1
|
Namias A, Martinez J, Boussou I, Terretaz K, Conner W, Justy F, Makoundou P, Perriat-Sanguinet M, Labbé P, Sicard M, Landmann F, Weill M. Recombination, truncation and horizontal transfer shape the diversity of cytoplasmic incompatibility patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631454. [PMID: 39829853 PMCID: PMC11741271 DOI: 10.1101/2025.01.06.631454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Wolbachia are endosymbiotic bacteria inducing various reproductive manipulations of which cytoplasmic incompatibility (CI) is the most common. CI leads to reduced embryo viability in crosses between males carrying Wolbachia and uninfected females or those carrying an incompatible symbiont strain. In the mosquito Culex pipiens, the Wolbachia wPip causes highly complex crossing patterns. This complexity is linked to the amplification and diversification of the CI causal genes, cidA and cidB, with polymorphism located in the CidA-CidB interaction regions. We previously showed correlations between the identity of gene variants and CI patterns. However, these correlations were limited to specific crosses, and it is still unknown whether cid gene polymorphism in males' and females' Wolbachia can explain and predict the wide range of crossing types observed in C. pipiens. Taking advantage of a new method enabling full-gene acquisition, we sequenced complete cid repertoires from 45 wPip strains collected worldwide. We demonstrated that the extensive diversity of cid genes arises from recombination and horizontal transfers. We uncovered further cidB polymorphism outside the interface regions and strongly correlated with CI patterns. Most importantly, we showed that in every wPip genome, all but one cidB variant are truncated. Truncated cidBs located in palindromes are partially or completely deprived of their deubiquitinase domain, crucial for CI. The identity of the sole full-length cidB variant seems to dictate CI patterns, irrespective of the truncated cidBs present. Truncated CidBs exhibit reduced toxicity and stability in Drosophila cells, which potentially hinders their loading into sperm, essential for CI induction.
Collapse
Affiliation(s)
- Alice Namias
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
- Ecologie Systématique Evolution, IDEEV, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France
| | - Julien Martinez
- MRC-University of Glasgow, Centre for Virus Research, Glasgow, United Kingdom
| | - Iliana Boussou
- CRBM, Université de Montpellier, CNRS, 1919 Route de Mende, 34293 Montpellier, France
| | - Kevin Terretaz
- CRBM, Université de Montpellier, CNRS, 1919 Route de Mende, 34293 Montpellier, France
| | - Will Conner
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Fabienne Justy
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Patrick Makoundou
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | | | - Pierrick Labbé
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Mathieu Sicard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Frederic Landmann
- CRBM, Université de Montpellier, CNRS, 1919 Route de Mende, 34293 Montpellier, France
| | - Mylène Weill
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
2
|
Mayorga-Martino V, Mansurova M, Calla-Quispe E, Ibáñez AJ. Unlocking the Secrets of Insects: The Role of Mass Spectrometry to Understand the Life of Insects. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39679754 DOI: 10.1002/mas.21922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
Chemical signaling is crucial during the insect lifespan, significantly affecting their survival, reproduction, and ecological interactions. Unfortunately, most chemical signals insects use are impossible for humans to perceive directly. Hence, mass spectrometry has become a vital tool by offering vital insight into the underlying chemical and biochemical processes in various variety of insect activities, such as communication, mate recognition, mating behavior, and adaptation (defense/attack mechanisms), among others. Here, we review different mass spectrometry-based strategies used to gain a deeper understanding of the chemicals involved in shaping the complex behaviors among insects and mass spectrometry-based research in insects that have direct impact in global economic activities.
Collapse
Affiliation(s)
- Vanessa Mayorga-Martino
- Institute for Omics Sciences and Applied Biotechnology (ICOBA PUCP), Pontificia Universidad Católica del Perú, Lima, Peru
- Science Department, Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru
| | - Madina Mansurova
- Institute for Omics Sciences and Applied Biotechnology (ICOBA PUCP), Pontificia Universidad Católica del Perú, Lima, Peru
- Science Department, Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru
| | - Erika Calla-Quispe
- Institute for Omics Sciences and Applied Biotechnology (ICOBA PUCP), Pontificia Universidad Católica del Perú, Lima, Peru
| | - Alfredo J Ibáñez
- Institute for Omics Sciences and Applied Biotechnology (ICOBA PUCP), Pontificia Universidad Católica del Perú, Lima, Peru
- Science Department, Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru
| |
Collapse
|
3
|
Ogoyi DO, Njagi J, Tonui W, Dass B, Quemada H, James S. Post-release monitoring pathway for the deployment of gene drive-modified mosquitoes for malaria control in Africa. Malar J 2024; 23:351. [PMID: 39567982 PMCID: PMC11580452 DOI: 10.1186/s12936-024-05179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Gene drive-modified mosquitoes (GDMMs) have been promoted as one of the innovative technologies that may control and eliminate malaria and other mosquito-borne diseases. Several products are in early stages of development, targeting either population suppression or population modification of the mosquito vector. However, there is no direct experience of conducting risk assessment for environmental releases and subsequent policies regarding conditions for post-release. This study was carried out to gain additional insights on the possible post-release concerns that may arise, as they may inform future risk assessment and planning for deployment. METHODS This study involved desktop reviews on post release monitoring experiences with previously released biological control products. Stakeholder consultations involving online surveys, and face to face workshop with experts from selected African countries from Eastern, Western, and Southern African regions was then carried out to establish post-release monitoring concerns for GDMMs. RESULTS Review of genetic biocontrol technologies showed only limited lessons from post-release monitoring regimes with a focus largely limited to efficacy. For genetically modified organisms general surveillance and case-specific monitoring is expected in some of the regions. A number of post-release monitoring concerns in relation to the protection goals of human and animal health, biodiversity, and water quality were identified. CONCLUSION Based on established- protection goals, several post-release monitoring concerns have been identified. Subject to a rigorous risk assessment process for future GDMMs products, the concerns may then be prioritized for post-release monitoring.
Collapse
Affiliation(s)
- Dorington O Ogoyi
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O BOX 52428, Nairobi, 00200, Kenya.
| | - Julia Njagi
- National Biosafety Authority, P.O. BOX 28251, Nairobi, 00100, Kenya
| | - Willy Tonui
- African Genetic Biocontrol Consortium (AGBC), Nairobi, Kenya
| | - Brinda Dass
- GeneConvene Global Collaborative, Foundation for the National Institutes of Health (FNIH), North Bethesda, MD, USA
| | - Hector Quemada
- GeneConvene Global Collaborative, Foundation for the National Institutes of Health (FNIH), North Bethesda, MD, USA
| | - Stephanie James
- GeneConvene Global Collaborative, Foundation for the National Institutes of Health (FNIH), North Bethesda, MD, USA
| |
Collapse
|
4
|
Kaur T, Brown AM. Discovery of a novel Wolbachia in Heterodera expands nematode host distribution. Front Microbiol 2024; 15:1446506. [PMID: 39386366 PMCID: PMC11461310 DOI: 10.3389/fmicb.2024.1446506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Bioinformatics sequence data mining can reveal hidden microbial symbionts that might normally be filtered and removed as contaminants. Data mining can be helpful to detect Wolbachia, a widespread bacterial endosymbiont in insects and filarial nematodes whose distribution in plant-parasitic nematodes (PPNs) remains underexplored. To date, Wolbachia has only been reported a few PPNs, yet nematode-infecting Wolbachia may have been widespread in the evolutionary history of the phylum based on evidence of horizontal gene transfers, suggesting there may be undiscovered Wolbachia infections in PPNs. The goal of this study was to more broadly sample PPN Wolbachia strains in tylenchid nematodes to enable further comparative genomic analyses that may reveal Wolbachia's role and identify targets for biocontrol. Published whole-genome shotgun assemblies and their raw sequence data from 33 Meloidogyne spp. assemblies, seven Globodera spp. assemblies, and seven Heterodera spp. assemblies were analyzed to look for Wolbachia. No Wolbachia was found in Meloidogyne spp. and Globodera spp., but among seven genome assemblies for Heterodera spp., an H. schachtii assembly from the Netherlands was found to have a large Wolbachia-like sequence that, when re-assembled from reads, formed a complete, circular genome. Detailed analyses comparing read coverage, GC content, pseudogenes, and phylogenomic patterns clearly demonstrated that the H. schachtii Wolbachia represented a novel strain (hereafter, denoted wHet). Phylogenomic tree construction with PhyloBayes showed wHet was most closely related to another PPN Wolbachia, wTex, while 16S rRNA gene analysis showed it clustered with other Heterodera Wolbachia assembled from sequence databases. Pseudogenes in wHet suggested relatedness to the PPN clade, as did the lack of significantly enriched GO terms compared to PPN Wolbachia strains. It remains unclear whether the lack of Wolbachia in other published H. schachtii isolates represents the true absence of the endosymbiont from some hosts.
Collapse
Affiliation(s)
| | - Amanda M.V. Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
5
|
Valerio F, Martel C, Stefanescu C, van Nouhuys S, Kankare M, Duplouy A. Wolbachia strain diversity in a complex group of sympatric cryptic parasitoid wasp species. BMC Microbiol 2024; 24:319. [PMID: 39223450 PMCID: PMC11368008 DOI: 10.1186/s12866-024-03470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Maternally-inherited symbionts can induce pre-mating and/or post-mating reproductive isolation between sympatric host lineages, and speciation, by modifying host reproductive phenotypes. The large parasitoid wasp genus Cotesia (Braconidae) includes a diversity of cryptic species, each specialized in parasitizing one to few related Lepidoptera host species. Here, we characterized the infection status of an assemblage of 21 Cotesia species from 15 countries by several microbial symbionts, as a first step toward investigating whether symbionts may provide a barrier to gene flow between these parasitoid host lineages. RESULTS The symbiotic microbes Arsenophonus, Cardinium, Microsporidium and Spiroplasma were not detected in the Cotesia wasps. However, the endosymbiotic bacterium Wolbachia was present in at least eight Cotesia species, and hence we concentrated on it upon screening additional DNA extracts and SRAs from NCBI. Some of the closely related Cotesia species carry similar Wolbachia strains, but most Wolbachia strains showed patterns of horizontal transfer between phylogenetically distant host lineages. CONCLUSIONS The lack of co-phylogenetic signal between Wolbachia and Cotesia suggests that the symbiont and hosts have not coevolved to an extent that would drive species divergence between the Cotesia host lineages. However, as the most common facultative symbiont of Cotesia species, Wolbachia may still function as a key-player in the biology of the parasitoid wasps. Its precise role in the evolution of this complex clade of cryptic species remains to be experimentally investigated.
Collapse
Affiliation(s)
- Federica Valerio
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | | | | | - Saskya van Nouhuys
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Anne Duplouy
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.
- Department of Biology, Lund University, Lund, Sweden.
| |
Collapse
|
6
|
Tan Y, Aravind L, Zhang D. Genomic Underpinnings of Cytoplasmic Incompatibility: CIF Gene-Neighborhood Diversification Through Extensive Lateral Transfers and Recombination in Wolbachia. Genome Biol Evol 2024; 16:evae171. [PMID: 39106433 PMCID: PMC11342252 DOI: 10.1093/gbe/evae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024] Open
Abstract
Cytoplasmic incompatibility (CI), a non-Mendelian genetic phenomenon, involves the manipulation of host reproduction by Wolbachia, a maternally transmitted alphaproteobacterium. The underlying mechanism is centered around the CI Factor (CIF) system governed by two genes, cifA and cifB, where cifB induces embryonic lethality, and cifA counteracts it. Recent investigations have unveiled intriguing facets of this system, including diverse cifB variants, prophage association in specific strains, copy number variation, and rapid component divergence, hinting at a complex evolutionary history. We utilized comparative genomics to systematically classify CIF systems, analyze their locus structure and domain architectures, and reconstruct their diversification and evolutionary trajectories. Our new classification identifies ten distinct CIF types, featuring not just versions present in Wolbachia, but also other intracellular bacteria, and eukaryotic hosts. Significantly, our analysis of CIF loci reveals remarkable variability in gene composition and organization, encompassing an array of diverse endonucleases, variable toxin domains, deubiquitinating peptidases (DUBs), prophages, and transposons. We present compelling evidence that the components within the loci have been diversifying their sequences and domain architectures through extensive, independent lateral transfers and interlocus recombination involving gene conversion. The association with diverse transposons and prophages, coupled with selective pressures from host immunity, likely underpins the emergence of CIF loci as recombination hotspots. Our investigation also posits the origin of CifB-REase domains from mobile elements akin to CR (Crinkler-RHS-type) effectors and Tribolium Medea1 factor, which is linked to another non-Mendelian genetic phenomenon. This comprehensive genomic analysis offers novel insights into the molecular evolution and genomic foundations of Wolbachia-mediated host reproductive control.
Collapse
Affiliation(s)
- Yongjun Tan
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO 63103, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Dapeng Zhang
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO 63103, USA
- Program of Bioinformatics and Computational Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO 63103, USA
| |
Collapse
|
7
|
Namias A, Ngaku A, Makoundou P, Unal S, Sicard M, Weill M. Intra-lineage microevolution of Wolbachia leads to the emergence of new cytoplasmic incompatibility patterns. PLoS Biol 2024; 22:e3002493. [PMID: 38315724 PMCID: PMC10868858 DOI: 10.1371/journal.pbio.3002493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/15/2024] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Mosquitoes of the Culex pipiens complex are worldwide vectors of arbovirus, filarial nematodes, and avian malaria agents. In these hosts, the endosymbiotic bacteria Wolbachia induce cytoplasmic incompatibility (CI), i.e., reduced embryo viability in so-called incompatible crosses. Wolbachia infecting Culex pipiens (wPip) cause CI patterns of unparalleled complexity, associated with the amplification and diversification of cidA and cidB genes, with up to 6 different gene copies described in a single wPip genome. In wPip, CI is thought to function as a toxin-antidote (TA) system where compatibility relies on having the right antidotes (CidA) in the female to bind and neutralize the male's toxins (CidB). By repeating crosses between Culex isofemale lines over a 17 years period, we documented the emergence of a new compatibility type in real time and linked it to a change in cid genes genotype. We showed that loss of specific cidA gene copies in some wPip genomes results in a loss of compatibility. More precisely, we found that this lost antidote had an original sequence at its binding interface, corresponding to the original sequence at the toxin's binding interface. We showed that these original cid variants are recombinant, supporting a role for recombination rather than point mutations in rapid CI evolution. These results strongly support the TA model in natura, adding to all previous data acquired with transgenes expression.
Collapse
Affiliation(s)
- Alice Namias
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Annais Ngaku
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Patrick Makoundou
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Sandra Unal
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Mathieu Sicard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Mylène Weill
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
8
|
Fallon AM. Wolbachia: Advancing into a Second Century. Methods Mol Biol 2024; 2739:1-13. [PMID: 38006542 DOI: 10.1007/978-1-0716-3553-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Wolbachia pipientis had its scientific debut nearly a century ago and has recently emerged as a target for therapeutic treatment of filarial infections and an attractive tool for control of arthropod pests. Wolbachia was known as a biological entity before DNA was recognized as the molecule that carries the genetic information on which life depends, and before arthropods and nematodes were grouped in the Ecdysozoa. Today, some investigators consider Wolbachia the most abundant endosymbiont on earth, given the numbers of its hosts and its diverse mutualistic, commensal, and parasitic roles in their life histories. Recent advances in molecular technologies have revolutionized our understanding of Wolbachia and its associated reproductive phenotypes. New models have emerged for its investigation, and substantial progress has been made towards Wolbachia-based interventions in medicine and agriculture. Here I introduce Wolbachia, with a focus on aspects of its biology that are covered in greater detail in subsequent chapters.
Collapse
Affiliation(s)
- Ann M Fallon
- Department of Entomology, University of Minnesota, Saint Paul, MN, USA.
| |
Collapse
|
9
|
Cortez CT, Murphy RO, Owens IM, Beckmann JF. Use of Drosophila Transgenics to Identify Functions for Symbiont Effectors. Methods Mol Biol 2024; 2739:301-320. [PMID: 38006559 DOI: 10.1007/978-1-0716-3553-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Wolbachia, one of the most successful and studied insect symbionts, and Drosophila, one of the most understood model insects, can be exploited as complementary tools to unravel mechanisms of insect symbiosis. Although Wolbachia itself cannot be grown axenically as clonal isolates or genetically manipulated by standard methods, its reproductive phenotypes, including cytoplasmic incompatibility (CI), have been elucidated using well-developed molecular tools and precise transgenic manipulations available for Drosophila melanogaster. Current research only scratches the surface of how Drosophila can provide a tool for understanding Wolbachia's evolutionary success and the molecular roles of its genetic elements. Here, we briefly outline basic methodologies inherent to transgenic Drosophila systems that have already contributed significant advances in understanding CI, but may be unfamiliar to those who lack experience in Drosophila genetics. In the future, these approaches will continue providing significant insights into Wolbachia that undoubtedly will be extended to other insect symbionts and their biological capabilities.
Collapse
Affiliation(s)
- Carai T Cortez
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Richard O Murphy
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Isabella M Owens
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - John F Beckmann
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA.
| |
Collapse
|
10
|
Murphy RO, Beckmann JF. Using Baker's Yeast to Determine Functions of Novel Wolbachia (and Other Prokaryotic) Effectors. Methods Mol Biol 2024; 2739:321-336. [PMID: 38006560 DOI: 10.1007/978-1-0716-3553-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Yeasts are single-celled eukaryotic organisms classified as fungi, mostly in the phylum Ascomycota. Of about 1500 named species, Saccharomyces cerevisiae, also known as baker's yeast, domesticated by humans in the context of cooking and brewing, is a profound genetic tool for exploring functions of novel effector proteins from Wolbachia and prokaryotes in general. Wolbachia is a Gram-negative alpha-proteobacterium that infects up to ~75% of all insects as an obligate intracellular microbe (Jeyaprakash A, Hoy MA, Insect Mol Biol 9:393-405, 2000). Wolbachia's lifestyle presents unique challenges for researchers. Wolbachia cannot be axenically cultured and has never been genetically manipulated. Furthermore, many Wolbachia genes have no known function or well-annotated orthologs in other genomes. Yet given the effects of Wolbachia on host phenotypes, which have considerable practical applications for pest control, they undoubtedly involve secreted effector proteins that interact with host gene products. Studying these effectors is challenging with Wolbachia's current genetic limitations. However, some of the constraints to working with Wolbachia can be overcome by expressing candidate proteins in S. cerevisiae. This approach capitalizes on yeast's small genome (~6500 genes), typical eukaryotic cellular organization, and the sophisticated suite of genetic tools available for its manipulation in culture. Thus, yeast can serve as a powerful mock eukaryotic host background to study Wolbachia effector function. Specifically, yeast is used for recombinant protein expression, drug discovery, protein localization studies, protein interaction mapping (yeast two-hybrid system), modeling chromosomal evolution, and examining interactions between proteins responsible for complex phenotypes in less tractable prokaryotic systems. As an example, the paired genes responsible for Wolbachia-mediated cytoplasmic incompatibility (CI) encode novel proteins with limited homology to other known proteins, and no obvious function. This article details how S. cerevisiae was used as an initial staging ground to explore the molecular basis of one of Wolbachia's trademark phenotypes (CI).
Collapse
Affiliation(s)
- Richard O Murphy
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - John F Beckmann
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA.
| |
Collapse
|
11
|
Abstract
Wolbachia are successful Gram-negative bacterial endosymbionts, globally infecting a large fraction of arthropod species and filarial nematodes. Efficient vertical transmission, the capacity for horizontal transmission, manipulation of host reproduction and enhancement of host fitness can promote the spread both within and between species. Wolbachia are abundant and can occupy extraordinary diverse and evolutionary distant host species, suggesting that they have evolved to engage and manipulate highly conserved core cellular processes. Here, we review recent studies identifying Wolbachia-host interactions at the molecular and cellular levels. We explore how Wolbachia interact with a wide array of host cytoplasmic and nuclear components in order to thrive in a diversity of cell types and cellular environments. This endosymbiont has also evolved the ability to precisely target and manipulate specific phases of the host cell cycle. The remarkable diversity of cellular interactions distinguishes Wolbachia from other endosymbionts and is largely responsible for facilitating its global propagation through host populations. Finally, we describe how insights into Wolbachia-host cellular interactions have led to promising applications in controlling insect-borne and filarial nematode-based diseases.
Collapse
Affiliation(s)
- Jillian Porter
- Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA, USA
| | - William Sullivan
- Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
12
|
Harumoto T. Self-stabilization mechanism encoded by a bacterial toxin facilitates reproductive parasitism. Curr Biol 2023; 33:4021-4029.e6. [PMID: 37673069 DOI: 10.1016/j.cub.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/30/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
A wide variety of maternally transmitted endosymbionts in insects are associated with reproductive parasitism, whereby they interfere with host reproduction to increase the ratio of infected females and spread within populations.1,2 Recent successes in identifying bacterial factors responsible for reproductive parasitism3,4,5,6,7 as well as further omics approaches8,9,10,11,12 have highlighted the common appearance of deubiquitinase domains, although their biological roles-in particular, how they link to distinct manipulative phenotypes-remain poorly defined. Spiroplasma poulsonii is a helical and motile bacterial endosymbiont of Drosophila,13,14 which selectively kills male progeny with a male-killing toxin Spaid (S. poulsonii androcidin), which encodes an ovarian tumor (OTU) deubiquitinase domain.6 Artificial expression of Spaid in flies reproduces male-killing-associated pathologies that include abnormal apoptosis and neural defects during embryogenesis6,15,16,17,18,19; moreover, it highly accumulates on the dosage-compensated male X chromosome,20 congruent with cellular defects such as the DNA damage/chromatin bridge breakage specifically induced upon that chromosome.6,21,22,23 Here, I show that without the function of OTU, Spaid is polyubiquitinated and degraded through the host ubiquitin-proteasome pathway, leading to the attenuation of male-killing activity as shown previously.6 Furthermore, I find that Spaid utilizes its OTU domain to deubiquitinate itself in an intermolecular manner. Collectively, the deubiquitinase domain of Spaid serves as a self-stabilization mechanism to facilitate male killing in flies, optimizing a molecular strategy of endosymbionts that enables the efficient manipulation of the host at a low energetic cost.
Collapse
Affiliation(s)
- Toshiyuki Harumoto
- Hakubi Center for Advanced Research, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
13
|
Hochstrasser M. Molecular Biology of Cytoplasmic Incompatibility Caused by Wolbachia Endosymbionts. Annu Rev Microbiol 2023; 77:299-316. [PMID: 37285552 DOI: 10.1146/annurev-micro-041020-024616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Among endosymbiotic bacteria living within eukaryotic cells, Wolbachia is exceptionally widespread, particularly in arthropods. Inherited through the female germline, it has evolved ways to increase the fraction of bacterially infected offspring by inducing parthenogenesis, feminization, male killing, or, most commonly, cytoplasmic incompatibility (CI). In CI, Wolbachia infection of males causes embryonic lethality unless they mate with similarly infected females, creating a relative reproductive advantage for infected females. A set of related Wolbachia bicistronic operons encodes the CI-inducing factors. The downstream gene encodes a deubiquitylase or nuclease and is responsible for CI induction by males, while the upstream product when expressed in females binds its sperm-introduced cognate partner and rescues viability. Both toxin-antidote and host-modification mechanisms have been proposed to explain CI. Interestingly, male killing by either Spiroplasma or Wolbachia endosymbionts involves deubiquitylases as well. Interference with the host ubiquitin system may therefore be a common theme among endosymbiont-mediated reproductive alterations.
Collapse
Affiliation(s)
- Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry and Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA;
| |
Collapse
|
14
|
Oladipupo SO, Laidoudi Y, Beckmann JF, Hu XP, Appel AG. The prevalence of Wolbachia in multiple cockroach species and its implication for urban insect management. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1307-1316. [PMID: 37247378 DOI: 10.1093/jee/toad098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Cockroach management relies heavily on the use of conventional insecticides in urban settings, which no longer provide the anticipated level of control. Knowledge of cockroach endosymbionts, like Wolbachia, might provide novel avenues for control. Therefore, we screened 16 cockroach species belonging to 3 families (Ectobiidae, Blattidae, and Blaberidae) for the presence of Wolbachia. We mapped the evolution of Wolbachia-cockroach relationships based on maximum likelihood phylogeny and phylogenetic species clustering on a multi-loci sequence dataset (i.e., coxA, virD4, hcpA, and gatB) of Wolbachia genes. We confirmed the previous report of Wolbachia in 1 Ectobiid species; Supella longipalpa (Fab.), and detected the presence of Wolbachia in 2 Ectobiid species; Balta notulata (Stål) and Pseudomops septentrionalis Hebard, and 1 Blaberid species; Gromphadorhina portentosa (Schaum). All cockroach-associated Wolbachia herein detected were clustered with the ancestor of F clade Wolbachia of Cimex lectularius L. (bed bugs). Since Wolbachia provision C. lectularius with biotin vitamins that confer reproductive fitness, we screened the cockroach-associated Wolbachia for the presence of biotin genes. In toto, our results reveal 2 important findings: (i) Wolbachia is relatively uncommon among cockroach species infecting about 25% of species investigated, and (ii) cockroach-associated Wolbachia have biotin genes that likely provide nutritional benefits to their hosts. Thus, we discuss the potential of exploring Wolbachia as a tool for urban insect management.
Collapse
Affiliation(s)
- Seun O Oladipupo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Younes Laidoudi
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
| | - John F Beckmann
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Xing Ping Hu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Arthur G Appel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
15
|
Arai H, Anbutsu H, Nishikawa Y, Kogawa M, Ishii K, Hosokawa M, Lin SR, Ueda M, Nakai M, Kunimi Y, Harumoto T, Kageyama D, Takeyama H, Inoue MN. Combined actions of bacteriophage-encoded genes in Wolbachia-induced male lethality. iScience 2023; 26:106842. [PMID: 37250803 PMCID: PMC10209535 DOI: 10.1016/j.isci.2023.106842] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Some Wolbachia endosymbionts induce male killing, whereby male offspring of infected females are killed during development; however, the origin and diversity of the underlying mechanisms remain unclear. In this study, we identified a 76 kbp prophage region specific to male-killing Wolbachia hosted by the moth Homona magnanima. The prophage encoded a homolog of the male-killing gene oscar in Ostrinia moths and the wmk gene that induces various toxicities in Drosophila melanogaster. Upon overexpressing these genes in D. melanogaster, wmk-1 and wmk-3 killed all males and most females, whereas Hm-oscar, wmk-2, and wmk-4 had no impact on insect survival. Strikingly, co-expression of tandemly arrayed wmk-3 and wmk-4 killed 90% of males and restored 70% of females, suggesting their conjugated functions for male-specific lethality. While the male-killing gene in the native host remains unknown, our findings highlight the role of bacteriophages in male-killing evolution and differences in male-killing mechanisms among insects.
Collapse
Affiliation(s)
- Hiroshi Arai
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
- National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Hisashi Anbutsu
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Yohei Nishikawa
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Masato Kogawa
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Kazuo Ishii
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Masahito Hosokawa
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Shiou-Ruei Lin
- Tea Research and Extension Station, 326011 Chung-Hsing RD, Yangmei, Taoyuan, Taiwan, R.O.C
| | - Masatoshi Ueda
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Madoka Nakai
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Yasuhisa Kunimi
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Toshiyuki Harumoto
- Hakubi Center for Advanced Research, Kyoto University. Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Daisuke Kageyama
- National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Haruko Takeyama
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Maki N. Inoue
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
16
|
Beckmann J, Gillespie J, Tauritz D. Modeling emergence of Wolbachia toxin-antidote protein functions with an evolutionary algorithm. Front Microbiol 2023; 14:1116766. [PMID: 37362913 PMCID: PMC10288140 DOI: 10.3389/fmicb.2023.1116766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Evolutionary algorithms (EAs) simulate Darwinian evolution and adeptly mimic natural evolution. Most EA applications in biology encode high levels of abstraction in top-down population ecology models. In contrast, our research merges protein alignment algorithms from bioinformatics into codon based EAs that simulate molecular protein string evolution from the bottom up. We apply our EA to reconcile a problem in the field of Wolbachia induced cytoplasmic incompatibility (CI). Wolbachia is a microbial endosymbiont that lives inside insect cells. CI is conditional insect sterility that operates as a toxin antidote (TA) system. Although, CI exhibits complex phenotypes not fully explained under a single discrete model. We instantiate in-silico genes that control CI, CI factors (cifs), as strings within the EA chromosome. We monitor the evolution of their enzymatic activity, binding, and cellular localization by applying selective pressure on their primary amino acid strings. Our model helps rationalize why two distinct mechanisms of CI induction might coexist in nature. We find that nuclear localization signals (NLS) and Type IV secretion system signals (T4SS) are of low complexity and evolve fast, whereas binding interactions have intermediate complexity, and enzymatic activity is the most complex. Our model predicts that as ancestral TA systems evolve into eukaryotic CI systems, the placement of NLS or T4SS signals can stochastically vary, imparting effects that might impact CI induction mechanics. Our model highlights how preconditions and sequence length can bias evolution of cifs toward one mechanism or another.
Collapse
Affiliation(s)
- John Beckmann
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Joe Gillespie
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Daniel Tauritz
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, United States
| |
Collapse
|
17
|
Oladipupo SO, Carroll JD, Beckmann JF. Convergent Aedes and Drosophila CidB interactomes suggest cytoplasmic incompatibility targets are conserved. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 155:103931. [PMID: 36933571 DOI: 10.1016/j.ibmb.2023.103931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 05/10/2023]
Abstract
Wolbachia-mediated cytoplasmic incompatibility (CI) is a conditional embryonic lethality induced when Wolbachia-modified sperm fertilizes an uninfected egg. The Wolbachia proteins, CidA and CidB control CI. CidA is a rescue factor that reverses lethality. CidA binds to CidB. CidB contains a deubiquitinating enzyme and induces CI. Precisely how CidB induces CI and what it targets are unknown. Likewise, how CidA prevents sterilization by CidB is not clear. To identify CidB substrates in mosquitos we conducted pull-down assays using recombinant CidA and CidB mixed with Aedes aegypti lysates to identify the protein interactomes of CidB and the CidB/CidA protein complex. Our data allow us to cross compare CidB interactomes across taxa for Aedes and Drosophila. Our data replicate several convergent interactions, suggesting that CI targets conserved substrates across insects. Our data support a hypothesis that CidA rescues CI by tethering CidB away from its substrates. Specifically, we identify ten convergent candidate substrates including P32 (protamine-histone exchange factor), karyopherin alpha, ubiquitin-conjugating enzyme, and bicoid stabilizing factor. Future analysis on how these candidates contribute to CI will clarify mechanisms.
Collapse
Affiliation(s)
- Seun O Oladipupo
- Department of Entomology & Plant Pathology, Auburn University, Auburn, AL, 36849, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA.
| | - Jazmine D Carroll
- Department of Entomology & Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | - John F Beckmann
- Department of Entomology & Plant Pathology, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
18
|
Beckmann J, Gillespie J, Tauritz D. Modelling Emergence of Wolbachia Toxin-Antidote Protein Functions with an Evolutionary Algorithm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533954. [PMID: 36993585 PMCID: PMC10055314 DOI: 10.1101/2023.03.23.533954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Evolutionary algorithms (EAs) simulate Darwinian evolution and adeptly mimic natural evolution. Most EA applications in biology encode high levels of abstraction in top-down ecological population models. In contrast, our research merges protein alignment algorithms from bioinformatics into codon based EAs that simulate molecular protein string evolution from the bottom up. We apply our EA to reconcile a problem in the field of Wolbachia induced cytoplasmic incompatibility (CI). Wolbachia is a microbial endosymbiont that lives inside insect cells. CI is conditional insect sterility that operates as a toxin antidote (TA) system. Although, CI exhibits complex phenotypes not fully explained under a single discrete model. We instantiate in-silico genes that control CI, CI factors ( cifs ), as strings within the EA chromosome. We monitor the evolution of their enzymatic activity, binding, and cellular localization by applying selective pressure on their primary amino acid strings. Our model helps rationalize why two distinct mechanisms of CI induction might coexist in nature. We find that nuclear localization signals (NLS) and Type IV secretion system signals (T4SS) are of low complexity and evolve fast, whereas binding interactions have intermediate complexity, and enzymatic activity is the most complex. Our model predicts that as ancestral TA systems evolve into eukaryotic CI systems, the placement of NLS or T4SS signals can stochastically vary, imparting effects that might impact CI induction mechanics. Our model highlights how preconditions, genetic diversity, and sequence length can bias evolution of cifs towards one mechanism or another.
Collapse
Affiliation(s)
- John Beckmann
- Auburn University Department of Entomology and Plant Pathology,
301 Funchess Hall, Auburn, AL; 36849
| | - Joe Gillespie
- University of Maryland Baltimore, School of Medicine, Department
of Microbiology and Immunology, Baltimore, 685 W. Baltimore St., HSF I Suite 380, Baltimore,
MD 21201
| | - Daniel Tauritz
- Auburn University Department of Computer Science and Software
Engineering, 3101 Shelby Center Auburn, Alabama 36849
| |
Collapse
|
19
|
Fallon AM. From Mosquito Ovaries to Ecdysone; from Ecdysone to Wolbachia: One Woman's Career in Insect Biology. INSECTS 2022; 13:756. [PMID: 36005381 PMCID: PMC9409236 DOI: 10.3390/insects13080756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
In anautogenous mosquitoes, synchronous development of terminal ovarian follicles after a blood meal provides an important model for studies on insect reproduction. Removal and implantation of ovaries, in vitro culture of dissected tissues and immunological assays for vitellogenin synthesis by the fat body showed that the Aedes aegypti (L.) (Diptera, Culicidae) mosquito ovary produces a factor essential for egg production. The discovery that the ovarian factor was the insect steroid hormone, ecdysone, provided a model for co-option of the larval hormones as reproductive hormones in adult insects. In later work on cultured mosquito cells, ecdysone was shown to arrest the cell cycle, resulting in an accumulation of diploid cells in G1, prior to initiation of DNA synthesis. Some mosquito species, such as Culex pipiens L. (Diptera, Culicidae), harbor the obligate intracellular bacterium, Wolbachia pipientis Hertig (Rickettsiales, Anaplasmataceae), in their reproductive tissues. When maintained in mosquito cell lines, Wolbachia abundance increases in ecdysone-arrested cells. This observation facilitated the recovery of high levels of Wolbachia from cultured cells for microinjection and genetic manipulation. In female Culex pipiens, it will be of interest to explore how hormonal cues that support initiation and progression of the vitellogenic cycle influence Wolbachia replication and transmission to subsequent generations via infected eggs.
Collapse
Affiliation(s)
- Ann M Fallon
- Department of Entomology, University of Minnesota, 1980 Folwell Ave., St Paul, MN 55108, USA
| |
Collapse
|
20
|
Wang W, Cui W, Yang H. Toward an accurate mechanistic understanding of Wolbachia-induced cytoplasmic incompatibility. Environ Microbiol 2022; 24:4519-4532. [PMID: 35859330 DOI: 10.1111/1462-2920.16125] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/27/2022]
Abstract
Wolbachia are the most successful intracellular bacteria in arthropods. They can manipulate host reproduction to favour infected females, which transmit Wolbachia to their progeny and increase the presence of Wolbachia in the population. The reproductive alterations caused by Wolbachia include feminization, parthenogenesis, male killing and cytoplasmic incompatibility (CI), among which CI is the most common. CI leads to embryonic lethality when Wolbachia-infected males mate with uninfected females or those infected with an incompatible strain. This lethality can be rescued if females are infected with a compatible strain. Although CI was described in the 1960s and its connection to Wolbachia was made in the 1970s, the genes responsible for CI, called CI factors, were not identified until recently. Since then, significant progress has been made in understanding the molecular mechanism of CI using a combination of genetic, phylogenetic, biochemical and structural approaches. The detailed molecular mechanisms behind this fascinating endosymbiotic bacteria-induced phenotype have begun to emerge. Here, we summarize recent progress in understanding the molecular mechanism of CI, especially focusing on the recently solved CI factor structures and discussing what these new structures brought in terms of CI mechanism.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Wen Cui
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| |
Collapse
|
21
|
Hochstrasser M. Cytoplasmic incompatibility: A Wolbachia toxin-antidote mechanism comes into view. Curr Biol 2022; 32:R287-R289. [PMID: 35349818 DOI: 10.1016/j.cub.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Wolbachia cidA and cidB genes promote bacterial endosymbiont inheritance through the host female germline. CidB is now shown to load into maturing sperm nuclei. Following fertilization, it disrupts paternal chromosome condensation, triggering embryonic arrest if not countered by CidA in Wolbachia-infected eggs.
Collapse
Affiliation(s)
- Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
22
|
The CinB Nuclease from wNo Wolbachia Is Sufficient for Induction of Cytoplasmic Incompatibility in Drosophila. mBio 2022; 13:e0317721. [PMID: 35073749 PMCID: PMC8787490 DOI: 10.1128/mbio.03177-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Wolbachia is an obligate intracellular bacterium that can alter reproduction of its arthropod hosts, often through a mechanism called cytoplasmic incompatibility (CI). In CI, uninfected females fertilized by infected males yield few offspring, but if both are similarly infected, normal embryo viability results (called "rescue"). CI factors (Cifs) responsible for CI are pairs of proteins encoded by linked genes. The downstream gene in each pair encodes either a deubiquitylase (CidB) or a nuclease (CinB). The upstream gene products, CidA and CinA, bind their cognate enzymes with high specificity. Expression of CidB or CinB in yeast inhibits growth, but growth is rescued by expression of the cognate CifA protein. By contrast, transgenic Drosophila male germ line expression of both cifA and cifB was reported to be necessary to induce CI-like embryonic arrest; cifA expression alone in females is sufficient for rescue. This pattern, seen with genes from several Wolbachia strains, has been called the "2-by-1" model. Here, we show that male germ line expression of the cinB gene alone, from a distinct clade of cif genes from wNo Wolbachia, is sufficient to induce nearly complete loss of embryo viability. This male sterility is fully rescued by cognate cinAwNo expression in the female germ line. The proteins behave similarly in yeast. CinBwNo toxicity depends on its nuclease active site. These results demonstrate that highly divergent CinB nucleases can induce CI, that rescue by cognate CifA factors is a general feature of Wolbachia CI systems, and that CifA is not strictly required in males for CI induction. IMPORTANCE Wolbachia bacteria live within the cells of many insects. Like mitochondria, they are only inherited from females. Wolbachia often increases the number of infected females to promote spread of infection using a type of male sterility called cytoplasmic incompatibility (CI): when uninfected females mate with infected males, most embryos die; if both are similarly infected, embryos develop normally, giving infected females an advantage in producing offspring. CI is being used against disease-carrying mosquitoes and agricultural pests. Wolbachia proteins called CifA and CifB, which bind one another, cause CI, but how they work has been unclear. Here, we show that a CifB protein singly produced in fruit fly males causes sterility in crosses to normal females, but this is rescued if the females produce the CifA partner. These findings clarify a broad range of observations on CI and will allow more rational approaches to using it for insect control.
Collapse
|
23
|
Horard B, Terretaz K, Gosselin-Grenet AS, Sobry H, Sicard M, Landmann F, Loppin B. Paternal transmission of the Wolbachia CidB toxin underlies cytoplasmic incompatibility. Curr Biol 2022; 32:1319-1331.e5. [DOI: 10.1016/j.cub.2022.01.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/18/2021] [Accepted: 01/19/2022] [Indexed: 02/09/2023]
|
24
|
Structural and mechanistic insights into the complexes formed by Wolbachia cytoplasmic incompatibility factors. Proc Natl Acad Sci U S A 2021; 118:2107699118. [PMID: 34620712 DOI: 10.1073/pnas.2107699118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 11/18/2022] Open
Abstract
Wolbachia bacteria, inherited through the female germ line, infect a large fraction of arthropod species. Many Wolbachia strains manipulate host reproduction, most commonly through cytoplasmic incompatibility (CI). CI, a conditional male sterility, results when Wolbachia-infected male insects mate with uninfected females; viability is restored if the female is similarly infected (called "rescue"). CI is used to help control mosquito-borne viruses such as dengue and Zika, but its mechanisms remain unknown. The coexpressed CI factors CifA and CifB form stable complexes in vitro, but the timing and function of this interaction in the insect are unresolved. CifA expression in the female germ line is sufficient for rescue. We report high-resolution structures of a CI-factor complex, CinA-CinB, which utilizes a unique binding mode between the CinA rescue factor and the CinB nuclease; the structures were validated by biochemical and yeast growth analyses. Importantly, transgenic expression in Drosophila of a nonbinding CinA mutant, designed based on the CinA-CinB structure, suggests CinA expressed in females must bind CinB imported by sperm in order to rescue embryonic viability. Binding between cognate factors is conserved in an enzymatically distinct CI system, CidA-CidB, suggesting universal features in Wolbachia CI induction and rescue.
Collapse
|
25
|
Beckmann JF, Van Vaerenberghe K, Akwa DE, Cooper BS. A single mutation weakens symbiont-induced reproductive manipulation through reductions in deubiquitylation efficiency. Proc Natl Acad Sci U S A 2021; 118:e2113271118. [PMID: 34548405 PMCID: PMC8488622 DOI: 10.1073/pnas.2113271118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 11/18/2022] Open
Abstract
Animals interact with microbes that affect their performance and fitness, including endosymbionts that reside inside their cells. Maternally transmitted Wolbachia bacteria are the most common known endosymbionts, in large part because of their manipulation of host reproduction. For example, many Wolbachia cause cytoplasmic incompatibility (CI) that reduces host embryonic viability when Wolbachia-modified sperm fertilize uninfected eggs. Operons termed cifs control CI, and a single factor (cifA) rescues it, providing Wolbachia-infected females a fitness advantage. Despite CI's prevalence in nature, theory indicates that natural selection does not act to maintain CI, which varies widely in strength. Here, we investigate the genetic and functional basis of CI-strength variation observed among sister Wolbachia that infect Drosophila melanogaster subgroup hosts. We cloned, Sanger sequenced, and expressed cif repertoires from weak CI-causing wYak in Drosophila yakuba, revealing mutations suspected to weaken CI relative to model wMel in D. melanogaster A single valine-to-leucine mutation within the deubiquitylating (DUB) domain of the wYak cifB homolog (cidB) ablates a CI-like phenotype in yeast. The same mutation reduces both DUB efficiency in vitro and transgenic CI strength in the fly, each by about twofold. Our results map hypomorphic transgenic CI to reduced DUB activity and indicate that deubiquitylation is central to CI induction in cid systems. We also characterize effects of other genetic variation distinguishing wMel-like cifs Importantly, CI strength determines Wolbachia prevalence in natural systems and directly influences the efficacy of Wolbachia biocontrol strategies in transinfected mosquito systems. These approaches rely on strong CI to reduce human disease.
Collapse
Affiliation(s)
- John F Beckmann
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849;
| | | | - Daniel E Akwa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, MT 59801
| |
Collapse
|
26
|
Growth and Maintenance of Wolbachia in Insect Cell Lines. INSECTS 2021; 12:insects12080706. [PMID: 34442272 PMCID: PMC8396524 DOI: 10.3390/insects12080706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary Wolbachia is an intracellular bacterium that occurs in arthropods and in filarial worms. First described nearly a century ago in the reproductive tissues of Culex pipiens mosquitoes, Wolbachia is now known to occur in roughly 50% of insect species, and has been considered the most abundant intracellular bacterium on earth. In insect hosts, Wolbachia modifies reproduction in ways that facilitate spread of the microbe within the host population, but otherwise is relatively benign. In this “gene drive” capacity, Wolbachia provides a tool for manipulating mosquito populations. In mosquitoes, Wolbachia causes cytoplasmic incompatibility, in which the fusion of egg and sperm nuclei is disrupted, and eggs fail to hatch, depending on the presence/absence of Wolbachia in the parent insects. Recent findings demonstrate that Wolbachia from infected insects can be transferred into mosquito species that do not host a natural infection. When transinfected into Aedes aegypti, an important vector of dengue and Zika viruses, Wolbachia causes cytoplasmic incompatibility and, in addition, decreases the mosquito’s ability to transmit viruses to humans. This review addresses the maintenance of Wolbachia in insect cell lines, which provide a tool for high-level production of infectious bacteria. In vitro technologies will improve use of Wolbachia for pest control, and provide the microbiological framework for genetic engineering of this promising biocontrol agent. Abstract The obligate intracellular microbe, Wolbachia pipientis (Rickettsiales; Anaplasmataceae), is a Gram-negative member of the alpha proteobacteria that infects arthropods and filarial worms. Although closely related to the genera Anaplasma and Ehrlichia, which include pathogens of humans, Wolbachia is uniquely associated with invertebrate hosts in the clade Ecdysozoa. Originally described in Culex pipiens mosquitoes, Wolbachia is currently represented by 17 supergroups and is believed to occur in half of all insect species. In mosquitoes, Wolbachia acts as a gene drive agent, with the potential to modify vector populations; in filarial worms, Wolbachia functions as a symbiont, and is a target for drug therapy. A small number of Wolbachia strains from supergroups A, B, and F have been maintained in insect cell lines, which are thought to provide a more permissive environment than the natural host. When transferred back to an insect host, Wolbachia produced in cultured cells are infectious and retain reproductive phenotypes. Here, I review applications of insect cell lines in Wolbachia research and describe conditions that facilitate Wolbachia infection and replication in naive host cells. Progress in manipulation of Wolbachia in vitro will enable genetic and biochemical advances that will facilitate eventual genetic engineering of this important biological control agent.
Collapse
|
27
|
Cytoplasmic Incompatibility Variations in Relation with Wolbachia cid Genes Divergence in Culex pipiens. mBio 2021; 12:mBio.02797-20. [PMID: 33563818 PMCID: PMC7885119 DOI: 10.1128/mbio.02797-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Culex pipiens mosquitoes are infected with wPip. These endosymbionts induce a conditional sterility called CI resulting from embryonic deaths, which constitutes a cornerstone for Wolbachia antivectorial methods. In arthropods, Wolbachia endosymbionts induce conditional sterility, called cytoplasmic incompatibility (CI), resulting from embryonic lethality. CI penetrance (i.e., embryonic death rate) varies depending on host species and Wolbachia strains involved. All Culex pipiens mosquitoes are infected by the endosymbiotic alphaproteobacteria Wolbachia wPip. CI in Culex, characterized as a binary “compatible/incompatible” phenomenon, revealed an unparalleled diversity of patterns linked to the amplification-diversification of cidA and cidB genes. Here, we accurately studied CI penetrance variations in the light of cid genes divergence by generating a C. pipiens compatibility matrix between 11 lines hosting different phylogenetic wPip groups and exhibiting distinct cid gene repertoires. We showed, as expected, that crosses involving wPip from the same group were mostly compatible. In contrast, only 22% of the crosses involving different wPip groups were compatible, while 54% were fully incompatible. For the remaining 24% of the crosses, “intermediate” compatibilities were reported, and a cytological observation of the first zygotic division confirmed the occurrence of “canonical” CI phenotypes in a fraction of the eggs. Backcross experiments demonstrated that intermediate compatibilities were not linked to host genetic background but to the Wolbachia strains involved. This previously unstudied intermediate penetrance CI was more severe and frequent in crosses involving wPip-IV strains exhibiting cid variants markedly divergent from other wPip groups. Our data demonstrate that CI is not always a binary compatible/incompatible phenomenon in C. pipiens but that intermediate compatibilities putatively resulting from partial mismatch due to Cid proteins divergence exist in this species complex.
Collapse
|
28
|
Bishop C, Asgari S. Altered gene expression profile of Wolbachia pipientis wAlbB strain following transinfection from its native host Aedes albopictus to Aedes aegypti cells. Mol Microbiol 2021; 115:1229-1243. [PMID: 33325576 DOI: 10.1111/mmi.14668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/06/2020] [Accepted: 12/12/2020] [Indexed: 12/17/2022]
Abstract
Wolbachia is an obligate intracellular bacterial symbiont prevalent among arthropods and nematodes. To survive and reproduce, Wolbachia interacts with and modifies host subcellular structures, while sensing and responding to changes within the cellular environment. In mutualistic associations, Wolbachia may provision the host with metabolites, or help to maintain the chemical homeostasis of the host cell. Some strains can rapidly invade insect populations by manipulating host reproductive biology, while also preventing viral replication, allowing their use in vector control of arthropod-borne viruses. The Aedes albopictus-derived strain wAlbB is promising in this regard. When transinfected into the Yellow fever mosquito, Aedes aegypti, wAlbB reaches high frequencies within wild populations, and strongly inhibits viral transmission. Despite its obvious potential, much is still unknown about the molecular interactions between Wolbachia and host that enable its use in vector control. Furthermore, most Wolbachia transinfection research to date has focused on host effects. In the current study, we used a cell line model to explore the effect of transinfection of wAlbB from Ae. albopictus to Ae. aegypti. Using RNA sequencing, we show that several genes associated with host-symbiont interactions were downregulated by transinfection, with the greatest downregulation exhibited by prophage-associated genes.
Collapse
Affiliation(s)
- Cameron Bishop
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
29
|
Martinez J, Klasson L, Welch JJ, Jiggins FM. Life and Death of Selfish Genes: Comparative Genomics Reveals the Dynamic Evolution of Cytoplasmic Incompatibility. Mol Biol Evol 2021; 38:2-15. [PMID: 32797213 PMCID: PMC7783169 DOI: 10.1093/molbev/msaa209] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cytoplasmic incompatibility is a selfish reproductive manipulation induced by the endosymbiont Wolbachia in arthropods. In males Wolbachia modifies sperm, leading to embryonic mortality in crosses with Wolbachia-free females. In females, Wolbachia rescues the cross and allows development to proceed normally. This provides a reproductive advantage to infected females, allowing the maternally transmitted symbiont to spread rapidly through host populations. We identified homologs of the genes underlying this phenotype, cifA and cifB, in 52 of 71 new and published Wolbachia genome sequences. They are strongly associated with cytoplasmic incompatibility. There are up to seven copies of the genes in each genome, and phylogenetic analysis shows that Wolbachia frequently acquires new copies due to pervasive horizontal transfer between strains. In many cases, the genes have subsequently acquired loss-of-function mutations to become pseudogenes. As predicted by theory, this tends to occur first in cifB, whose sole function is to modify sperm, and then in cifA, which is required to rescue the cross in females. Although cif genes recombine, recombination is largely restricted to closely related homologs. This is predicted under a model of coevolution between sperm modification and embryonic rescue, where recombination between distantly related pairs of genes would create a self-incompatible strain. Together, these patterns of gene gain, loss, and recombination support evolutionary models of cytoplasmic incompatibility.
Collapse
Affiliation(s)
- Julien Martinez
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Lisa Klasson
- Molecular Evolution, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - John J Welch
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Francis M Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
30
|
Adams KL, Abernathy DG, Willett BC, Selland EK, Itoe MA, Catteruccia F. Wolbachia cifB induces cytoplasmic incompatibility in the malaria mosquito vector. Nat Microbiol 2021; 6:1575-1582. [PMID: 34819638 PMCID: PMC8612931 DOI: 10.1038/s41564-021-00998-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/18/2021] [Indexed: 12/04/2022]
Abstract
Wolbachia, a maternally inherited intracellular bacterial species, can manipulate host insect reproduction by cytoplasmic incompatibility (CI), which results in embryo lethality in crosses between infected males and uninfected females. CI is encoded by two prophage genes, cifA and cifB. Wolbachia, coupled with the sterile insect technique, has been used in field trials to control populations of the dengue vector Aedes albopictus, but CI-inducing strains are not known to infect the malaria vector Anopheles gambiae. Here we show that cifA and cifB can induce conditional sterility in the malaria vector An. gambiae. We used transgenic expression of these Wolbachia-derived genes in the An. gambiae germline to show that cifB is sufficient to cause embryonic lethality and that cifB-induced sterility is rescued by cifA expression in females. When we co-expressed cifA and cifB in male mosquitoes, the CI phenotype was attenuated. In female mosquitoes, cifB impaired fertility, which was overcome by co-expression of cifA. Our findings pave the way towards using CI to control malaria mosquito vectors.
Collapse
Affiliation(s)
- Kelsey L. Adams
- grid.38142.3c000000041936754XDepartment of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Daniel G. Abernathy
- grid.38142.3c000000041936754XDepartment of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Bailey C. Willett
- grid.38142.3c000000041936754XDepartment of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Emily K. Selland
- grid.38142.3c000000041936754XDepartment of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Maurice A. Itoe
- grid.38142.3c000000041936754XDepartment of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
31
|
Driscoll TP, Verhoeve VI, Brockway C, Shrewsberry DL, Plumer M, Sevdalis SE, Beckmann JF, Krueger LM, Macaluso KR, Azad AF, Gillespie JJ. Evolution of Wolbachia mutualism and reproductive parasitism: insight from two novel strains that co-infect cat fleas. PeerJ 2020; 8:e10646. [PMID: 33362982 PMCID: PMC7750005 DOI: 10.7717/peerj.10646] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/03/2020] [Indexed: 12/26/2022] Open
Abstract
Wolbachiae are obligate intracellular bacteria that infect arthropods and certain nematodes. Usually maternally inherited, they may provision nutrients to (mutualism) or alter sexual biology of (reproductive parasitism) their invertebrate hosts. We report the assembly of closed genomes for two novel wolbachiae, wCfeT and wCfeJ, found co-infecting cat fleas (Ctenocephalides felis) of the Elward Laboratory colony (Soquel, CA, USA). wCfeT is basal to nearly all described Wolbachia supergroups, while wCfeJ is related to supergroups C, D and F. Both genomes contain laterally transferred genes that inform on the evolution of Wolbachia host associations. wCfeT carries the Biotin synthesis Operon of Obligate intracellular Microbes (BOOM); our analyses reveal five independent acquisitions of BOOM across the Wolbachia tree, indicating parallel evolution towards mutualism. Alternately, wCfeJ harbors a toxin-antidote operon analogous to the wPip cinAB operon recently characterized as an inducer of cytoplasmic incompatibility (CI) in flies. wCfeJ cinB and three adjacent genes are collectively similar to large modular toxins encoded in CI-like operons of certain Wolbachia strains and Rickettsia species, signifying that CI toxins streamline by fission of large modular toxins. Remarkably, the C. felis genome itself contains two CI-like antidote genes, divergent from wCfeJ cinA, revealing episodic reproductive parasitism in cat fleas and evidencing mobility of CI loci independent of WO-phage. Additional screening revealed predominant co-infection (wCfeT/wCfeJ) amongst C. felis colonies, though fleas in wild populations mostly harbor wCfeT alone. Collectively, genomes of wCfeT, wCfeJ, and their cat flea host supply instances of lateral gene transfers that could drive transitions between parasitism and mutualism.
Collapse
Affiliation(s)
| | - Victoria I. Verhoeve
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | | | | | - Mariah Plumer
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Spiridon E. Sevdalis
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | - John F. Beckmann
- Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Laura M. Krueger
- Orange County Mosquito and Vector Control District, Garden Grove, CA, USA
| | - Kevin R. Macaluso
- Microbiology and Immunology, University of South Alabama, Mobile, AL, USA
| | - Abdu F. Azad
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Joseph J. Gillespie
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| |
Collapse
|
32
|
Momtaz AZ, Ahumada Sabagh AD, Gonzalez Amortegui JG, Salazar SA, Finessi A, Hernandez J, Christensen S, Serbus LR. A Role for Maternal Factors in Suppressing Cytoplasmic Incompatibility. Front Microbiol 2020; 11:576844. [PMID: 33240234 PMCID: PMC7680759 DOI: 10.3389/fmicb.2020.576844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/20/2020] [Indexed: 12/02/2022] Open
Abstract
Wolbachia are maternally transmitted bacterial endosymbionts, carried by approximately half of all insect species. Wolbachia prevalence in nature stems from manipulation of host reproduction to favor the success of infected females. The best known reproductive modification induced by Wolbachia is referred to as sperm-egg Cytoplasmic Incompatibility (CI). In CI, the sperm of Wolbachia-infected males cause embryonic lethality, attributed to paternal chromatin segregation defects during early mitotic divisions. Remarkably, the embryos of Wolbachia-infected females “rescue” CI lethality, yielding egg hatch rates equivalent to uninfected female crosses. Several models have been discussed as the basis for Rescue, and functional evidence indicates a major contribution by Wolbachia CI factors. A role for host contributions to Rescue remains largely untested. In this study, we used a chemical feeding approach to test for CI suppression capabilities by Drosophila simulans. We found that uninfected females exhibited significantly higher CI egg hatch rates in response to seven chemical treatments that affect DNA integrity, cell cycle control, and protein turnover. Three of these treatments suppressed CI induced by endogenous wRi Wolbachia, as well as an ectopic wMel Wolbachia infection. The results implicate DNA integrity as a focal aspect of CI suppression for different Wolbachia strains. The framework presented here, applied to diverse CI models, will further enrich our understanding of host reproductive manipulation by insect endosymbionts.
Collapse
Affiliation(s)
- Ajm Zehadee Momtaz
- Department of Biological Sciences, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Abraham D Ahumada Sabagh
- Department of Biological Sciences, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Julian G Gonzalez Amortegui
- Department of Biological Sciences, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Samuel A Salazar
- Department of Biological Sciences, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Andrea Finessi
- Department of Biological Sciences, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Jethel Hernandez
- Department of Biological Sciences, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Steen Christensen
- Department of Biological Sciences, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Laura R Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| |
Collapse
|
33
|
Shropshire JD, Leigh B, Bordenstein SR. Symbiont-mediated cytoplasmic incompatibility: what have we learned in 50 years? eLife 2020; 9:61989. [PMID: 32975515 PMCID: PMC7518888 DOI: 10.7554/elife.61989] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Cytoplasmic incompatibility (CI) is the most common symbiont-induced reproductive manipulation. Specifically, symbiont-induced sperm modifications cause catastrophic mitotic defects in the fertilized embryo and ensuing lethality in crosses between symbiotic males and either aposymbiotic females or females harboring a different symbiont strain. However, if the female carries the same symbiont strain, then embryos develop properly, thereby imparting a relative fitness benefit to symbiont-transmitting mothers. Thus, CI drives maternally-transmitted bacteria to high frequencies in arthropods worldwide. In the past two decades, CI experienced a boom in interest due to its (i) deployment in worldwide efforts to curb mosquito-borne diseases, (ii) causation by bacteriophage genes, cifA and cifB, that modify sexual reproduction, and (iii) important impacts on arthropod speciation. This review serves as a gateway to experimental, conceptual, and quantitative themes of CI and outlines significant gaps in understanding CI’s mechanism that are ripe for investigation from diverse subdisciplines in the life sciences.
Collapse
Affiliation(s)
- J Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States
| | - Brittany Leigh
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, United States.,Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, United States
| |
Collapse
|
34
|
Chen H, Zhang M, Hochstrasser M. The Biochemistry of Cytoplasmic Incompatibility Caused by Endosymbiotic Bacteria. Genes (Basel) 2020; 11:genes11080852. [PMID: 32722516 PMCID: PMC7465683 DOI: 10.3390/genes11080852] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/29/2022] Open
Abstract
Many species of arthropods carry maternally inherited bacterial endosymbionts that can influence host sexual reproduction to benefit the bacterium. The most well-known of such reproductive parasites is Wolbachia pipientis. Wolbachia are obligate intracellular α-proteobacteria found in nearly half of all arthropod species. This success has been attributed in part to their ability to manipulate host reproduction to favor infected females. Cytoplasmic incompatibility (CI), a phenomenon wherein Wolbachia infection renders males sterile when they mate with uninfected females, but not infected females (the rescue mating), appears to be the most common. CI provides a reproductive advantage to infected females in the presence of a threshold level of infected males. The molecular mechanisms of CI and other reproductive manipulations, such as male killing, parthenogenesis, and feminization, have remained mysterious for many decades. It had been proposed by Werren more than two decades ago that CI is caused by a Wolbachia-mediated sperm modification and that rescue is achieved by a Wolbachia-encoded rescue factor in the infected egg. In the past few years, new research has highlighted a set of syntenic Wolbachia gene pairs encoding CI-inducing factors (Cifs) as the key players for the induction of CI and its rescue. Within each Cif pair, the protein encoded by the upstream gene is denoted A and the downstream gene B. To date, two types of Cifs have been characterized based on the enzymatic activity identified in the B protein of each protein pair; one type encodes a deubiquitylase (thus named CI-inducing deubiquitylase or cid), and a second type encodes a nuclease (named CI-inducing nuclease or cin). The CidA and CinA proteins bind tightly and specifically to their respective CidB and CinB partners. In transgenic Drosophila melanogaster, the expression of either the Cid or Cin protein pair in the male germline induces CI and the expression of the cognate A protein in females is sufficient for rescue. With the identity of the Wolbachia CI induction and rescue factors now known, research in the field has turned to directed studies on the molecular mechanisms of CI, which we review here.
Collapse
Affiliation(s)
- Hongli Chen
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; (H.C.); (M.Z.)
| | - Mengwen Zhang
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; (H.C.); (M.Z.)
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; (H.C.); (M.Z.)
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, CT 06511, USA
- Correspondence:
| |
Collapse
|
35
|
|
36
|
Driscoll TP, Verhoeve VI, Gillespie JJ, Johnston JS, Guillotte ML, Rennoll-Bankert KE, Rahman MS, Hagen D, Elsik CG, Macaluso KR, Azad AF. A chromosome-level assembly of the cat flea genome uncovers rampant gene duplication and genome size plasticity. BMC Biol 2020; 18:70. [PMID: 32560686 PMCID: PMC7305587 DOI: 10.1186/s12915-020-00802-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 05/29/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Fleas (Insecta: Siphonaptera) are small flightless parasites of birds and mammals; their blood-feeding can transmit many serious pathogens (i.e., the etiological agents of bubonic plague, endemic and murine typhus). The lack of flea genome assemblies has hindered research, especially comparisons to other disease vectors. Accordingly, we sequenced the genome of the cat flea, Ctenocephalides felis, an insect with substantial human health and veterinary importance across the globe. RESULTS By combining Illumina and PacBio sequencing of DNA derived from multiple inbred female fleas with Hi-C scaffolding techniques, we generated a chromosome-level genome assembly for C. felis. Unexpectedly, our assembly revealed extensive gene duplication across the entire genome, exemplified by ~ 38% of protein-coding genes with two or more copies and over 4000 tRNA genes. A broad range of genome size determinations (433-551 Mb) for individual fleas sampled across different populations supports the widespread presence of fluctuating copy number variation (CNV) in C. felis. Similarly, broad genome sizes were also calculated for individuals of Xenopsylla cheopis (Oriental rat flea), indicating that this remarkable "genome-in-flux" phenomenon could be a siphonapteran-wide trait. Finally, from the C. felis sequence reads, we also generated closed genomes for two novel strains of Wolbachia, one parasitic and one symbiotic, found to co-infect individual fleas. CONCLUSION Rampant CNV in C. felis has dire implications for gene-targeting pest control measures and stands to complicate standard normalization procedures utilized in comparative transcriptomics analysis. Coupled with co-infection by novel Wolbachia endosymbionts-potential tools for blocking pathogen transmission-these oddities highlight a unique and underappreciated disease vector.
Collapse
Affiliation(s)
| | - Victoria I Verhoeve
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Mark L Guillotte
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen E Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Darren Hagen
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Christine G Elsik
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
- MU Informatics Institute, University of Missouri, Columbia, MO, USA
| | - Kevin R Macaluso
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
37
|
Beckmann JF, Sharma GD, Mendez L, Chen H, Hochstrasser M. The Wolbachia cytoplasmic incompatibility enzyme CidB targets nuclear import and protamine-histone exchange factors. eLife 2019; 8:e50026. [PMID: 31774393 PMCID: PMC6881146 DOI: 10.7554/elife.50026] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/13/2019] [Indexed: 01/22/2023] Open
Abstract
Intracellular Wolbachia bacteria manipulate arthropod reproduction to promote their own inheritance. The most prevalent mechanism, cytoplasmic incompatibility (CI), traces to a Wolbachia deubiquitylase, CidB, and CidA. CidB has properties of a toxin, while CidA binds CidB and rescues embryonic viability. CidB is also toxic to yeast where we identified both host effects and high-copy suppressors of toxicity. The strongest suppressor was karyopherin-α, a nuclear-import receptor; this required nuclear localization-signal binding. A protein-interaction screen of Drosophila extracts using a substrate-trapping catalytic mutant, CidB*, also identified karyopherin-α; the P32 protamine-histone exchange factor bound as well. When CidB* bound CidA, these host protein interactions disappeared. These associations would place CidB at the zygotic male pronucleus where CI defects first manifest. Overexpression of karyopherin-α, P32, or CidA in female flies suppressed CI. We propose that CidB targets nuclear-protein import and protamine-histone exchange and that CidA rescues embryos by restricting CidB access to its targets.
Collapse
Affiliation(s)
| | - Gagan Deep Sharma
- Department of Entomology and Plant PathologyAuburn UniversityAuburnUnited States
| | - Luis Mendez
- Department of Entomology and Plant PathologyAuburn UniversityAuburnUnited States
| | - Hongli Chen
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
| | - Mark Hochstrasser
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
- Department of Molecular, Cellular, and Developmental BiologyYale UniversityNew HavenUnited States
| |
Collapse
|
38
|
Chen H, Ronau JA, Beckmann JF, Hochstrasser M. A Wolbachia nuclease and its binding partner provide a distinct mechanism for cytoplasmic incompatibility. Proc Natl Acad Sci U S A 2019; 116:22314-22321. [PMID: 31615889 PMCID: PMC6825299 DOI: 10.1073/pnas.1914571116] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wolbachia are endosymbiotic bacteria that infect nearly half of all arthropod species. This pandemic is due in part to their ability to increase their transmission through the female germline, most commonly by a mechanism called cytoplasmic incompatibility (CI). The Wolbachia cid operon, encoding 2 proteins, CidA and CidB, the latter a deubiquitylating enzyme (DUB), recapitulates CI in transgenic Drosophila melanogaster However, some CI-inducing Wolbachia strains lack a DUB-encoding cid operon; it was therefore proposed that the related cin operon codes for an alternative CI system. Here we show that the Wolbachia cin operon encodes a nuclease, CinB, and a second protein, CinA, that tightly binds CinB. Recombinant CinB has nuclease activity against both single-stranded and double-stranded DNA but not RNA under the conditions tested. Expression of the cin operon in transgenic male flies induces male sterility and embryonic defects typical of CI. Importantly, transgenic CinA can rescue defects in egg-hatch rates when expressed in females. Expression of CinA also rescues CinB-induced growth defects in yeast. CinB has 2 PD-(D/E)xK nuclease domains, and both are required for nuclease activity and for toxicity in yeast and flies. Our data suggest a distinct mechanism for CI involving a nuclease toxin and highlight the central role of toxin-antidote operons in Wolbachia-induced cytoplasmic incompatibility.
Collapse
Affiliation(s)
- Hongli Chen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | - Judith A Ronau
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | - John F Beckmann
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 26849
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511;
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511
| |
Collapse
|
39
|
Zheng Y, Shen W, Bi J, Chen MY, Wang RF, Ai H, Wang YF. Small RNA analysis provides new insights into cytoplasmic incompatibility in Drosophila melanogaster induced by Wolbachia. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103938. [PMID: 31491378 DOI: 10.1016/j.jinsphys.2019.103938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Wolbachia is a genus of endosymbiotic bacteria that induce a wide range of effects on their insect hosts. Cytoplasmic incompatibility (CI) is the most common phenotype mediated by Wolbachia and results in embryonic lethality when Wolbachia-infected males mate with uninfected females. Studies have revealed that bacteria can regulate many cellular processes in their hosts using small non-coding RNAs, so we investigated the involvement of small RNAs (sRNAs) in CI. Comparison of sRNA libraries between Wolbachia-infected and uninfected Drosophila melanogaster testes revealed 18 novel microRNAs (miRNAs), of which 12 were expressed specifically in Wolbachia-infected flies and one specifically in Wolbachia-uninfected flies. Furthermore, ten miRNAs showed differential expression, with four upregulated and six downregulated in Wolbachia-infected flies. Of the upregulated miRNAs, nov-miR-12 exhibited the highest upregulation in the testes of D. melanogaster. We then identified pipsqueak (psq) as the target gene of nov-miR-12 with the greatest complementarity in its 3' untranslated region (UTR). Wolbachia infection was correlated with reduced psq expression in D. melanogaster, and luciferase assays demonstrated that nov-miR-12 could downregulate psq through binding to its 3'UTR region. Knockdown of psq in Wolbachia-free fly testes significantly reduced egg hatching rate and mimicked the cellular abnormalities of Wolbachia-induced CI in embryos, including asynchronous nuclear division, chromatin bridging, and chromatin fragmentation. These results suggest that Wolbachia may induce CI in insect hosts by miRNA-mediated changes in host gene expression. Moreover, these findings reveal a potential molecular strategy for elucidating the complex interactions between endosymbionts and their insect hosts, such as Wolbachia-driven CI.
Collapse
Affiliation(s)
- Ya Zheng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Wei Shen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Jie Bi
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Meng-Yan Chen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Rui-Fang Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Hui Ai
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
40
|
Cooper BS, Vanderpool D, Conner WR, Matute DR, Turelli M. Wolbachia Acquisition by Drosophila yakuba-Clade Hosts and Transfer of Incompatibility Loci Between Distantly Related Wolbachia. Genetics 2019; 212:1399-1419. [PMID: 31227544 PMCID: PMC6707468 DOI: 10.1534/genetics.119.302349] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Maternally transmitted Wolbachia infect about half of insect species, yet the predominant mode(s) of Wolbachia acquisition remains uncertain. Species-specific associations could be old, with Wolbachia and hosts codiversifying (i.e., cladogenic acquisition), or relatively young and acquired by horizontal transfer or introgression. The three Drosophila yakuba-clade hosts [(D. santomea, D. yakuba) D. teissieri] diverged ∼3 MYA and currently hybridize on the West African islands Bioko and São Tomé. Each species is polymorphic for nearly identical Wolbachia that cause weak cytoplasmic incompatibility (CI)-reduced egg hatch when uninfected females mate with infected males. D. yakuba-clade Wolbachia are closely related to wMel, globally polymorphic in D. melanogaster We use draft Wolbachia and mitochondrial genomes to demonstrate that D. yakuba-clade phylogenies for Wolbachia and mitochondria tend to follow host nuclear phylogenies. However, roughly half of D. santomea individuals, sampled both inside and outside of the São Tomé hybrid zone, have introgressed D. yakuba mitochondria. Both mitochondria and Wolbachia possess far more recent common ancestors than the bulk of the host nuclear genomes, precluding cladogenic Wolbachia acquisition. General concordance of Wolbachia and mitochondrial phylogenies suggests that horizontal transmission is rare, but varying relative rates of molecular divergence complicate chronogram-based statistical tests. Loci that cause CI in wMel are disrupted in D. yakuba-clade Wolbachia; but a second set of loci predicted to cause CI are located in the same WO prophage region. These alternative CI loci seem to have been acquired horizontally from distantly related Wolbachia, with transfer mediated by flanking Wolbachia-specific ISWpi1 transposons.
Collapse
Affiliation(s)
- Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812
| | - Dan Vanderpool
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - William R Conner
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812
| | - Daniel R Matute
- Biology Department, University of North Carolina at Chapel Hill, North Carolina 27510
| | - Michael Turelli
- Department of Evolution and Ecology, University of California, Davis, California 95616
| |
Collapse
|
41
|
Sicard M, Bonneau M, Weill M. Wolbachia prevalence, diversity, and ability to induce cytoplasmic incompatibility in mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2019; 34:12-20. [PMID: 31247412 DOI: 10.1016/j.cois.2019.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
To protect humans and domestic animals from mosquito borne diseases, alternative methods to chemical insecticides have to be found. Pilot studies using the vertically transmitted bacterial endosymbiont Wolbachia were already launched in different parts of the world. Wolbachia can be used either in Incompatible Insect Technique (IIT), to decrease mosquito population, or to decrease the ability of mosquitoes to transmit pathogens. Not all mosquito species are naturally infected with Wolbachia: while in Culex pipiens and Aedes albopictus almost all individuals harbor Wolbachia, putative infections have to be further investigated in Anopheles species and in Aedes aegypti. All Wolbachia-based control methods rely on the ability of Wolbachia to induce cytoplasmic incompatibility (CI) resulting in embryonic death in incompatible crossings. Knowledge on CI diversity in mosquito is required to find the better Wolbachia-mosquito associations to optimize the success of both 'sterile insect' and 'pathogen blocking' Wolbachia-based methods.
Collapse
Affiliation(s)
- Mathieu Sicard
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| | - Manon Bonneau
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Mylène Weill
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| |
Collapse
|
42
|
He Z, Zheng Y, Yu WJ, Fang Y, Mao B, Wang YF. How do Wolbachia modify the Drosophila ovary? New evidences support the "titration-restitution" model for the mechanisms of Wolbachia-induced CI. BMC Genomics 2019; 20:608. [PMID: 31340757 PMCID: PMC6657171 DOI: 10.1186/s12864-019-5977-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Background Cytoplasmic incompatibility (CI) is the most common phenotype induced by endosymbiont Wolbachia and results in embryonic lethality when Wolbachia-modified sperm fertilize eggs without Wolbachia. However, eggs carrying the same strain of Wolbachia can rescue this embryonic death, thus producing viable Wolbachia-infected offspring. Hence Wolbachia can be transmitted mainly by hosts’ eggs. One of the models explaining CI is “titration-restitution”, which hypothesized that Wolbachia titrated-out some factors from the sperm and the Wolbachia in the egg would restitute the factors after fertilization. However, how infected eggs rescue CI and how hosts’ eggs ensure the proliferation and transmission of Wolbachia are not well understood. Results By RNA-seq analyses, we first compared the transcription profiles of Drosophila melanogaster adult ovaries with and without the wMel Wolbachia and identified 149 differentially expressed genes (DEGs), of which 116 genes were upregulated and 33 were downregulated by Wolbachia infection. To confirm the results obtained from RNA-seq and to screen genes potentially associated with reproduction, 15 DEGs were selected for quantitative RT-PCR (qRT-PCR). Thirteen genes showed the same changing trend as RNA-seq analyses. To test whether these genes are associated with CI, we also detected their expression levels in testes. Nine of them exhibited different changing trends in testes from those in ovaries. To investigate how these DEGs were regulated, sRNA sequencing was performed and identified seven microRNAs (miRNAs) that were all upregulated in fly ovaries by Wolbachia infection. Matching of miRNA and mRNA data showed that these seven miRNAs regulated 15 DEGs. Wolbachia-responsive genes in fly ovaries were involved in biological processes including metabolism, transportation, oxidation-reduction, immunity, and development. Conclusions Comparisons of mRNA and miRNA data from fly ovaries revealed 149 mRNAs and seven miRNAs that exhibit significant changes in expression due to Wolbachia infection. Notably, most of the DEGs showed variation in opposite directions in ovaries versus testes in the presence of Wolbachia, which generally supports the “titration-restitution” model for CI. Furthermore, genes related to metabolism were upregulated, which may benefit maximum proliferation and transmission of Wolbachia. This provides new insights into the molecular mechanisms of Wolbachia-induced CI and Wolbachia dependence on host ovaries. Electronic supplementary material The online version of this article (10.1186/s12864-019-5977-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhen He
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Ya Zheng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Wen-Juan Yu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Yang Fang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Bin Mao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
43
|
Two-By-One model of cytoplasmic incompatibility: Synthetic recapitulation by transgenic expression of cifA and cifB in Drosophila. PLoS Genet 2019; 15:e1008221. [PMID: 31242186 PMCID: PMC6594578 DOI: 10.1371/journal.pgen.1008221] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/30/2019] [Indexed: 01/22/2023] Open
Abstract
Wolbachia are maternally inherited bacteria that infect arthropod species worldwide and are deployed in vector control to curb arboviral spread using cytoplasmic incompatibility (CI). CI kills embryos when an infected male mates with an uninfected female, but the lethality is rescued if the female and her embryos are likewise infected. Two phage WO genes, cifAwMel and cifBwMel from the wMel Wolbachia deployed in vector control, transgenically recapitulate variably penetrant CI, and one of the same genes, cifAwMel, rescues wild type CI. The proposed Two-by-One genetic model predicts that CI and rescue can be recapitulated by transgenic expression alone and that dual cifAwMeland cifBwMel expression can recapitulate strong CI. Here, we use hatch rate and gene expression analyses in transgenic Drosophila melanogaster to demonstrate that CI and rescue can be synthetically recapitulated in full, and strong, transgenic CI comparable to wild type CI is achievable. These data explicitly validate the Two-by-One model in wMel-infected D. melanogaster, establish a robust system for transgenic studies of CI in a model system, and represent the first case of completely engineering male and female animal reproduction to depend upon bacteriophage gene products. Releases of Wolbachia-infected mosquitos are underway worldwide because Wolbachia block replication of Zika and Dengue viruses and spread themselves maternally through arthropod populations via cytoplasmic incompatibility (CI). The CI drive system depends on a Wolbachia-induced sperm modification that results in embryonic lethality when an infected male mates with an uninfected female, but this lethality is rescued when the female and her embryos are likewise infected. We recently reported that the phage WO genes, cifA and cifB, cause the sperm modification and cifA rescues the embryonic lethality caused by the wMel Wolbachia strain deployed in vector control. These reports motivated proposal of the Two-by-One model of CI whereby two genes cause lethality and one gene rescues it. Here we provide unequivocal support for the model in the Wolbachia strain used in vector control via synthetic methods that recapitulate CI and rescue in the absence of a Wolbachia infections. Our results reveal the set of phage WO genes responsible for this powerful genetic drive system, act as a proof-of-concept that these genes alone can induce gene drive like crossing patterns, and establish methodologies and hypotheses for future studies of CI in Drosophila. We discuss the implications of the Two-by-One model towards functional mechanisms of CI, the emergence of incompatibility between Wolbachia strains, vector control applications, and CI gene nomenclature.
Collapse
|
44
|
Jacquet A, Horard B, Loppin B. Does pupal communication influence Wolbachia-mediated cytoplasmic incompatibility? Curr Biol 2019; 27:R53-R55. [PMID: 28118585 DOI: 10.1016/j.cub.2016.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Wolbachia are widespread endosymbiotic bacteria found in terrestrial arthropods and filarial nematodes [1]. In insects, Wolbachia generally rely on diverse strategies to manipulate their host's reproduction and favor their own vertical transmission through infected eggs [2]. One such mechanism is a sterility syndrome called 'cytoplasmic incompatibility'. Cytoplasmic incompatibility occurs at fertilization, when a spermatozoon from a Wolbachia-infected male fertilizes an uninfected egg. In this case, sperm-derived chromosomes fail to separate normally at the first zygotic division, thus preventing the development of a diploid embryo [3]. Moreover, the presence of Wolbachia in females rescues the integration of paternal chromosomes in the zygote and allows the development of a viable, infected individual. Although the molecular basis of cytoplasmic incompatibility is still unknown, a current model implies the existence of Wolbachia-induced reversible modifications on sperm DNA or chromatin that must be eliminated or neutralized shortly after fertilization by rescuing Wolbachia factors present in infected eggs [4]. In a recent Current Biology paper [5], Stéphanie Pontier and François Schweisguth recently challenged this model by proposing that Wolbachia perturbs a pheromone-based communication between male and female pupae in Drosophila melanogaster and Drosophila simulans, which controls the "compatibility range" of male and female gametes. However, we fail to detect any influence of pupal communication on cytoplasmic incompatibility in Drosophila simulans as well as in the parasitoid wasp Nasonia vitripennis. Our results thus question the robustness of their model.
Collapse
Affiliation(s)
- Angelo Jacquet
- Laboratoire de Biométrie et de Biologie Evolutive - CNRS UMR5558, Université Claude Bernard Lyon1, University of Lyon, Villeurbanne, France
| | - Béatrice Horard
- Laboratoire de Biométrie et de Biologie Evolutive - CNRS UMR5558, Université Claude Bernard Lyon1, University of Lyon, Villeurbanne, France
| | - Benjamin Loppin
- Laboratoire de Biométrie et de Biologie Evolutive - CNRS UMR5558, Université Claude Bernard Lyon1, University of Lyon, Villeurbanne, France.
| |
Collapse
|
45
|
Abstract
Mitochondria, a nearly ubiquitous feature of eukaryotes, are derived from an ancient symbiosis. Despite billions of years of cooperative coevolution - in what is arguably the most important mutualism in the history of life - the persistence of mitochondrial genomes also creates conditions for genetic conflict with the nucleus. Because mitochondrial genomes are present in numerous copies per cell, they are subject to both within- and among-organism levels of selection. Accordingly, 'selfish' genotypes that increase their own proliferation can rise to high frequencies even if they decrease organismal fitness. It has been argued that uniparental (often maternal) inheritance of cytoplasmic genomes evolved to curtail such selfish replication by minimizing within-individual variation and, hence, within-individual selection. However, uniparental inheritance creates conditions for cytonuclear conflict over sex determination and sex ratio, as well as conditions for sexual antagonism when mitochondrial variants increase transmission by enhancing maternal fitness but have the side-effect of being harmful to males (i.e., 'mother's curse'). Here, we review recent advances in understanding selfish replication and sexual antagonism in the evolution of mitochondrial genomes and the mechanisms that suppress selfish interactions, drawing parallels and contrasts with other organelles (plastids) and bacterial endosymbionts that arose more recently. Although cytonuclear conflict is widespread across eukaryotes, it can be cryptic due to nuclear suppression, highly variable, and lineage-specific, reflecting the diverse biology of eukaryotes and the varying architectures of their cytoplasmic genomes.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Integrative Biology, The University of Texas, Austin, TX 78712, USA.
| | - Evan S Forsythe
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
46
|
Meany MK, Conner WR, Richter SV, Bailey JA, Turelli M, Cooper BS. Loss of cytoplasmic incompatibility and minimal fecundity effects explain relatively low Wolbachia frequencies in Drosophila mauritiana. Evolution 2019; 73:1278-1295. [PMID: 31001816 PMCID: PMC6554066 DOI: 10.1111/evo.13745] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/29/2019] [Indexed: 12/16/2022]
Abstract
Maternally transmitted Wolbachia bacteria infect about half of all insect species. Many Wolbachia cause cytoplasmic incompatibility (CI) and reduced egg hatch when uninfected females mate with infected males. Although CI produces a frequency-dependent fitness advantage that leads to high equilibrium Wolbachia frequencies, it does not aid Wolbachia spread from low frequencies. Indeed, the fitness advantages that produce initial Wolbachia spread and maintain non-CI Wolbachia remain elusive. wMau Wolbachia infecting Drosophila mauritiana do not cause CI, despite being very similar to CI-causing wNo from Drosophila simulans (0.068% sequence divergence over 682,494 bp), suggesting recent CI loss. Using draft wMau genomes, we identify a deletion in a CI-associated gene, consistent with theory predicting that selection within host lineages does not act to increase or maintain CI. In the laboratory, wMau shows near-perfect maternal transmission; but we find no significant effect on host fecundity, in contrast to published data. Intermediate wMau frequencies on the island of Mauritius are consistent with a balance between unidentified small, positive fitness effects and imperfect maternal transmission. Our phylogenomic analyses suggest that group-B Wolbachia, including wMau and wPip, diverged from group-A Wolbachia, such as wMel and wRi, 6-46 million years ago, more recently than previously estimated.
Collapse
Affiliation(s)
- Megan K. Meany
- Division of Biological Sciences, University of Montana,
Missoula, MT USA
| | - William R. Conner
- Division of Biological Sciences, University of Montana,
Missoula, MT USA
| | - Sophia V. Richter
- Division of Biological Sciences, University of Montana,
Missoula, MT USA
| | - Jessica A. Bailey
- Division of Biological Sciences, University of Montana,
Missoula, MT USA
| | - Michael Turelli
- Department of Evolution and Ecology, University of
California, Davis, CA USA
| | - Brandon S. Cooper
- Division of Biological Sciences, University of Montana,
Missoula, MT USA
| |
Collapse
|
47
|
Wasala SK, Brown AMV, Kang J, Howe DK, Peetz AB, Zasada IA, Denver DR. Variable Abundance and Distribution of Wolbachia and Cardinium Endosymbionts in Plant-Parasitic Nematode Field Populations. Front Microbiol 2019; 10:964. [PMID: 31134014 PMCID: PMC6513877 DOI: 10.3389/fmicb.2019.00964] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/16/2019] [Indexed: 01/10/2023] Open
Abstract
The bacterial endosymbiont Wolbachia interacts with different invertebrate hosts, engaging in diverse symbiotic relationships. Wolbachia is often a reproductive parasite in arthropods, but an obligate mutualist in filarial nematodes. Wolbachia was recently discovered in plant-parasitic nematodes, and, is thus far known in just two genera Pratylenchus and Radopholus, yet the symbiont's function remains unknown. The occurrence of Wolbachia in these economically important plant pests offers an unexplored biocontrol strategy. However, development of Wolbachia-based biocontrol requires an improved understanding of symbiont-host functional interactions and the symbiont's prevalence among nematode field populations. This study used a molecular-genetic approach to assess the prevalence of a Wolbachia lineage (wPpe) in 32 field populations of Pratylenchus penetrans. Populations were examined from eight different plant species in Washington, Oregon, and California. Nematodes were also screened for the endosymbiotic bacterium Cardinium (cPpe) that was recently shown to co-infect P. penetrans. Results identified wPpe in 9/32 and cPpe in 1/32 of P. penetrans field populations analyzed. No co-infection was observed in field populations. Wolbachia was detected in nematodes from 4/8 plant-hosts examined (raspberry, strawberry, clover, and lily), and in all three states surveyed. Cardinium was detected in nematodes from mint in Washington. In the wPpe-infected P. penetrans populations collected from raspberry, the prevalence of wPpe infection ranged from 11 to 58%. This pattern is unlike that in filarial nematodes where Wolbachia is an obligate mutualist and occurs in 100% of the host. Further analysis of wPpe-infected populations revealed female-skewed sex ratios (up to 96%), with the degree of skew positively correlating with wPpe prevalence. Uninfected nematode populations had approximately equal numbers of males and females. Comparisons of 54 wPpe 16S ribosomal RNA sequences revealed high similarity across the geographic isolates, with 45 of 54 isolates being identical at this locus. The complete absence of wPpe among some populations and low prevalence in others suggest that this endosymbiont is not an obligate mutualist of P. penetrans. The observed sex ratio bias in wPpe-infected nematode populations is similar to that observed in arthropods where Wolbachia acts as a reproductive manipulator, raising the question of a similar role in plant-parasitic nematodes.
Collapse
Affiliation(s)
- Sulochana K. Wasala
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Amanda M. V. Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Jiwon Kang
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Dana K. Howe
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Amy B. Peetz
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, United States
| | - Inga A. Zasada
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, United States
| | - Dee R. Denver
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
48
|
Shropshire JD, Leigh B, Bordenstein SR, Duplouy A, Riegler M, Brownlie JC, Bordenstein SR. Models and Nomenclature for Cytoplasmic Incompatibility: Caution over Premature Conclusions - A Response to Beckmann et al. Trends Genet 2019; 35:397-399. [PMID: 31003827 DOI: 10.1016/j.tig.2019.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 11/24/2022]
Affiliation(s)
- J Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA.
| | - Brittany Leigh
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Sarah R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Anne Duplouy
- Department of Biology, Lunds Universitet, Sölvegatan 37, 223 62, Lund, Sweden
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Jeremy C Brownlie
- School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute of Infection, Immunology and Inflammation, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
49
|
Beckmann JF, Bonneau M, Chen H, Hochstrasser M, Poinsot D, Merçot H, Weill M, Sicard M, Charlat S. Caution Does Not Preclude Predictive and Testable Models of Cytoplasmic Incompatibility: A Reply to Shropshire et al. Trends Genet 2019; 35:399-400. [PMID: 30979535 DOI: 10.1016/j.tig.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 01/07/2023]
Affiliation(s)
- John F Beckmann
- Auburn University, Department of Entomology and Plant Pathology, 301 Funchess Hall, Auburn, AL 36849, USA
| | - Manon Bonneau
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Hongli Chen
- Yale University, Department of Molecular Biophysics & Biochemistry, 266 Whitney Avenue, New Haven, CT 06511, USA
| | - Mark Hochstrasser
- Yale University, Department of Molecular Biophysics & Biochemistry, 266 Whitney Avenue, New Haven, CT 06511, USA
| | - Denis Poinsot
- Université Rennes 1, UMR IGEPP, Campus Beaulieu, Bat 25-4, 35042 Rennes, France
| | - Hervé Merçot
- Sorbonne Université, UPMC Univ. Paris 06, CNRS, Institut de Biologie Paris Seine, Evolution Paris Seine (IBPS, EPS), 7-9 Quai St-Bernard, 75005 Paris, France
| | - Mylène Weill
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Mathieu Sicard
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| | - Sylvain Charlat
- CNRS - University of Lyon, Laboratoire de Biométrie and Biologie Evolutive, 16 Rue Raphael Dubois, 69622, Villeurbanne, France.
| |
Collapse
|
50
|
Degner EC, Ahmed-Braimah YH, Borziak K, Wolfner MF, Harrington LC, Dorus S. Proteins, Transcripts, and Genetic Architecture of Seminal Fluid and Sperm in the Mosquito Aedes aegypti. Mol Cell Proteomics 2019; 18:S6-S22. [PMID: 30552291 PMCID: PMC6427228 DOI: 10.1074/mcp.ra118.001067] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/29/2018] [Indexed: 11/06/2022] Open
Abstract
The yellow fever mosquito, Aedes aegypti,, transmits several viruses causative of serious diseases, including dengue, Zika, and chikungunya. Some proposed efforts to control this vector involve manipulating reproduction to suppress wild populations or to replace them with disease-resistant mosquitoes. The design of such strategies requires an intimate knowledge of reproductive processes, yet our basic understanding of reproductive genetics in this vector remains largely incomplete. To accelerate future investigations, we have comprehensively catalogued sperm and seminal fluid proteins (SFPs) transferred to females in the ejaculate using tandem mass spectrometry. By excluding female-derived proteins using an isotopic labeling approach, we identified 870 sperm proteins and 280 SFPs. Functional composition analysis revealed parallels with known aspects of sperm biology and SFP function in other insects. To corroborate our proteome characterization, we also generated transcriptomes for testes and the male accessory glands-the primary contributors to Ae. aegypti, sperm and seminal fluid, respectively. Differential gene expression of accessory glands from virgin and mated males suggests that transcripts encoding proteins involved in protein translation are upregulated post-mating. Several SFP transcripts were also modulated after mating, but >90% remained unchanged. Finally, a significant enrichment of SFPs was observed on chromosome 1, which harbors the male sex determining locus in this species. Our study provides a comprehensive proteomic and transcriptomic characterization of ejaculate production and composition and thus provides a foundation for future investigations of Ae. aegypti, reproductive biology, from functional analysis of individual proteins to broader examination of reproductive processes.
Collapse
Affiliation(s)
- Ethan C Degner
- From the ‡Department of Entomology, Cornell University, Ithaca, New York
| | | | - Kirill Borziak
- Center for Reproductive Evolution, Syracuse University, Syracuse, New York
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York;.
| | - Laura C Harrington
- From the ‡Department of Entomology, Cornell University, Ithaca, New York;.
| | - Steve Dorus
- Center for Reproductive Evolution, Syracuse University, Syracuse, New York.
| |
Collapse
|