1
|
Yu JJ, Lee SH, Lee CY, Wang C. Multiple mechanisms associated with deltamethrin and imidacloprid resistance in field-collected common bed bug, Cimex lectularius L. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 210:106357. [PMID: 40262879 DOI: 10.1016/j.pestbp.2025.106357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 04/24/2025]
Abstract
Pyrethroids and neonicotinoids are commonly used to manage the common bed bug (Cimex lectularius L.) infestations. However, the effectiveness of these insecticides is often challenged due to insecticide resistance. We investigated the mechanisms of deltamethrin and imidacloprid resistance in eight C. lectularius strains collected from New Jersey, U.S. Piperonyl butoxide (PBO), S,S,S-tributyl phosphorotrithioate (DEF), and diethyl maleate (DEM) were topically applied on bed bugs before deltamethrin or imidacloprid treatments (deltamethrin: 115 ng per adult; imidacloprid: 67 ng per adult). The results showed that PBO and DEF had a greater synergistic effect with deltamethrin treatments than DEM based on the significantly increased 72 h mortality of Aberdeen, Bayonne 2015, Cotton, Irvington, and Irvington 624-5G strains. With imidacloprid alone, seven out of eight strains experienced 100 % mortality except for the Linden 2019 strain. The Linden 2019 strain had mean mortalities of 93, 97, and 47 % from imidacloprid after receiving PBO, DEF, and DEM, respectively. The activities of glutathione S-transferase and general esterase in all strains were enhanced compared to a susceptible strain. Molecular detection of voltage-gated sodium channel (VGSC) mutations revealed homozygous V419L and L925I resistance mutations in all strains at 20-100 % and 30-100 % frequency, respectively. The presence of both V419L and L925I was found in 20-100 % of the individuals from each resistant strain. The results indicate a combination of metabolic and target site insensitivity mechanisms confers resistance to deltamethrin and imidacloprid in C. lectularius.
Collapse
Affiliation(s)
- Jin-Jia Yu
- Department of Entomology, Rutgers University, 96 Lipman Drive, New Brunswick, NJ 08901, USA
| | - Shao-Hung Lee
- Department of Entomology, University of California, Riverside, 165 Citrus Drive, Riverside, CA 92521, USA
| | - Chow-Yang Lee
- Department of Entomology, University of California, Riverside, 165 Citrus Drive, Riverside, CA 92521, USA
| | - Changlu Wang
- Department of Entomology, Rutgers University, 96 Lipman Drive, New Brunswick, NJ 08901, USA.
| |
Collapse
|
2
|
Alzabib AA, Al-Sarar AS, Abobakr Y, Saleh AA. Investigating the molecular mechanisms of deltamethrin resistance in Musca domestica populations from Saudi Arabia. Parasit Vectors 2025; 18:55. [PMID: 39956894 PMCID: PMC11831778 DOI: 10.1186/s13071-025-06668-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/09/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND The house fly, Musca domestica L., is a global insect pest that poses serious health risks by carrying pathogens to humans and animals. Pyrethroid (PYR) insecticides have been widely used to control agricultural pests and disease vectors. Multiple reports have documented house fly resistance to PYR insecticides. METHODS In this study, we assessed the resistance levels of M. domestica populations collected from slaughterhouses in Riyadh, Jeddah, and Taif, Saudi Arabia, against the PYR insecticide deltamethrin (DM). We also examined the genetic mutations in the voltage-sensitive sodium channel (Vssc) and P450 genes of the collected field flies and analyzed the correlation between these detected genetic mutations and the levels of DM resistance. RESULTS The house fly field populations showed very high levels of resistance to DM, with resistance ratio (RR) values of 625-, 256-, and 107-fold for Jeddah, Taif, and Riyadh, respectively. Three VSSC resistance alleles, kdr (T929 + 1014F), kdr-his (T929 + 1014H), and 1B (929I + 1014F), along with the susceptible allele (T929 + L1014) were identified in the Saudi house fly populations. The super-kdr allele (918 T + 1014F) and type N (D600N + M918T + L1014F) were not detected in Saudi house fly populations. Type 1B was the most dominant VSSC resistance allele, followed by kdr and kdr-his, in both field populations and the surviving flies exposed to DM. The resistance CYP6D1v1 allele of P450 was detected in slaughterhouse house fly populations of Riyadh, Jeddah, and Taif, with frequencies of 71%, 58%, and 60%, respectively. The VSSC resistance alleles exhibited a positive correlation with the resistance levels to DM; conversely, the CYP6D1v1 displayed a negative correlation with DM resistance levels. CONCLUSIONS In general, the Saudi house fly populations exhibited high genetic diversity, with three VSSC resistance alleles identified in slaughterhouse populations. The Vssc mutations appear to be the principal mechanism of DM resistance in Saudi house fly field populations. This study is the first report on the Vssc and CYP6D1 mutations associated with PYR resistance in M. domestica field populations from Saudi Arabia.
Collapse
Affiliation(s)
- Ali A Alzabib
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Ali S Al-Sarar
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia.
| | - Yasser Abobakr
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
- Department of Animal Pests, Plant Protection Research Institute, Agricultural Research Center, Alexandria, 21616, Egypt
| | - Amgad A Saleh
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
- Agricultural Genetic Engineering Research Institute, Agriculture Research Center, Giza, 12619, Egypt
| |
Collapse
|
3
|
Zhang Y, Wang Y, Zhao N, Lun X, Zhao C, Liu Q, Meng F. Long-term trends in housefly (Musca domestica L.) insecticide resistance in China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105880. [PMID: 38685246 DOI: 10.1016/j.pestbp.2024.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 05/02/2024]
Abstract
Controlling housefly populations relies on the use of insecticides, which inevitably leads to the development of resistance. A better and more comprehensive understanding of the spatial and temporal distribution of resistance could guide the control of houseflies. However, most studies on housefly resistance in China are scattered and poorly coordinated. We collected resistance data from houseflies in the published literature and from the vector biomonitoring system of the Chinese Center for Disease Control and Prevention. A 5- or 10-year resolution was used to study the temporal dynamics of resistance to five commonly used insecticides: deltamethrin, permethrin, beta-cypermethrin, dichlorvos, and propoxur. ArcGIS was used to visualize their spatial distributions. The correlation between year and resistance coefficient was determined using SPSS 26.0 and RStudio to explore the changes in resistance over the years. A total of 2128 data were included in this study, ranging from 1982 to 2022, based on which we found significant increases in resistance over the past forty years for the five studied insecticides. Among them, pyrethroids had the most strikingly elevated resistance level and were mainly distributed in the northern and southeastern coastal areas. Dichlorvos and propoxur had intermediate increases in resistance, and most of these increases were identified in North China and the Yangtze River. Housefly resistance to commonly used insecticides in China is increasing and spatially heterogeneous. This finding also highlights the necessity of continuous routine surveillance of housefly resistance, which could guide future housefly control operations and slow the development of resistance.
Collapse
Affiliation(s)
- Yajun Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, World Health and Organization (WHO) Collaborating Centre for Vector Surveillance and Management, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Yiguan Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, World Health and Organization (WHO) Collaborating Centre for Vector Surveillance and Management, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Ning Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, World Health and Organization (WHO) Collaborating Centre for Vector Surveillance and Management, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Xinchang Lun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, World Health and Organization (WHO) Collaborating Centre for Vector Surveillance and Management, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Chunchun Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, World Health and Organization (WHO) Collaborating Centre for Vector Surveillance and Management, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, World Health and Organization (WHO) Collaborating Centre for Vector Surveillance and Management, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Fengxia Meng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, World Health and Organization (WHO) Collaborating Centre for Vector Surveillance and Management, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China.
| |
Collapse
|
4
|
Uemura N, Furutani S, Tomita T, Itokawa K, Komagata O, Kasai S. Concomitant knockdown resistance allele, L982W + F1534C, in Aedes aegypti has the potential to impose fitness costs without selection pressure. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105422. [PMID: 37247997 DOI: 10.1016/j.pestbp.2023.105422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 05/31/2023]
Abstract
The Aedes aegypti mosquito, is an arbovirus vector that can spread dengue, chikungunya, Zika, and yellow fever. Pyrethroids are widely used to control mosquitoes. The voltage-gated sodium channel (Vgsc) is the target of pyrethroids, and amino acid substitutions in this channel attenuate the effects of pyrethroids. This is known as knockdown resistance (kdr). Recently, we found that Ae. aegypti with concomitant Vgsc mutations L982W + F1534C exhibit extremely high levels of pyrethroid resistance. L982 is located in a highly conserved region of Vgsc in vertebrates and invertebrates. This study aimed to evaluate the viability of Ae. aegypti, with concomitant L982W + F1534C mutations in Vgsc. We crossed a resistant strain (FTWC) with a susceptible strain (SMK) and reared it up to 15 generations. We developed a rapid and convenient genotyping method using a fluorescent probe (Eprobe) to easily and accurately distinguish between three genotypes: wild-type and mutant homozygotes, and heterozygotes. As generations progressed, the proportion of wild-type homozygotes increased, and only 2.9% of mutant homozygotes were present at the 15th generation; the allele frequencies of L982W + F1534C showed a decreasing trend over generations. These observations show that these concomitant mutations have some fitness costs, suggesting that mosquitoes can potentially recover pyrethroid susceptibility over time without pyrethroid selection pressure in the field.
Collapse
Affiliation(s)
- Nozomi Uemura
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Shogo Furutani
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Takashi Tomita
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Kentaro Itokawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Osamu Komagata
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Shinji Kasai
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| |
Collapse
|
5
|
Roca-Acevedo G, Boscaro I, Toloza AC. Global Pattern of kdr-Type Alleles in Musca domestica (L.). CURRENT TROPICAL MEDICINE REPORTS 2022; 10:1-10. [PMID: 36569791 PMCID: PMC9760529 DOI: 10.1007/s40475-022-00281-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
Abstract
Purpose of Review Houseflies, Musca domestica L., are an important sanitary pest that affects human and domesticated animals. They are mechanical carriers of more than 100 human and animal diseases including protozoan, bacterial, helminthic, and viral infections. Recently, it was demonstrated that houseflies acquired, harbored, and transmitted SARS-CoV-2 (COVID-19) for up to 1 day post-exposure. The most widely used control strategy relays on the application of pyrethroid insecticides due to their effectiveness, low mammalian toxicity, low cost, and environmental safety. The main mechanism of action of pyrethroids is to exert their toxic effects through affecting the voltage-sensitive sodium channel (VSSC) modifying the transmission of the nerve impulse and leading to the death of the insects. Target site insensitivity of the VSSC is due to the presence of single nuclear polymorphisms (SNPs) named knockdown mutations (kdr). In this review, we synthetize recent data on the type and distribution of these mutations globally. Recent Findings Housefly resistance is reported in several countries. Increased applications of pyrethroids to control housefly populations led to the emergence of multiple evolutionary origins of resistance determined by five amino acid substitutions or specific mutations in the VSSC: kdr (L1014F), kdr-his (L1014H), super-kdr (M918T + L1014F), type N (D600N + M918T + L1014F), and 1B (T929I + L1014F). According to the global map obtained, high levels of resistance to pyrethroids are associated with the L1014F mutation found mostly in North America, Europe, and Asia, while the super-kdr mutation was mostly found in the American continent. The level of protection conferred by these alleles against pyrethroids was generally kdr-his < kdr < Type N ≤ super-kdr ≤ 1B. The relative fitness of the alleles under laboratory conditions was susceptible ≅ kdr-his > kdr > super-kdr suggesting that the fitness cost of an allele was relative to the presence of other alleles in a population and that the reversion of resistance in a free insecticide environment might be quite variable from one region to another. Summary An adequate integrated pest management program should consider monitoring susceptibility to pyrethroids to detect early levels of resistance and predict the spread and evolution of resistant phenotypes and genotypes. From this review, the pyrethroid resistance status of housefly population was determined in very few countries and has evolved independently in different areas of the world affecting chemical control programs.
Collapse
Affiliation(s)
- Gonzalo Roca-Acevedo
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-UNIDEF-CONICET), Juan Bautista de La Salle 4397, Villa Martelli, Buenos Aires, Argentina
- Universidad CAECE, Avenida de Mayo 866, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ivana Boscaro
- Universidad CAECE, Avenida de Mayo 866, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ariel Ceferino Toloza
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-UNIDEF-CONICET), Juan Bautista de La Salle 4397, Villa Martelli, Buenos Aires, Argentina
- Universidad CAECE, Avenida de Mayo 866, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
6
|
Freeman JC, San Miguel K, Scott JG. All resistance alleles are not equal: the high fitness cost of super-kdr in the absence of insecticide. PEST MANAGEMENT SCIENCE 2021; 77:3693-3697. [PMID: 33002280 DOI: 10.1002/ps.6115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Mutations in the voltage-sensitive sodium channel are an important mechanism of resistance to pyrethroid insecticides. In Musca domestica, common resistance alleles are kdr, super-kdr and kdr-his. The levels of resistance that these alleles confer is known, but the fitness of these alleles relative to each other and to susceptible alleles is unknown. We used crosses from congenic strains of M. domestica to establish populations with known allele frequencies and then examined the changes in allele and genotype frequencies over 25 generations under laboratory conditions. RESULTS There was a significant fitness cost for the super-kdr allele, which decreased from the starting frequency of 0.25 to 0.05 after 25 generations. The fitness of the kdr, kdr-his and susceptible alleles were similar. The greatest change in genotype frequency was seen for the super-kdr/super-kdr genotype, which was no longer detected after 25 generations. CONCLUSION The fitness cost associated with the super-kdr allele is consistent with previous reports and appears to be a factor in helping to restrain high levels of resistance in field populations (the super-kdr allele confers higher levels of resistance than kdr or kdr-his). It is known that the relative costs of different alleles are environmentally dependent, but our results also demonstrate that the relative fitness of given alleles depends on which alleles are present in a given population, as previous pairwise comparisons of allele fitness do not exactly match (except for super-kdr) the results obtained using this four allele study. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jamie C Freeman
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Keri San Miguel
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Jeffrey G Scott
- Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
7
|
Cheng X, Hoffmann AA, Edwards OR, Umina PA. Fitness Costs Associated with Pyrethroid Resistance in Halotydeus destructor (Tucker) (Acari: Penthaleidae) Elucidated Through Semi-field Trials. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1270-1281. [PMID: 33822090 DOI: 10.1093/jee/toab031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Pyrethroid resistance in the redlegged earth mite, Halotydeus destructor (Tucker), is primarily attributed to a kdr (knockdown resistance) mutation in the parasodium channel gene. To assess fitness costs associated with this resistance, adult resistant and susceptible populations were mixed in different proportions in microcosm tubs and placed in a shade-house simulating field conditions. Three separate experiments were undertaken whereby parental mites were collected from the field and offspring were followed for two to three generations. The association between fitness costs and kdr-mediated resistance was investigated by examining differences in mite numbers and changes in resistant allele frequencies across generations. In two (of the three) experiments, the population fitness measure of mites was significantly lower in microcosms containing a higher proportion of resistant individuals compared with treatments containing susceptible mites. No differences in mite fitness were observed between treatments in the third experiment; in this instance, the starting proportion of individuals homozygous for the resistant mutation was much lower (~40%) than in the other experiments (>90%). In all three experiments, a decrease in the resistant allele frequency across mite generations was observed. These findings indicate a potential deleterious pleiotropic effect of the kdr mutation on the fitness of H. destructor and have implications for resistance management strategies aimed at this important agricultural pest. Further experiments investigating fitness costs directly in the field are warranted.
Collapse
Affiliation(s)
- Xuan Cheng
- School of BioSciences, The University of Melbourne, VIC 3010, Australia
| | - Ary A Hoffmann
- School of BioSciences, The University of Melbourne, VIC 3010, Australia
| | | | - Paul A Umina
- School of BioSciences, The University of Melbourne, VIC 3010, Australia
- Cesar Australia, 293 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
8
|
Smith LB, Silva JJ, Chen C, Harrington LC, Scott JG. Fitness costs of individual and combined pyrethroid resistance mechanisms, kdr and CYP-mediated detoxification, in Aedes aegypti. PLoS Negl Trop Dis 2021; 15:e0009271. [PMID: 33760828 PMCID: PMC7990171 DOI: 10.1371/journal.pntd.0009271] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/25/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Aedes aegypti is an important vector of many human diseases and a serious threat to human health due to its wide geographic distribution and preference for human hosts. A. aegypti also has evolved widespread resistance to pyrethroids due to the extensive use of this insecticide class over the past decades. Mutations that cause insecticide resistance result in fitness costs in the absence of insecticides. The fitness costs of pyrethroid resistance mutations in A. aegypti are still poorly understood despite their implications for arbovirus transmission. METHODOLOGY/PRINCIPLE FINDINGS We evaluated fitness based both on allele-competition and by measuring specific fitness components (i.e. life table and mating competition) to determine the costs of the different resistance mechanisms individually and in combination. We used four congenic A. aegypti strains: Rockefeller (ROCK) is susceptible to insecticides; KDR:ROCK (KR) contains only voltage-sensitive sodium channel (Vssc) mutations S989P+V1016G (kdr); CYP:ROCK (CR) contains only CYP-mediated resistance; and CYP+KDR:ROCK (CKR) contains both CYP-mediated resistance and kdr. The kdr allele frequency decreased over nine generations in the allele-competition study regardless of the presence of CYP-mediated resistance. Specific fitness costs were variable by strain and component measured. CR and CKR had a lower net reproductive rate (R0) than ROCK or KR, and KR was not different than ROCK. There was no correlation between the level of permethrin resistance conferred by the different mechanisms and their fitness cost ratio. We also found that CKR males had a reduced mating success relative to ROCK males when attempting to mate with ROCK females. CONCLUSIONS/SIGNIFICANCE Both kdr and CYP-mediated resistance have a fitness cost affecting different physiological aspects of the mosquito. CYP-mediated resistance negatively affected adult longevity and mating competition, whereas the specific fitness costs of kdr remains elusive. Understanding fitness costs helps us determine whether and how quickly resistance will be lost after pesticide application has ceased.
Collapse
Affiliation(s)
- Letícia B. Smith
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Juan J. Silva
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Connie Chen
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Laura C. Harrington
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Jeffrey G. Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
9
|
Silva JJ, Scott JG. Conservation of the voltage-sensitive sodium channel protein within the Insecta. INSECT MOLECULAR BIOLOGY 2020; 29:9-18. [PMID: 31206812 DOI: 10.1111/imb.12605] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
The voltage-sensitive sodium channel (VSSC) is essential for the generation and propagation of action potentials. VSSC kinetics can be modified by producing different splice variants. The functionality of VSSC depends on features such as the voltage sensors, the selectivity filter and the inactivation loop. Mutations in Vssc conferring resistance to pyrethroid insecticides are known as knockdown resistance (kdr). We analysed the conservation of VSSC in both a broad scope and a narrow scope by three approaches: (1) we compared conservation of sequences and of differential exon use across orders of the Insecta; (2) we determined which kdr mutations were possible with a single nucleotide mutation in nine populations of Aedes aegypti; and (3) we examined the individual VSSC variation that exists within a population of Drosophila melanogaster. There is an increasing amount of transcript diversity possible from Diplura towards Diptera. The residues of the voltage sensors, selectivity filter and inactivation loop are highly conserved. The majority of exon sequences were >88.6% similar. Strain-specific differences in codon constraints exist for kdr mutations in nine strains of A. aegypti. Three Vssc mutations were found in one population of D. melanogaster. This study shows that, overall, Vssc is highly conserved across Insecta and within a population of an insect, but that important differences do exist.
Collapse
Affiliation(s)
- Juan J Silva
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| | - Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| |
Collapse
|
10
|
Role transformation of fecundity and viability: The leading cause of fitness costs associated with beta-cypermethrin resistance in Musca domestica. PLoS One 2020; 15:e0228268. [PMID: 31999782 PMCID: PMC6992221 DOI: 10.1371/journal.pone.0228268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/12/2020] [Indexed: 02/03/2023] Open
Abstract
Fitness is closely associated with the development of pesticide resistance in insects, which determines the control strategies employed to target species and the risks of toxicity faced by non-target species. After years of selections with beta-cypermethrin in laboratory, a strain of housefly was developed that was 684,521.62-fold resistant (CRR) compared with the susceptible strain (CSS). By constructing ≤ 21 d and ≤ 30 d life tables, the differences in life history parameters between CSS and CRR were analyzed. The total production numbers of all the detected development stages in CRR were lower than in CSS. Except for the lower mortality of larvae, all the other detected mortalities in CRR were higher than in CSS. ♀:♂ and normal females of CRR were also lower than those of CSS. For CRR, the relative fitness was 0.25 in the ≤ 21 d life table and 0.24 in the ≤ 30 d life table, and a lower intrinsic rate of increase (rm) and net reproductive rate (Ro) were detected. Based on phenotype correlation and structural equation model (SEM) analyses, fecundity and viability were the only directly positive fitness components affecting fitness in CRR and CSS, and the other components played indirect roles in fitness. The variations of the relationships among fitness, fecundity and viability seemed to be the core issue resulting in fitness differences between CRR and CSS. The interactions among all the detected fitness components and the mating frequency-time curves appeared to be distinctly different between CRR and CSS. In summary, fecundity and its related factors separately played direct and indirect roles in the fitness costs of a highly beta-cypermethrin-resistant housefly strain.
Collapse
|
11
|
Cheng X, Umina PA, Lee SF, Hoffmann AA. Pyrethroid resistance in the pest mite, Halotydeus destructor: Dominance patterns and a new method for resistance screening. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:9-16. [PMID: 31400789 DOI: 10.1016/j.pestbp.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 06/10/2023]
Abstract
An L1024F substitution in the para gene, which encodes a subunit of the voltage-gated sodium channel, has been implicated in pyrethroid resistance in a mite pest, Halotydeus destructor, which attacks rape and other grain crops. A high-resolution melt (HRM) genotyping assay was developed for testing the relative pyrethroid susceptibility of different para genotypes and for high-throughput field screening of resistant alleles. The L1024F mutation was found to be incompletely recessive in phenotypic laboratory bioassays with the pyrethroid pesticide, bifenthrin. While the resistance ratio of heterozygotes (RS) to susceptible homozygotes (SS) was <6 in 24 h bioassays, the resistant homozygotes (RR) (with a resistance ratio > 200,000) survived the recommended field rate of bifenthrin (100 mgL-1). HRM genotyping of mites from field populations across Australia indicated the presence of resistant alleles in Western Australia and South Australia, but not in Victoria and New South Wales. The assay developed will be useful for routine screening of pyrethroid resistance, and the dominance relationships established here point to useful resistance management strategies involving the maintenance of reservoirs of susceptible mites to dilute resistant homozygotes in a population.
Collapse
Affiliation(s)
- Xuan Cheng
- School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria 3010, Australia.
| | - Paul A Umina
- School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria 3010, Australia; cesar, 293 Royal Parade, Parkville, Victoria 3052, Australia
| | - Siu Fai Lee
- CSIRO Land and Water, Black Mountain, ACT 2601, Australia; Department of Biological Sciences, Macquarie University, NSW 2901, Australia
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
12
|
Domingues LN, Guerrero FD, Foil LD. Impacts of long-term insecticide treatment regimes on skdr and kdr pyrethroid resistance alleles in horn fly field populations. Parasitol Res 2019; 118:2485-2497. [PMID: 31280327 DOI: 10.1007/s00436-019-06386-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/24/2019] [Indexed: 11/26/2022]
Abstract
We evaluated the effects of four different 6-year duration control strategies on the resistance levels and frequency of the pyrethroid target site resistance alleles, superkdr (skdr) and kdr, at four field populations of Haematobia irritans irritans (Linnaeus, 1758) (Diptera: Muscidae) in Louisiana, USA. Consecutive use of pyrethroid ear tags for 6 years caused a significant increase in the resistance ratio to pyrethroids as well as the frequencies of both skdr and kdr resistance alleles. After 3 years of consecutive use of pyrethroid ear tags, followed by 1 year with no treatment, and followed by 2 years with organophosphate ear tags, the resistance ratio for pyrethroid was not significantly affected, the %R-skdr significantly dropped while the %R-kdr allele remained relatively high and stable. Similar results were observed when pyrethroid ear tags were used for three consecutive years, followed by 1 year with no treatment, and followed by 2 years with endosulfan ear tags; however, this treatment resulted in a slight increase in the resistance ratio for pyrethroids. In a mosaic, the resistance ratio for pyrethroids showed a 2.5-fold increase but the skdr-kdr genetic profiles did not change, as the %R alleles (skdr and kdr) remained low and stable through the 6 years. Lack of exposure to pyrethroid insecticides for 3 years significantly affected the skdr mutation but not the kdr mutation, preventing re-establishment of susceptibility to pyrethroids. SS-SR (skdr-kdr) individuals were responsible for the maintenance of the kdr mutation in two of the populations studied, and fitness cost seems to strongly affect the SR-RR genotype. None of the four treatment regimens evaluated in the study had satisfactory results for the management of kdr resistance alleles.
Collapse
Affiliation(s)
- Luísa N Domingues
- USDA-ARS Knipling-Bushland U. S. Livestock Insects Research Lab, 2700 Fredericksburg Road, Kerrville, TX, 78028, USA.
| | - Felix D Guerrero
- USDA-ARS Knipling-Bushland U. S. Livestock Insects Research Lab, 2700 Fredericksburg Road, Kerrville, TX, 78028, USA
| | - Lane D Foil
- Department of Entomology, Louisiana State University, 404 Life Sciences Building, Baton Rouge, LA, 70803, USA
| |
Collapse
|
13
|
Freeman JC, Ross DH, Scott JG. Insecticide resistance monitoring of house fly populations from the United States. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 158:61-68. [PMID: 31378362 DOI: 10.1016/j.pestbp.2019.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 06/10/2023]
Abstract
Insecticide resistance in house fly populations is a major problem faced by livestock producers worldwide. A survey of insecticide resistance levels and pyrethroid resistance allele frequencies in the United States was conducted in 2008-09, but little is known about how resistance levels have changed over the last 10 years. In addition, new target-site pyrethroid resistance alleles that confer high levels of resistance have been recently identified in the voltage-sensitive sodium channel, and their frequencies in field populations are unknown. Our aim in this study was to reassess the resistance status of house flies from select locations in the United States by examining resistance levels against commonly used insecticides and frequencies of known resistance alleles. House flies were collected from animal production facilities in five different states between 2016 and 2018. Resistance levels to three insecticides (permethrin, tetrachlorvinphos, and methomyl), representing three classes of insecticides (pyrethroids, organophosphates and carbamates) varied geographically and were lowest in the population collected from New Mexico, intermediate in the population collected from Utah, and greatest in the population from Kansas. The recently identified 1B pyrethroid resistance allele increased dramatically in frequency compared to previous reports, most notably in populations from Kansas and Maryland, indicating that it may already be widespread around the United States. Based on comparison with historical data, the population collected from Kansas represents one of the most highly permethrin resistant populations ever sampled. If the alleles responsible for this level of resistance spread, pyrethroids may be of limited use for house fly control in the United States in the near future.
Collapse
Affiliation(s)
- Jamie C Freeman
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, USA
| | - Douglas H Ross
- Bayer Animal Health, 12707 Shawnee Mission Parkway, Shawnee, Kansas 66216, USA
| | - Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
14
|
Kamdar S, Farmani M, Akbarzadeh K, Jafari A, Gholizadeh S. Low Frequency of Knockdown Resistance Mutations in Musca domestica (Muscidae: Diptera) Collected From Northwestern Iran. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:501-505. [PMID: 30312425 DOI: 10.1093/jme/tjy177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Musca domestica L., the common housefly, is a very important mechanical vector of pathogens. Continuous exposure to pyrethroid insecticides has led to insecticide resistance in houseflies. Some mutations in the voltage-gated sodium channel gene (vgsc) reduce the binding affinity of pyrethroids target site insensitivity. We collected houseflies from the Urmia district of Northwestern Iran. Following DNA extraction, 580 bp regions of the vgsc known to contain knockdown resistance (kdr) mutations were amplified and sequenced using specific primers. The amplified region contained two exons (211-bp and 248-bp) and three introns. There were eight polymorphic sites between M. domestica insecticide-susceptible (MDU38813), super-kdr (NW_004774263) and aabys (KT897924) strains from GenBank in comparison with our sequences. Two amino acid substitutions were detected, N967Y (% polymorphism = 9.5%) and L1014H (% polymorphism = 4.7%) that can be associated with resistance. The common and previously reported mutations L1014F and M918T+L1014F were not detected. Diagnosis based on sequence analysis is useful for monitoring the frequency of pyrethroid resistance mutations, which will be helpful in avoiding overuse of this class of insecticides in house fly control.
Collapse
Affiliation(s)
- Shiva Kamdar
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Medical Entomology Department, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Mostafa Farmani
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Medical Entomology Department, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Kamran Akbarzadeh
- Medical Entomology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Jafari
- Department of Occupational Health, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Gholizadeh
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Medical Entomology Department, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
15
|
Scott JG. Life and Death at the Voltage-Sensitive Sodium Channel: Evolution in Response to Insecticide Use. ANNUAL REVIEW OF ENTOMOLOGY 2019; 64:243-257. [PMID: 30629893 DOI: 10.1146/annurev-ento-011118-112420] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The voltage-sensitive sodium channel (VSSC) is a critical component of the insect nervous system. Pyrethroids and DDT are insecticides that have been widely used, and they kill insects by perturbations of the VSSC. Decades of insecticide use selected for mutations in Vssc that give rise to resistance in almost all pest insects. However, the mutations responsible for the resistance are not always the same, and some unusual patterns have emerged. This review focuses on what pyrethroid/DDT selection has done, in terms of Vssc changes that have occurred, using four well-studied species as examples of the differences that have evolved. Information is provided about the mutations that occur, potential pathways by which alleles with multiple mutations arose, the relative fitness of the alleles, the levels of resistance conferred, and the geographic distribution of the mutations. The lessons learned and exciting new areas of research are discussed.
Collapse
Affiliation(s)
- Jeffrey G Scott
- Department of Entomology, Cornell University, Ithaca, New York 14853, USA;
| |
Collapse
|
16
|
Hanai D, Hardstone Yoshimizu M, Scott JG. The Insecticide Resistance Allele kdr-his has a Fitness Cost in the Absence of Insecticide Exposure. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2992-2995. [PMID: 30277509 DOI: 10.1093/jee/toy300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 06/08/2023]
Abstract
House flies, Musca domestica L. (Diptera: Muscidae), are major pests at animal production facilities. Insecticides, particularly pyrethroids, have been used for control of house fly populations for more than 30 yr, but the evolution of resistance will likely jeopardize fly control efforts. A major mechanism of pyrethroid resistance in the house fly is target site insensitivity (due to mutations in the Voltage-sensitive sodium channel [Vssc]). Based on a survey of house fly populations in 2007 and 2008, the most common resistance allele at 2/3 of the states in the United States is kdr-his. This was unexpected given the relatively lower level of resistance this allele confers, and led to speculation that the kdr-his allele may have a minimal fitness cost in the absence of insecticide. The goal of this study was to evaluate the fitness cost of kdr-his by monitoring the changes in allele frequency over 15 generations in the absence of insecticide. In crosses with two different insecticide susceptible strains, we found that kdr-his had a significant fitness cost. The implications of these results to insecticide resistance monitoring and management are discussed.
Collapse
Affiliation(s)
- Daisuke Hanai
- Agro Products Division, Nippon-Soda Co., Ltd., Ohtemachi, Chiyoda-ku, Tokyo, Japan
| | | | - Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY
| |
Collapse
|
17
|
Pan J, Yang C, Liu Y, Gao Q, Li M, Qiu X. Novel cytochrome P450 (CYP6D1) and voltage sensitive sodium channel (Vssc) alleles of the house fly (Musca domestica) and their roles in pyrethroid resistance. PEST MANAGEMENT SCIENCE 2018; 74:978-986. [PMID: 29155487 DOI: 10.1002/ps.4798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The house fly Musca domestica is an important disease vector. Point mutation-mediated target-site insensitivity of the voltage sensitive sodium channel (VSSC) and increased detoxification mediated by cytochrome P450 (CYP6D1) overexpression have been characterized as two major mechanisms of pyrethroid resistance. In this study, genetic mutations in the Vssc and CYP6D1 genes and their contribution to pyrethroid resistance were investigated. RESULTS Twelve lines of house flies homozygous for four genotypes were established. House flies carrying the VSSC 1014F mutation and overexpressing CYP6D1 had higher resistance to pyrethroids than those carrying 1014F alone. The presence of the 15-bp insert in the promoter region of the CYP6D1 gene did not necessarily result in a significant increase in CYP6D1 mRNA and pyrethroid resistance levels. A novel Vssc allele carrying two mutations (G1924D and G2004S) in combination with the classic 1014F and a novel CYP6D1 allele that is very similar to CYP6D1v1 were identified in Chinese house flies. CONCLUSION This work demonstrates the effect of genetic mutations in CYP6D1 and Vssc on the susceptibility of house flies to pyrethroids, and verifies that 15-bp insert-containing CYP6D1 alleles have a single origin. These findings offer insights into the evolution of insecticide resistance and have implications for house fly control. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Pan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chan Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Gao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Sun H, Kasai S, Scott JG. Two novel house fly Vssc mutations, D600N and T929I, give rise to new insecticide resistance alleles. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 143:116-121. [PMID: 29183579 DOI: 10.1016/j.pestbp.2017.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/14/2017] [Accepted: 08/19/2017] [Indexed: 06/07/2023]
Abstract
The house fly, Musca domestica, is a serious pest because it transmits a large diversity of human and veterinary diseases. Insecticides, particularly pyrethroids, are commonly used to control house flies. However, the evolution of pyrethroid resistance has reduced the effectiveness of these insecticides. A major mechanism of resistance to pyrethroids is target site insensitivity caused by the mutations in the voltage-sensitive sodium channel (Vssc) gene (e.g. kdr [L1014F] and super-kdr [M918T+L1014F]). Recently, two novel Vssc alleles, super-kdr+D600N and kdr+T929I were detected in a field collected resistant house fly population in Kansas, USA in 2013. To determine the levels of resistance that these new alleles confer to pyrethroids, we isolated strains having the unique Vssc alleles, but being otherwise congenic to the susceptible strain, aabys. We compared levels of resistance conferred to 14 pyrethroids and determined the inheritance of resistance to 8 pyrethroids. Our results revealed that super-kdr+D600N conferred higher levels of resistance to seven pyrethroids relative to super-kdr, and kdr+T929I showed super-kdr-like levels of resistance in house flies. Our results are compared with previous studies and reveal that addition of T929I to the kdr mutation (L1014F) increased resistance to all pyrethroids (except etofenprox), and enhanced resistance by ~1000-fold to acrinathrin and flumethrin. The implications of these results on the evolution of resistance are discussed.
Collapse
Affiliation(s)
- Haina Sun
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA; Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shinji Kasai
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA; Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjukuku, Tokyo, Japan
| | - Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
19
|
Scott JG. Evolution of resistance to pyrethroid insecticides in Musca domestica. PEST MANAGEMENT SCIENCE 2017; 73:716-722. [PMID: 27241012 DOI: 10.1002/ps.4328] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 05/06/2023]
Abstract
Houseflies, Musca domestica L., are a significant pest because of the numerous diseases they transmit. Control of housefly populations, particularly at animal production facilities, is frequently done using pyrethroid insecticides which kill insects by prolonging the open time of the voltage-sensitive sodium channel (VSSC). Houseflies have evolved resistance to pyrethroids owing to mutations in Vssc and by cytochrome-P450-mediated detoxification. Three Vssc mutations are known: kdr (L1014F), kdr-his (L1014H) and super-kdr (M918T + L1014F). Generally, the levels of resistance conferred by these mutations are kdr-his < kdr < super-kdr, but this pattern does not hold for multihalogenated benzyl pyrethroids, for which super-kdr confers less resistance than kdr. P450-mediated resistance can result from overexpression of CYP6D1 or another P450 (unidentified) whose overexpression is linked to autosomes II or V. The initial use of field-stable pyrethroids resulted in different patterns of evolution across the globe, but with time these mutations have become more widespread in their distribution. What is known about the fitness costs of the resistance alleles in the absence of insecticide is discussed, particularly with respect to the current and future utility of pyrethroid insecticides. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jeffrey G Scott
- Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
20
|
Kasai S, Sun H, Scott JG. Diversity of knockdown resistance alleles in a single house fly population facilitates adaptation to pyrethroid insecticides. INSECT MOLECULAR BIOLOGY 2017; 26:13-24. [PMID: 27792261 DOI: 10.1111/imb.12267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Insecticide use exerts a tremendous selection force on house fly populations, but the frequencies of the initial resistance mutations may not reach high levels if they have a significant fitness cost in the absence of insecticides. However, with the continued use of the same (or similar) insecticides, it is expected that new mutations (conferring equal or greater resistance, but less of a fitness cost) will evolve. Pyrethroid insecticides target the insect voltage sensitive sodium channel (VSSC) and have been widely used for control of house flies at animal production facilities for more than three decades. There are three Vssc mutations known that cause resistance to pyrethroids in house flies: knockdown resistance (kdr, L1014F), kdr-his (L1014H) and super-kdr (M918T + L1014F). Whether or not there are any new mutations in house fly populations has not been examined for decades. We collected house flies from a dairy in Kansas (USA) and selected this population for three generations. We discovered multiple new Vssc alleles, including two that give very high levels of resistance to most pyrethroids. The importance of these findings to understanding the evolution of insecticide resistance, designing appropriate resistance monitoring and management schemes, and the future of pyrethroids for house fly control are discussed.
Collapse
Affiliation(s)
- S Kasai
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjukuku, Tokyo, Japan
| | - H Sun
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - J G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| |
Collapse
|
21
|
Taskin BG, Dogaroglu T, Kilic S, Dogac E, Taskin V. Seasonal dynamics of insecticide resistance, multiple resistance, and morphometric variation in field populations of Culex pipiens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 129:14-27. [PMID: 27017877 DOI: 10.1016/j.pestbp.2015.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
Resistance to insecticides that impairs nervous transmission has been widely investigated in mosquito populations as insecticides are crucial to effective insect control. The development of insecticide resistance is also of special interest to evolutionary biologists since it represents the opportunity to observe the genetic consequences of a well-characterized alteration in the environment. Although the frequencies of resistance alleles in Culex pipiens populations against different groups of insecticides have been reported, no detailed information is available on the relative change in these allele frequencies over time. In this study, we collected mosquitoes of the Cx. pipiens complex from six locations in three seasons in the Aegean region of Turkey and examined the i) seasonal variations in resistance to four different chemical classes of insecticides, ii) seasonal fluctuations in frequencies of resistance-associated target-site mutations of the three genes (ace-1, kdr, and Rdl), and iii) potential seasonal variations in wing morphometric characters that may be modified in resistant mosquitoes. Our bioassay results indicated the presence of different levels of resistance to all tested insecticides for all three seasons in all locations. The results of the PCR-based molecular analysis revealed low frequencies of mutations in ace-1 and Rdl that are associated with resistance to malathion, bendiocarb, and dieldrin and no obvious seasonal changes. In contrast, we detected high frequencies and striking seasonal changes for two kdr mutations associated with resistance to DDT and pyrethroids. In addition, the evaluation of the field populations from all seasons in terms of the combinations of polymorphisms at four resistance-associated mutations did not reveal the presence of insects that are resistant to all pesticides. Results from the morphological analysis displayed a similar pattern for both wings and did not show a clear separation among the samples from the three different seasons. The results of this study have advanced our knowledge of the potential dynamics of insecticide resistance among populations of the Cx. pipiens complex. The implications of these results to the understanding of the evolution of insecticide resistance and the management of resistance in mosquitoes are discussed.
Collapse
Affiliation(s)
- Belgin Gocmen Taskin
- Department of Biology, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Taylan Dogaroglu
- Department of Biology, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Sercan Kilic
- Department of Biology, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Ersin Dogac
- Koycegiz Vocational School, Department of Medicinal and Aromatic Plants, Mugla Sitki Kocman University, Mugla, Turkey
| | - Vatan Taskin
- Department of Biology, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey.
| |
Collapse
|
22
|
Sun H, Tong KP, Kasai S, Scott JG. Overcoming super-knock down resistance (super-kdr) mediated resistance: multi-halogenated benzyl pyrethroids are more toxic to super-kdr than kdr house flies. INSECT MOLECULAR BIOLOGY 2016; 25:126-137. [PMID: 26691197 DOI: 10.1111/imb.12206] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Target site insensitivity because of mutations in the voltage-sensitive sodium channel gene (Vssc) is a major mechanism of resistance to pyrethroid insecticides in the house fly, Musca domestica. There are three known Vssc alleles that confer resistance to pyrethroids in the house fly: knock down resistance (kdr; L1014F), super-kdr (M918T + L1014F) and kdr-his (L1014H), but there has been no side-by-side comparison of the resistance levels that they confer. We compared the levels of resistance conferred by the three Vssc alleles in congenic strains to 19 structurally diverse pyrethroids, and compared the full-length Vssc cDNA sequences from each strain. Generally, the levels of resistance conferred were kdr-his < kdr < super-kdr. However, there was significant variation in this pattern, especially for super-kdr, for which both high and low resistance ratios were observed for several pyrethroids. We also examined the levels of resistance in heterozygotes. Resistance in each of the hybrids was generally inherited as an incompletely recessive trait, except for the kdr-his/kdr hybrids, which showed incompletely to completely dominant resistance (ie had resistance levels comparable to kdr homozygotes). The importance of these results to understanding the frequencies of these resistance alleles in natural populations, the evolution of insecticide resistance and resistance management strategies are discussed.
Collapse
Affiliation(s)
- H Sun
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - K P Tong
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| | - S Kasai
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
- Department of Medical Entomology, National Institute of Infectious Diseases, Toyama, Shinjukuku, Tokyo, Japan
| | - J G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| |
Collapse
|
23
|
Scott JG, Yoshimizu MH, Kasai S. Pyrethroid resistance in Culex pipiens mosquitoes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 120:68-76. [PMID: 25987223 DOI: 10.1016/j.pestbp.2014.12.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/13/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
Mosquitoes within the Culex pipiens complex are widely distributed and important in the transmission of many human diseases. Insecticides, pyrethroids in particular, remain a mainstay for control of these important vectors. In this paper we review what is known about the levels, mechanisms and fitness costs of pyrethroid resistance in Cx. pipiens. Pyrethroid resistance in Cx. pipiens is a global problem, and resistance ratios of up to 7000-fold have been found in larvae of field collected mosquitoes. However, there is considerable variation between populations, indicating significant geographic heterogeneity of the resistance. The two major mechanisms of resistance to pyrethroids in Culex are mutations in Vssc (target site insensitivity) and overexpression of cytochrome P450(s) (increased detoxification). The most frequently reported Vssc mutation is L1014F (i.e. kdr), which has been found throughout the world. The L1014S mutation has been found in Cx. p. pallens from Japan and China, and in Cx. p. pipiens from China. The L1014C mutation has only been reported for Cx. p. pipens molestus from China and the V1016G mutation has only been reported from Saudi Arabia. Studies on the P450s of Cx. pipiens have identified several that are overexpressed (measured as transcript levels) in pyrethroid resistant strains. CYP9M10 is consistently overexpressed in pyrethroid resistant Cx. pipiens from at least seven countries, suggesting this P450 might be of global importance in resistance. Both CYP9M10-mediated pyrethroid resistance and kdr have fitness costs in the absence of insecticides under certain environmental conditions. Research needs and future directions are discussed.
Collapse
Affiliation(s)
- Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, USA.
| | - Melissa Hardstone Yoshimizu
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, USA; California Department of Public Health, Vector-Borne Disease Section, 850 Marina Bay Pkwy, Richmond, California, USA
| | - Shinji Kasai
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, USA; Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjukuku, Tokyo, Japan
| |
Collapse
|
24
|
Zimmer CT, Maiwald F, Schorn C, Bass C, Ott MC, Nauen R. A de novo transcriptome of European pollen beetle populations and its analysis, with special reference to insecticide action and resistance. INSECT MOLECULAR BIOLOGY 2014; 23:511-26. [PMID: 24707894 DOI: 10.1111/imb.12099] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The pollen beetle Meligethes aeneus is the most important coleopteran pest in European oilseed rape cultivation, annually infesting millions of hectares and responsible for substantial yield losses if not kept under economic damage thresholds. This species is primarily controlled with insecticides but has recently developed high levels of resistance to the pyrethroid class. The aim of the present study was to provide a transcriptomic resource to investigate mechanisms of resistance. cDNA was sequenced on both Roche (Indianapolis, IN, USA) and Illumina (LGC Genomics, Berlin, Germany) platforms, resulting in a total of ∼53 m reads which assembled into 43 396 expressed sequence tags (ESTs). Manual annotation revealed good coverage of genes encoding insecticide target sites and detoxification enzymes. A total of 77 nonredundant cytochrome P450 genes were identified. Mapping of Illumina RNAseq sequences (from susceptible and pyrethroid-resistant strains) against the reference transcriptome identified a cytochrome P450 (CYP6BQ23) as highly overexpressed in pyrethroid resistance strains. Single-nucleotide polymorphism analysis confirmed the presence of a target-site resistance mutation (L1014F) in the voltage-gated sodium channel of one resistant strain. Our results provide new insights into the important genes associated with pyrethroid resistance in M. aeneus. Furthermore, a comprehensive EST resource is provided for future studies on insecticide modes of action and resistance mechanisms in pollen beetle.
Collapse
Affiliation(s)
- C T Zimmer
- University of Hohenheim, Institute of Phytomedicine, Stuttgart, Germany; Bayer CropScience AG, Small Molecules Research, Monheim, Germany; Centre for Sustainable Pest and Disease Management, Rothamsted Research, Harpenden, UK
| | | | | | | | | | | |
Collapse
|
25
|
Fountain T, Duvaux L, Horsburgh G, Reinhardt K, Butlin RK. Human-facilitated metapopulation dynamics in an emerging pest species, Cimex lectularius. Mol Ecol 2014; 23:1071-84. [PMID: 24446663 PMCID: PMC4016754 DOI: 10.1111/mec.12673] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 01/06/2014] [Accepted: 01/13/2014] [Indexed: 12/01/2022]
Abstract
The number and demographic history of colonists can have dramatic consequences for the way in which genetic diversity is distributed and maintained in a metapopulation. The bed bug (Cimex lectularius) is a re-emerging pest species whose close association with humans has led to frequent local extinction and colonization, that is, to metapopulation dynamics. Pest control limits the lifespan of subpopulations, causing frequent local extinctions, and human-facilitated dispersal allows the colonization of empty patches. Founder events often result in drastic reductions in diversity and an increased influence of genetic drift. Coupled with restricted migration, this can lead to rapid population differentiation. We therefore predicted strong population structuring. Here, using 21 newly characterized microsatellite markers and approximate Bayesian computation (ABC), we investigate simplified versions of two classical models of metapopulation dynamics, in a coalescent framework, to estimate the number and genetic composition of founders in the common bed bug. We found very limited diversity within infestations but high degrees of structuring across the city of London, with extreme levels of genetic differentiation between infestations (FST = 0.59). ABC results suggest a common origin of all founders of a given subpopulation and that the numbers of colonists were low, implying that even a single mated female is enough to found a new infestation successfully. These patterns of colonization are close to the predictions of the propagule pool model, where all founders originate from the same parental infestation. These results show that aspects of metapopulation dynamics can be captured in simple models and provide insights that are valuable for the future targeted control of bed bug infestations.
Collapse
Affiliation(s)
- Toby Fountain
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK; Department of Biosciences, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| | | | | | | | | |
Collapse
|
26
|
Scott JG, Leichter CA, Rinkevich FD, Harris SA, Su C, Aberegg LC, Moon R, Geden CJ, Gerry AC, Taylor DB, Byford RL, Watson W, Johnson G, Boxler D, Zurek L. Insecticide resistance in house flies from the United States: resistance levels and frequency of pyrethroid resistance alleles. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2013; 107:377-384. [PMID: 24267700 DOI: 10.1016/j.pestbp.2013.10.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 06/02/2023]
Abstract
Although insecticide resistance is a widespread problem for most insect pests, frequently the assessment of resistance occurs over a limited geographic range. Herein, we report the first widespread survey of insecticide resistance in the USA ever undertaken for the house fly, Musca domestica, a major pest in animal production facilities. The levels of resistance to six different insecticides were determined (using discriminating concentration bioassays) in 10 collections of house flies from dairies in nine different states. In addition, the frequencies of Vssc and CYP6D1 alleles that confer resistance to pyrethroid insecticides were determined for each fly population. Levels of resistance to the six insecticides varied among states and insecticides. Resistance to permethrin was highest overall and most consistent across the states. Resistance to methomyl was relatively consistent, with 65-91% survival in nine of the ten collections. In contrast, resistance to cyfluthrin and pyrethrins + piperonyl butoxide varied considerably (2.9-76% survival). Resistance to imidacloprid was overall modest and showed no signs of increasing relative to collections made in 2004, despite increasing use of this insecticide. The frequency of Vssc alleles that confer pyrethroid resistance was variable between locations. The highest frequencies of kdr, kdr-his and super-kdr were found in Minnesota, North Carolina and Kansas, respectively. In contrast, the New Mexico population had the highest frequency (0.67) of the susceptible allele. The implications of these results to resistance management and to the understanding of the evolution of insecticide resistance are discussed.
Collapse
Affiliation(s)
- Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY 14853 USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rinkevich FD, Hedtke SM, Leichter CA, Harris SA, Su C, Brady SG, Taskin V, Qiu X, Scott JG. Multiple origins of kdr-type resistance in the house fly, Musca domestica. PLoS One 2012; 7:e52761. [PMID: 23285178 PMCID: PMC3532202 DOI: 10.1371/journal.pone.0052761] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/22/2012] [Indexed: 11/19/2022] Open
Abstract
Insecticide resistance is a model phenotype that can be used to investigate evolutionary processes underlying the spread of alleles across a global landscape, while offering valuable insights into solving the problems that resistant pests present to human health and agriculture. Pyrethroids are one of the most widely used classes of insecticides world-wide and they exert their toxic effects through interactions with the voltage-sensitive sodium channel (Vssc). Specific mutations in Vssc (kdr, kdr-his and super-kdr) are known to cause resistance to pyrethroid insecticides in house flies. In order to determine the number of evolutionary origins of kdr, kdr-his and super-kdr, we sequenced a region of Vssc from house flies collected in the USA, Turkey and China. Our phylogenetic analysis of Vssc unequivocally supports the hypothesis of multiple independent origins of kdr, super-kdr and kdr-his on an unprecedented geographic scale. The implications of these evolutionary processes on pest management are discussed.
Collapse
Affiliation(s)
- Frank D. Rinkevich
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Shannon M. Hedtke
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Cheryl A. Leichter
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Sarah A. Harris
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Cathy Su
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Seán G. Brady
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, D. C., United States of America
| | - Vatan Taskin
- Department of Biology, Faculty of Science, Muğla Sitki Kocman University, Muğla, Turkey
| | - Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jeffrey G. Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Franck P, Siegwart M, Olivares J, Toubon JF, Lavigne C. Multiple origins of the sodium channel kdr mutations in codling moth populations. PLoS One 2012; 7:e43543. [PMID: 22912889 PMCID: PMC3422249 DOI: 10.1371/journal.pone.0043543] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 07/23/2012] [Indexed: 11/18/2022] Open
Abstract
Resistance to insecticides is one interesting example of a rapid current evolutionary change. DNA variability in the voltage-gated sodium channel gene (trans-membrane segments 5 and 6 in domain II) was investigated in order to estimate resistance evolution to pyrethroid in codling moth populations at the World level. DNA variation among 38 sequences revealed a unique kdr mutation (L1014F) involved in pyrethroid resistance in this gene region, which likely resulted from several convergent substitutions. The analysis of codling moth samples from 52 apple orchards in 19 countries using a simple PCR-RFLP confirmed that this kdr mutation is almost worldwide distributed. The proportions of kdr mutation were negatively correlated with the annual temperatures in the sampled regions. Homozygous kdr genotypes in the French apple orchards showed lower P450 cytochrome oxidase activities than other genotypes. The most plausible interpretation of the geographic distribution of kdr in codling moth populations is that it has both multiple independent origins and a spreading limited by low temperature and negative interaction with the presence of alternative resistance mechanisms to pyrethroid in the populations.
Collapse
Affiliation(s)
- Pierre Franck
- INRA, UR1115 Plantes et Systèmes de culture Horticoles, Avignon, France.
| | | | | | | | | |
Collapse
|
29
|
Geden CJ, Devine GJ. Pyriproxyfen and house flies (Diptera: Muscidae): effects of direct exposure and autodissemination to larval habitats. JOURNAL OF MEDICAL ENTOMOLOGY 2012; 49:606-613. [PMID: 22679868 DOI: 10.1603/me11226] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Pyriproxyfen is an insect growth regulator with juvenile hormone-like activity that has potential uses for dipterans that are difficult to manage with conventional insecticides, such as house flies (Musca domestica L.). The objectives of this study were to determine the efficacy of this insect growth regulator against house flies using variety of delivery systems and target life stages, including an evaluation of the potential for autodissemination by female flies to larval development sites. Adult female house flies exposed to filter paper (3.75% active ingredient) or sugar treated with pyriproxyfen (0.01-0.1%) produced significantly fewer F1 pupae than untreated flies. Adult emergence from pupae was unaffected. In contrast, treatment of larval rearing medium with 0.35 ml/cm2 of a 12 mg pyriproxyfen/liter preparation had no effect on the number of pupae developing from eggs but markedly inhibited adult emergence from those pupae. There was little difference in susceptibility between an insecticide-susceptible and a wild strain of house fly. The LC50 for inhibiting fly emergence of dust formulations in diatomaceous earth incorporating commercial pyriproxyfen products ranged from 8 to 26 mg/liter, with little difference among products. Compared with untreated flies, significantly fewer pupae were produced at concentrations > 0.5% and no adults were produced at concentrations > 0.05% pyriproxyfen. When gravid females were exposed for 1 h to treated fabric (6 mg pyriproxyfen/cm2) and allowed to oviposit in rearing media containing eggs, sufficient pyriproxyfen was autodisseminated to reduce adult emergence from those eggs by > 99%. Intermittent contact with treated fabric over 2 d reduced adult emergence by 63-76%.
Collapse
Affiliation(s)
- Christopher J Geden
- USDA-ARS, Center for Medical, Agricultural and Veterinary Entomology, 1600 SW 23rd Drive, Gainesville, FL 32608, USA.
| | | |
Collapse
|
30
|
Taşkın V, Başkurt S, Doğaç E, Taşkin BG. Frequencies of pyrethroid resistance-associated mutations of Vssc1 and CYP6D1 in field populations of Musca domestica L. in Turkey. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2011; 36:239-247. [PMID: 22129395 DOI: 10.1111/j.1948-7134.2011.00164.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
House flies were collected from 16 different provinces in the Aegean and Mediterranean regions of Turkey, and the frequencies of pyrethroid resistance-associated mutations in Vssc1 and CYP6D1 in these field-collected populations were studied. Although there is no organized resistance management program for house fly control in Turkey, it is known that different groups of insecticides, including pyrethroids, are used. The frequencies of both Vssc1 and CYP6D1 alleles were weighted toward the susceptibles, with Vssc1-susceptible alleles having higher frequencies in both regions (0.75 in Aegean and 0.69 in Mediterranean populations) than CYP6D1-susceptible alleles (0.65 in Aegean and 0.56 in Mediterranean populations). The frequencies of kdr-his alleles were higher than the frequencies of kdr alleles in these populations. While the frequencies of kdr-his alleles were close to each other in the Aegean (0.23) and Mediterranean (0.17) populations, the frequencies of kdr alleles remarkably differed in these two regions, with values of 0.02 and 0.14, respectively. In contrast to Europe, Asia, and the U.S.A., no super-kdr allele was detected in the samples from both regions. We identified six and eight different Vssc1+CYP6D1 genotype classes in the Aegean and Mediterranean regions, respectively. The three most common genotype classes in the regions were susceptible Vssc1 with heterozygous CYP6D1v1 (29%), sus/kdr-his1 with heterozygous CYP6D1v1 (23%), and susceptible Vssc1 with CYP6D1 (22%). The total frequencies of these three most common genotype classes (approximately 75%) obtained in our study were very close to the value obtained in Florida in a previous study, which was related by the similarity of temperature patterns between Florida and the corresponding regions of Turkey. This may reflect the lack of overwintering fitness cost associated with resistance alleles in both climates.
Collapse
Affiliation(s)
- Vatan Taşkın
- Department of Biology, Faculty of Science, Muğla University, 48000 Kötekli, Muğla, Turkey.
| | | | | | | |
Collapse
|
31
|
Miyo T. Population model of fluctuations in organophosphate resistance of Drosophila melanogaster: Roles of a mutated acetylcholinesterase and a cytochrome P450. RUSS J ECOL+ 2011. [DOI: 10.1134/s1067413611060178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Olafson PU, Pitzer JB, Kaufman PE. Identification of a mutation associated with permethrin resistance in the para-type sodium channel of the stable fly (Diptera: Muscidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2011; 104:250-257. [PMID: 21404865 DOI: 10.1603/ec10307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The insect sodium channel is of particular interest for evaluating resistance to pyrethroids because it is the target molecule for this major class of neurotoxic insecticides. The stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), sodium channel coding sequence representing domains IS6 through IVS6 was isolated, and the sequence encoding domain II was compared among individuals of a laboratory strain selected for resistance to permethrin and the unselected, parental generation. A point mutation resulting in a leucine-to-histidine amino acid change was identified (Leul014His), and its location corresponded with that observed for knockdown resistance (kdr) mutations in other insects. As a result, the allele was designated kdr-his. A molecular assay was developed to assess the frequency of this mutation in genomic DNA of individual stable flies from the laboratory selections, which provided further evidence that the kdr-his allele accounts for the observed level ofpermethrin resistance in the selected strain. The assay was then used to evaluate the frequency of the mutation from five field-collected populations originating from three horse farms near Ocala, FL; one horse farm near Gainesville, FL; and one dairy farm near Hague, FL. Frequency of the kdr-his allele ranged from 0.46 to 0.78, supporting further investigation of allele prevalence throughout the stable fly season and in response to field insecticide application.
Collapse
Affiliation(s)
- Pia U Olafson
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory, 2700 Fredericksburg Rd., Kerrville, TX 78028, USA.
| | | | | |
Collapse
|
33
|
Brooke BD, Koekemoer LL. Major effect genes or loose confederations? The development of insecticide resistance in the malaria vector Anopheles gambiae. Parasit Vectors 2010; 3:74. [PMID: 20716346 PMCID: PMC2930636 DOI: 10.1186/1756-3305-3-74] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 08/17/2010] [Indexed: 11/10/2022] Open
Abstract
Insecticide use in public health and agriculture presents a dramatic adaptive challenge to target and non-target insect populations. The rapid development of genetically modulated resistance to insecticides is postulated to develop in two distinct ways: By selection for single major effect genes or by selection for loose confederations in which several factors, not normally associated with each other, inadvertently combine their effects to produce resistance phenotypes. Insecticide resistance is a common occurrence and has been intensively studied in the major malaria vector Anopheles gambiae, providing a useful model for examining how insecticide resistance develops and what pleiotropic effects are likely to emerge as a consequence of resistance. As malaria vector control becomes increasingly reliant on successfully managing insecticide resistance, the characterisation of resistance mechanisms and their pleiotropic effects becomes increasingly important.
Collapse
Affiliation(s)
- Basil D Brooke
- Malaria Entomology Research Unit, School of Pathology of the University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa.
| | | |
Collapse
|
34
|
Miyo T, Oguma Y. Contributions of three-site mutations in acetylcholinesterase and cytochrome P450 to genetic variation in susceptibility to organophosphate insecticides within a natural population of Drosophila melanogaster. POPUL ECOL 2009. [DOI: 10.1007/s10144-009-0157-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Karunker I, Benting J, Lueke B, Ponge T, Nauen R, Roditakis E, Vontas J, Gorman K, Denholm I, Morin S. Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:634-644. [PMID: 18510975 DOI: 10.1016/j.ibmb.2008.03.008] [Citation(s) in RCA: 250] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 03/20/2008] [Accepted: 03/21/2008] [Indexed: 05/26/2023]
Abstract
The two most damaging biotypes of Bemisia tabaci, B and Q, have both evolved strong resistance to the neonicotinoid insecticide imidacloprid. The major mechanism in all samples investigated so far appeared to be enhanced detoxification by cytochrome P450s monooxygenases (P450s). In this study, a polymerase chain reaction (PCR) technology using degenerate primers based on conserved P450 helix I and heme-binding regions was employed to identify P450 cDNA sequences in B. tabaci that might be involved in imidacloprid resistance. Eleven distinct P450 cDNA sequences were isolated and classified as members of the CYP4 or CYP6 families. The mRNA expression levels of all 11 genes were compared by real-time quantitative RT-PCR across nine B and Q field-derived strains of B. tabaci showing strong resistance, moderate resistance or susceptibility to imidacloprid. We found that constitutive over-expression (up to approximately 17-fold) of a single P450 gene, CYP6CM1, was tightly related to imidacloprid resistance in both the B and Q biotypes. Next, we identified three single-nucleotide polymorphic (SNP) markers in the intron region of CYP6CM1 that discriminate between the resistant and susceptible Q-biotype CYP6CM1 alleles (r-Q and s-Q, respectively), and used a heterogeneous strain to test for association between r-Q and resistance. While survivors of a low imidacloprid dose carried both the r-Q and s-Q alleles, approximately 95% of the survivors of a high imidacloprid dose carried only the r-Q allele. Together with previous evidence, the results reported here identify enhanced activity of P450s as the major mechanism of imidacloprid resistance in B. tabaci, and the CYP6CM1 gene as a leading target for DNA-based screening for resistance to imidacloprid and possibly other neonicotinoids in field populations.
Collapse
Affiliation(s)
- Iris Karunker
- Department of Entomology, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|