1
|
Wang Y, Xu Y, Wei J, Zhang J, Wu M, Li G, Yang L. Sclerotinia sclerotiorum Agglutinin Modulates Sclerotial Development, Pathogenicity and Response to Abiotic and Biotic Stresses in Different Manners. J Fungi (Basel) 2023; 9:737. [PMID: 37504726 PMCID: PMC10381867 DOI: 10.3390/jof9070737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Sclerotinia sclerotiorum is an important plant pathogenic fungus of many crops. Our previous study identified the S. sclerotiorum agglutinin (SSA) that can be partially degraded by the serine protease CmSp1 from the mycoparasite Coniothyrium minitans. However, the biological functions of SSA in the pathogenicity of S. sclerotiorum and in its response to infection by C. minitans, as well as to environmental stresses, remain unknown. In this study, SSA disruption and complementary mutants were generated for characterization of its biological functions. Both the wild-type (WT) of S. sclerotiorum and the mutants were compared for growth and sclerotial formation on potato dextrose agar (PDA) and autoclaved carrot slices (ACS), for pathogenicity on oilseed rape, as well as for susceptibility to chemical stresses (NaCl, KCl, CaCl2, sorbitol, mannitol, sucrose, sodium dodecyl sulfate, H2O2) and to the mycoparasitism of C. minitans. The disruption mutants (ΔSSA-175, ΔSSA-178, ΔSSA-225) did not differ from the WT and the complementary mutant ΔSSA-178C in mycelial growth. However, compared to the WT and ΔSSA-178C, the disruption mutants formed immature sclerotia on PDA, and produced less but larger sclerotia on ACS; they became less sensitive to the eight investigated chemical stresses, but more aggressive in infecting leaves of oilseed rape, and more susceptible to mycoparasitism by C. minitans. These results suggest that SSA positively regulates sclerotial development and resistance to C. minitans mycoparasitism, but negatively regulates pathogenicity and resistance to chemical stresses.
Collapse
Affiliation(s)
- Yongchun Wang
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuping Xu
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinfeng Wei
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Osterne VJS, Oliveira MV, De Schutter K, Serna S, Reichardt NC, Smagghe G, Cavada BS, Van Damme EJM, Nascimento KS. A galactoside-specific Dalbergieae legume lectin from seeds of Vataireopsis araroba (Aguiar) Ducke. Glycoconj J 2023; 40:85-95. [PMID: 36287345 DOI: 10.1007/s10719-022-10082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022]
Abstract
The Dalbergieae lectin group encompasses several lectins with significant differences in their carbohydrate specificities and biological properties. The current work reports on the purification and characterization of a GalNAc/Gal-specific lectin from Vataireopsis araroba (Aguiar) Ducke, designated as VaL. The lectin was purified from the seeds in a single step using guar gum affinity chromatography. The lectin migrated as a single band of about 35 kDa on SDS-PAGE and, in native conditions, occurs as a homodimer. The purified lectin is stable at temperatures up to 60 °C and in a pH range from 7 to 8 and requires divalent cations for its activity. Sugar-inhibition assays demonstrate the lectin specificity towards N-acetyl-D-galactosamine, D-galactose and related sugars. Furthermore, glycan array analyses show that VaL interacts preferentially with glycans containing terminal GalNAc/Galβ1-4GlcNAc. Biological activity assays were performed using three insect cell lines: CF1 midgut cells from the spruce budworm Choristoneura fumiferana, S2 embryo cells from the fruit fly Drosophila melanogaster, and GutAW midgut cells from the corn earworm Helicoverpa zea. In vitro assays indicated a biostatic effect for VaL on CF1 cells, but not on S2 and GutAW cells. The lectin presented a biostatic effect by reducing the cell growth and inducing cell agglutination, suggesting an interaction with glycans on the cell surface. VaL has been characterized as a galactoside-specific lectin of the Dalbergieae tribe, with sequence similarity to lectins from Vatairea and Arachis.
Collapse
Affiliation(s)
- Vinicius J S Osterne
- Laboratory for Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Messias V Oliveira
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60455-760, Fortaleza, Brazil
| | - Kristof De Schutter
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, 9000, Ghent, Belgium
| | - Sonia Serna
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, 20014, San Sebastian, Spain
| | - Niels-Christian Reichardt
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, 20014, San Sebastian, Spain
- CIBER-BBN, 20009, San Sebastian, Spain
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, 9000, Ghent, Belgium
| | - Benildo S Cavada
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60455-760, Fortaleza, Brazil
| | - Els J M Van Damme
- Laboratory for Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000, Ghent, Belgium.
| | - Kyria Santiago Nascimento
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60455-760, Fortaleza, Brazil.
| |
Collapse
|
3
|
Khoobdel M, Rahimi V, Ebadollahi A, Krutmuang P. Evaluation of the Potential of a Lectin Extracted from Polygonum persicaria L. as a Biorational Agent against Sitophilus oryzae L. Molecules 2022; 27:molecules27030793. [PMID: 35164055 PMCID: PMC8838870 DOI: 10.3390/molecules27030793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/23/2022] Open
Abstract
Rice weevil, Sitophilus oryzae L. (Coleoptera: Curculionidae), is one of the most destructive stored-product pests that is resistant to a wide range of chemical insecticides. In the present study, we investigated whether a lectin extracted from Polygonum persicaria L. (PPA) can be used as a biorational agent to control such insect pests. Along with the lethal digestive assay, the sub-lethal insecticidal activities of PPA, including the effects on digestive, detoxifying, and antioxidant enzyme activities, were evaluated against S. oryzae adults. The effect of feeding a diet containing PPA and carob extract as a food attractant on the mortality of S. oryzae adults was also investigated. Feeding on the diet containing PPA resulted in a significant mortality of S. oryzae adults with a LC50 (Lethal Concentration to kill 50% of insects) of 3.68% (w/w). The activity of digestive enzymes, including α-amylase, α-glucosidase, TAG-lipase, trypsin, chymotrypsin, elastase, and carboxy- and aminopeptidase, were decreased by the sub-lethal concentration of PPA. Detoxifying and antioxidant enzymes, including esterase, superoxide dismutase, catalase, glutathione-S-transferase, ascorbate peroxidase, glucose 6-phosphate dehydrogenase, and malondialdehyde, were activated in adults affected by PPA. These findings indicated that PPA, in addition to causing digestive disorders, leads to oxidative stress in S. oryzae. The presence of carob extract had no effect on the PPA-induced mortality of the insect. According to the results of the present study, PPA has promising insecticidal efficiency against S. oryzae. In addition, the usage of PPA with a food attractant carob extract in bait traps can be recommended as a new biorational formulation in S. oryzae management.
Collapse
Affiliation(s)
- Mehdi Khoobdel
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran;
| | - Vahid Rahimi
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran;
- Correspondence: (V.R.); Iran; (A.E.); (P.K.)
| | - Asgar Ebadollahi
- Department of Plant Sciences, Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 5697194781, Iran
- Correspondence: (V.R.); Iran; (A.E.); (P.K.)
| | - Patcharin Krutmuang
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (V.R.); Iran; (A.E.); (P.K.)
| |
Collapse
|
4
|
Berestetskiy A, Hu Q. The Chemical Ecology Approach to Reveal Fungal Metabolites for Arthropod Pest Management. Microorganisms 2021; 9:1379. [PMID: 34202923 PMCID: PMC8307166 DOI: 10.3390/microorganisms9071379] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Biorational insecticides (for instance, avermectins, spinosins, azadirachtin, and afidopyropen) of natural origin are increasingly being used in agriculture. The review considers the chemical ecology approach for the search for new compounds with insecticidal properties (entomotoxic, antifeedant, and hormonal) produced by fungi of various ecological groups (entomopathogens, soil saprotrophs, endophytes, phytopathogens, and mushrooms). The literature survey revealed that insecticidal metabolites of entomopathogenic fungi have not been sufficiently studied, and most of the well-characterized compounds show moderate insecticidal activity. The greatest number of substances with insecticidal properties was found to be produced by soil fungi, mainly from the genera Aspergillus and Penicillium. Metabolites with insecticidal and antifeedant properties were also found in endophytic and phytopathogenic fungi. It was noted that insect pests of stored products are mostly low sensitive to mycotoxins. Mushrooms were found to be promising producers of antifeedant compounds as well as insecticidal proteins. The expansion of the number of substances with insecticidal properties detected in prospective fungal species is possible by mining fungal genomes for secondary metabolite gene clusters and secreted proteins with their subsequent activation by various methods. The efficacy of these studies can be increased with high-throughput techniques of extraction of fungal metabolites and their analysis by various methods of chromatography and mass spectrometry.
Collapse
Affiliation(s)
| | - Qiongbo Hu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
5
|
Concanavalin A Toxicity Towards Potato Psyllid and Apoptosis Induction in Midgut Cells. INSECTS 2020; 11:insects11040243. [PMID: 32295261 PMCID: PMC7240484 DOI: 10.3390/insects11040243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 01/03/2023]
Abstract
Concanavalin A (ConA), a legume lectin, has been drawing increasing attention in recent years concerning its toxicity against insects and its potential application in pest management. In an attempt to evaluate the effect of ConA on potato psyllid (Bactericera cockerelli), an economically important pest of solanaceous crops, the effect of ConA on potato psyllid survival, psyllid gut nuclear morphology, and expression of psyllid caspase genes were evaluated. Our results determined that artificial diet-feeding assays using ConA had deleterious effects on potato psyllids, resulting in significant psyllid mortality following ingestion. We also found that an apoptotic response was induced by ConA in psyllid midgut cells, which was demonstrated by the DNA fragmentation and abnormal nuclear architecture in the midgut cells. Following ConA ingestion, there was also upregulation of caspase genes in the psyllid midguts. Therefore, a key mechanism behind ConA toxicity towards potato psyllid probably involves the induction of apoptosis in midgut cells. This study could provide a better understanding of the mechanisms underlying ConA toxicity in insects and be a stepping stone towards the development of new psyllid control strategies based on plant lectins.
Collapse
|
6
|
Khan F, Kurre D, Suguna K. Crystal structures of a β-trefoil lectin from Entamoeba histolytica in monomeric and a novel disulfide bond-mediated dimeric forms. Glycobiology 2020; 30:474-488. [DOI: 10.1093/glycob/cwaa001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/12/2020] [Accepted: 01/17/2020] [Indexed: 01/02/2023] Open
Abstract
Abstractβ-Trefoil lectins are galactose/N-acetyl galactosamine specific lectins, which are widely distributed across all kingdoms of life and are known to perform several important functions. However, there is no report available on the characterization of these lectins from protozoans. We have performed structural and biophysical studies on a β-trefoil lectin from Entamoeba histolytica (EntTref), which exists as a mixture of monomers and dimers in solution. Further, we have determined the affinities of EntTref for rhamnose, galactose and different galactose-linked sugars. We obtained the crystal structure of EntTref in a sugar-free form (EntTref_apo) and a rhamnose-bound form (EntTref_rham). A novel Cys residue-mediated dimerization was revealed in the crystal structure of EntTref_apo while the structure of EntTref_rham provided the structural basis for the recognition of rhamnose by a β-trefoil lectin for the first time. To the best of our knowledge, this is the only report of the structural, functional and biophysical characterization of a β-trefoil lectin from a protozoan source and the first report of Cys-mediated dimerization in this class of lectins.
Collapse
Affiliation(s)
- Farha Khan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, CV Raman Rd, 560012, India
| | - Devanshu Kurre
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, CV Raman Rd, 560012, India
| | - K Suguna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, CV Raman Rd, 560012, India
| |
Collapse
|
7
|
CNL- Clitocybe nebularis Lectin-The Fungal GalNAcβ1-4GlcNAc-Binding Lectin. Molecules 2019; 24:molecules24234204. [PMID: 31756927 PMCID: PMC6930499 DOI: 10.3390/molecules24234204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 11/17/2022] Open
Abstract
Clitocybe nebularis lectin (CNL) is present in fruiting bodies of clouded agaric along with several similar isolectins that are all small and stable proteins. It is a beta-trefoil type lectin forming homodimers that are essential for its functionality. It binds specifically N,N′-diacetyllactosediamine (GalNAcβ1-4GlcNAc, LacDiNac) and human blood group A determinant-containing glycan epitopes. Its most probable function is to defend fruiting bodies against predators and parasites. In addition, an endogenous regulatory function is possible for CNL, as indicated by its interaction with fungal protease inhibitors sharing the beta-trefoil fold. CNL is toxic to insects, nematodes and amoebae, as well as to leukemic T-cell lines. Bivalent carbohydrate binding is essential for the toxicity of CNL, against both invertebrates and cancer-derived cell lines. In addition, CNL exhibits potent immunostimulation of human dendritic cells, resulting in a strong T helper cell type 1 response. Based on its unique characteristics, CNL is a promising candidate for applications in human and veterinary medicine as well as in agriculture, for plant protection.
Collapse
|
8
|
Rahimi V, Hajizadeh J, Zibaee A, Sendi JJ. Changes in immune responses of Helicoverpa armigera Hübner followed by feeding on Knotgrass, Polygonum persicaria agglutinin. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21543. [PMID: 30854723 DOI: 10.1002/arch.21543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/22/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
There is no study implying the effect of plant lectins on insect immune elements in both challenged and non-challenged conditions with entomopathogenic agents. Lectins may bind to immune receptors on the surface of insect hemocytes, thus inducing or even disabling common immune functions including hemocyte counts, nodulation/encapsulation, phenoloxidase activity, and synthesis of antimicrobial peptides. In the present study, effect of Polygonum persicaria L. agglutinin (PPA) on immune responses of Helicoverpa armigera Hübner was investigated by feeding artificial diet treated to the larvae. Subsequently hemocyte count and expression of some immune-related genes were considered for analyses. The two groups of larvae including control and PPA-treated (1%) were divided into four subgroups of intact, Tween-80 injected, latex-bead injected and Beauveria bassiana-injected. Except for intact larvae, the highest numbers of total and differential hemocyte counts were recorded 12 hr postinjection, however, the PPA-fed larvae showed a significantly lower hemocyte counts compared to control. The number of nodules in PPA-fed larvae was significantly lower than control, but the injected larvae of both control and PPA showed the highest nodulation 24 hr postinjection. Although the highest activity of phenoloxidase was observed 12 and 24 hr postinjection but its activity significantly decreased in PPA-fed larvae compared to control. Gene expression of antimicrobial peptides including attacin, cecropin, and peptidoglycan receptor proteins were significantly decreased in artificial diet-fed larvae containing PPA and then injected by B. bassiana spores and latex bead compared to control. These results clearly indicate adverse effects of PPA on immune responses in H. armigera.
Collapse
Affiliation(s)
- Vahid Rahimi
- Department of Plant Protection, Faculty of agricultural sciences, University of Guilan, Rasht, Iran
| | - Jalil Hajizadeh
- Department of Plant Protection, Faculty of agricultural sciences, University of Guilan, Rasht, Iran
| | - Arash Zibaee
- Department of Plant Protection, Faculty of agricultural sciences, University of Guilan, Rasht, Iran
| | - Jalal Jalali Sendi
- Department of Plant Protection, Faculty of agricultural sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
9
|
Vanti GL, Katageri IS, Inamdar SR, Hiremathada V, Swamy BM. Potent insect gut binding lectin from Sclerotium rolfsii impart resistance to sucking and chewing type insects in cotton. J Biotechnol 2018; 278:20-27. [DOI: 10.1016/j.jbiotec.2018.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 10/17/2022]
|
10
|
Walski T, De Schutter K, Cappelle K, Van Damme EJM, Smagghe G. Distribution of Glycan Motifs at the Surface of Midgut Cells in the Cotton Leafworm ( Spodoptera littoralis) Demonstrated by Lectin Binding. Front Physiol 2017; 8:1020. [PMID: 29276491 PMCID: PMC5727093 DOI: 10.3389/fphys.2017.01020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/24/2017] [Indexed: 01/06/2023] Open
Abstract
Glycans are involved in many biological phenomena, including signal transduction, cell adhesion, immune response or differentiation. Although a few papers have reported on the role of glycans in the development and proper functioning of the insect midgut, no data are available regarding the localization of the glycan structures on the surface of the cells in the gut of insects. In this paper, we analyzed the spatial distribution of glycans present on the surface of the midgut cells in larvae of the cotton leafworm Spodoptera littoralis, an important agricultural pest insect worldwide. For this purpose, we established primary midgut cell cultures, probed these individual cells that are freely suspended in liquid medium with a selection of seven fluorescently labeled lectins covering a range of different carbohydrate binding specificities [mannose oligomers (GNA and HHA), GalNAc/Gal (RSA and SSA), GlcNAc (WGA and Nictaba) and Neu5Ac(α-2,6)Gal/GalNAc (SNA-I)], and visualized the interaction of these lectins with the different zones of the midgut cells using confocal microscopy. Our analysis focused on the typical differentiated columnar cells with a microvillar brush border at their apical side, which are dominantly present in the Lepidopteran midgut and function in food digestion and absorption, and as well as on the undifferentiated stem cells that are important for midgut development and repair. Confocal microscopy analyses showed that the GalNAc/Gal-binding lectins SSA and RSA and the terminal GlcNAc-recognizing WGA bound preferentially to the apical microvillar zone of the differentiated columnar cells as compared to the basolateral pole. The reverse result was observed for the mannose-binding lectins GNA and HHA, as well as Nictaba that binds preferentially to GlcNAc oligomers. Furthermore, differences in lectin binding to the basal and lateral zones of the cell membranes of the columnar cells were apparent. In the midgut stem cells, GNA and Nictaba bound more strongly to the membrane of these undifferentiated cells compared to the microvillar pole of the columnar cells, while SSA, HHA, WGA, and SNA-I showed stronger binding to the microvilli. Our results indicated that polarization of the midgut cells is also reflected by a specific distribution of glycans, especially between the basal and microvillar pole. The data are discussed in relation to the functioning and development of the insect midgut.
Collapse
Affiliation(s)
- Tomasz Walski
- Department of Crop Protection, Ghent University, Ghent, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | | | - Kaat Cappelle
- Department of Crop Protection, Ghent University, Ghent, Belgium
| | - Els J M Van Damme
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Bleuler-Martinez S, Stutz K, Sieber R, Collot M, Mallet JM, Hengartner M, Schubert M, Varrot A, Künzler M. Dimerization of the fungal defense lectin CCL2 is essential for its toxicity against nematodes. Glycobiology 2017; 27:486-500. [PMID: 27980000 DOI: 10.1093/glycob/cww113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/09/2016] [Indexed: 11/12/2022] Open
Abstract
Lectins are used as defense effector proteins against predators, parasites and pathogens by animal, plant and fungal innate defense systems. These proteins bind to specific glycoepitopes on the cell surfaces and thereby interfere with the proper cellular functions of the various antagonists. The exact cellular toxicity mechanism is in many cases unclear. Lectin CCL2 of the mushroom Coprinopsis cinerea was previously shown to be toxic for Caenorhabditis elegans and Drosophila melanogaster. This toxicity is dependent on a single, high-affinity binding site for the trisaccharide GlcNAc(Fucα1,3)β1,4GlcNAc, which is a hallmark of nematode and insect N-glycan cores. The carbohydrate-binding site is located at an unusual position on the protein surface when compared to other β-trefoil lectins. Here, we show that CCL2 forms a compact dimer in solution and in crystals. Substitution of two amino acid residues at the dimer interface, R18A and F133A, interfered with dimerization of CCL2 and reduced toxicity but left carbohydrate-binding unaffected. These results, together with the positioning of the two carbohydrate-binding sites on the surface of the protein dimer, suggest that crosslinking of N-glycoproteins on the surface of intestinal cells of invertebrates is a crucial step in the mechanism of CCL2-mediated toxicity. Comparisons of the number and positioning of carbohydrate-binding sites among different dimerizing fungal β-trefoil lectins revealed a considerable variability in the carbohydrate-binding patterns of these proteins, which are likely to correlate with their respective functions.
Collapse
Affiliation(s)
| | - Katrin Stutz
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Ramon Sieber
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Mayeul Collot
- Laboratoire des Biomolécules, UPMC Université Paris 06, Ecole Normale Supérieure, Paris, France
| | - Jean-Maurice Mallet
- Laboratoire des Biomolécules, UPMC Université Paris 06, Ecole Normale Supérieure, Paris, France
| | - Michael Hengartner
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Mario Schubert
- Institute of Molecular Biology and Biophysics, ETH Zürich, Schafmattstr. 20, 8093 Zürich, Switzerland.,Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Annabelle Varrot
- CERMAV, UPR5301, CNRS and Université Grenoble Alpes, 38041 Grenoble, France
| | - Markus Künzler
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| |
Collapse
|
12
|
Toxicity, membrane binding and uptake of the Sclerotinia sclerotiorum agglutinin (SSA) in different insect cell lines. In Vitro Cell Dev Biol Anim 2017; 53:691-698. [DOI: 10.1007/s11626-017-0176-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/06/2017] [Indexed: 12/18/2022]
|
13
|
Alborzi Z, Zibaee A, Sendi JJ, Ramzi S. Effects of the Agglutinins Extracted From Rhizoctonia solani (Cantharellales: Ceratobasidiaceae) on Pieris brassicae (Lepidoptera: Pieridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:1132-1140. [PMID: 27034115 DOI: 10.1093/jee/tow043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
Lectins are widespread proteins found in plants, fungi, bacteria, and vertebrates, and they play the critical roles in many physiological functions. Two lectin molecules (namely, RSAI and RSAII) were extracted from Rhizoctonia solani Kuhn and their effects on Pieris brassicae L. larvae were determined by larval survival rate, body mass, nutritional indices, digestive enzyme activities, and caspase-3 gene expression. The highest mortality caused by RSA treatment was recorded up to 80%, the larval weight decreased to 0.05 g and Similarly, RSAs significantly decreased nutritional indices including conversion efficiency of ingested food (ECI), conversion efficiency of digested food (ECD), approximate digestibility (AD), relative consumption rate (RCR), and relative growth rate (RGR) in a dose-dependent manner. Activities of α-amylase and α- and β-glucosidases significantly decreased in the larvae fed with RSA-treated diets. Also, activities of TAG-lipase and proteases significantly reduced after feeding with different concentrations of RSAs. Gene expression analysis of caspase-3 in control and treated larvae revealed significant increment of its expression in the larvae fed with RSAI and RSAII, respectively, 9.52- and 1.47-fold compared to control. These results clearly demonstrated insecticidal effects of R. solani lectins on P. brassicae via several physiological pathways, thus rendering RSA as a good target for furthering our knowledge and suggesting new strategies to overcome pesticide side effects.
Collapse
|
14
|
Juillot S, Cott C, Madl J, Claudinon J, van der Velden NSJ, Künzler M, Thuenauer R, Römer W. Uptake of Marasmius oreades agglutinin disrupts integrin-dependent cell adhesion. Biochim Biophys Acta Gen Subj 2015; 1860:392-401. [PMID: 26546712 PMCID: PMC4717121 DOI: 10.1016/j.bbagen.2015.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/31/2015] [Accepted: 11/03/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND Fruiting body lectins have been proposed to act as effector proteins in the defense of fungi against parasites and predators. The Marasmius oreades agglutinin (MOA) is a lectin from the fairy ring mushroom with specificity for Galα1-3Gal containing carbohydrates. This lectin is composed of an N-terminal carbohydrate-binding domain and a C-terminal dimerization domain. The dimerization domain of MOA shows in addition calcium-dependent cysteine protease activity, similar to the calpain family. METHODS Cell detachment assay, cell viability assay, immunofluorescence, live cell imaging and Western blot using MDCKII cell line. RESULTS In this study, we demonstrate in MDCKII cells that after internalization, MOA protease activity induces profound physiological cellular responses, like cytoskeleton rearrangement, cell detachment and cell death. These changes are preceded by a decrease in FAK phosphorylation and an internalization and degradation of β1-integrin, consistent with a disruption of integrin-dependent cell adhesion signaling. Once internalized, MOA accumulates in late endosomal compartments. CONCLUSION Our results suggest a possible toxic mechanism of MOA, which consists of disturbing the cell adhesion and the cell viability. GENERAL SIGNIFICANCE After being ingested by a predator, MOA might exert a protective role by diminishing host cell integrity.
Collapse
Affiliation(s)
- Samuel Juillot
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, D-79104 Freiburg, Germany
| | - Catherine Cott
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, D-79104 Freiburg, Germany
| | - Josef Madl
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, D-79104 Freiburg, Germany
| | - Julie Claudinon
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, D-79104 Freiburg, Germany
| | | | - Markus Künzler
- Institute of Microbiology, Department of Biology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Roland Thuenauer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, D-79104 Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, D-79104 Freiburg, Germany.
| |
Collapse
|
15
|
Transcriptome analysis of genes involved in defence response in Polyporus umbellatus with Armillaria mellea infection. Sci Rep 2015; 5:16075. [PMID: 26526032 PMCID: PMC4630638 DOI: 10.1038/srep16075] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/08/2015] [Indexed: 12/12/2022] Open
Abstract
Polyporus umbellatus, a species symbiotic with Armillaria mellea and it also exhibits substantial defence response to Armillaria mellea infection. There are no genomics resources databases for understanding the molecular mechanism underlying the infection stress of P. umbellatus. Therefore, we performed a large-scale transcriptome sequencing of this fungus with A. mellea infection using Illumina sequencing technology. The assembly of the clean reads resulted in 120,576 transcripts, including 38,444 unigenes. Additionally, we performed a gene expression profiling analysis upon infection treatment. The results indicated significant differences in the gene expression profiles between the control and the infection group. In total, 10933 genes were identified between the two groups. Based on the differentially expressed genes, a Gene Ontology annotation analysis showed many defence-relevant categories. Meanwhile, the Kyoto Encyclopedia of Genes and Genomes pathway analysis uncovered some important pathways. Furthermore, the expression patterns of 13 putative genes that are involved in defence response resulting from quantitative real-time PCR were consistent with their transcript abundance changes as identified by RNA-seq. The sequenced genes covered a considerable proportion of the P. umbellatus transcriptome, and the expression results may be useful to strengthen the knowledge on the defence response of this fungus defend against Armillaria mellea invasion.
Collapse
|
16
|
Entomotoxic and nematotoxic lectins and protease inhibitors from fungal fruiting bodies. Appl Microbiol Biotechnol 2015; 100:91-111. [DOI: 10.1007/s00253-015-7075-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/04/2015] [Accepted: 10/11/2015] [Indexed: 01/26/2023]
|
17
|
Stutz K, Kaech A, Aebi M, Künzler M, Hengartner MO. Disruption of the C. elegans Intestinal Brush Border by the Fungal Lectin CCL2 Phenocopies Dietary Lectin Toxicity in Mammals. PLoS One 2015; 10:e0129381. [PMID: 26057124 PMCID: PMC4461262 DOI: 10.1371/journal.pone.0129381] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 05/07/2015] [Indexed: 12/20/2022] Open
Abstract
Lectins are non-immunoglobulin carbohydrate-binding proteins without enzymatic activity towards the bound carbohydrates. Many lectins of e.g. plants or fungi have been suggested to act as toxins to defend the host against predators and parasites. We have previously shown that the Coprinopsis cinerea lectin 2 (CCL2), which binds to α1,3-fucosylated N-glycan cores, is toxic to Caenorhabditis elegans and results in developmental delay and premature death. In this study, we investigated the underlying toxicity phenotype at the cellular level by electron and confocal microscopy. We found that CCL2 directly binds to the intestinal apical surface and leads to a highly damaged brush border with loss of microvilli, actin filament depolymerization, and invaginations of the intestinal apical plasma membrane through gaps in the terminal web. We excluded several possible toxicity mechanisms such as internalization and pore-formation, suggesting that CCL2 acts directly on intestinal apical plasma membrane or glycocalyx proteins. A genetic screen for C. elegans mutants resistant to CCL2 generated over a dozen new alleles in bre 1, ger 1, and fut 1, three genes required for the synthesis of the sugar moiety recognized by CCL2. CCL2-induced intestinal brush border defects in C. elegans are similar to the damage observed previously in rats after feeding the dietary lectins wheat germ agglutinin or concanavalin A. The evolutionary conserved reaction of the brush border between mammals and nematodes might allow C. elegans to be exploited as model organism for the study of dietary lectin-induced intestinal pathology in mammals.
Collapse
Affiliation(s)
- Katrin Stutz
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Markus Aebi
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Markus Künzler
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
18
|
Andersson KM, Kumar D, Bentzer J, Friman E, Ahrén D, Tunlid A. Interspecific and host-related gene expression patterns in nematode-trapping fungi. BMC Genomics 2014; 15:968. [PMID: 25384908 PMCID: PMC4237727 DOI: 10.1186/1471-2164-15-968] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 09/24/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Nematode-trapping fungi are soil-living fungi that capture and kill nematodes using special hyphal structures called traps. They display a large diversity of trapping mechanisms and differ in their host preferences. To provide insights into the genetic basis for this variation, we compared the transcriptome expressed by three species of nematode-trapping fungi (Arthrobotrys oligospora, Monacrosporium cionopagum and Arthrobotrys dactyloides, which use adhesive nets, adhesive branches or constricting rings, respectively, to trap nematodes) during infection of two different plant-pathogenic nematode hosts (the root knot nematode Meloidogyne hapla and the sugar beet cyst nematode Heterodera schachtii). RESULTS The divergence in gene expression between the fungi was significantly larger than that related to the nematode species being infected. Transcripts predicted to encode secreted proteins and proteins with unknown function (orphans) were overrepresented among the highly expressed transcripts in all fungi. Genes that were highly expressed in all fungi encoded endopeptidases, such as subtilisins and aspartic proteases; cell-surface proteins containing the carbohydrate-binding domain WSC; stress response proteins; membrane transporters; transcription factors; and transcripts containing the Ricin-B lectin domain. Differentially expressed transcripts among the fungal species encoded various lectins, such as the fungal fruit-body lectin and the D-mannose binding lectin; transcription factors; cell-signaling components; proteins containing a WSC domain; and proteins containing a DUF3129 domain. A small set of transcripts were differentially expressed in infections of different host nematodes, including peptidases, WSC domain proteins, tyrosinases, and small secreted proteins with unknown function. CONCLUSIONS This is the first study on the variation of infection-related gene expression patterns in nematode-trapping fungi infecting different host species. A better understanding of these patterns will facilitate the improvements of these fungi in biological control programs, by providing molecular markers for screening programs and candidates for genetic manipulations of virulence and host preferences.
Collapse
Affiliation(s)
- Karl-Magnus Andersson
- />Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Dharmendra Kumar
- />Department of Genetics and Plant Breeding, College of Agriculture, Narendra Deva University of Agriculture and Technology, Kumarganj, Faizabad, 224229 Uttar Pradesh (U.P.) India
| | - Johan Bentzer
- />Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Eva Friman
- />Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Dag Ahrén
- />Department of Biology, BILS Bioinformatics Infrastructure for Life Sciences, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Anders Tunlid
- />Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, 223 62 Lund, Sweden
| |
Collapse
|
19
|
Roy A, Gupta S, Hess D, Das KP, Das S. Binding of insecticidal lectin Colocasia esculenta tuber agglutinin (CEA) to midgut receptors of Bemisia tabaci and Lipaphis erysimi provides clues to its insecticidal potential. Proteomics 2014; 14:1646-59. [PMID: 24753494 DOI: 10.1002/pmic.201300408] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 03/31/2014] [Accepted: 04/15/2014] [Indexed: 12/12/2022]
Abstract
The insecticidal potential of Galanthus nivalis agglutinin-related lectins against hemipterans has been experimentally proven. However, the basis behind the toxicity of these lectins against hemipterans remains elusive. The present study elucidates the molecular basis behind insecticidal efficacy of Colocasia esculenta tuber agglutinin (CEA) against Bemisia tabaci and Lipaphis erysimi. Confocal microscopic analyses highlighted the binding of 25 kDa stable homodimeric lectin to insect midgut. Ligand blots followed by LC MS/MS analyses identified binding partners of CEA as vacuolar ATP synthase and sarcoplasmic endoplasmic reticulum type Ca(2+) ATPase from B. tabaci, and ATP synthase, heat shock protein 70 and clathrin heavy chain assembly protein from L. erysimi. Internalization of CEA into hemolymph was confirmed by Western blotting. Glycoprotein nature of the receptors was identified through glycospecific staining. Deglycosylation assay indicated the interaction of CEA with its receptors to be probably glycan mediated. Surface plasmon resonance analysis revealed the interaction kinetics between ATP synthase of B. tabaci with CEA. Pathway prediction study based on Drosophila homologs suggested the interaction of CEA with insect receptors that probably led to disruption of cellular processes causing growth retardation and loss of fecundity of target insects. Thus, the present findings strengthen our current understanding of the entomotoxic potentiality of CEA, which will facilitate its future biotechnological applications.
Collapse
Affiliation(s)
- Amit Roy
- Division of Plant Biology, Bose Institute, Centenary Campus, Kankurgachi, Kolkata, West Bengal, India
| | | | | | | | | |
Collapse
|
20
|
Sclerotium rolfsii lectin exerts insecticidal activity on Spodoptera litura larvae by binding to membrane proteins of midgut epithelial cells and triggering caspase-3-dependent apoptosis. Toxicon 2014; 78:47-57. [DOI: 10.1016/j.toxicon.2013.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/15/2013] [Accepted: 11/20/2013] [Indexed: 11/24/2022]
|
21
|
Sprawka I, Goławska S, Parzych T, Goławski A, Czerniewicz P, Sytykiewicz H. Mechanism of entomotoxicity of the Concanavalin A in Rhopalosiphum padi (Hemiptera: Aphididae). JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:ieu094. [PMID: 25525100 PMCID: PMC5634058 DOI: 10.1093/jisesa/ieu094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/31/2013] [Indexed: 06/04/2023]
Abstract
The toxicity effect of Concanavalin A (Canavalia ensiformis lectin, ConA) to bird cherry-oat aphid, Rhopalosiphum padi L. (Hemiptera: Aphididae), was investigated in the laboratory by using artificial diets containing ConA concentrations. Bird cherry-oat aphid performance was affected by the presence of Con A in artificial diets. The lectin added into the liquid diet increased the prereproductive period, mortality, and the average time of generation development (T) and decreased fecundity and the intrinsic rate of natural increase (rm). In attempt to unravel the mode of action of ConA, the interaction of the lectin with insect gut and the effect of ConA on feeding behavior were investigated. Extract of gut of treated grain aphid demonstrated DNA fragmentation, and this was accompanied with an increase in caspase 3 activity. Moreover, addition of ConA to the sucrose-agarose gels reduced salivation and passive ingestion of fluids from the gel. The results indicate that the insecticidal activity of ConA on R. padi may involve effects on death of the gut epithelial cells and effects on feeding behavior. This can be employed to create plants that are resistant to aphids.
Collapse
Affiliation(s)
- Iwona Sprawka
- Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, ul. Prusa 12, 08-110 Siedlce, Poland
| | - Sylwia Goławska
- Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, ul. Prusa 12, 08-110 Siedlce, Poland
| | - Tina Parzych
- Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, ul. Prusa 12, 08-110 Siedlce, Poland
| | - Artur Goławski
- Department of Zoology, Siedlce University of Natural Sciences and Humanities, ul. Prusa 12, 08-110 Siedlce, Poland
| | - Paweł Czerniewicz
- Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, ul. Prusa 12, 08-110 Siedlce, Poland
| | - Hubert Sytykiewicz
- Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, ul. Prusa 12, 08-110 Siedlce, Poland
| |
Collapse
|
22
|
Ramzi S, Sahragard A, Sendi JJ, Aalami A. Effects of an extracted lectin from Citrullus colocynthis L. (Cucurbitaceae) on survival, digestion and energy reserves of Ectomyelois ceratoniae Zeller (Lepidoptera: Pyralidae). Front Physiol 2013; 4:328. [PMID: 24273515 PMCID: PMC3824156 DOI: 10.3389/fphys.2013.00328] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/22/2013] [Indexed: 12/17/2022] Open
Abstract
Lectins are the heterogeneous proteins in plants that serve as storage proteins via defensive mechanisms against herbivores. In the current study, a lectin was extracted and purified from seeds of Citrullus colocynthis by Sepharose 4B-Galactose and DEAE-cellulose fast flow chromatographies. Different concentrations of the lectin were added to artificial diet of Ectomyelois ceratoniae larvae finding out its effect on some biological parameters, digestive physiology and amount of storage macromolecules. It was found that CCA (C. colocynthis Agglutinin) increased life span from 23.44 days in control to 28.59 days in the treated individuals. Survival of larvae on control and CCA diets were 93.3 and 66.6%, respectively. Different concentrations of CCA significantly affected α-amylase and general proteolytic activities except for TAG-lipase activity. Activities of all specific proteases decreased when larvae were fed on different concentrations of CCA except for aminopeptidase. Meanwhile, amount of storage macromolecules in the larvae fed on different concentrations of CCA statistically decreased vs. control. These results demonstrated that CCA could intervene in physiology of E. ceratoniae and survival of larvae. Therefore, it can be taken into consideration in IPM of the pest through plant breeding programs.
Collapse
Affiliation(s)
- Samar Ramzi
- Department of Plant Protection, Faculty of Agricultural Science, University of Guilan Rasht, Iran
| | | | | | | |
Collapse
|
23
|
Fungal lectins: structure, function and potential applications. Curr Opin Struct Biol 2013; 23:678-85. [DOI: 10.1016/j.sbi.2013.07.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/18/2013] [Accepted: 07/11/2013] [Indexed: 11/20/2022]
|
24
|
Hamshou M, Van Damme EJM, Caccia S, Cappelle K, Vandenborre G, Ghesquière B, Gevaert K, Smagghe G. High entomotoxicity and mechanism of the fungal GalNAc/Gal-specific Rhizoctonia solani lectin in pest insects. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:295-305. [PMID: 23291362 DOI: 10.1016/j.jinsphys.2012.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/21/2012] [Accepted: 12/24/2012] [Indexed: 05/24/2023]
Abstract
Whole insect assays where Rhizoctonia solani agglutinin (RSA) was fed to larval stages of the cotton leaf-worm Spodoptera littoralis and the pea aphid Acyrthosiphon pisum demonstrated a high concentration-dependent entomotoxicity, suggesting that this GalNAc/Gal-specific fungal lectin might be a good control agent for different pest insects. RSA at 10 mg/g in the solid diet of 2nd-instar caterpillars caused 84% weight reduction after 8 days with none of the caterpillars reaching the 4th-instar stage. In sucking aphids, 50% mortality was achieved after 3 days with 9 μM of RSA in the liquid diet. Feeding of FITC-labeled RSA to both insect pest species revealed strong lectin binding at the apical/luminal side of the midgut epithelium with the brush border zone, suggesting the insect midgut as a primary insecticide target tissue for RSA. This was also confirmed with cell cultures in vitro, where there was high fluorescence binding at the microvillar zone with primary cultures of larval midgut columnar cells of S. littoralis, and also at the surface with the insect midgut CF-203 cell line without lectin uptake in the midgut cells. In vitro assays using insect midgut CF-203 cells, revealed that RSA was highly toxic with an EC50 of 0.3 μM. Preincubation with GalNAc and saponin indicated that this action of RSA was carbohydrate-binding dependent and happened at the surface of the cells. Intoxicated CF-203 cells showed symptoms of apoptosis as nuclear condensation and DNA fragmentation, and this concurred with an increase of caspase-3/7, -8 and -9 activities. Finally, RSA affinity chromatography of membrane extracts of CF-203 cells followed by LC-MS/MS allowed the identification of 5747 unique peptides, among which four putatively glycosylated membrane proteins that are associated with apoptosis induction, namely Fas-associated factor, Apoptosis-linked gene-2, Neuroglian and CG2076, as potential binding targets for RSA. These data are discussed in relation to the physiological effects of RSA.
Collapse
Affiliation(s)
- Mohamad Hamshou
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Caccia S, Van Damme EJM, De Vos WH, Smagghe G. Mechanism of entomotoxicity of the plant lectin from Hippeastrum hybrid (Amaryllis) in Spodoptera littoralis larvae. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1177-1183. [PMID: 22677323 DOI: 10.1016/j.jinsphys.2012.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 05/26/2012] [Accepted: 05/29/2012] [Indexed: 06/01/2023]
Abstract
Plant lectins have received a lot of attention because of their insecticidal properties. When orally administered in artificial diet or in transgenic plants, lectins provoke a wide range of detrimental effects, including alteration of the digestive enzyme machinery, fecundity drop, reduced feeding, changes in oviposition behavior, growth and development inhibition and mortality. Although many studies reported the entomotoxicity of lectins, only a few of them investigated the mode of action by which lectins exert toxicity. In the present paper we have studied for the first time the insecticidal potential of the plant lectin from Hippeastrum hybrid (Amaryllis) (HHA) bulbs against the larvae of the cotton leafworm (Spodoptera littoralis). Bioassays on neonate larvae showed that this mannose-specific lectin affected larval growth, causing a development retardation and larval weight decrease. Using primary cell cultures from S. littoralis midguts and confocal microscopy we have elucidated FITC-HHA binding and internalization mechanisms. We found that HHA did not exert a toxic effect on S. littoralis midgut cells, but HHA interaction with the brush border of midgut cells interfered with normal nutrient absorption in the S. littoralis midgut, thereby affecting normal larval growth in vivo. This study thus confirms the potential of mannose-specific lectins as pest control agents and sheds light on the mechanism underlying lectin entomotoxicity.
Collapse
Affiliation(s)
- Silvia Caccia
- Department of Crop Protection, Laboratory of Agrozoology, Ghent University, Coupure Links 653, Ghent, Belgium
| | | | | | | |
Collapse
|
26
|
Chougule NP, Bonning BC. Toxins for transgenic resistance to hemipteran pests. Toxins (Basel) 2012; 4:405-29. [PMID: 22822455 PMCID: PMC3398418 DOI: 10.3390/toxins4060405] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 05/16/2012] [Accepted: 05/25/2012] [Indexed: 01/13/2023] Open
Abstract
The sap sucking insects (Hemiptera), which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt) has provided effective plant protection against some insect pests, Bt toxins exhibit little toxicity against sap sucking insects. Indeed, the pest status of some Hemiptera on Bt-transgenic plants has increased in the absence of pesticide application. The increased pest status of numerous hemipteran species, combined with increased prevalence of resistance to chemical insecticides, provides impetus for the development of biologically based, alternative management strategies. Here, we provide an overview of approaches toward transgenic resistance to hemipteran pests.
Collapse
Affiliation(s)
| | - Bryony C. Bonning
- Author to whom correspondence should be addressed; ; Tel.: +1-515-294-1989; Fax: +1-515-294-5957
| |
Collapse
|
27
|
Schubert M, Bleuler-Martinez S, Butschi A, Wälti MA, Egloff P, Stutz K, Yan S, Wilson IBH, Hengartner MO, Aebi M, Allain FHT, Künzler M. Plasticity of the β-trefoil protein fold in the recognition and control of invertebrate predators and parasites by a fungal defence system. PLoS Pathog 2012; 8:e1002706. [PMID: 22615566 PMCID: PMC3355094 DOI: 10.1371/journal.ppat.1002706] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 04/02/2012] [Indexed: 11/29/2022] Open
Abstract
Discrimination between self and non-self is a prerequisite for any defence mechanism; in innate defence, this discrimination is often mediated by lectins recognizing non-self carbohydrate structures and so relies on an arsenal of host lectins with different specificities towards target organism carbohydrate structures. Recently, cytoplasmic lectins isolated from fungal fruiting bodies have been shown to play a role in the defence of multicellular fungi against predators and parasites. Here, we present a novel fruiting body lectin, CCL2, from the ink cap mushroom Coprinopsis cinerea. We demonstrate the toxicity of the lectin towards Caenorhabditis elegans and Drosophila melanogaster and present its NMR solution structure in complex with the trisaccharide, GlcNAcβ1,4[Fucα1,3]GlcNAc, to which it binds with high specificity and affinity in vitro. The structure reveals that the monomeric CCL2 adopts a β-trefoil fold and recognizes the trisaccharide by a single, topologically novel carbohydrate-binding site. Site-directed mutagenesis of CCL2 and identification of C. elegans mutants resistant to this lectin show that its nematotoxicity is mediated by binding to α1,3-fucosylated N-glycan core structures of nematode glycoproteins; feeding with fluorescently labeled CCL2 demonstrates that these target glycoproteins localize to the C. elegans intestine. Since the identified glycoepitope is characteristic for invertebrates but absent from fungi, our data show that the defence function of fruiting body lectins is based on the specific recognition of non-self carbohydrate structures. The trisaccharide specifically recognized by CCL2 is a key carbohydrate determinant of pollen and insect venom allergens implying this particular glycoepitope is targeted by both fungal defence and mammalian immune systems. In summary, our results demonstrate how the plasticity of a common protein fold can contribute to the recognition and control of antagonists by an innate defence mechanism, whereby the monovalency of the lectin for its ligand implies a novel mechanism of lectin-mediated toxicity.
Collapse
Affiliation(s)
- Mario Schubert
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | | | - Alex Butschi
- Institute of Molecular Life Sciences, University of Zürich, Switzerland
| | | | - Pascal Egloff
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Katrin Stutz
- Institute of Molecular Life Sciences, University of Zürich, Switzerland
| | - Shi Yan
- Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Iain B. H. Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | | | - Markus Aebi
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | - Markus Künzler
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
28
|
Hamshou M, Van Damme EJM, Vandenborre G, Ghesquière B, Trooskens G, Gevaert K, Smagghe G. GalNAc/Gal-binding Rhizoctonia solani agglutinin has antiproliferative activity in Drosophila melanogaster S2 cells via MAPK and JAK/STAT signaling. PLoS One 2012; 7:e33680. [PMID: 22529896 PMCID: PMC3329507 DOI: 10.1371/journal.pone.0033680] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/15/2012] [Indexed: 12/16/2022] Open
Abstract
Rhizoctonia solani agglutinin, further referred to as RSA, is a lectin isolated from the plant pathogenic fungus Rhizoctonia solani. Previously, we reported a high entomotoxic activity of RSA towards the cotton leafworm Spodoptera littoralis. To better understand the mechanism of action of RSA, Drosophila melanogaster Schneider S2 cells were treated with different concentrations of the lectin and FITC-labeled RSA binding was examined using confocal fluorescence microscopy. RSA has antiproliferative activity with a median effect concentration (EC(50)) of 0.35 µM. In addition, the lectin was typically bound to the cell surface but not internalized. In contrast, the N-acetylglucosamine-binding lectin WGA and the galactose-binding lectin PNA, which were both also inhibitory for S2 cell proliferation, were internalized whereas the mannose-binding lectin GNA did not show any activity on these cells, although it was internalized. Extracted DNA and nuclei from S2 cells treated with RSA were not different from untreated cells, confirming inhibition of proliferation without apoptosis. Pre-incubation of RSA with N-acetylgalactosamine clearly inhibited the antiproliferative activity by RSA in S2 cells, demonstrating the importance of carbohydrate binding. Similarly, the use of MEK and JAK inhibitors reduced the activity of RSA. Finally, RSA affinity chromatography of membrane proteins from S2 cells allowed the identification of several cell surface receptors involved in both signaling transduction pathways.
Collapse
Affiliation(s)
- Mohamad Hamshou
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Els J. M. Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Gianni Vandenborre
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Bart Ghesquière
- Department of Medical Protein Research, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Geert Trooskens
- Department of Mathematical Modelling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
29
|
De Geyter E, Smagghe G, Rahbé Y, Geelen D. Triterpene saponins of Quillaja saponaria show strong aphicidal and deterrent activity against the pea aphid Acyrthosiphon pisum. PEST MANAGEMENT SCIENCE 2012; 68:164-9. [PMID: 21717567 DOI: 10.1002/ps.2235] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/17/2011] [Accepted: 05/18/2011] [Indexed: 05/14/2023]
Abstract
BACKGROUND Saponins are a class of secondary plant metabolites consisting of a sugar moiety glycosidically linked to a hydrophobic aglycone (sapogenin) that often possess insecticidal activities. Four saponins were selected: two triterpene saponins, Q. saponaria saponins and aescin, and two steroidal saponins, digitonin and diosgenin. Their effects were investigated on an important pest species and a model piercing-sucking insect, the pea aphid Acyrthosiphon pisum. The triterpene Q. saponaria saponins bark saponin received special attention because of its high activity. Aphids were challenged by oral and contact exposure to demonstrate aphicidal activities, and in choice experiments to support use as a natural deterrent. RESULTS When aphids were exposed to supplemented artificial diet for 3 days, a strong aphicidal activity was recorded for three of the four saponins, with an LC50 of 0.55 mg mL(-1) for Q. saponaria saponins, 0.62 mg mL(-1) for aescin and 0.45 mg mL(-1) for digitonin. The LT50 values ranged between 1 and 4 days, depending on the dose. For diosgenin, only low toxicity (14%) was scored for concentrations up to 5 mg mL(-1). In choice experiments with treated diet, a deterrence index of 0.97 was scored for Q. saponaria saponins at 1 mg mL(-1). In contrast, direct contact showed no repellent effect. Spraying of faba bean plants with Q. saponaria saponins resulted in an LC50 of 8.2 mg mL(-1). Finally, histological analysis in aphids fed with Q. saponaria saponins demonstrated strong aberrations of the aphid gut epithelium, and exposure of midgut CF-203 cell lines to Q. saponaria saponins in vitro confirmed the cytotoxic effect. CONCLUSIONS The present insect experiments provide strong evidence that saponins, as tested here with triterpene Q. saponaria saponins, can be useful as natural aphicides and deterrents. Furthermore, the insect midgut epithelium is suggested to be a primary target of saponin activity.
Collapse
Affiliation(s)
- Ellen De Geyter
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
30
|
Wohlschlager T, Butschi A, Zurfluh K, Vonesch SC, Auf dem Keller U, Gehrig P, Bleuler-Martinez S, Hengartner MO, Aebi M, Künzler M. Nematotoxicity of Marasmius oreades agglutinin (MOA) depends on glycolipid binding and cysteine protease activity. J Biol Chem 2011; 286:30337-30343. [PMID: 21757752 DOI: 10.1074/jbc.m111.258202] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fruiting body lectins have been proposed to act as effector proteins in the defense of fungi against parasites and predators. The Marasmius oreades agglutinin (MOA) is a Galα1,3Gal/GalNAc-specific lectin from the fairy ring mushroom that consists of an N-terminal ricin B-type lectin domain and a C-terminal dimerization domain. The latter domain shows structural similarity to catalytically active proteins, suggesting that, in addition to its carbohydrate-binding activity, MOA has an enzymatic function. Here, we demonstrate toxicity of MOA toward the model nematode Caenorhabditis elegans. This toxicity depends on binding of MOA to glycosphingolipids of the worm via its lectin domain. We show further that MOA has cysteine protease activity and demonstrate a critical role of this catalytic function in MOA-mediated nematotoxicity. The proteolytic activity of MOA was dependent on high Ca(2+) concentrations and favored by slightly alkaline pH, suggesting that these conditions trigger activation of the toxin at the target location. Our results suggest that MOA is a fungal toxin with intriguing similarities to bacterial binary toxins and has a protective function against fungivorous soil nematodes.
Collapse
Affiliation(s)
| | - Alex Butschi
- Institute of Molecular Life Sciences, University of Zürich, CH-8057 Zürich, CH-8057 Zürich, Switzerland
| | | | - Sibylle C Vonesch
- Institute of Molecular Life Sciences, University of Zürich, CH-8057 Zürich, CH-8057 Zürich, Switzerland
| | | | - Peter Gehrig
- Functional Genomics Center, University and ETH Zürich, CH-8057 Zürich, Switzerland
| | | | - Michael O Hengartner
- Institute of Molecular Life Sciences, University of Zürich, CH-8057 Zürich, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
31
|
Francis F, Jaber K, Colinet F, Portetelle D, Haubruge E. Purification of a new fungal mannose-specific lectin from Penicillium chrysogenum and its aphicidal properties. Fungal Biol 2011; 115:1093-9. [PMID: 22036288 DOI: 10.1016/j.funbio.2011.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 05/16/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
Abstract
Several Ascomycetes fungi are commonly used in bio-industries and provide available industrial residues for lectin extraction to be valuable. A lectin from Penicillium chrysogenum, named PeCL, was purified from a fungal culture using gel-filtration chromatography column. PeCL was found to be a mannose-specific lectin by haemagglutination activity towards rabbit erythrocyte cells and was visualised on SDS-PAGE gel. Purified PeCL fraction was delivered via artificial diet to Myzus persicae aphid and was demonstrated to be aphicidal at 0.1 % with higher toxic efficiency than a known mannose-binding lectin Concanavalin A (ConA). A fast and efficient way to purify PeCL and a potential use in pest control is described.
Collapse
Affiliation(s)
- Frédéric Francis
- Functional & Evolutionary Entomology, Gembloux Ago-Bio Tech, University of Liege, Passage des Déportés 2, B-5030 Gembloux, Belgium.
| | | | | | | | | |
Collapse
|
32
|
Bleuler-Martínez S, Butschi A, Garbani M, Wälti MA, Wohlschlager T, Potthoff E, Sabotiĉ J, Pohleven J, Lüthy P, Hengartner MO, Aebi M, Künzler M. A lectin-mediated resistance of higher fungi against predators and parasites. Mol Ecol 2011; 20:3056-70. [PMID: 21486374 DOI: 10.1111/j.1365-294x.2011.05093.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fruiting body lectins are ubiquitous in higher fungi and characterized by being synthesized in the cytoplasm and up-regulated during sexual development. The function of these lectins is unclear. A lack of phenotype in sexual development upon inactivation of the respective genes argues against a function in this process. We tested a series of characterized fruiting body lectins from different fungi for toxicity towards the nematode Caenorhabditis elegans, the mosquito Aedes aegypti and the amoeba Acanthamoeba castellanii. Most of the fungal lectins were found to be toxic towards at least one of the three target organisms. By altering either the fungal lectin or the glycans of the target organisms, or by including soluble carbohydrate ligands as competitors, we demonstrate that the observed toxicity is dependent on the interaction between the fungal lectins and specific glycans in the target organisms. The toxicity was found to be dose-dependent such that low levels of lectin were no longer toxic but still led to food avoidance by C. elegans. Finally, we show, in an ecologically more relevant scenario, that challenging the vegetative mycelium of Coprinopsis cinerea with the fungal-feeding nematode Aphelenchus avenae induces the expression of the nematotoxic fruiting body lectins CGL1 and CGL2. Based on these findings, we propose that filamentous fungi possess an inducible resistance against predators and parasites mediated by lectins that are specific for glycans of these antagonists.
Collapse
Affiliation(s)
- S Bleuler-Martínez
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8093, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Qi G, Lan N, Ma X, Yu Z, Zhao X. Controlling Myzus persicae with recombinant endophytic fungi Chaetomium globosum expressing Pinellia ternata agglutinin. J Appl Microbiol 2011; 110:1314-22. [DOI: 10.1111/j.1365-2672.2011.04985.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|