of the families listed above. These were named after particular diagnostic features as CPLCA, CPLCG, CPLCW, CPLCP. There are also CPG, a lepidopteran family with an abundance of glycines, the apidermin family, named after three proteins in Apis mellifera, and CPAP1 and CPAP3, named because they have features analogous to peritrophins, namely one or three chitin-binding domains. Also described are common motifs and features. Four unusual CPs are discussed in detail. Data that facilitated the analysis of sequence variation of single CP genes in natural populations are analyzed.
Collapse
Affiliation(s)
- Judith H Willis
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
29
|
Le Trionnaire G, Francis F, Jaubert-Possamai S, Bonhomme J, De Pauw E, Gauthier JP, Haubruge E, Legeai F, Prunier-Leterme N, Simon JC, Tanguy S, Tagu D. Transcriptomic and proteomic analyses of seasonal photoperiodism in the pea aphid. BMC Genomics 2009; 10:456. [PMID: 19788735 PMCID: PMC2763885 DOI: 10.1186/1471-2164-10-456] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 09/29/2009] [Indexed: 12/04/2022] Open
Abstract
Background Aphid adaptation to harsh winter conditions is illustrated by an alternation of their reproductive mode. Aphids detect photoperiod shortening by sensing the length of the night and switch from viviparous parthenogenesis in spring and summer, to oviparous sexual reproduction in autumn. The photoperiodic signal is transduced from the head to the reproductive tract to change the fate of the future oocytes from mitotic diploid embryogenesis to haploid formation of gametes. This process takes place in three consecutive generations due to viviparous parthenogenesis. To understand the molecular basis of the switch in the reproductive mode, transcriptomic and proteomic approaches were used to detect significantly regulated transcripts and polypeptides in the heads of the pea aphid Acyrthosiphon pisum. Results The transcriptomic profiles of the heads of the first generation were slightly affected by photoperiod shortening. This suggests that trans-generation signalling between the grand-mothers and the viviparous embryos they contain is not essential. By analogy, many of the genes and some of the proteins regulated in the heads of the second generation are implicated in visual functions, photoreception and cuticle structure. The modification of the cuticle could be accompanied by a down-regulation of the N-β-alanyldopamine pathway and desclerotization. In Drosophila, modification of the insulin pathway could cause a decrease of juvenile hormones in short-day reared aphids. Conclusion This work led to the construction of hypotheses for photoperiodic regulation of the switch of the reproductive mode in aphids.
Collapse
|
30
|
Wang HB, Nita M, Iwanaga M, Kawasaki H. betaFTZ-F1 and Broad-Complex positively regulate the transcription of the wing cuticle protein gene, BMWCP5, in wing discs of Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:624-633. [PMID: 19580866 DOI: 10.1016/j.ibmb.2009.06.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 06/15/2009] [Accepted: 06/28/2009] [Indexed: 05/28/2023]
Abstract
The present study was undertaken to clarify the mechanism regulating cuticle protein gene expression. Expression of BMWCP5 was strong at around pupation and weak at the mid-pupal stage in wing tissues of Bombyx mori. We analyzed the upstream region of the BMWCP5 gene using a transient reporter assay with a gene gun system to identify the regulatory elements responsible for its unique expression pattern. We identified two betaFTZ-F1 binding sites to be important cis-acting elements for the transcription activation of the luciferase reporter gene by an ecdysone pulse. Site-directed mutagenesis of these sites, followed by introduction into wing discs, significantly decreased the reporter activity. We also found that the regions carrying the binding sites for the ecdysone-responsive factor BR-C Z4 (BR-Z4) were responsible for the hormonal enhancement of the reporter gene activity in wing discs. Mutation of the BR-Z4 binding sites decreased the reporter activity. The nuclear proteins that bound to these betaFTZ-F1 and BR-Z4 sites were identified by an electrophoretic mobility shift assay (EMSA). The results demonstrate for the first time that the BR-Z4 isoform can bind to the upstream region of the cuticle protein gene, BMWCP5, and activate its expression. The results also suggest that the BMWCP5 transcription is primarily regulated by the ecdysone pulse through betaFTZ-F1, and the stage-specific enhancement is brought about through BR-Z4.
Collapse
Affiliation(s)
- Hua-Bing Wang
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | | | | | | |
Collapse
|
31
|
Wang HB, Iwanaga M, Kawasaki H. Activation of BMWCP10 promoter and regulation by BR-C Z2 in wing disc of Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:615-623. [PMID: 19580867 DOI: 10.1016/j.ibmb.2009.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 06/29/2009] [Accepted: 06/29/2009] [Indexed: 05/28/2023]
Abstract
The cuticle protein gene BMWCP10 is transcriptionally upregulated by ecdysone during development. In the present study, using a transient reporter assay, the activity of various genomic segments at the 5'-flanking region of the BMWCP10 gene in driving gene expression and their involvement in ecdysone-mediated activation were assessed in the Bombyx wing disc. The promoter activity of BMWCP10 was responsive to 20-hydroxyecdysone (20E) in a dose-dependent manner, and the highest luciferase activity was observed in the presence of 2 microg/ml 20E. Furthermore, the upstream BMWCP10 promoter was activated by 20E in a stage-specific manner, and the 2.9-kb promoter contained essential elements for the temporal regulation of BMWCP10 in the Bombyx wing disc. Deletion studies revealed that the -598/-387 bp region was required for high-level transcription. In this region, a BR-C Z2 binding element was identified by electrophoretic mobility shift assay (EMSA). Site-directed mutagenesis of this element in the context of the 598-bp promoter fragment significantly decreased the reporter activity in response to ecdysone treatment. The results confirmed the role of BmBR-C Z2 in the transcription regulation of BMWCP10 and suggested the contribution of BmBR-C Z2 to BMWCP10 induction by 20E.
Collapse
Affiliation(s)
- Hua-Bing Wang
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | | | | |
Collapse
|
32
|
Nita M, Wang HB, Zhong YS, Mita K, Iwanaga M, Kawasaki H. Analysis of ecdysone-pulse responsive region of BMWCP2 in wing disc of Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 2009; 153:101-8. [DOI: 10.1016/j.cbpb.2009.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 02/05/2009] [Accepted: 02/05/2009] [Indexed: 11/27/2022]
|
33
|
Futahashi R, Okamoto S, Kawasaki H, Zhong YS, Iwanaga M, Mita K, Fujiwara H. Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:1138-1146. [PMID: 19280704 DOI: 10.1016/j.ibmb.2008.05.007] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Many kinds of cuticular proteins are found in a single insect species and their numbers and features are diversified among insects. Because there are so many cuticular proteins and so much sequence variation among them, an overview of cuticular protein gene is needed. Recently, a complete silkworm genome sequence was obtained through the integration of data from two whole genome sequence projects performed independently in 2004. To identify cuticular protein genes in the silkworm Bombyx mori exhaustively, we searched both the Bombyx whole genome sequence as well as various EST libraries, and found 220 putative cuticular protein genes. We also revised the annotation of the gene model, and named each identified cuticular protein based on its motif. The phylogenetic tree of cuticular protein genes among B. mori, Drosophila melanogaster, and Apis mellifera revealed that duplicate cuticular protein clusters have evolved independently among insects. Comparison of EST libraries and northern blot analyses showed that the tissue- and stage-specific expression of each gene was intricately regulated, even between adjacent genes in the same gene cluster. This study reveals many novel cuticular protein genes as well as insights into cuticular protein gene regulation.
Collapse
Affiliation(s)
- Ryo Futahashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Okamoto S, Futahashi R, Kojima T, Mita K, Fujiwara H. Catalogue of epidermal genes: genes expressed in the epidermis during larval molt of the silkworm Bombyx mori. BMC Genomics 2008; 9:396. [PMID: 18721459 PMCID: PMC2542385 DOI: 10.1186/1471-2164-9-396] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 08/22/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The insect cuticle is composed of various proteins and formed during the molt under hormonal regulation, although its precise composition and formation mechanism are largely unknown. The exhaustive catalogue of genes expressed in epidermis at the molt constitutes a massive amount of information from which to draw a complete picture of the molt and cuticle formation in insects. Therefore, we have catalogued a library of full-length cDNAs (designated epM) from epidermal cells during the last larval molt of Bombyx mori. RESULTS Of the 10,368 sequences in the library, we isolated 6,653 usable expressed sequence tags (ESTs), which were categorized into 1,451 nonredundant gene clusters. Seventy-one clusters were considered to be isoforms or premature forms of other clusters. Therefore, we have identified 1,380 putative genes. Of the 6,653 expressed sequences, 48% were derived from 92 cuticular protein genes (RR-1, 24; RR-2, 17; glycine-rich, 29; other classes, 22). A comparison of epM with another epidermal EST data set, epV3 (feeding stage: fifth instar, day 3), showed marked differences in cuticular protein gene. Various types of cuticular proteins are expressed in epM but virtually only RR-1 proteins were expressed in epV3. Cuticular protein genes expressed specifically in epidermis, with several types of expression patterns during the molt, suggest different types of responses to the ecdysteroid pulse. Compared with other Bombyx EST libraries, 13 genes were preferentially included in epM data set. We isolated 290 genes for proteins other than cuticular proteins, whose amino acid sequences retain putative signal peptides, suggesting that they play some role in cuticle formation or in other molting events. Several gene groups were also included in this data set: hormone metabolism, P450, modifier of cuticular protein structure, small-ligand-binding protein, transcription factor, and pigmentation genes. CONCLUSION We have identified 1,380 genes in epM data set and 13 preferentially expressed genes in epidermis at the molt. The comparison of the epM and other EST libraries clarified the totally different gene expression patterns in epidermis between the molting and feeding stages and many novel tissue- and stage-specifically expressed epidermal genes. These data should further our understanding of cuticle formation and the insect molt.
Collapse
Affiliation(s)
- Shun Okamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| | | | | | | | | |
Collapse
|
35
|
Pelegrini PB, Murad AM, Silva LP, Dos Santos RCP, Costa FT, Tagliari PD, Bloch C, Noronha EF, Miller RNG, Franco OL. Identification of a novel storage glycine-rich peptide from guava (Psidium guajava) seeds with activity against Gram-negative bacteria. Peptides 2008; 29:1271-9. [PMID: 18448201 DOI: 10.1016/j.peptides.2008.03.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 02/23/2008] [Accepted: 03/11/2008] [Indexed: 11/24/2022]
Abstract
Bacterial pathogens cause an expressive negative impact worldwide on human health, with ever increasing treatment costs. A significant rise in resistance to commercial antibiotics has been observed in pathogenic bacteria responsible for urinary and gastro-intestinal infections. Towards the development of novel approaches to control such common infections, a number of defense peptides with antibacterial activities have been characterized. In this report, the peptide Pg-AMP1 was isolated from guava seeds (Psidium guajava) and purified using a Red-Sepharose Cl-6B affinity column followed by a reversed-phase HPLC (Vydac C18-TP). Pg-AMP1 showed no inhibitory activity against fungi, but resulted in a clear growth reduction in Klebsiella sp. and Proteus sp., which are the principal pathogens involved in urinary and gastro-intestinal hospital infections. SDS-PAGE and mass spectrometry (MALDI-ToF) characterized Pg-AMP1 a monomer with a molecular mass of 6029.34Da and small quantities of a homodimer. Amino acid sequencing revealed clear identity to the plant glycine-rich protein family, with Pg-AMP1 the first such protein with activity towards Gram-negative bacteria. Furthermore, Pg-AMP1 showed a 3D structural homology to an enterotoxin from Escherichia coli, and other antibacterial proteins, revealing that it might act by formation of a dimer. Pg-AMP1 shows potential, in a near future, to contribute to development of novel antibiotics from natural sources.
Collapse
Affiliation(s)
- Patricia B Pelegrini
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang J, Goyer C, Pelletier Y. Environmental stresses induce the expression of putative glycine-rich insect cuticular protein genes in adult Leptinotarsa decemlineata (Say). INSECT MOLECULAR BIOLOGY 2008; 17:209-16. [PMID: 18477239 DOI: 10.1111/j.1365-2583.2008.00796.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The deposition of cuticular proteins in insects usually occurs during the moulting process. Three putative glycine-rich insect cuticular proteins, Ld-GRP1 to 3, were identified and characterized from the Colorado potato beetle, Leptinotarsa decemlineata. The Ld-GRPs contained conserved GXGX and/or GGXG sequence repeats. Ld-GRP1 also contained a conserved AAPA/V motif commonly found in cuticular proteins. The transcripts of Ld-GRP1 and Ld-GRP2 were detected in the epidermal cell layer by in situ hybridization, making them putative insect cuticular proteins. The putative cuticular protein genes were highly induced by the insecticide azinphosmethyl (organophosphorous) 2-3 weeks after adult moulting. Putative cuticular protein gene expression level was higher in azinphosmethyl-resistant beetles than in susceptible beetles. Furthermore, two of the putative cuticular protein genes were highly induced by dry environmental conditions. These results suggest that the insect might increase cuticular component deposition in the adult stage in response to environmental stresses. This ability may allow the insect to adapt to new or changing environments.
Collapse
Affiliation(s)
- J Zhang
- Potato Research Center, Agriculture and Agri-Food Canada, Fredericton, New Brunswick, Canada
| | | | | |
Collapse
|
37
|
Guan X, Middlebrooks BW, Alexander S, Wasserman SA. Mutation of TweedleD, a member of an unconventional cuticle protein family, alters body shape in Drosophila. Proc Natl Acad Sci U S A 2006; 103:16794-9. [PMID: 17075064 PMCID: PMC1636534 DOI: 10.1073/pnas.0607616103] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Body shape determination represents a critical aspect of morphogenesis. In the course of investigating body shape regulation in Drosophila, we have identified a dominant mutation, TweedleD(1) (TwdlD(1)), that alters overall dimensions at the larval and pupal stages. Characterization of the affected locus led to the discovery of a gene family that has 27 members in Drosophila and is found only among insects. Analysis of gene expression at the RNA and protein levels revealed gene-specific temporal and spatial patterns in ectodermally derived tissues. In addition, light microscopic studies of fluorescently tagged proteins demonstrated that Tweedle proteins are incorporated into larval cuticular structures. This demonstration that a mutation in a Drosophila cuticular protein gene alters overall morphology confirms a role for the fly exoskeleton in determining body shape. Furthermore, parallels between these findings and studies of cuticle collagen genes in Caenorhabditis elegans suggest that the exoskeleton influences body shape in diverse organisms.
Collapse
Affiliation(s)
- Xiao Guan
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349
| | - Brooke W. Middlebrooks
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349
| | - Sherry Alexander
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349
| | - Steven A. Wasserman
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|