1
|
Guo H, Liu W, Zhao X, Zhao Y, Liu X, Moussian B, Zhao Z, Zhang J. Silencing fatty acyl-CoA reductase with dsRNA damaged the lipid-based cuticle barrier in Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 210:106365. [PMID: 40262881 DOI: 10.1016/j.pestbp.2025.106365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/22/2025] [Accepted: 03/02/2025] [Indexed: 04/24/2025]
Abstract
Cuticular hydrocarbons (CHCs) prevent massive water loss and are therefore essential for insect survival in scorching and dry environments. Locusta migratoria, a widespread agricultural pest, is exposed to elevated temperatures in its natural habitat. To understand the molecular mechanisms in L. migratoria against desiccation, we identified and characterized a fatty acyl-CoA reductase gene (LmFAR). LmFAR was highly expressed in the integument and fat body. Moreover, we found that LmFAR protein was localized in oenocytes. After suppressing LmFAR, over 90 % locusts died with a reduction of body water content. The procuticle structure of dsLmFAR treated insects was loose and cuticle barrier was disrupted, suggesting that FAR products are important to incorporate into the chitin matrix. dsLmFAR treated locusts showed increased sensitivity to desiccation conditions, xenobiotics and insecticides penetration was facilitated. CHC quantification by GC-MS analysis and in situ lipid detection by Bodipy both indicated that knockdown of LmFAR resulted in a decrease in total cuticle lipid amounts. In conclusion, LmFAR contributes to normal CHC amounts and cuticle integrity in locusts, thereby contributing to their adaptation to water variation.
Collapse
Affiliation(s)
- Hongfang Guo
- Shanxi Key Laboratory of Nucleic Acid Biopesticides; Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; School of Life Science, Shanxi University, Taiyuan, China
| | - Weimin Liu
- Shanxi Key Laboratory of Nucleic Acid Biopesticides; Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Xiaoming Zhao
- Shanxi Key Laboratory of Nucleic Acid Biopesticides; Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yiyan Zhao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaojian Liu
- Shanxi Key Laboratory of Nucleic Acid Biopesticides; Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Bernard Moussian
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, Cedex, France
| | - Zhangwu Zhao
- Shanxi Key Laboratory of Nucleic Acid Biopesticides; Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jianzhen Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides; Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
2
|
Zhao C, Ye K, Lou Y, Yu X, Shentu X, Li D. Silencing of NlELO10 Affects Lipid Metabolism in Brown Planthopper. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 119:e70065. [PMID: 40432472 DOI: 10.1002/arch.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/22/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025]
Abstract
Fatty acid elongase (ELO) serves as the rate-limiting condensing enzyme in the initial step of the fatty acid elongation process. Among the ELO family members in the brown planthopper (Nilaparvata lugens), NlELO10 is essential for the development and physiology of N. lugens. However, the specific role and regulatory mechanisms of NlELO10 in lipid metabolism in N. lugens remain poorly understood. This study aimed to elucidate the effects of NlELO10 on lipid metabolism by employing RNA interference (RNAi) to silence the NlELO10 and utilizing lipidomics to analyze lipid composition and content changes following gene silencing. Lipidomic analysis revealed 32 differentially expressed lipid metabolites in N. lugens after NlELO10 knockdown. Among these, the levels of 3 phosphatidylcholines (PCs), 8 phosphatidylethanolamines (PEs), and 1 diacylglycerol (DG) were significantly elevated, whereas the levels of 20 triacylglycerols (TG) decreased significantly. The synthesis and metabolism of these differential lipid metabolites involve the coordinated action of multiple key enzymes, including acyl-CoA synthetase (FACS), diacylglycerol acyltransferase (DGAT), and phosphatidic acid phosphatase (PAP). To further validate the lipidomic findings, we performed real-time quantitative polymerase chain reaction (RT-qPCR) to examine the expression levels of genes encoding these metabolic enzymes. The gene expression patterns were consistent with the lipidomic data, supporting the involvement of these enzymes in the observed metabolic alterations. In conclusion, the silencing of NlELO10 disrupted the lipid composition and metabolism of N. lugens, potentially impairing physiological processes and leading to growth anomalies or mortality. These findings provide valuable insights into the functional role of NlELO10 in lipid metabolism and offer a theoretical foundation for identifying key lipid synthesis genes as targets for pest management strategies.
Collapse
Affiliation(s)
- Caixia Zhao
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou, China
| | - Keqi Ye
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou, China
| | - Yihan Lou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Xiaoping Yu
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou, China
| | - Xuping Shentu
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou, China
| | - Danting Li
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou, China
| |
Collapse
|
3
|
Rodríguez‐León DS, Schmitt T, Pinto MA, Thamm M, Scheiner R. Expression of Elongase- and Desaturase-Encoding Genes Shapes the Cuticular Hydrocarbon Profiles of Honey Bees. Mol Ecol 2025; 34:e17716. [PMID: 40047201 PMCID: PMC11974489 DOI: 10.1111/mec.17716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 04/08/2025]
Abstract
Most terrestrial insects have a layer of cuticular hydrocarbons (CHCs) protecting them from desiccation and mediating chemical communication. The composition of these hydrocarbons is highly plastic and changes during their lifetime and with environmental conditions. How these changes in CHC composition are achieved is largely unknown. CHC profiles of Apis mellifera honey bees vary among castes, task groups and subspecies adapted to different climates. This makes A. mellifera an excellent model for studying the molecular mechanism underlying CHC biosynthesis. We correlated the expression of specific elongase- and desaturase-encoding genes with the CHC composition in bees performing different social tasks in two highly divergent A. mellifera subspecies. Elongases are enzymes that lengthen the hydrocarbon chain, while desaturases introduce double bonds in it. We evaluated the hypothesis that the expression of the genes encoding these enzymes determines CHC profiles of the worker bees. Our results revealed that the specificity of desaturases and elongases shapes the CHC profiles of worker bees performing different social tasks. Expression of the desaturase-encoding gene LOC100576797 and the elongase-encoding gene LOC550828 seemed to be strongly associated with the abundance of compounds that were characteristic of the CHC profile of nurse bees. In contrast, the compounds that characterised the CHC profiles of the forager bees seemed to be associated with the desaturase-encoding gene LOC551527 and the elongase-encoding gene LOC409638. Our data shed light on the genetic basis for task-specific CHC composition differences in social hymenopterans and paved the ground for unravelling the genetic underpinning of CHC biosynthesis.
Collapse
Affiliation(s)
- Daniel Sebastián Rodríguez‐León
- University of Würzburg, BiocenterDepartment of Animal Ecology and Tropical BiologyWürzburgGermany
- University of WürzburgBiocenter, Department of Behavioral Physiology and SociobiologyWürzburgGermany
| | - Thomas Schmitt
- University of Würzburg, BiocenterDepartment of Animal Ecology and Tropical BiologyWürzburgGermany
| | | | - Markus Thamm
- University of WürzburgBiocenter, Department of Behavioral Physiology and SociobiologyWürzburgGermany
| | - Ricarda Scheiner
- University of WürzburgBiocenter, Department of Behavioral Physiology and SociobiologyWürzburgGermany
| |
Collapse
|
4
|
Li L, Li W, Liao J, Fu J, Dai C, Hu Y, Li H. Ultrastructure and Transcriptome Analysis of the Larval Integument in Solitary and Gregarious Phases of Mythimna separata. INSECTS 2025; 16:190. [PMID: 40003822 PMCID: PMC11856551 DOI: 10.3390/insects16020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
Mythimna separata larvae exhibit both solitary and gregarious phases under low and high population density, respectively; furthermore, differences in morphology, behavior and physiology have been observed in the two phases. The integument plays an essential role in the fitness, general metabolism, communication, and survival of insects; however, differences in the integument ultrastructure and gene expression in the solitary and gregarious phases are largely unknown. In this study, the integument ultrastructure of larvae in the solitary and gregarious phases was compared, and transcriptome analysis was conducted to identify which genes were differentially expressed in the two phases. The results showed that the gregarious larvae had thicker integuments and more polygonal particles on the cuticle surface than solitary larvae. Using the Illumina HiSeq™ sequencing platform, 2774 differentially expressed genes (DEGs) were generated. Among these, many transcripts were identified with roles in the synthesis of fatty acids; structural components of the integument and the insecticide detoxification were differentially expressed in the integument of the two larval phases. qRT-PCR was used to validate expression patterns of the selected transcripts. This study provides a valuable resource for understanding the molecular basis of behavioral and physiological differences in the two phases of M. separata.
Collapse
Affiliation(s)
- Lingling Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (L.L.); (J.L.); (J.F.); (C.D.); (Y.H.)
- Guizhou Branch of State Key Laboratory for Biology of Plant Diseases and Insect Pests, Guiyang 550006, China
| | - Wenmeng Li
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, College of Forestry, Southwest Forestry University, Kunming 650224, China;
| | - Jing Liao
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (L.L.); (J.L.); (J.F.); (C.D.); (Y.H.)
| | - Junhong Fu
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (L.L.); (J.L.); (J.F.); (C.D.); (Y.H.)
| | - Changgeng Dai
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (L.L.); (J.L.); (J.F.); (C.D.); (Y.H.)
- Guizhou Branch of State Key Laboratory for Biology of Plant Diseases and Insect Pests, Guiyang 550006, China
| | - Yang Hu
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (L.L.); (J.L.); (J.F.); (C.D.); (Y.H.)
- Guizhou Branch of State Key Laboratory for Biology of Plant Diseases and Insect Pests, Guiyang 550006, China
| | - Hongbo Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (L.L.); (J.L.); (J.F.); (C.D.); (Y.H.)
- Guizhou Branch of State Key Laboratory for Biology of Plant Diseases and Insect Pests, Guiyang 550006, China
- Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Ministry of Agriculture and Rural Affairs, Guiyang 550006, China
| |
Collapse
|
5
|
Ribas A, Botina LL, Araújo RDS, Vidigal ML, Cristina da Silva Alves B, Martins GF. Exploring honey bee toxicological data as a proxy for assessing dimethoate sensitivity in stingless bees. CHEMOSPHERE 2024; 354:141652. [PMID: 38462182 DOI: 10.1016/j.chemosphere.2024.141652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
The high diversity and distinctive characteristics of stingless bees pose challenges in utilizing toxicity test results for agrochemical registrations. Toxicity assessments were performed on 15 stingless bee species, along with the honey bee, using the insecticide dimethoate, following adapted OECD protocols. Median lethal doses over 24 h (24 h-LD50) were determined for exposure routes (acute oral or contact) and species. Species sensitivity distribution (SSD) curves were constructed and the 5% hazard doses (HD5) were estimated based on 24 h-LD50 values. The SSD curve was adjusted as the body weight and dimethoate response were correlated. Lighter bees (<10 mg) had lower 24 h-LD50 values. Contact exposure for adjusted HD5 suggested insufficient protection for Melipona mondury, whereas the oral exposure HD5 indicated no risks for the other 14 species. Comprehensive risk assessments are crucial for understanding the agrochemical impact on stingless bees, emphasizing the need for a broader species range in formulating conservation strategies.
Collapse
Affiliation(s)
- Andreza Ribas
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | - Lorena Lisbetd Botina
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | - Renan Dos Santos Araújo
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, 78698-000, Pontal do Araguaia, MT, Brazil.
| | - Mateus Lordelo Vidigal
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | | | | |
Collapse
|
6
|
Wang H, Xia B, Wang H, Wan B, Zhong L, Xin T. Fatty Acid Elongase Gene PcELO7 is Essential for Lipid Accumulation and Fecundity of Panonychus citri (Acari: Tetranychidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2100-2108. [PMID: 38240608 DOI: 10.1021/acs.jafc.3c07412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
RNA interference (RNAi) has been proposed as a promising strategy for sustainable and ecofriendly pest control. The insect cuticle lipids were deposited on the body surface and functioned as a defense against chemical xenobiotics. They consisted of aliphatic compounds, including free fatty acids (FFAs). However, elongase of very long chain fatty acids (ELOs) is essential for FFA biosynthesis; the function of ELO is still unknown in many arthropods, including Panonychus citri (P. citri). In this study, three ELOs were cloned. Developmental-specific mRNA expression results revealed that three PcELOs were highly expressed in egg and adult females. Whereas PcELO7 was dominantly expressed in adult females. Under spirobudiclofen stress, ELOs mRNA expression had different changes, and PcELO7 was down-regulated. The silencing of PcELO7 resulted in a dramatic reduction of oviposition and hatchability. Significant reduction of FFA contents was also examined within PcELO7-repressed P. citri. In addition, we found that PcELO7 mRNA levels were related to fecundity and could affect triacylglycerol (TG) contents. The findings demonstrated that the introduction of dsPcELO7 via oral feeding induced the RNA interference-mediated silencing of a special target gene and could result in mortality and reproduction. In conclusion, PcELO7 is a special RNAi target for P. citri control, and its lethal mechanism might be disturbing lipids biosynthesis.
Collapse
Affiliation(s)
- Hongyan Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, P. R. China
| | - Bin Xia
- School of Life Sciences, Nanchang University, Nanchang 330031, P. R. China
| | - Haifeng Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, P. R. China
| | - Bin Wan
- School of Life Sciences, Nanchang University, Nanchang 330031, P. R. China
| | - Ling Zhong
- Development & Service Center for Agriculture and Rural Industry of Jiangxi Province, Nanchang 330096, P. R. China
| | - Tianrong Xin
- School of Life Sciences, Nanchang University, Nanchang 330031, P. R. China
| |
Collapse
|
7
|
Castaños CE, Boyce MC, Bates T, Millar AH, Flematti G, Lawler NG, Grassl J. Lipidomic features of honey bee and colony health during limited supplementary feeding. INSECT MOLECULAR BIOLOGY 2023; 32:658-675. [PMID: 37477164 DOI: 10.1111/imb.12864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Honey bee nutritional health depends on nectar and pollen, which provide the main source of carbohydrates, proteins and lipids to individual bees. During malnutrition, insect metabolism accesses fat body reserves. However, this process in bees and its repercussions at the colony level are poorly understood. Using untargeted lipidomics and gene expression analysis, we examined the effects of different feeding treatments (starvation, sugar feeding and sugar + pollen feeding) on bees and correlated them with colony health indicators. We found that nutritional stress led to an increase in unsaturated triacylglycerols and diacylglycerols, as well as a decrease in free fatty acids in the bee fat body. Here, we hypothesise that stored lipids are made available through a process where unsaturations change lipid's structure. Increased gene expression of three lipid desaturases in response to malnutrition supports this hypothesis, as these desaturases may be involved in releasing fatty acyl chains for lipolysis. Although nutritional stress was evident in starving and sugar-fed bees at the colony and physiological level, only starved colonies presented long-term effects in honey production.
Collapse
Affiliation(s)
- Clara E Castaños
- Cooperative Research Centre (CRC) for Honey Bee Products, Perth, Western Australia, Australia
- Honey Bee Health Research Group, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Mary C Boyce
- School of Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Tiffane Bates
- Cooperative Research Centre (CRC) for Honey Bee Products, Perth, Western Australia, Australia
- Honey Bee Health Research Group, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Gavin Flematti
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nathan G Lawler
- School of Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Julia Grassl
- Cooperative Research Centre (CRC) for Honey Bee Products, Perth, Western Australia, Australia
- Honey Bee Health Research Group, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
8
|
Abstract
BACKGROUND Bees provide essential pollination services for many food crops and are critical in supporting wild plant diversity. However, the dietary landscape of pollen food sources for social and solitary bees has changed because of agricultural intensification and habitat loss. For this reason, understanding the basic nutrient metabolism and meeting the nutritional needs of bees is becoming an urgent requirement for agriculture and conservation. We know that pollen is the principal source of dietary fat and sterols for pollinators, but a precise understanding of what the essential nutrients are and how much is needed is not yet clear. Sterols are key for producing the hormones that control development and may be present in cell membranes, where fatty-acid-containing species are important structural and signalling molecules (phospholipids) or to supply, store and distribute energy (glycerides). AIM OF THE REVIEW In this critical review, we examine the current general understanding of sterol and lipid metabolism of social and solitary bees from a variety of literature sources and discuss implications for bee health. KEY SCIENTIFIC CONCEPTS OF REVIEW We found that while eusocial bees are resilient to some dietary variation in sterol supply the scope for this is limited. The evidence of both de novo lipogenesis and a dietary need for particular fatty acids (FAs) shows that FA metabolism in insects is analogous to mammals but with distinct features. Bees rely on their dietary intake for essential sterols and lipids in a way that is dependent upon pollen availability.
Collapse
Affiliation(s)
- Samuel Furse
- Royal Botanic Gardens, Kew Green, Kew, Surrey, TW9 3AB, UK.
| | - Hauke Koch
- Royal Botanic Gardens, Kew Green, Kew, Surrey, TW9 3AB, UK
| | | | - Philip C Stevenson
- Royal Botanic Gardens, Kew Green, Kew, Surrey, TW9 3AB, UK.
- Natural Resources Institute, University of Greenwich, Chatham, Kent, ME4 4TB, UK.
| |
Collapse
|
9
|
Kim BY, Kim YH, Choi YS, Lee MY, Lee KS, Jin BR. Antimicrobial Activity of Apidermin 2 from the Honeybee Apis mellifera. INSECTS 2022; 13:insects13100958. [PMID: 36292906 PMCID: PMC9604307 DOI: 10.3390/insects13100958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 05/15/2023]
Abstract
Apidermins (APDs) are known as structural cuticular proteins in insects, but their additional roles are poorly understood. In this study, we characterized the honeybee, Apis mellifera, APD 2 (AmAPD 2), which displays activity suggesting antimicrobial properties. In A. mellifera worker bees, the AmAPD 2 gene is transcribed in the epidermis, hypopharyngeal glands, and fat body, and induced upon microbial ingestion. Particularly in the epidermis of A. mellifera worker bees, the AmAPD 2 gene showed high expression and responded strongly to microbial challenge. Using a recombinant AmAPD 2 peptide, which was produced in baculovirus-infected insect cells, we showed that AmAPD 2 is heat-stable and binds to live bacteria and fungi as well as carbohydrates of microbial cell wall molecules. This binding action ultimately induced structural damage to microbial cell walls, which resulted in microbicidal activity. These findings demonstrate the antimicrobial role of AmAPD 2 in honeybees.
Collapse
Affiliation(s)
- Bo-Yeon Kim
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea
| | - Yun-Hui Kim
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea
| | - Yong-Soo Choi
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju 55365, Korea
| | - Man-Young Lee
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju 55365, Korea
| | - Kwang-Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea
- Correspondence: (K.-S.L.); (B.-R.J.)
| | - Byung-Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea
- Correspondence: (K.-S.L.); (B.-R.J.)
| |
Collapse
|
10
|
Martelli F, Falcon T, Pinheiro DG, Simões ZLP, Nunes FMF. Worker bees (Apis mellifera) deprived of pollen in the first week of adulthood exhibit signs of premature aging. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 146:103774. [PMID: 35470035 DOI: 10.1016/j.ibmb.2022.103774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Pollinator populations, including bees, are in rapid decline in many parts of the world, raising concerns over the future of ecosystems and food production. Among the factors involved in these declines, poor nutrition deserves attention. The diet consumed by adult worker honeybees (Apis mellifera) is crucial for their behavioral maturation, i.e., the progressive division of labor they perform, such as nurse bees initially and later in life as foragers. Poor pollen nutrition is known to reduce the workers' lifespan, but the underlying physiological and genetic mechanisms are not fully understood. Here we investigate how the lack of pollen in the diet of workers during their first week of adult life can affect age-related phenotypes. During the first seven days of adult life, newly emerged workers were fed either a pollen-deprived (PD) diet mimicking that of an older bee, or a control pollen-rich (PR) diet, as typically consumed by young bees. The PD-fed bees showed alterations in their fat body transcriptome, such as a switch from a protein-lipid based metabolism to a carbohydrate-based metabolism, and a reduced expression of genes involved with immune response. The absence of pollen in the diet also led to an accumulation of oxidative stress markers in fat body tissue and alterations in the cuticular hydrocarbon profiles, which became similar to those of chronologically older bees. Together, our data indicate that the absence of pollen during first week of adulthood triggers the premature onset of an aging-related worker phenotype.
Collapse
Affiliation(s)
- Felipe Martelli
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Tiago Falcon
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Daniel G Pinheiro
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Zilá L P Simões
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil; Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Francis M F Nunes
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil; Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, Rod. Washington Luís - km 235, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
11
|
Buellesbach J, Holze H, Schrader L, Liebig J, Schmitt T, Gadau J, Niehuis O. Genetic and genomic architecture of species-specific cuticular hydrocarbon variation in parasitoid wasps. Proc Biol Sci 2022; 289:20220336. [PMID: 35673870 PMCID: PMC9174729 DOI: 10.1098/rspb.2022.0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cuticular hydrocarbons (CHCs) serve two fundamental functions in insects: protection against desiccation and chemical signalling. How the interaction of genes shapes CHC profiles, which are essential for insect survival, adaptation and reproductive success, is still poorly understood. Here we investigate the genetic and genomic basis of CHC biosynthesis and variation in parasitoid wasps of the genus Nasonia. We mapped 91 quantitative trait loci (QTL) explaining the variation of a total of 43 CHCs in F2 hybrid males from interspecific crosses between three Nasonia species. To identify candidate genes, we localized orthologues of CHC biosynthesis-related genes in the Nasonia genomes. We discovered multiple genomic regions where the location of QTL coincides with the location of CHC biosynthesis-related candidate genes. Most conspicuously, on a region close to the centromere of chromosome 1, multiple CHC biosynthesis-related candidate genes co-localize with several QTL explaining variation in methyl-branched alkanes. The genetic underpinnings behind this compound class are not well understood so far, despite their high potential for encoding chemical information as well as their prevalence in hymenopteran CHC profiles. Our study considerably extends our knowledge on the genetic architecture governing this important compound class, establishing a model for methyl-branched alkane genetics in the Hymenoptera in general.
Collapse
Affiliation(s)
- Jan Buellesbach
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, DE-48149 Münster, Germany
| | - Henrietta Holze
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, DE-48149 Münster, Germany
| | - Lukas Schrader
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, DE-48149 Münster, Germany
| | - Jürgen Liebig
- School of Life Sciences, Arizona State University, PO Box 874701, Tempe, AZ 85287-4501, USA
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Juergen Gadau
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, DE-48149 Münster, Germany
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University of Freiburg, Hauptstr. 1, 79104 Freiburg, Germany
| |
Collapse
|
12
|
Xiang M, Zhang HZ, Jing XY, Wang MQ, Mao JJ, Li YY, Zang LS, Zhang LS. Sequencing, Expression, and Functional Analyses of Four Genes Related to Fatty Acid Biosynthesis During the Diapause Process in the Female Ladybird, Coccinella septempunctata L. Front Physiol 2021; 12:706032. [PMID: 34489726 PMCID: PMC8417001 DOI: 10.3389/fphys.2021.706032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/15/2021] [Indexed: 01/23/2023] Open
Abstract
The ladybird Coccinella septempunctata L., a predatory insect, serves as an excellent biological control agent against common agricultural pests. It undergoes a diapause phenomenon, during which a large amount of fat accumulates in the abdomen. A comprehensive analysis of this lipid accumulation can reveal the molecular mechanisms underlying diapause regulation, which can be exploited to improve the shipping and transport of the insect for agricultural applications. In this study, we compared the transcriptome of C. septempunctata during non-diapause, diapause, and post-diapause and screened four key genes related to lipid metabolism. The cDNA of these four relevant enzymes, acetyl-CoA carboxylase (ACC), long-chain fatty acid-CoA ligase (ACSL), elongase of very-long-chain fatty acids (ELO), and very-long-chain 3-oxoacyl-CoA reductase (KAR), were cloned using reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. Their expression profiles were analyzed during the preparation and maintenance phases of diapause and the post-diapause phase. The functions of these four key enzymes in diapause were further verified using RNA interference. All four genes were most closely related to the homeotic gene from Tribolium castaneum. The expression profiles of these four genes were significantly affected under diapause-inducing conditions; their expression level was the highest in the diapause preparation phase, and it gradually decreased with the diapause induction time. RNA interference showed that the target genes play important roles in fat storage during early diapause, and the decrease in their expression leads to a decrease in lipid content in C. septempunctata. These results indicate an important role of ACC, ACSL, ELO, and KAR in lipid accumulation. Our findings could help elucidate the production and accumulation of lipids by insects during the preparation for diapause and improve biological control.
Collapse
Affiliation(s)
- Mei Xiang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Institute of Biological Control, Jilin Agricultural University, Changchun, China
| | - Hong-Zhi Zhang
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ, United States
| | - Xiao-Yu Jing
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Institute of Biological Control, Jilin Agricultural University, Changchun, China
| | - Meng-Qing Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian-Jun Mao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu-Yan Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lian-Sheng Zang
- Institute of Biological Control, Jilin Agricultural University, Changchun, China
| | - Li-Sheng Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Zhao X, Yang Y, Niu N, Zhao Y, Liu W, Ma E, Moussian B, Zhang J. The fatty acid elongase gene LmELO7 is required for hydrocarbon biosynthesis and cuticle permeability in the migratory locust, Locusta migratoria. JOURNAL OF INSECT PHYSIOLOGY 2020; 123:104052. [PMID: 32259526 DOI: 10.1016/j.jinsphys.2020.104052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Insect cuticular lipids are a complex cocktail of highly diverse cuticular hydrocarbons (CHCs), which form a hydrophobic surface coat to maintain water balance and to prevent desiccation and penetration of exogenous substances. Fatty acid elongases (ELOs) are key enzymes that participate in a common CHC synthesis pathway in insects. However, the importance of ELOs for CHC synthesis and function remains understudied. Using transcriptomic data, we have identified seven ELO genes (LmELO1-7) in the migratory locust Locusta migratoria. We determined their tissue-specific and temporal expression profiles in fifth instar nymphs. As we are interested in cuticle barrier formation, we performed RNA interference against LmELO7, which is mainly expressed in the integument. Suppression of LmELO7 significantly decreased its expression and caused lethality during or shortly after molting. CHC quantification by GC-MS analysis indicated that suppression of LmELO7 resulted in a decrease in total CHC amounts. By consequence, CHC deficiency reduced desiccation resistance and enhanced cuticle permeability in LmELO7-suppressed L. migratoria. Interestingly, LmELO7 expression is induced at low air humidity. Our results indicate that LmELO7 plays a vital role in the production of CHCs and, hence, cuticle permeability. Induction of LmELO7 expression in drought conditions suggests a key role of this gene in regulating desiccation resistance. This work is expected to help developing new strategies for insect pest management based on CHC function.
Collapse
Affiliation(s)
- Xiaoming Zhao
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yang Yang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Niu Niu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yiyan Zhao
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Weimin Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Bernard Moussian
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice CEDEX 2, France
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
14
|
Hartke J, Schell T, Jongepier E, Schmidt H, Sprenger PP, Paule J, Bornberg-Bauer E, Schmitt T, Menzel F, Pfenninger M, Feldmeyer B. Hybrid Genome Assembly of a Neotropical Mutualistic Ant. Genome Biol Evol 2020; 11:2306-2311. [PMID: 31329228 PMCID: PMC6735702 DOI: 10.1093/gbe/evz159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2019] [Indexed: 01/13/2023] Open
Abstract
The success of social insects is largely intertwined with their highly advanced chemical communication system that facilitates recognition and discrimination of species and nest-mates, recruitment, and division of labor. Hydrocarbons, which cover the cuticle of insects, not only serve as waterproofing agents but also constitute a major component of this communication system. Two cryptic Crematogaster species, which share their nest with Camponotus ants, show striking diversity in their cuticular hydrocarbon (CHC) profile. This mutualistic system therefore offers a great opportunity to study the genetic basis of CHC divergence between sister species. As a basis for further genome-wide studies high-quality genomes are needed. Here, we present the annotated draft genome for Crematogaster levior A. By combining the three most commonly used sequencing techniques—Illumina, PacBio, and Oxford Nanopore—we constructed a high-quality de novo ant genome. We show that even low coverage of long reads can add significantly to overall genome contiguity. Annotation of desaturase and elongase genes, which play a role in CHC biosynthesis revealed one of the largest repertoires in ants and a higher number of desaturases in general than in other Hymenoptera. This may provide a mechanistic explanation for the high diversity observed in C. levior CHC profiles.
Collapse
Affiliation(s)
- Juliane Hartke
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany.,Institute of Organismic and Molecular Evolution (iOME), Johannes Gutenberg University, Mainz, Germany
| | - Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Evelien Jongepier
- Molecular Evolution and Bioinformatics Group, Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität, Münster, Germany
| | - Hanno Schmidt
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis
| | - Philipp P Sprenger
- Institute of Organismic and Molecular Evolution (iOME), Johannes Gutenberg University, Mainz, Germany.,Department of Animal Ecology and Tropical Biology, University of Würzburg, Biocentre - Am Hubland, Germany
| | - Juraj Paule
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany
| | - Erich Bornberg-Bauer
- Molecular Evolution and Bioinformatics Group, Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität, Münster, Germany
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Biocentre - Am Hubland, Germany
| | - Florian Menzel
- Institute of Organismic and Molecular Evolution (iOME), Johannes Gutenberg University, Mainz, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany.,Institute of Organismic and Molecular Evolution (iOME), Johannes Gutenberg University, Mainz, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| |
Collapse
|
15
|
MAYACK C. Neonikotinoidlerin Zehir Etkilerini Belirlemede LD50 Değerleri Farklı Arı Türleri İçin Yanıltıcı Bir Öngösterge Olabilir. ACTA ACUST UNITED AC 2019. [DOI: 10.31467/uluaricilik.568251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Li DT, Chen X, Wang XQ, Moussian B, Zhang CX. The fatty acid elongase gene family in the brown planthopper, Nilaparvata lugens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 108:32-43. [PMID: 30885803 DOI: 10.1016/j.ibmb.2019.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
The cuticular hydrocarbon (CHC) biosynthetic pathways branches off from the synthesis of fatty acids. Fatty acid elongases (ELOs) are enzymes catalyzing the synthesis of long-chain fatty acids and thereby contribute to the diversification of CHCs. Based on bioinformatics analyses we identified 20 ELO genes in the brown planthopper, Nilaparvata lugens. RNA interference against these genes demonstrated that 9 NlELO genes were essential for the survival of N. lugens nymphs and adults. Indeed, knockdown of NlELOs 1, 3, 4, 7, 8, 9, 10, 12 and 18 caused lethal phenotypes with a thin and wizened body and reduced lipids in the fat body. Surface analysis by scanning electron microscopy and CHC quantification indicated that knockdown of NlELOs 2, 3, 8 and 16 additionally resulted in a smooth body surface and a decrease in CHC amounts. Therefore, we speculate that long-chain CHCs are needed for CHC attachment to the cuticle surface. CHC deficiency, in turn, resulted in increased adhesion of water droplets and secreted honeydew to the animal surface and the inability of N. lugens to survive in paddy fields with varying humidity. Our present study provides an initial comprehensive analysis of ELO gene functions in an insect, and may serve to better understand the biology of CHCs.
Collapse
Affiliation(s)
- Dan-Ting Li
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Xuan Chen
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Qiu Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Bernard Moussian
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108, Nice Cedex 2, France
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Falcon T, Pinheiro DG, Ferreira-Caliman MJ, Turatti ICC, de Abreu FCP, Galaschi-Teixeira JS, Martins JR, Elias-Neto M, Soares MPM, Laure MB, Figueiredo VLC, Lopes NP, Simões ZLP, Garófalo CA, Bitondi MMG. Exploring integument transcriptomes, cuticle ultrastructure, and cuticular hydrocarbons profiles in eusocial and solitary bee species displaying heterochronic adult cuticle maturation. PLoS One 2019; 14:e0213796. [PMID: 30870522 PMCID: PMC6417726 DOI: 10.1371/journal.pone.0213796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/28/2019] [Indexed: 12/26/2022] Open
Abstract
Differences in the timing of exoskeleton melanization and sclerotization are evident when comparing eusocial and solitary bees. This cuticular maturation heterochrony may be associated with life style, considering that eusocial bees remain protected inside the nest for many days after emergence, while the solitary bees immediately start outside activities. To address this issue, we characterized gene expression using large-scale RNA sequencing (RNA-seq), and quantified cuticular hydrocarbon (CHC) through gas chromatography-mass spectrometry in comparative studies of the integument (cuticle plus its underlying epidermis) of two eusocial and a solitary bee species. In addition, we used transmission electron microscopy (TEM) for studying the developing cuticle of these and other three bee species also differing in life style. We found 13,200, 55,209 and 30,161 transcript types in the integument of the eusocial Apis mellifera and Frieseomelitta varia, and the solitary Centris analis, respectively. In general, structural cuticle proteins and chitin-related genes were upregulated in pharate-adults and newly-emerged bees whereas transcripts for odorant binding proteins, cytochrome P450 and antioxidant proteins were overrepresented in foragers. Consistent with our hypothesis, a distance correlation analysis based on the differentially expressed genes suggested delayed cuticle maturation in A. mellifera in comparison to the solitary bee. However, this was not confirmed in the comparison with F. varia. The expression profiles of 27 of 119 genes displaying functional attributes related to cuticle formation/differentiation were positively correlated between A. mellifera and F. varia, and negatively or non-correlated with C. analis, suggesting roles in cuticular maturation heterochrony. However, we also found transcript profiles positively correlated between each one of the eusocial species and C. analis. Gene co-expression networks greatly differed between the bee species, but we identified common gene interactions exclusively between the eusocial species. Except for F. varia, the TEM analysis is consistent with cuticle development timing adapted to the social or solitary life style. In support to our hypothesis, the absolute quantities of n-alkanes and unsaturated CHCs were significantly higher in foragers than in the earlier developmental phases of the eusocial bees, but did not discriminate newly-emerged from foragers in C. analis. By highlighting differences in integument gene expression, cuticle ultrastructure, and CHC profiles between eusocial and solitary bees, our data provided insights into the process of heterochronic cuticle maturation associated to the way of life.
Collapse
Affiliation(s)
- Tiago Falcon
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Núcleo de Bioinformática, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Daniel G. Pinheiro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, Brazil
| | - Maria Juliana Ferreira-Caliman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Izabel C. C. Turatti
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Fabiano C. Pinto de Abreu
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Juliana S. Galaschi-Teixeira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Juliana R. Martins
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Moysés Elias-Neto
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Michelle P. M. Soares
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Marcela B. Laure
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vera L. C. Figueiredo
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Norberto Peporine Lopes
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Zilá L. P. Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Carlos A. Garófalo
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Márcia M. G. Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
18
|
Vernier CL, Krupp JJ, Marcus K, Hefetz A, Levine JD, Ben-Shahar Y. The cuticular hydrocarbon profiles of honey bee workers develop via a socially-modulated innate process. eLife 2019; 8:41855. [PMID: 30720428 PMCID: PMC6382352 DOI: 10.7554/elife.41855] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/31/2019] [Indexed: 12/20/2022] Open
Abstract
Large social insect colonies exhibit a remarkable ability for recognizing group members via colony-specific cuticular pheromonal signatures. Previous work suggested that in some ant species, colony-specific pheromonal profiles are generated through a mechanism involving the transfer and homogenization of cuticular hydrocarbons (CHCs) across members of the colony. However, how colony-specific chemical profiles are generated in other social insect clades remains mostly unknown. Here we show that in the honey bee (Apis mellifera), the colony-specific CHC profile completes its maturation in foragers via a sequence of stereotypic age-dependent quantitative and qualitative chemical transitions, which are driven by environmentally-sensitive intrinsic biosynthetic pathways. Therefore, the CHC profiles of individual honey bees are not likely produced through homogenization and transfer mechanisms, but instead mature in association with age-dependent division of labor. Furthermore, non-nestmate rejection behaviors seem to be contextually restricted to behavioral interactions between entering foragers and guards at the hive entrance. Honey bees are social insects that live in large groups called colonies, within structures known as hives. The young adult bees stay within the hive to build nests and care for the young, while the older bees leave the hive to forage for food. Honey bees store food and other valuable resources in their hives, so they are often targeted by predators, parasites and ‘robber’ bees from other colonies. Therefore, it is important for bees to determine whether individuals trying to enter the nest are group members or intruders. While it is known that social insects use blends of waxy chemicals called cuticular hydrocarbons to identify group members at the entrance to the colony, it is not clear how members of the same colony acquire a similar blend of cuticular hydrocarbons. Some previous work suggested that in some ant species (which are also social insects), colony members exchange cuticular hydrocarbons with each other so that all members of the colony are covered with a similar blend of chemicals. However, it was not known whether honey bees also share cuticular hydrocarbons between colony members in order to identify members of a hive. Vernier et al. used chemical, molecular and behavioral approaches to study the cuticular hydrocarbons found on honey bees. The results show that, rather than exchanging chemicals with other members of their colony, individual bees make their own blends of cuticular hydrocarbons. As a bee ages it makes different blends of cuticular hydrocarbons, and by the time it starts to leave the hive to forage it makes a blend that is specific to the colony it belongs to. The production of this final blend is influenced by the environment within the hive. Thus, the findings of Vernier et al. indicate that honey bees guarding the entrance to a hive can only identify non-colony-member forager bees as intruders, rather than any non-colony-member bee that happens upon the hive entrance. Honey bees play an essential role in pollinating many crop plants so understanding how these insects maintain their social groups may help to improve agriculture in the future. Furthermore, this work may aid our understanding of how other social insects interact in a variety of biological situations.
Collapse
Affiliation(s)
- Cassondra L Vernier
- Department of Biology, Washington University in Saint Louis, Saint Louis, United States
| | - Joshua J Krupp
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
| | - Katelyn Marcus
- Department of Biology, Washington University in Saint Louis, Saint Louis, United States
| | - Abraham Hefetz
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Joel D Levine
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in Saint Louis, Saint Louis, United States
| |
Collapse
|
19
|
Zuo W, Li C, Luan Y, Zhang H, Tong X, Han M, Gao R, Hu H, Song J, Dai F, Lu C. Genome-wide identification and analysis of elongase of very long chain fatty acid genes in the silkworm, Bombyx mori. Genome 2018; 61:167-176. [PMID: 29505281 DOI: 10.1139/gen-2017-0224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Very long chain fatty acids (VLCFAs), such as sphingolipids, are components of cellular lipids, which are essential for cell proliferation. Mutations in the genes that encode proteins participating in VLCFA biosynthesis may cause inherited diseases, such as macular degeneration. Elongases of very long chain fatty acid (ELOVL) are enzymes that are involved in the biosynthesis of VLCFAs. Here, a total of 13 ELOVL genes, distributed across three chromosomes, were identified in the silkworm genome; all the ELOVL members contain a distinct ELO domain and a conserved HXXHH motif. Phylogenetic reconstruction was performed to analyze the evolutionary relationships among different species and to predict gene functions. The 13 ELOVL genes were assigned to the ELOVL3/6, ELOVL1/7, and ELOVL4 clades. Microarray and semiquantitative PCR analyses indicated that these genes are differentially expressed among various tissues, in turn suggesting functional divergence in the growth and development of each tissue. Further investigation showed that the expression level of the BGIBMGA000424 gene is significantly negatively correlated with the cocoon-shell weight among different silkworm strains. Taken together, the present study is the first comprehensive analysis of ELOVL genes in silkworm, and the results may serve as a foundation for further analysis of the physiological functions of ELOVL genes in silkworm.
Collapse
Affiliation(s)
- Weidong Zuo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Chunlin Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Yue Luan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Hao Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Minjin Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Rui Gao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Jiangbo Song
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
20
|
Giri S, Rule DC, Dillon ME. Fatty acid composition in native bees: Associations with thermal and feeding ecology. Comp Biochem Physiol A Mol Integr Physiol 2018; 218:70-79. [PMID: 29409996 DOI: 10.1016/j.cbpa.2018.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
Abstract
Fatty acid (FA) composition of lipids plays a crucial role in the functioning of lipid-containing structures in organisms and may be affected by the temperature an organism experiences, as well as its diet. We compared FA composition among four bee genera: Andrena, Bombus, Megachile, and Osmia which differ in their thermal ecology and diet. Fatty acid methyl esters (FAME) were prepared by direct transesterification with KOH and analyzed using gas-liquid chromatography with a flame ionization detector. Sixteen total FAs ranging in chain length from eight to 22 carbon atoms were identified. Linear discriminant analysis separated the bees based on their FA composition. Andrena was characterized by relatively high concentrations of polyunsaturated FAs, Bombus by high monounsaturated FAs and Megachilids (Megachile and Osmia) by relatively high amounts of saturated FAs. These differences in FA composition may in part be explained by variation in the diets of these bees. Because tongue (proboscis) length may be used as a proxy for the types of flowers bees may visit for nectar and pollen, we compared FA composition among Bombus that differed in proboscis length (but have similar thermal ecology). A clear separation in FA composition within Bombus with varying proboscis lengths was found using linear discriminant analysis. Further, comparing the relationship between each genus by cluster analysis revealed aggregations by genus that were not completely separated, suggesting potential overlap in dietary acquisition of FAs.
Collapse
Affiliation(s)
- Susma Giri
- Department of Zoology and Physiology & Program in Ecology, University of Wyoming, Laramie, WY, USA
| | - Daniel C Rule
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Michael E Dillon
- Department of Zoology and Physiology & Program in Ecology, University of Wyoming, Laramie, WY, USA.
| |
Collapse
|
21
|
Calderón-Fernández GM, Moriconi DE, Dulbecco AB, Juárez MP. Transcriptome Analysis of the Triatoma infestans (Hemiptera: Reduviidae) Integument. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:1531-1542. [PMID: 29029205 DOI: 10.1093/jme/tjx151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Indexed: 06/07/2023]
Abstract
The insect integument, formed by the cuticle and the underlying epidermis, is essential for insect fitness, regulation of lipid biosynthesis and storage, insect growth and feeding, together with development progress. Its participation in insecticide resistance has also been outlined. Triatoma infestans Klug (Hemiptera: Reduviidae) is one of the major vectors of Chagas disease in South America; however, genomic data are scarce. In this study, we performed a transcriptome analysis of the nymph integument in order to identify which genes are expressed and their putative role. Using the 454 GS-FLX sequencing platform, we obtained approximately 144,620 reads from the integument tissue. These reads were assembled into 6,495 isotigs and 8,504 singletons. Based on BLAST similarity searches, about 8,000 transcripts were annotated with known genes, conserved domains, and/or Gene Ontology terms.The most abundant transcripts corresponded to transcription factors and nucleic acid metabolism, membrane receptors, cell signaling, and proteins related to cytoskeleton, transport, and cell energy processes, among others. More than 10% of the transcripts-encoded proteins putatively involved in the metabolism of fatty acids and related components (fatty acid synthases, elongases, desaturases, fatty alcohol reductases), structural integument proteins, and the insecticide detoxification system (among them, cytochrome P450s, esterases, and glutathione transferases). Real-time qPCR assays were used to investigate their putative participation in the resistance mechanism. This preliminary study is the first transcriptome analysis of a triatomine integument, and together with prior biochemical information, will help further understandthe role of the integument in a wide array of mechanisms.
Collapse
Affiliation(s)
- Gustavo M Calderón-Fernández
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, La Plata, Argentina
| | - Débora E Moriconi
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, La Plata, Argentina
| | - Andrea B Dulbecco
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, La Plata, Argentina
| | - M Patricia Juárez
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, La Plata, Argentina
| |
Collapse
|
22
|
Teixeira ADD, Games PD, Katz BB, Tomich JM, Zanuncio JC, Serrão JE. Proteomic analysis in the Dufour's gland of Africanized Apis mellifera workers (Hymenoptera: Apidae). PLoS One 2017; 12:e0177415. [PMID: 28542566 PMCID: PMC5443511 DOI: 10.1371/journal.pone.0177415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/26/2017] [Indexed: 11/19/2022] Open
Abstract
The colony of eusocial bee Apis mellifera has a reproductive queen and sterile workers performing tasks such as brood care and foraging. Chemical communication plays a crucial role in the maintenance of sociability in bees with many compounds released by the exocrine glands. The Dufour’s gland is a non-paired gland associated with the sting apparatus with important functions in the communication between members of the colony, releasing volatile chemicals that influence workers roles and tasks. However, the protein content in this gland is not well studied. This study identified differentially expressed proteins in the Dufour’s glands of nurse and forager workers of A. mellifera through 2D-gel electrophoresis and mass spectrometry. A total of 131 spots showed different expression between nurse and forager bees, and 28 proteins were identified. The identified proteins were categorized into different functions groups including protein, carbohydrate, energy and lipid metabolisms, cytoskeleton-associated proteins, detoxification, homeostasis, cell communication, constitutive and allergen. This study provides new insights of the protein content in the Dufour’s gland contributing to a more complete understanding of the biological functions of this gland in honeybees.
Collapse
Affiliation(s)
| | - Patricia D. Games
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Benjamin B. Katz
- Biotechnology Core Facility and Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - John M. Tomich
- Biotechnology Core Facility and Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - José C. Zanuncio
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - José Eduardo Serrão
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
23
|
Vollet-Neto A, Oliveira RC, Schillewaert S, Alves DA, Wenseleers T, Nascimento FS, Imperatriz-Fonseca VL, Ratnieks FLW. Diploid Male Production Results in Queen Death in the Stingless Bee Scaptotrigona depilis. J Chem Ecol 2017; 43:403-410. [PMID: 28386801 DOI: 10.1007/s10886-017-0839-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/06/2017] [Accepted: 03/24/2017] [Indexed: 11/25/2022]
Abstract
As in most Hymenoptera, the eusocial stingless bees (Meliponini) have a complementary sex determination (CSD) system. When a queen makes a "matched mating" with a male that shares a CSD allele with her, half of their diploid offspring are diploid males rather than females. Matched mating imposes a cost, since diploid male production reduces the colony workforce. Hence, adaptations preventing the occurrence or attenuating its effects are likely to arise. Here we provide clear evidence that in the stingless bee Scaptotrigona depilis, the emergence of diploid males induces queen death, and this usually occurs within 10-20 days of the emergence of diploid male offspring from their pupae. Queens that have not made a matched mating die when introduced into a colony in which diploid males are emerging. This shows that the adult diploid males, and not the queen that has made a matched mating herself, are the proximate cause of queen death. Analysis of the cuticular hydrocarbon profiles of adult haploid and diploid males shows six compounds with significant differences. Moreover, the diploid and haploid males only acquire distinct cuticular hydrocarbon profiles 10 days after emergence. Our data shows that the timing of queen death occurs when the cuticular hydrocarbons of haploid and diploid males differ significantly, suggesting that these chemical differences could be used as cues or signals to trigger queen death.
Collapse
Affiliation(s)
- Ayrton Vollet-Neto
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Ricardo C Oliveira
- Laboratory of Socioecology and Social Evolution, Zoological Institute, KU Leuven, Leuven, Belgium
| | - Sharon Schillewaert
- Laboratory of Socioecology and Social Evolution, Zoological Institute, KU Leuven, Leuven, Belgium
| | - Denise A Alves
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, Zoological Institute, KU Leuven, Leuven, Belgium
| | - Fabio S Nascimento
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vera L Imperatriz-Fonseca
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, SP, Brazil
- Instituto Tecnológico Vale, Belém, PA, Brazil
| | - Francis L W Ratnieks
- Laboratory of Apiculture & Social Insects (LASI), School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| |
Collapse
|
24
|
Kelstrup HC, Hartfelder K, Esterhuizen N, Wossler TC. Juvenile hormone titers, ovarian status and epicuticular hydrocarbons in gynes and workers of the paper wasp Belonogaster longitarsus. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:83-92. [PMID: 27913150 DOI: 10.1016/j.jinsphys.2016.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 06/06/2023]
Abstract
The prevailing paradigm for social wasp endocrinology is that of juvenile hormone (JH) functioning pleiotropically in potential and actual queens, where it fuels dominance behaviors, stimulates ovarian growth and/or affects the production of status-linked cuticular compounds. In colonies with annual cycles (e.g., temperate-zone species), female adults produced at the end of the summer (called gynes) are physiologically primed to hibernate. Despite the absence of egg-laying in the pre-overwintering phase, gynes engage in dominance interactions that may affect reproductive potential following hibernation. JH levels have long been inferred to be low in gynes but this has never been tested. In what is the first study to measure JH in gyne-containing colonies of a temperate paper wasp, and the first to incorporate hormone assays in Belonogaster, our results show that the JH titer positively correlates with gyne-specific traits (including oocyte length and a low frequency of foraging trips) in B. longitarsus, a South African paper wasp. Measures of dominance correlated with oocyte length, but not all dominant females possessed activated ovaries. The cuticular hydrocarbon profiles of gynes and workers were distinct, with oocyte length and JH titer showing a positive association with longer-chain methyl-branched alkanes. Nonetheless, evidence for a role of JH in dominance was inconclusive. Finally, the range of JH titers among gynes, and the positive association of JH titers with ovarian status and prospective fertility signals, makes it unlikely that the gyne phenotype is maintained by low JH levels.
Collapse
Affiliation(s)
- Hans C Kelstrup
- Stellenbosch University, Department of Botany and Zoology, Private Bag XI, Mateiland, WC, South Africa.
| | - Klaus Hartfelder
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, Brazil
| | - Nanike Esterhuizen
- Stellenbosch University, Department of Botany and Zoology, Private Bag XI, Mateiland, WC, South Africa
| | - Theresa C Wossler
- Stellenbosch University, Department of Botany and Zoology, Private Bag XI, Mateiland, WC, South Africa
| |
Collapse
|
25
|
de Souza EA, Trigo JR, Santos DE, Vieira CU, Serrão JE. The relationship between queen execution and cuticular hydrocarbons in stingless bee Melipona scutellaris (Hymenoptera: Meliponini). CHEMOECOLOGY 2016. [DOI: 10.1007/s00049-016-0226-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Menzel F, Radke R, Foitzik S. Odor diversity decreases with inbreeding in the ant Hypoponera opacior. Evolution 2016; 70:2573-2582. [PMID: 27641363 DOI: 10.1111/evo.13068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 12/29/2022]
Abstract
Reduction in heterozygosity can lead to inbreeding depression. This loss of genetic variability especially affects diverse loci, such as immune genes or those encoding recognition cues. In social insects, nestmates are recognized by their odor, that is their cuticular hydrocarbon profile. Genes underlying hydrocarbon production are thought to be under balancing selection. If so, inbreeding should result in a loss of chemical diversity. We show here that cuticular hydrocarbon diversity decreases with inbreeding. Studying an ant with a facultative inbreeding lifestyle, we found inbred workers to exhibit both a lower number of hydrocarbons and less diverse, that is less evenly proportioned profiles. The association with inbreeding was strong for methyl-branched alkanes, which play a major role in nestmate recognition, and for n-alkanes, whereas unsaturated compounds were unaffected. Shifts in allocation strategies with inbreeding in our focal species indicate that these ants can detect their inbreeding level and use this information to adjust their reproductive strategy. Our study is the first to demonstrate that odor profiles can encode information on inbreeding, with broad implications not only for social insects, but for sexual selection and mate choice in general. Odor profiles may constitute an honest signal of inbreeding, a fitness-relevant trait in many species.
Collapse
Affiliation(s)
- Florian Menzel
- Institute of Zoology, Johannes Gutenberg University Mainz, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany.
| | - René Radke
- Institute of Zoology, Johannes Gutenberg University Mainz, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany
| | - Susanne Foitzik
- Institute of Zoology, Johannes Gutenberg University Mainz, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany
| |
Collapse
|
27
|
Uhl P, Franke LA, Rehberg C, Wollmann C, Stahlschmidt P, Jeker L, Brühl CA. Interspecific sensitivity of bees towards dimethoate and implications for environmental risk assessment. Sci Rep 2016; 6:34439. [PMID: 27686060 PMCID: PMC5043368 DOI: 10.1038/srep34439] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/13/2016] [Indexed: 11/13/2022] Open
Abstract
Wild and domesticated bee species are exposed to a variety of pesticides which may drive pollinator decline. Due to wild bee sensitivity data shortage, it is unclear if the honey bee Apis mellifera is a suitable surrogate species in the current EU risk assessment scheme. Furthermore, the underlying causes for sensitivity differences in bees are not established. We assessed the acute toxicity (median lethal dose, LD50) of dimethoate towards multiple bee species, generated a species sensitivity distribution and derived a hazardous dose (HD5). Furthermore, we performed a regression analysis with body weight and dimethoate toxicity. HD5 lower 95% confidence limit was equal to honey bee mean LD50 when applying a safety factor of 10. Body weight proved to be a predictor of interspecific bee sensitivity but did not explain the pattern completely. Using acute toxicity values from honey bees and a safety factor of 10 seems to cover the interspecific sensitivity range of bees in the case of dimethoate. Acute endpoints of proposed additional test species, the buff-tailed bumblebee Bombus terrestris and the red mason bee Osmia bicornis, do not improve the risk assessment for the entire group. However, this might not apply to other insecticides such as neonicotinoids.
Collapse
Affiliation(s)
- Philipp Uhl
- University of Koblenz-Landau, Institute for Environmental Sciences, Fortstrasse 7, 76829 Landau, Germany
| | - Lea A. Franke
- University of Koblenz-Landau, Institute for Environmental Sciences, Fortstrasse 7, 76829 Landau, Germany
| | - Christina Rehberg
- University of Koblenz-Landau, Institute for Environmental Sciences, Fortstrasse 7, 76829 Landau, Germany
| | - Claudia Wollmann
- University of Koblenz-Landau, Institute for Environmental Sciences, Fortstrasse 7, 76829 Landau, Germany
| | - Peter Stahlschmidt
- University of Koblenz-Landau, Institute for Environmental Sciences, Fortstrasse 7, 76829 Landau, Germany
| | - Lukas Jeker
- Dr. Knoell Consult Schweiz GmbH, Riehenstrasse 43, 4058 Basel, Switzerland
| | - Carsten A. Brühl
- University of Koblenz-Landau, Institute for Environmental Sciences, Fortstrasse 7, 76829 Landau, Germany
| |
Collapse
|
28
|
Finck J, Berdan EL, Mayer F, Ronacher B, Geiselhardt S. Divergence of cuticular hydrocarbons in two sympatric grasshopper species and the evolution of fatty acid synthases and elongases across insects. Sci Rep 2016; 6:33695. [PMID: 27677406 PMCID: PMC5039406 DOI: 10.1038/srep33695] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/30/2016] [Indexed: 01/02/2023] Open
Abstract
Cuticular hydrocarbons (CHCs) play a major role in the evolution of reproductive isolation between insect species. The CHC profiles of two closely related sympatric grasshopper species, Chorthippus biguttulus and C. mollis, differ mainly in the position of the first methyl group in major methyl-branched CHCs. The position of methyl branches is determined either by a fatty acid synthase (FAS) or by elongases. Both protein families showed an expansion in insects. Interestingly, the FAS family showed several lineage-specific expansions, especially in insect orders with highly diverse methyl-branched CHC profiles. We found five putative FASs and 12 putative elongases in the reference transcriptomes for both species. A dN/dS test showed no evidence for positive selection acting on FASs and elongases in these grasshoppers. However, one candidate FAS showed species-specific transcriptional differences and may contribute to the shift of the methyl-branch position between the species. In addition, transcript levels of four elongases were expressed differentially between the sexes. Our study indicates that complex methyl-branched CHC profiles are linked to an expansion of FASs genes, but that species differences can also mediated at the transcriptional level.
Collapse
Affiliation(s)
- Jonas Finck
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 43, 10115 Berlin, Germany.,Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115 Berlin, Germany
| | - Emma L Berdan
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115 Berlin, Germany
| | - Frieder Mayer
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115 Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195 Berlin, Germany
| | - Bernhard Ronacher
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 43, 10115 Berlin, Germany
| | - Sven Geiselhardt
- Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163 Berlin, Germany
| |
Collapse
|
29
|
Micas AFD, Ferreira GA, Laure HJ, Rosa JC, Bitondi MMG. PROTEINS OF THE INTEGUMENTARY SYSTEM OF THE HONEYBEE, Apis mellifera. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 93:3-24. [PMID: 27160491 DOI: 10.1002/arch.21336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The integument of insects and other arthropods is composed of an inner basal lamina coated by the epidermis, which secretes the bulk of the outer integument layer, the cuticle. The genome sequencing of several insect species has allowed predicting classes of proteins integrating the cuticle. However, only a small proportion of them, as well as other proteins in the integumentary system, have been validated. Using two-dimensional gel electrophoresis coupled with mass spectrometry, we identified 45 different proteins in a total of 112 selected gel spots derived from thoracic integument samples of developing honeybee workers, including 14 cuticular proteins (AmelCPR 3, AmelCPR 12, AmelCPR 16, AmelCPR 27, apidermin 2, apidermin 3, endocuticle structural glycoprotein SgAbd-8-like, LOC100577363, LOC408365, LOC413679, LOC725454, LOC100576916, LOC725838, and peritrophin 3-C analogous). Gene ontology functional analysis revealed that the higher proportions of the identified proteins have molecular functions related to catalytic and structural molecule activities, are involved in metabolic biological processes, and pertain to the protein class of structural or cytoskeletal proteins and hydrolases. It is noteworthy that 26.7% of the identified proteins, including five cuticular proteins, were revealed as protein species resulting from allelic isoforms or derived from posttranslational modifications. Also, 66.7% of the identified cuticular proteins were expressed in more than one developmental phase, thus indicating that they are part of the larval, pupal, and adult cuticle. Our data provide experimental support for predicted honeybee gene products and new information on proteins expressed in the developing integument.
Collapse
Affiliation(s)
- André Fernando Ditondo Micas
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Germano Aguiar Ferreira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Centro de Química de Proteínas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Helen Julie Laure
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Centro de Química de Proteínas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - José Cesar Rosa
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Centro de Química de Proteínas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Márcia Maria Gentile Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
30
|
Schnapp A, Niehoff AC, Koch A, Dreisewerd K. Laser desorption/ionization mass spectrometry of lipids using etched silver substrates. Methods 2016; 104:194-203. [DOI: 10.1016/j.ymeth.2016.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/13/2016] [Accepted: 01/25/2016] [Indexed: 10/22/2022] Open
|
31
|
Caliari Oliveira R, Oi CA, do Nascimento MMC, Vollet-Neto A, Alves DA, Campos MC, Nascimento F, Wenseleers T. The origin and evolution of queen and fertility signals in Corbiculate bees. BMC Evol Biol 2015; 15:254. [PMID: 26573687 PMCID: PMC4647589 DOI: 10.1186/s12862-015-0509-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/12/2015] [Indexed: 12/13/2022] Open
Abstract
Background In social Hymenoptera (ants, bees and wasps), various chemical compounds present on the cuticle have been shown to act as fertility signals. In addition, specific queen-characteristic hydrocarbons have been implicated as sterility-inducing queen signals in ants, wasps and bumblebees. In Corbiculate bees, however, the chemical nature of queen-characteristic and fertility-linked compounds appears to be more diverse than in ants and wasps. Moreover, it remains unknown how queen signals evolved across this group and how they might have been co-opted from fertility signals in solitary ancestors. Results Here, we perform a phylogenetic analysis of fertility-linked compounds across 16 species of solitary and eusocial bee species, comprising both literature data as well as new primary data from a key solitary outgroup species, the oil-collecting bee Centris analis, and the highly eusocial stingless bee Scaptotrigona depilis. Our results demonstrate the presence of fertility-linked compounds belonging to 12 different chemical classes. In addition, we find that some classes of compounds (linear and branched alkanes, alkenes, esters and fatty acids) were already present as fertility-linked signals in the solitary ancestors of Corbiculate bees, while others appear to be specific to certain species. Conclusion Overall, our results suggest that queen signals in Corbiculate bees are likely derived from ancestral fertility-linked compounds present in solitary bees that lacked reproductive castes. These original fertility-linked cues or signals could have been produced either as a by-product of ovarian activation or could have served other communicative purposes, such as in mate recognition or the regulation of egg-laying. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0509-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ricardo Caliari Oliveira
- Department of Biology, Laboratory of Socioecology & Social Evolution, KU Leuven, Leuven, Belgium.
| | - Cintia Akemi Oi
- Department of Biology, Laboratory of Socioecology & Social Evolution, KU Leuven, Leuven, Belgium.
| | | | - Ayrton Vollet-Neto
- Department of Biology, Laboratory of Behavioral Ecology, FFCLRP, University of São Paulo, Ribeirão Preto, Brazil.
| | - Denise Araujo Alves
- Department of Entomology and Acarology, ESALQ, University of São Paulo, Piracicaba, Brazil.
| | - Maria Claudia Campos
- Department of Biology, Laboratory of Behavioral Ecology, FFCLRP, University of São Paulo, Ribeirão Preto, Brazil.
| | - Fabio Nascimento
- Department of Biology, Laboratory of Behavioral Ecology, FFCLRP, University of São Paulo, Ribeirão Preto, Brazil.
| | - Tom Wenseleers
- Department of Biology, Laboratory of Socioecology & Social Evolution, KU Leuven, Leuven, Belgium.
| |
Collapse
|
32
|
Polistes smithii vs. Polistes dominula: the contrasting endocrinology and epicuticular signaling of sympatric paper wasps in the field. Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-015-2015-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Kather R, Drijfhout FP, Shemilt S, Martin SJ. Evidence for passive chemical camouflage in the parasitic mite Varroa destructor. J Chem Ecol 2015; 41:178-86. [PMID: 25620373 DOI: 10.1007/s10886-015-0548-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/01/2014] [Accepted: 01/09/2015] [Indexed: 11/26/2022]
Abstract
Social insect colonies provide a stable and safe environment for their members. Despite colonies being heavily guarded, parasites have evolved numerous strategies to invade and inhabit these hostile places. Two such strategies are (true) chemical mimicry via biosynthesis of host odor, and chemical camouflage, in which compounds are acquired from the host. The ectoparasitic mite Varroa destructor feeds on hemolymph of its honey bee host, Apis mellifera. The mite's odor closely resembles that of its host, which allows V. destructor to remain undetected as it lives on the adult host during its phoretic phase and while reproducing on the honeybee brood. During the mite life cycle, it switches between host adults and brood, which requires it to adjust its profile to mimic the very different odors of honey bee brood and adults. In a series of transfer experiments, using bee adults and pupae, we tested whether V. destructor changes its profile by synthesizing compounds or by using chemical camouflage. We show that V. destructor required direct access to host cuticle to mimic its odor, and that it was unable to synthesize host-specific compounds itself. The mite was able to mimic host odor, even when dead, indicating a passive physico-chemical mechanism of the parasite cuticle. The chemical profile of V. destructor was adjusted within 3 to 9 h after switching hosts, demonstrating that passive camouflage is a highly efficient, fast and flexible way for the mite to adapt to a new host profile when moving between different host life stages or colonies.
Collapse
Affiliation(s)
- Ricarda Kather
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | | | | | | |
Collapse
|
34
|
Martin SJ, Bayfield J. Is the bee louse Braula coeca (Diptera) using chemical camouflage to survive within honeybee colonies? CHEMOECOLOGY 2014. [DOI: 10.1007/s00049-014-0158-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|