1
|
Ramírez-Sotelo U, García-Carnero LC, Martínez-Álvarez JA, Gómez-Gaviria M, Mora-Montes HM. An ELISA-based method for Galleria mellonella apolipophorin-III quantification. PeerJ 2024; 12:e17117. [PMID: 38500532 PMCID: PMC10946395 DOI: 10.7717/peerj.17117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Mammalian models, such as murine, are used widely in pathophysiological studies because they have a high degree of similarity in body temperature, metabolism, and immune response with humans. However, non-vertebrate animal models have emerged as alternative models to study the host-pathogen interaction with minimal ethical concerns. Galleria mellonella is an alternative model that has proved useful in studying the interaction of the host with either bacteria or fungi, performing drug testing, and assessing the immunological response to different microorganisms. The G. mellonella immune response includes cellular and humoral components with structural and functional similarities to the immune effectors found in higher vertebrates, such as humans. An important humoral effector stimulated during infections is apolipophorin III (apoLp-III), an opsonin characterized by its lipid and carbohydrate-binding properties that participate in lipid transport, as well as immunomodulatory activity. Despite some parameters, such as the measurement of phenoloxidase activity, melanin production, hemocytes counting, and expression of antimicrobial peptides genes are already used to assess the G. mellonella immune response to pathogens with different virulence degrees, the apoLp-III quantification remains to be a parameter to assess the immune response in this invertebrate. Here, we propose an immunological tool based on an enzyme-linked immunosorbent assay that allows apoLp-III quantification in the hemolymph of larvae challenged with pathogenic agents. We tested the system with hemolymph coming from larvae infected with Escherichia coli, Candida albicans, Sporothrix schenckii, Sporothrix globosa, and Sporothrix brasiliensis. The results revealed significantly higher concentrations of apoLp-III when each microbial species was inoculated, in comparison with untouched larvae, or inoculated with phosphate-buffered saline. We also demonstrated that the apoLp-III levels correlated with the strains' virulence, which was already reported. To our knowledge, this is one of the first attempts to quantify apoLp-III, using a quick and easy-to-use serological technique.
Collapse
|
2
|
Jin Q, Wang Y, Hu Y, He Y, Xiong C, Jiang H. Serine protease homolog pairs CLIPA4-A6, A4-A7Δ, and A4-A12 act as cofactors for proteolytic activation of prophenoloxidase-2 and -7 in Anopheles gambiae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 164:104048. [PMID: 38056530 PMCID: PMC10872527 DOI: 10.1016/j.ibmb.2023.104048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Phenoloxidase (PO) catalyzed melanization and other insect immune responses are mediated by serine proteases (SPs) and their noncatalytic homologs (SPHs). Many of these SP-like proteins have a regulatory clip domain and are called CLIPs. In most insects studied so far, PO precursors are activated by a PAP (i.e., PPO activating protease) and its cofactor of clip-domain SPHs. Although melanotic encapsulation is a well-known refractory mechanism of mosquitoes against malaria parasites, it is unclear if a cofactor is required for PPO activation. In Anopheles gambiae, CLIPA4 is 1:1 orthologous to Manduca sexta SPH2; CLIPs A5-7, A12-14, A26, A31, A32, E6, and E7 are 11:4 orthologous to M. sexta SPH1a, 1b, 4, and 101, SPH2 partners in the cofactors. Here we produced proCLIPs A4, A6, A7Δ, A12, and activated them with CLIPB9 or M. sexta PAP3. A. gambiae PPO2 and PPO7 were expressed in Escherichia coli for use as PAP substrates. CLIPB9 was mutated to CLIPB9Xa by including a Factor Xa cleavage site. CLIPA7Δ was a deletion mutant with a low complexity region removed. After PAP3 or CLIPB9Xa processing, CLIPA4 formed a high Mr complex with CLIPA6, A7Δ or A12, which assisted PPO2 and PPO7 activation. High levels of specific PO activity (55-85 U/μg for PO2 and 1131-1630 U/μg for PO7) were detected in vitro, indicating that cofactor-assisted PPO activation also occurs in this species. The cleavage sites and mechanisms for complex formation and cofactor function are like those reported in M. sexta and Drosophila melanogaster. In conclusion, these data suggest that the three (and perhaps more) SPHI-II pairs may form cofactors for CLIPB9-mediated activation of PPOs for melanotic encapsulation in A. gambiae.
Collapse
Affiliation(s)
- Qiao Jin
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Chao Xiong
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
3
|
Jin Q, Wang Y, Yin H, Jiang H. Two clip-domain serine protease homologs, cSPH35 and cSPH242, act as a cofactor for prophenoloxidase-1 activation in Drosophila melanogaster. Front Immunol 2023; 14:1244792. [PMID: 37781370 PMCID: PMC10540698 DOI: 10.3389/fimmu.2023.1244792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
Insect phenoloxidases (POs) catalyze phenol oxygenation and o-diphenol oxidation to form reactive intermediates that kill invading pathogens and form melanin polymers. To reduce their toxicity to host cells, POs are produced as prophenoloxidases (PPOs) and activated by a serine protease cascade as required. In most insects studied so far, PPO activating proteases (PAPs) generate active POs in the presence of a high Mr cofactor, comprising two serine protease homologs (SPHs) each with a Gly residue replacing the catalytic Ser of an S1A serine protease (SP). These SPHs have a regulatory clip domain at the N-terminus, like most of the SP cascade members including PAPs. In Drosophila, PPO activation and PO-catalyzed melanization have been examined in genetic analyses but it is unclear if a cofactor is required for PPO activation. In this study, we produced the recombinant cSPH35 and cSPH242 precursors, activated them with Manduca sexta PAP3, and confirmed their predicted role as a cofactor for Drosophila PPO1 activation by MP2 (i.e., Sp7). The cleavage sites and mechanisms for complex formation and cofactor function are highly similar to those reported in M. sexta. In the presence of high Mr complexes of the cSPHs, PO at a high specific activity of 260 U/μg was generated in vitro. To complement the in vitro analysis, we measured hemolymph PO activity levels in wild-type flies, cSPH35, and cSPH242 RNAi lines. Compared with the wild-type flies, only 4.4% and 18% of the control PO level (26 U/μl) was detected in the cSPH35 and cSPH242 knockdowns, respectively. Consistently, percentages of adults with a melanin spot at the site of septic pricking were 82% in wild-type, 30% in cSPH35 RNAi, and 53% in cSPH242 RNAi lines; the survival rate of the control (45%) was significantly higher than those (30% and 15%) of the two RNAi lines. These data suggest that Drosophila cSPH35 and cSPH242 are components of a cofactor for MP2-mediated PPO1 activation, which are indispensable for early melanization in adults.
Collapse
Affiliation(s)
| | | | | | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
4
|
Adamo S. The Integrated Defense System: Optimizing Defense against Predators, Pathogens, and Poisons. Integr Comp Biol 2022; 62:1536-1546. [PMID: 35511215 DOI: 10.1093/icb/icac024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 04/28/2022] [Indexed: 01/05/2023] Open
Abstract
Insects, like other animals, have evolved defense responses to protect against predators, pathogens, and poisons (i.e., toxins). This paper provides evidence that these three defense responses (i.e., fight-or-flight, immune, and detoxification responses) function together as part of an Integrated Defense System (IDS) in insects. The defense responses against predators, pathogens, and poisons are deeply intertwined. They share organs, resources, and signaling molecules. By connecting defense responses into an IDS, animals gain flexibility, and resilience. Resources can be redirected across fight-or-flight, immune, and detoxification defenses to optimize an individual's response to the current challenges facing it. At the same time, the IDS reconfigures defense responses that are losing access to resources, allowing them to maintain as much function as possible despite decreased resource availability. An IDS perspective provides an adaptive explanation for paradoxical phenomena such as stress-induced immunosuppression, and the observation that exposure to a single challenge typically leads to an increase in the expression of genes for all three defense responses. Further exploration of the IDS will require more studies examining how defense responses to a range of stressors are interconnected in a variety of species. Such studies should target pollinators and agricultural pests. These studies will be critical for predicting how insects will respond to multiple stressors, such as simultaneous anthropogenic threats, for example, climate change and pesticides.
Collapse
Affiliation(s)
- Shelley Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
5
|
Kariyawasam U, Gulati M, Wang Y, Bao H, Shan T, Li X, Cao X, Sumathipala N, Hu Y, Zhang X, Boons GJ, Jiang H. Preferential binding of DAP-PGs by major peptidoglycan recognition proteins found in cell-free hemolymph of Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 148:103827. [PMID: 36007680 PMCID: PMC11528686 DOI: 10.1016/j.ibmb.2022.103827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/09/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) detect invading bacteria to trigger or modulate immune responses in insects. While these roles are established in Drosophila, functional studies are not yet achieved at the PGRP family level in other insects. To attain this goal, we selected Manduca sexta PGRP12 and five of the nine secreted PGRPs for recombinant expression and biochemical characterization. We cloned PGRP2-5, 12 and 13 cDNAs, produced the proteins in full (PGRP2-5, 13) or in part (PGRP3s, 12e, 13N, 13C) in Sf9 cells, and tested their bindings of two muramyl pentapeptides by surface plasmon resonance, two soluble peptidoglycans by competitive ELISA, and four insoluble peptidoglycans and eight whole bacteria by a pull-down assay. Preferential binding of meso-diaminopimelic acid-peptidoglycans (DAP-PGs) was observed in all the proteins containing a peptidoglycan binding domain and, since PGRP6, 7 and 9 proteins were hardly detected in cell-free hemolymph, the reportoire of PGRPs (including PGRP1 published previously) in M. sexta hemolymph is likely adapted to mainly detect Gram-negative bacteria and certain Gram-positive bacteria with DAP-PGs located on their surface. After incubation with plasma from naïve larvae, PGRP2, 3f, 4, 5, 13f and 13N considerably stimulated prophenoloxidase activation in the absence of a bacterial elicitor. PGRP3s and 12e had much smaller effects. Inclusion of the full-length PGRPs and their regions in the plasma also led to proHP8 activation, supporting their connections to the Toll pathway, since HP8 is a Spӓtzle-1 processing enzyme in M. sexta. Together, these findings raised concerns on the common belief that the Toll-pathway is specific for Gram-positive bacteria in insects.
Collapse
Affiliation(s)
- Udeshika Kariyawasam
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA; Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Mansi Gulati
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Haibo Bao
- Institute of Plant Protection, Jiangshu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Tisheng Shan
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xiuru Li
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA; Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Niranji Sumathipala
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA; Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xiufeng Zhang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
6
|
Jin Q, Wang Y, Hartson SD, Jiang H. Cleavage activation and functional comparison of Manduca sexta serine protease homologs SPH1a, SPH1b, SPH4, and SPH101 in conjunction with SPH2. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 144:103762. [PMID: 35395380 PMCID: PMC9328667 DOI: 10.1016/j.ibmb.2022.103762] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/17/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Phenoloxidase (PO) is a crucial component of the insect immune response against microbial infection. In the tobacco hornworm Manduca sexta, PO is generated from its precursor proPO by prophenoloxidase activating proteases (PAPs) in the presence of two noncatalytic serine protease homologs (SPHs). cDNA cloning and genome analysis indicate that SPH1a (formerly known as SPH1), SPH1b, SPH4, SPH101, and SPH2 contain a clip domain, a linker, and a protease-like domain (PLD). The first 22 residues of the SPH1b, SPH4, and SPH101 PLDs are identical, and differ from SPH1a only at position 4, Thr154 substituted with Asn154 in SPH1a. While the sequence from Edman degradation was used to establish PAP cofactor as a high Mr complex of SPH1a and SPH2, this assignment needed further validation, especially because SPH1b mRNA levels are much higher than SPH1a's and better correlate with SPH2 transcription. Thus, here we determined expression profiles of these SPH genes in different tissues from various developmental stages using highly specific primers. High levels of SPH1b and SPH2 proteins, low SPH4, and no SPH1a or SPH101 were detected in hemolymph from larvae in the feeding, wandering and bar stages, pupae, and adults by targeted LC-MS/MS analysis, based on unique peptides from the trypsin-treated SPHs. We expressed the five proSPHs in baculovirus-infected Sf9 cells for use as standards to identify and quantify their counterparts in plasma samples. Moreover, we tested their cleavage by PAP3 and efficacy of the SPH1a, 1b, 4, and 101 as SPH2 partners in PAP3-mediated proPO activation. PAP3 processed proSPH1b and 101 more readily than proSPH1a and 4; PAP3 activated proPO more efficiently in the presence of SPH2 with SPH101 or SPH1b than with SPH1a or SPH4. These results generally agree with their order of appearance or sequence similarity: SPH101 > SPH1b (98%) > SPH1a (90%) > SPH4 (83%). In other words, likely due to positive selection, products of the newly duplicated genes (SPH1b and SPH101) are more favorable substrates of PAP3 and better SPH2 partners in forming a high Mr cofactor than SPH1a or SPH4 is. Electrophoresis on native gel and immunoblot analysis further indicated that SPH101 or 1b form high Mr complexes more readily than SPH1a or 4 does. In comparison, SPH2 showed a small mobility decrease and then increase on native gel after PAP3 cleavage at the first site. Since the natural cofactor in bar-stage hemolymph is complexes of SPH1 and 2 with an average Mr of 790 kDa, PAP3-activated SPH2 may associate with the higher Mr SPH1b scaffolds to form super-complexes. Their structures and formation in relation to cleavage of SPH1b at different sites await further exploration.
Collapse
Affiliation(s)
- Qiao Jin
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Steven D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
7
|
Cao X, Wang Y, Rogers J, Hartson S, Kanost MR, Jiang H. Changes in composition and levels of hemolymph proteins during metamorphosis of Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103489. [PMID: 33096211 PMCID: PMC7704632 DOI: 10.1016/j.ibmb.2020.103489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
The tobacco hornworm, Manduca sexta, is a lepidopteran model species widely used to study insect biochemical processes. Some of its larval hemolymph proteins are well studied, and a detailed proteomic analysis of larval plasma proteins became available in 2016, revealing features such as correlation with transcriptome data, formation of immune complexes, and constitution of an immune signaling system in hemolymph. It is unclear how the composition of these proteins may change in other developmental stages. In this paper, we report the proteomes of cell-free hemolymph from prepupae, pupae on day 4 and day 13, and young adults. Of the 1824 proteins identified, 907 have a signal peptide and 410 are related to immunity. Drastic changes in abundance of the storage proteins, lipophorins and vitellogenin, for instance, reflect physiological differences among prepupae, pupae, and adults. Considerably more proteins lacking signal peptide are present in the late pupae, suggesting that plasma contains relatively low concentrations of intracellular components released from remodeling tissues during metamorphosis. The defense proteins detected include 43 serine proteases and 11 serine protease homologs. Some of these proteins are members of the extracellular immune signaling network found in feeding larvae, and others may play additional roles and hence confer new features in the later life stages. In summary, the proteins and their levels revealed in this study, together with their transcriptome data, are expected to stimulate focused explorations of humoral immunity and other physiological systems in wandering larvae, pupae, and adults of M. sexta and shed light upon functional and comparative genomic research in other holometabolous insects.
Collapse
Affiliation(s)
- Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Janet Rogers
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Steve Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
8
|
Animals have a Plan B: how insects deal with the dual challenge of predators and pathogens. J Comp Physiol B 2020; 190:381-390. [PMID: 32529590 DOI: 10.1007/s00360-020-01282-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
When animals are faced with a life-threatening challenge, they mount an organism-wide response (i.e. Plan A). For example, both the stress response (i.e. fight-or-flight) and the immune response recruit molecular resources from other body tissues, and induce physiological changes that optimize the body for defense. However, pathogens and predators often co-occur. Animals that can optimize responses for a dual challenge, i.e. simultaneous predator and pathogen attacks, will have a selective advantage. Responses to a combined predator and pathogen attack have not been well studied, but this paper summarizes the existing literature in insects. The response to dual challenges (i.e. Plan B) results in a suite of physiological changes that are different from either the stress response or the immune response, and is not a simple summation of the two. It is also not a straight-forward trade-off of one response against the other. The response to a dual challenge (i.e. Plan B) appears to resolve physiological trade-offs between the stress and immune responses, and reconfigures both responses to provide the best overall defense. However, the dual response appears to be more costly than either response occurring singly, resulting in greater damage from oxidative stress, reduced growth rate, and increased mortality.
Collapse
|
9
|
Urinary peptidomics and bioinformatics for the detection of diabetic kidney disease. Sci Rep 2020; 10:1242. [PMID: 31988353 PMCID: PMC6985249 DOI: 10.1038/s41598-020-58067-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/07/2020] [Indexed: 01/15/2023] Open
Abstract
The aim of this study was to establish a peptidomic profile based on LC-MS/MS and random forest (RF) algorithm to distinguish the urinary peptidomic scenario of type 2 diabetes mellitus (T2DM) patients with different stages of diabetic kidney disease (DKD). Urine from 60 T2DM patients was collected: 22 normal (stage A1), 18 moderately increased (stage A2) and 20 severely increased (stage A3) albuminuria. A total of 1080 naturally occurring peptides were detected, which resulted in the identification of a total of 100 proteins, irrespective of the patients’ renal status. The classification accuracy showed that the most severe DKD (A3) presented a distinct urinary peptidomic pattern. Estimates for peptide importance assessed during RF model training included multiple fragments of collagen and alpha-1 antitrypsin, previously associated to DKD. Proteasix tool predicted 48 proteases potentially involved in the generation of the 60 most important peptides identified in the urine of DM patients, including metallopeptidases, cathepsins, and calpains. Collectively, our study lightened some biomarkers possibly involved in the pathogenic mechanisms of DKD, suggesting that peptidomics is a valuable tool for identifying the molecular mechanisms underpinning the disease and thus novel therapeutic targets.
Collapse
|
10
|
Dos Santos-Pinto JRA, Arcuri HA, Esteves FG, Palma MS, Lubec G. Spider silk proteome provides insight into the structural characterization of Nephila clavipes flagelliform spidroin. Sci Rep 2018; 8:14674. [PMID: 30279551 PMCID: PMC6168590 DOI: 10.1038/s41598-018-33068-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
The capture spiral of web from N. clavipes spider consists of a single type of spidroin - the flagelliform silk protein, a natural material representing a combination of strength and high elasticity. Flagelliform spider silk is the most extensible silk fibre produced by orb weaver spiders and the structure of this remarkable material is still largely unknown. In the present study we used a proteomic approach to elucidate the complete sequence and the post-translational modifications of flagelliform silk proteins. The long sequence of flagelliform silk protein presents 45 hydroxylated proline residues, which may contribute to explain the mechanoelastic property of these fibres, since they are located in the GPGGX motif. The 3D-structure of the protein was modelled considering the three domains together, i.e., the N- and C-terminal non-repetitive domains, and the central repetitive domain. In the resulting molecular model there is a predominance of random structures in the solid fibres of the silk protein. The N-terminal domain is composed of three α-helices and the C-terminal domain is composed of one small helical section. Proteomic data reported herein may be relevant for the development of novel approaches for the synthetic or recombinant production of novel silk-based spider polymers.
Collapse
Affiliation(s)
- José Roberto Aparecido Dos Santos-Pinto
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP, 13500, Brazil
| | - Helen Andrade Arcuri
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP, 13500, Brazil
| | - Franciele Grego Esteves
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP, 13500, Brazil
| | - Mario Sergio Palma
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP, 13500, Brazil.
| | - Gert Lubec
- Paracelsus Medical University, A 5020, Salzburg, Austria.
| |
Collapse
|
11
|
McMillan LE, Miller DW, Adamo SA. Eating when ill is risky: immune defense impairs food detoxification in the caterpillar Manduca sexta. ACTA ACUST UNITED AC 2018; 221:jeb.173336. [PMID: 29217626 DOI: 10.1242/jeb.173336] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/30/2017] [Indexed: 11/20/2022]
Abstract
Mounting an immune response consumes resources, which should lead to increased feeding. However, activating the immune system reduces feeding (i.e. illness-induced anorexia) in both vertebrates and invertebrates, suggesting that it may be beneficial. We suggest that illness-induced anorexia may be an adaptive response to conflicts between immune defense and food detoxification. We found that activating an immune response in the caterpillar Manduca sexta increased its susceptibility to the toxin permethrin. Conversely, a sublethal dose of permethrin reduced resistance to the bacterium Serratia marcescens, demonstrating a negative interaction between detoxification and immune defense. Immune system activation and toxin challenge each depleted the amount of glutathione in the hemolymph. Increasing glutathione concentration in the hemolymph increased survival for both toxin- and immune+toxin-challenged groups. The results of this rescue experiment suggest that decreased glutathione availability, such as occurs during an immune response, impairs detoxification. We also found that the expression of some detoxification genes were not upregulated during a combined immune-toxin challenge, although they were when animals received a toxin challenge alone. These results suggest that immune defense reduces food detoxification capacity. Illness-induced anorexia may protect animals by decreasing exposure to food toxins when detoxification is impaired.
Collapse
Affiliation(s)
- Laura E McMillan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada, B3H4R2
| | - Dylan W Miller
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada, B3H4R2
| | - Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada, B3H4R2
| |
Collapse
|
12
|
Abstract
Peptidomics is the comprehensive characterization of peptides from biological sources mainly by HPLC and mass spectrometry. Mass spectrometry allows the detection of a multitude of single peptides in complex mixtures. The term first appeared in full papers in the year 2001, after over 100 years of peptide research with a main focus on one or a few specific peptides. Within the last 15 years, this new field has grown to over 1200 publications. Mass spectrometry techniques, in combination with other analytical methods, were developed for the fast and comprehensive analysis of peptides in proteomics and specifically adjusted to implement peptidomics technologies. Although peptidomics is closely linked to proteomics, there are fundamental differences with conventional bottom-up proteomics. The development of peptidomics is described, including the most important implementations for its technological basis. Different strategies are covered which are applied to several important applications, such as neuropeptidomics and discovery of bioactive peptides or biomarkers. This overview includes links to all other chapters in the book as well as recent developments of separation, mass spectrometric, and data processing technologies. Additionally, some new applications in food and plant peptidomics as well as immunopeptidomics are introduced.
Collapse
|
13
|
Khazigaleeva RA, Vinogradova SV, Petrova VL, Fesenko IA, Arapidi GP, Kamionskaya AM, Govorun VM, Ivanov VT. Antimicrobial activity of endogenous peptides of the moss Physcomitrella patens. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017030062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Zhou Y, Badgett MJ, Billard L, Bowen JH, Orlando R, Willis JH. Properties of the cuticular proteins of Anopheles gambiae as revealed by serial extraction of adults. PLoS One 2017; 12:e0175423. [PMID: 28419115 PMCID: PMC5395146 DOI: 10.1371/journal.pone.0175423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/24/2017] [Indexed: 01/22/2023] Open
Abstract
How cuticular proteins (CPs) interact with chitin and with each other in the cuticle remains unresolved. We employed LC-MS/MS to identify CPs from 5–6 day-old adults of Anopheles gambiae released after serial extraction with PBS, EDTA, 2-8M urea, and SDS as well as those that remained unextracted. Results were compared to published data on time of transcript abundance, localization of proteins within structures and within the cuticle, as well as properties of individual proteins, length, pI, percent histidine, tyrosine, glutamine, and number of AAP[A/V/L] repeats. Thirteen proteins were solubilized completely, all were CPRs, most belonging to the RR-1 group. Eleven CPs were identified in both soluble fractions and the final pellet, including 5 from other CP families. Forty-three were only detected from the final pellet. These included CPRs and members of the CPAP1, CPF, CPFL, CPLCA, CPLCG, CPLCP, and TWDL families, as well as several low complexity CPs, not assigned to families and named CPLX. For a given protein, many histidines or tyrosines or glutamines appear to be potential participants in cross-linking since we could not identify any peptide bearing these residues that was consistently absent. We failed to recover peptides from the amino-terminus of any CP. Whether this implicates that location in sclerotization or some modification that prevents detection is not known. Soluble CPRs had lower isoelectric points than those that remained in the final pellet; most members of other CP families had isoelectric points of 8 or higher. Obviously, techniques beyond analysis of differential solubility will be needed to learn how CPs interact with each other and with chitin.
Collapse
Affiliation(s)
- Yihong Zhou
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Majors J. Badgett
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Lynne Billard
- Department of Statistics, University of Georgia, Athens, Georgia, United States of America
| | - John Hunter Bowen
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Ron Orlando
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Judith H. Willis
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
15
|
Brummett LM, Kanost MR, Gorman MJ. The immune properties of Manduca sexta transferrin. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 81:1-9. [PMID: 27986638 PMCID: PMC5292288 DOI: 10.1016/j.ibmb.2016.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 05/20/2023]
Abstract
Transferrins are secreted proteins that bind iron. The well-studied transferrins are mammalian serum transferrin, which is involved in iron transport, and mammalian lactoferrin, which functions as an immune protein. Lactoferrin and lactoferrin-derived peptides have bactericidal activity, and the iron-free form of lactoferrin has bacteriostatic activity due to its ability to sequester iron. Insect transferrin is similar in sequence to both serum transferrin and lactoferrin, and its functions are not well-characterized; however, many studies of insect transferrin indicate that it has some type of immune function. The goal of this study was to determine the specific immune functions of transferrin from Manduca sexta (tobacco hornworm). We verified that transferrin expression is upregulated in response to infection in M. sexta larvae and determined that the concentration of transferrin in hemolymph increases from 2 μM to 10 μM following an immune challenge. It is also present in molting fluid and prepupal midgut fluid, two extracellular fluids with immune capabilities. No immune-induced proteolytic cleavage of transferrin in hemolymph was observed; therefore, M. sexta transferrin does not appear to be a source of antimicrobial peptides. Unlike iron-saturated lactoferrin, iron-saturated transferrin had no detectable antibacterial activity. In contrast, 1 μM iron-free transferrin inhibited bacterial growth, and this inhibition was blocked by supplementing the culture medium with 1 μM iron. Our results suggest that M. sexta transferrin does not have bactericidal activity, but that it does have a bacteriostatic function that depends on its iron sequestering ability. This study supports the hypothesis that insect transferrin participates in an iron withholding strategy to protect insects from infectious bacteria.
Collapse
Affiliation(s)
- Lisa M Brummett
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, 1711 Claflin Road, Kansas State University, Manhattan, KS 66506, USA.
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, 1711 Claflin Road, Kansas State University, Manhattan, KS 66506, USA.
| | - Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, 1711 Claflin Road, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
16
|
Adamo SA. Stress responses sculpt the insect immune system, optimizing defense in an ever-changing world. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:24-32. [PMID: 27288849 DOI: 10.1016/j.dci.2016.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
A whole organism, network approach can help explain the adaptive purpose of stress-induced changes in immune function. In insects, mediators of the stress response (e.g. stress hormones) divert molecular resources away from immune function and towards tissues necessary for fight-or-flight behaviours. For example, molecules such as lipid transport proteins are involved in both the stress and immune responses, leading to a reduction in disease resistance when these proteins are shifted towards being part of the stress response system. Stress responses also alter immune system strategies (i.e. reconfiguration) to compensate for resource losses that occur during fight-or flight events. In addition, stress responses optimize immune function for different physiological conditions. In insects, the stress response induces a pro-inflammatory state that probably enhances early immune responses.
Collapse
Affiliation(s)
- Shelley Anne Adamo
- Dept. Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
17
|
Adamo SA, Easy RH, Kovalko I, MacDonald J, McKeen A, Swanburg T, Turnbull KF, Reeve C. Predator exposure-induced immunosuppression: trade-off, immune redistribution or immune reconfiguration? ACTA ACUST UNITED AC 2016; 220:868-875. [PMID: 28011823 DOI: 10.1242/jeb.153320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022]
Abstract
Although predator exposure increases the risk of wound infections, it typically induces immunosuppression. A number of non-mutually exclusive hypotheses have been put forward to explain this immunosuppression, including: trade-offs between the immune system and other systems required for anti-predator behaviour, redistribution of immune resources towards mechanisms needed to defend against wound infections, and reconfiguration of the immune system to optimize defence under the physiological state of fight-or-flight readiness. We tested the ability of each hypothesis to explain the effects of chronic predator stress on the immune system of the caterpillar Manduca sexta Predator exposure induced defensive behaviours, reduced mass gain, increased development time and increased the concentration of the stress neurohormone octopamine. It had no significant effect on haemocyte number, melanization rate, phenoloxidase activity, lysozyme-like activity or nodule production. Predator stress reduced haemolymph glutathione concentrations. It also increased constitutive expression of the antimicrobial peptide attacin-1 but reduced attacin-1 expression in response to an immune challenge. These results best fit the immune reconfiguration hypothesis, although the other hypotheses are also consistent with some results. Interpreting stress-related changes in immune function may require an examination at the level of the whole organism.
Collapse
Affiliation(s)
- Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Russell H Easy
- Department of Biology, Acadia University, Wolfville, NS, Canada B4P 2R6
| | - Ilya Kovalko
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Jenna MacDonald
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Ashleigh McKeen
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Taylor Swanburg
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | | | - Catherine Reeve
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada B3H 4R2
| |
Collapse
|
18
|
Structural characterization of the major ampullate silk spidroin-2 protein produced by the spider Nephila clavipes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1444-54. [DOI: 10.1016/j.bbapap.2016.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/04/2016] [Accepted: 05/17/2016] [Indexed: 11/19/2022]
|
19
|
Adamo SA, Kovalko I, Turnbull KF, Easy RH, Miles CI. The parasitic wasp Cotesia congregata uses multiple mechanisms to control host (Manduca sexta) behaviour. ACTA ACUST UNITED AC 2016; 219:3750-3758. [PMID: 27634401 DOI: 10.1242/jeb.145300] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022]
Abstract
Some parasites alter the behaviour of their hosts. The larvae of the parasitic wasp Cotesia congregata develop within the body of the caterpillar Manduca sexta During the initial phase of wasp development, the host's behaviour remains unchanged. However, once the wasps begin to scrape their way out of the caterpillar, the caterpillar host stops feeding and moving spontaneously. We found that the caterpillar also temporarily lost sensation around the exit hole created by each emerging wasp. However, the caterpillars regained responsiveness to nociception in those areas within 1 day. The temporary reduction in skin sensitivity is probably important for wasp survival because it prevents the caterpillar from attacking the emerging wasp larvae with a defensive strike. We also found that expression of plasmatocyte spreading peptide (PSP) and spätzle genes increased in the fat body of the host during wasp emergence. This result supports the hypothesis that the exiting wasps induce a cytokine storm in their host. Injections of PSP suppressed feeding, suggesting that an augmented immune response may play a role in the suppression of host feeding. Injection of wasp larvae culture media into non-parasitized caterpillars reduced feeding, suggesting that substances secreted by the wasp larvae may help alter host behaviour.
Collapse
Affiliation(s)
- Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Ilya Kovalko
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Kurtis F Turnbull
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Russell H Easy
- Department of Biology, Acadia University, Wolfville, NS, Canada B4P 2R6
| | - Carol I Miles
- Department of Biological Sciences, SUNY Binghamton, Binghamton, NY 13902, USA
| |
Collapse
|
20
|
Yang F, Wang Y, He Y, Jiang H. In search of a function of Manduca sexta hemolymph protease-1 in the innate immune system. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:1-10. [PMID: 27343384 PMCID: PMC5011066 DOI: 10.1016/j.ibmb.2016.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 05/24/2023]
Abstract
Extracellular serine protease cascades mediate immune signaling and responses in insects. In the tobacco hornworm Manduca sexta, nearly 30 serine proteases (SPs) and their homologs (SPHs) are cloned from hemocytes and fat body. Some of them participate in prophenoloxidase (proPO) activation and proSpätzle processing. Here we report the cDNA cloning of hemolymph protease-1b (HP1b), which is 90% identical and 95% similar to HP1a (formerly HP1). The HP1a and HP1b mRNA levels in hemocytes was down- and up-regulated after an immune challenge, respectively. Quantitative real-time polymerase chain reactions revealed their tissue-specific and development-dependent expression, mostly in hemocytes of the feeding larvae. We isolated HP1 precursor (proHP1) from larval hemolymph and observed micro-heterogeneity caused by N-linked glycosylation. Supplementation of the purified proHP1 to plasma samples from naïve larvae or induced ones injected with bacteria caused a small PO activity increase, much lower than those elicited by recombinant proHP1a/b, but no proteolytic cleavage was detected in the zymogens. Incubation of proHP1a/b or their catalytic domains with a cationic detergent, cetylpyridinium chloride, induced an amidase activity that hydrolyzed LDLH-p-nitroanilide. Since LDLH corresponds to the P4-P1 region before the proteolytic activation site of proHP6, we propose that the active but uncleaved proHP1 may cut proHP6 to generate HP6 that in turn activates proPAP1 and proHP8. The catalytic domain of HP1a/b, which by itself does not activate purified proHP6 or hydrolyze LDLH-p-nitroanilide, somehow generated active HP6, HP8, PAP1 and PO in plasma. Together, these results indicate that proHP1 participates in the proPO activation system, although detailed mechanism needs further exploration.
Collapse
Affiliation(s)
- Fan Yang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, United States
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, United States
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, United States
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, United States.
| |
Collapse
|
21
|
Al Souhail Q, Hiromasa Y, Rahnamaeian M, Giraldo MC, Takahashi D, Valent B, Vilcinskas A, Kanost MR. Characterization and regulation of expression of an antifungal peptide from hemolymph of an insect, Manduca sexta. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:258-68. [PMID: 26976231 PMCID: PMC4866881 DOI: 10.1016/j.dci.2016.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 05/07/2023]
Abstract
Insects secrete antimicrobial peptides as part of the innate immune response. Most antimicrobial peptides from insects have antibacterial but not antifungal activity. We have characterized an antifungal peptide, diapausin-1 from hemolymph of a lepidopteran insect, Manduca sexta (tobacco hornworm). Diapausin-1 was isolated by size exclusion chromatography from hemolymph plasma of larvae that were previously injected with a yeast, Saccharomyces cerevisiae. Fractions containing activity against S. cerevisiae were analyzed by SDS-PAGE and MALDI-TOF MS/MS and found to contain a 45-residue peptide that was encoded by sequences identified in M. sexta transcriptome and genome databases. A cDNA for diapausin-1 was cloned from cDNA prepared from fat body RNA. Diapausin-1 is a member of the diapausin family of peptides, which includes members known to have antifungal activity. The M. sexta genome contains 14 genes with high similarity to diapausin-1, each with 6 conserved Cys residues. Diapausin-1 was produced as a recombinant protein in Escherichia coli. Purified recombinant diapausin-1 was active against S. cerevisiae, with IC50 of 12 μM, but had no detectable activity against bacteria. Spores of some plant fungal pathogens treated with diapausin-1 had curled germination tubes or reduced and branched hyphal growth. Diapausin-1 mRNA level in fat body strongly increased after larvae were injected with yeast or with Micrococcus luteus. In addition, diapausin-1 mRNA levels increased in midgut and fat body at the wandering larval stage prior to pupation, suggesting developmental regulation of the gene. Our results indicate that synthesis of diapausin-1 is part of an antifungal innate immune response to infection in M. sexta.
Collapse
Affiliation(s)
- Qasim Al Souhail
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Yasuaki Hiromasa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Mohammad Rahnamaeian
- LOEWE Center for Insect Biotechnology and Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen Winchesterstrasse 2, 35394 Giessen, Germany
| | - Martha C Giraldo
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Daisuke Takahashi
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Andreas Vilcinskas
- LOEWE Center for Insect Biotechnology and Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen Winchesterstrasse 2, 35394 Giessen, Germany; Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 39592 Giessen, Germany
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
22
|
He Y, Cao X, Zhang S, Rogers J, Hartson S, Jiang H. Changes in the Plasma Proteome of Manduca sexta Larvae in Relation to the Transcriptome Variations after an Immune Challenge: Evidence for High Molecular Weight Immune Complex Formation. Mol Cell Proteomics 2016; 15:1176-87. [PMID: 26811355 DOI: 10.1074/mcp.m115.054296] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Indexed: 11/06/2022] Open
Abstract
Manduca sextais a lepidopteran model widely used to study insect physiological processes, including innate immunity. In this study, we explored the proteomes of cell-free hemolymph from larvae injected with a sterile buffer (C for control) or a mixture of bacteria (I for induced). Of the 654 proteins identified, 70 showed 1.67 to >200-fold abundance increases after the immune challenge; 51 decreased to 0-60% of the control levels. While there was no strong parallel between plasma protein levels and their transcript levels in hemocytes or fat body, the mRNA level changes (i.e.I/C ratios of normalized read numbers) in the tissues concurred with their protein level changes (i.e.I/C ratios of normalized spectral counts) with correlation coefficients of 0.44 and 0.57, respectively. Better correlations support that fat body contributes a more significant portion of the plasma proteins involved in various aspects of innate immunity. Consistently, ratios of mRNA and protein levels were better correlated for immunity-related proteins than unrelated ones. There is a set of proteins whose apparent molecular masses differ considerably from the calculatedMr's, suggestive of posttranslational modifications. In addition, some lowMrproteins were detected in the range of 80 to >300 kDa on a reducing SDS-polyacrylamide gel, indicating the existence of highMrcovalent complexes. We identified 30 serine proteases and their homologs, 11 of which are known members of an extracellular immune signaling network. Along with our quantitative transcriptome data, the protein identification, inducibility, and association provide leads toward a focused exploration of humoral immunity inM. sexta.
Collapse
Affiliation(s)
- Yan He
- From the ‡Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078
| | - Xiaolong Cao
- From the ‡Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078; §Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078
| | - Shuguang Zhang
- From the ‡Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078
| | - Janet Rogers
- §Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078
| | - Steve Hartson
- §Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078
| | - Haobo Jiang
- From the ‡Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078;
| |
Collapse
|
23
|
Adamo SA, Davies G, Easy R, Kovalko I, Turnbull KF. Reconfiguration of the immune system network during food limitation in the caterpillar Manduca sexta. ACTA ACUST UNITED AC 2016; 219:706-18. [PMID: 26747906 DOI: 10.1242/jeb.132936] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/17/2015] [Indexed: 11/20/2022]
Abstract
Dwindling resources might be expected to induce a gradual decline in immune function. However, food limitation has complex and seemingly paradoxical effects on the immune system. Examining these changes from an immune system network perspective may help illuminate the purpose of these fluctuations. We found that food limitation lowered long-term (i.e. lipid) and short-term (i.e. sugars) energy stores in the caterpillar Manduca sexta. Food limitation also: altered immune gene expression, changed the activity of key immune enzymes, depressed the concentration of a major antioxidant (glutathione), reduced resistance to oxidative stress, reduced resistance to bacteria (Gram-positive and -negative bacteria) but appeared to have less effect on resistance to a fungus. These results provide evidence that food limitation led to a restructuring of the immune system network. In severely food-limited caterpillars, some immune functions were enhanced. As resources dwindled within the caterpillar, the immune response shifted its emphasis away from inducible immune defenses (i.e. those responses that are activated during an immune challenge) and increased emphasis on constitutive defenses (i.e. immune components that are produced consistently). We also found changes suggesting that the activation threshold for some immune responses (e.g. phenoloxidase) was lowered. Changes in the configuration of the immune system network will lead to different immunological strengths and vulnerabilities for the organism.
Collapse
Affiliation(s)
- Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Gillian Davies
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Russell Easy
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Ilya Kovalko
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Kurtis F Turnbull
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| |
Collapse
|
24
|
Greer T, Hao L, Nechyporenko A, Lee S, Vezina CM, Ricke WA, Marker PC, Bjorling DE, Bushman W, Li L. Custom 4-Plex DiLeu Isobaric Labels Enable Relative Quantification of Urinary Proteins in Men with Lower Urinary Tract Symptoms (LUTS). PLoS One 2015; 10:e0135415. [PMID: 26267142 PMCID: PMC4534462 DOI: 10.1371/journal.pone.0135415] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 07/21/2015] [Indexed: 12/19/2022] Open
Abstract
The relative quantification of proteins using liquid chromatography mass spectrometry (LC-MS) has allowed researchers to compile lists of potential disease markers. These complex quantitative workflows often include isobaric labeling of enzymatically-produced peptides to analyze their relative abundances across multiple samples in a single LC-MS run. Recent efforts by our lab have provided scientists with cost-effective alternatives to expensive commercial labels. Although the quantitative performance of these dimethyl leucine (DiLeu) labels has been reported using known ratios of complex protein and peptide standards, their potential in large-scale proteomics studies using a clinically relevant system has never been investigated. Our work rectifies this oversight by implementing 4-plex DiLeu to quantify proteins in the urine of aging human males who suffer from lower urinary tract symptoms (LUTS). Protein abundances in 25 LUTS and 15 control patients were compared, revealing that of the 836 proteins quantified, 50 were found to be differentially expressed (>20% change) and statistically significant (p-value <0.05). Gene ontology (GO) analysis of the differentiated proteins showed that many were involved in inflammatory responses and implicated in fibrosis. While confirmation of individual protein abundance changes would be required to verify protein expression, this study represents the first report using the custom isobaric label, 4-plex DiLeu, to quantify protein abundances in a clinically relevant system.
Collapse
Affiliation(s)
- Tyler Greer
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ling Hao
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anatoliy Nechyporenko
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sanghee Lee
- Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chad M. Vezina
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Will A. Ricke
- Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paul C. Marker
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dale E. Bjorling
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Wade Bushman
- Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
25
|
Zhang X, He Y, Cao X, Gunaratna RT, Chen YR, Blissard G, Kanost MR, Jiang H. Phylogenetic analysis and expression profiling of the pattern recognition receptors: Insights into molecular recognition of invading pathogens in Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:38-50. [PMID: 25701384 PMCID: PMC4476941 DOI: 10.1016/j.ibmb.2015.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 02/02/2015] [Indexed: 05/24/2023]
Abstract
Pattern recognition receptors (PRRs) detect microbial pathogens and trigger innate immune responses. Previous biochemical studies have elucidated the physiological functions of eleven PRRs in Manduca sexta but our understanding of the recognition process is still limited, lacking genomic perspectives. While 34 C-type lectin-domain proteins and 16 Toll-like receptors are reported in the companion papers, we present here 120 other putative PRRs identified through the genome annotation. These include 76 leucine-rich repeat (LRR) proteins, 14 peptidoglycan recognition proteins, 6 EGF/Nim-domain proteins, 5 β-1,3-glucanase-related proteins, 4 galectins, 4 fibrinogen-related proteins, 3 thioester proteins, 5 immunoglobulin-domain proteins, 2 hemocytins, and 1 Reeler. Sequence alignment and phylogenetic analysis reveal the evolution history of a diverse repertoire of proteins for pathogen recognition. While functions of insect LRR proteins are mostly unknown, their structure diversification is phenomenal: In addition to the Toll homologs, 22 LRR proteins with a signal peptide are expected to be secreted; 18 LRR proteins lacking signal peptides may be cytoplasmic; 36 LRRs with a signal peptide and a transmembrane segment may be non-Toll receptors on the surface of cells. Expression profiles of the 120 genes in 52 tissue samples reflect complex regulation in various developmental stages and physiological states, including some likely by Rel family transcription factors via κB motifs in the promoter regions. This collection of information is expected to facilitate future biochemical studies detailing their respective roles in this model insect.
Collapse
Affiliation(s)
- Xiufeng Zhang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ramesh T Gunaratna
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yun-ru Chen
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Gary Blissard
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
26
|
Rao XJ, Cao X, He Y, Hu Y, Zhang X, Chen YR, Blissard G, Kanost MR, Yu XQ, Jiang H. Structural features, evolutionary relationships, and transcriptional regulation of C-type lectin-domain proteins in Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:75-85. [PMID: 25554596 PMCID: PMC4476918 DOI: 10.1016/j.ibmb.2014.12.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 05/24/2023]
Abstract
C-type lectins (CTLs) are a large family of Ca(2+)-dependent carbohydrate-binding proteins recognizing various glycoconjugates and functioning primarily in immunity and cell adhesion. We have identified 34 CTLDP (for CTL-domain protein) genes in the Manduca sexta genome, which encode proteins with one to three CTL domains. CTL-S1 through S9 (S for simple) have one or three CTL domains; immulectin-1 through 19 have two CTL domains; CTL-X1 through X6 (X for complex) have one or two CTL domains along with other structural modules. Nine simple CTLs and seventeen immulectins have a signal peptide and are likely extracellular. Five complex CTLs have both an N-terminal signal peptide and a C-terminal transmembrane region, indicating that they are membrane anchored. Immulectins exist broadly in Lepidoptera and lineage-specific gene duplications have generated three clusters of fourteen genes in the M. sexta genome, thirteen of which have similar expression patterns. In contrast to the family expansion, CTL-S1∼S6, S8, and X1∼X6 have 1:1 orthologs in at least four lepidopteran/dipteran/coleopteran species, suggestive of conserved functions in a wide range of holometabolous insects. Structural modeling suggests the key residues for Ca(2+)-dependent or independent binding of certain carbohydrates by CTL domains. Promoter analysis identified putative κB motifs in eighteen of the CTL genes, which did not have a strong correlation with immune inducibility in the mRNA or protein levels. Together, the gene identification, sequence comparisons, structure modeling, phylogenetic analysis, and expression profiling establish a solid foundation for future studies of M. sexta CTL-domain proteins.
Collapse
Affiliation(s)
- Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiufeng Zhang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yun-Ru Chen
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Gary Blissard
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Xiao-Qiang Yu
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
27
|
He Y, Cao X, Li K, Hu Y, Chen YR, Blissard G, Kanost MR, Jiang H. A genome-wide analysis of antimicrobial effector genes and their transcription patterns in Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:23-37. [PMID: 25662101 PMCID: PMC4476920 DOI: 10.1016/j.ibmb.2015.01.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/13/2015] [Accepted: 01/23/2015] [Indexed: 05/09/2023]
Abstract
Antimicrobial proteins/peptides (AMPs) are effectors of innate immune systems against pathogen infection in multicellular organisms. Over half of the AMPs reported so far come from insects, and these effectors act in concert to suppress or kill bacteria, fungi, viruses, and parasites. In this work, we have identified 86 AMP genes in the Manduca sexta genome, most of which seem likely to be functional. They encode 15 cecropins, 6 moricins, 6 defensins, 3 gallerimycins, 4 X-tox splicing variants, 14 diapausins, 15 whey acidic protein homologs, 11 attacins, 1 gloverin, 4 lebocins, 6 lysozyme-related proteins, and 4 transferrins. Some of these genes (e.g. attacins, cecropins) constitute large clusters, likely arising after rounds of gene duplication. We compared the amino acid sequences of M. sexta AMPs with their homologs in other insects to reveal conserved structural features and phylogenetic relationships. Expression data showed that many of them are synthesized in fat body and midgut during the larval-pupal molt. Certain genes contain one or more predicted κB binding sites and other regulatory elements in their promoter regions, which may account for the dramatic mRNA level increases in fat body and hemocytes after an immune challenge. Consistent with these strong mRNA increases, many AMPs become highly abundant in the larval plasma at 24 h after the challenge, as demonstrated in our previous peptidomic study. Taken together, these data suggest the existence of a large repertoire of AMPs in M. sexta, whose expression is up-regulated via immune signaling pathways to fight off invading pathogens in a coordinated manner.
Collapse
Affiliation(s)
- Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kai Li
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA; Institute of Biological Sciences, Donghua University, Songjiang, Shanghai 310029, China
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yun-ru Chen
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Gary Blissard
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
28
|
Taszłow P, Wojda I. Changes in the hemolymph protein profiles in Galleria mellonella infected with Bacillus thuringiensis involve apolipophorin III. The effect of heat shock. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 88:123-143. [PMID: 25308190 DOI: 10.1002/arch.21208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This report concerns the effect of heat shock on host-pathogen interaction in Galleria mellonella infected with Bacillus thuringiensis. We show enhanced activity against Gram-positive bacteria in the hemolymph of larvae pre-exposed to heat shock before infection with B. thuringiensis. Heat shock influenced the protein pattern in the hemolymph of infected larvae: more peptides with a molecular weight below 10 kDa were detected in comparison with nonshocked animals. Additionally, we noticed that the amount of apolipophorin III (apoLp-III) in the hemolymph decreased transiently following infection, which was considerably higher in larvae pre-exposed to heat shock. On the other hand, its expression in the fat body showed a consequent infection-induced decline, observed equally in shocked and nonshocked animals. This suggests that the amount of apoLp-III in the hemolymph of G. mellonella larvae is regulated at multiple levels. We also report that this protein is more resistant to degradation in the hemolymph of larvae pre-exposed to heat shock in comparison to nonshocked larvae. Two-dimensional analysis revealed the presence of three isoforms of apoLp-III, all susceptible to proteolytic degradation. However, one of them was the most abundant, both in the protease-treated and untreated hemolymph. Taking into consideration that, in general, apoLp-III has a stimulative effect on different immune-related hemolymph proteins and peptides, the reported findings bring us closer to understanding the effect of heat shock on the resistance of G. mellonella to infection.
Collapse
Affiliation(s)
- Paulina Taszłow
- Department of Immunobiology, Faculty of Biology and Biotechnology, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, Lublin, Poland
| | | |
Collapse
|