1
|
Guo Y, Huang L, Zhang H, Li J, Zhou Y, Sun Y, Weng M, Wu S, Lian C. Identification of a Snf7-domain-containing protein that exhibits high affinity and synergistic activity for Cry13Aa1 toxin in Bursaphelenchus xylophilus. J Invertebr Pathol 2025; 210:108279. [PMID: 39952604 DOI: 10.1016/j.jip.2025.108279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Pine wilt disease, caused by the pinewood nematode Bursaphelenchus xylophilus (Rhabditida: Aphelenchoididae), results in significant global economic and ecological impacts. Although the Cry13Aa1 toxin from Bacillus thuringiensis shows nematicidal activity, its mechanism of action against B. xylophilus remains unclear. This study aimed to identify and characterize the receptors for Cry13Aa1 in B. xylophilus. We cloned the cDNAs encoding an Snf7 domain-containing protein (BxSnf7) from B. xylophilus. Far-western blot analysis revealed a specific binding interaction between BxSnf7 and Cry13Aa1, showing a dissociation constant (Kd) of 20.8 ± 4.2 nM. Interestingly, bioassay results indicated that silencing BxSnf7 increased the susceptibility of nematodes to Cry13Aa1 at higher concentrations, although the difference was not statistically significant. Besides, the combined application of BxSnf7 with Cry13Aa1 significantly enhanced nematicidal mortality (95.9 %) after 24 h of treatment, which higher than the expected mortality (42.8 %) (χ2 = 16.118, P = 0.048), indicating that the exogenous BxSnf7 synergistically enhances the activity of Cry13Aa1 toxin. These findings identify BxSnf7 as a novel Cry13Aa1 binding protein and reveal a unique mechanism by which BxSnf7 synergistically enhances the activity of Cry13Aa1. However, BxSnf7 does not function as the primary receptor, and further research is needed to investigate its role in modulating nematode susceptibility to Cry13Aa1.
Collapse
Affiliation(s)
- Yajie Guo
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 188-0002, Japan; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lulu Huang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hang Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanyue Zhou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunzhu Sun
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingqing Weng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Songqing Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chunlan Lian
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 188-0002, Japan
| |
Collapse
|
2
|
Long Y, Chen X, Chen J, Zhang H, Lin Y, Cheng S, Pu N, Zhou X, Sheng R, Abubakar YS, Zheng H, Yun Y, Lu G, Wang Z, Zheng W. Golgi-associated retrograde protein (GARP) complex recruits retromer to trans-Golgi network for FgKex2 and FgSnc1 recycling, necessary for the development and pathogenicity of Fusarium graminearum. THE NEW PHYTOLOGIST 2025; 246:666-688. [PMID: 39953835 DOI: 10.1111/nph.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/21/2025] [Indexed: 02/17/2025]
Abstract
In eukaryotes, the retromer complex plays a crucial role in the sorting and retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN). Despite its importance, the molecular details of this intracellular transport process remain unclear. Here, we have identified a Golgi-associated retrograde protein (GARP) complex as a mediator of vesicle transport that facilitates the recruitment of the retromer complex to the TGN to exert its functions. The GARP complex is mainly localized in the TGN where it interacts with the retromer complex. This interaction is evolutionarily conserved across species. Furthermore, we identified FgKex2 and FgSnc1 as cargo proteins in the GARP/retromer-mediated recycling pathway. Loss of GARP or retromer results in a complete missorting of FgKex2 and FgSnc1 into the vacuolar degradation pathway, which affects the growth, development, biogenesis of toxisomes and pathogenicity of Fusarium graminearum. In summary, we demonstrate for the first time that GARP promotes the recruitment of retromer from endosomes to the TGN, thereby establishing a GARP/retromer transport pathway that coordinates the recycling of cargo proteins FgKex2 and FgSnc1. This process is essential for maintaining sustained growth and development and significantly contributes to the pathogenicity of F. graminearum.
Collapse
Affiliation(s)
- Yunfei Long
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Xin Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Jia Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Haoran Zhang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Ying Lin
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Shuyuan Cheng
- Jiangxi Agricultural University, College of Agriculture, Nanchang, Jiangxi, 330000, China
| | - Neng Pu
- Agricultural and Rural Comprehensive Service Center, Shuitang Town, Xinping County, Yunnan, 653400, China
| | - Xuandong Zhou
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Renzhi Sheng
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, 810281, Nigeria
| | - Huawei Zheng
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yingzi Yun
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Guodong Lu
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Zonghua Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Wenhui Zheng
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| |
Collapse
|
3
|
Farrus N, Maestro JL, Piulachs MD. CHMP4B contributes to maintaining the follicular cells integrity in the panoistic ovary of the cockroach Blattella germanica. Biol Cell 2024; 116:e2400010. [PMID: 38895958 DOI: 10.1111/boc.202400010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND The Endosomal Sorting Complex Required for Transport (ESCRT) is a highly conserved cellular machinery essential for many cellular functions, including transmembrane protein sorting, endosomal trafficking, and membrane scission. CHMP4B is a key component of ESCRT-III subcomplex and has been thoroughly studied in the meroistic ovaries of Drosophila melanogaster showing its relevance in maintaining this reproductive organ during the life of the fly. However, the role of the CHMP4B in the most basal panoistic ovaries remains elusive. RESULTS Using RNAi, we examined the function of CHMP4B in the ovary of Blattella germanica in two different physiological stages: in last instar nymphs, with proliferative follicular cells, and in vitellogenic adults when follicular cells enter in polyploidy and endoreplication. In Chmp4b-depleted specimens, the actin fibers change their distribution, appearing accumulated in the basal pole of the follicular cells, resulting in an excess of actin bundles that surround the basal ovarian follicle and modifying their shape. Depletion of Chmp4b also determines an actin accumulation in follicular cell membranes, resulting in different cell morphologies and sizes. In the end, these changes disrupt the opening of intercellular spaces between the follicular cells (patency) impeding the incorporation of yolk proteins to the growing oocyte and resulting in female sterility. In addition, the nuclei of follicular cells appeared unusually elongated, suggesting an incomplete karyokinesis. CONCLUSIONS These results proved CHMP4B essential in preserving the proper expression of cytoskeleton proteins vital for basal ovarian follicle growth and maturation and for yolk protein incorporation. Moreover, the correct distribution of actin fibers in the basal ovarian follicle emerged as a critical factor for the successful completion of ovulation and oviposition. SIGNIFICANCE The overall results, obtained in two different proliferative stages, suggest that the requirement of CHMP4B in B. germanica follicular epithelium is not related to the proliferative stage of the tissue.
Collapse
Affiliation(s)
- Nuria Farrus
- Institut de Biologia Evolutiva (CSIC- Universitat Pompeu Fabra), Barcelona, Spain
| | - José Luis Maestro
- Institut de Biologia Evolutiva (CSIC- Universitat Pompeu Fabra), Barcelona, Spain
| | | |
Collapse
|
4
|
La Torre M, Burla R, Saggio I. Preserving Genome Integrity: Unveiling the Roles of ESCRT Machinery. Cells 2024; 13:1307. [PMID: 39120335 PMCID: PMC11311930 DOI: 10.3390/cells13151307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is composed of an articulated architecture of proteins that assemble at multiple cellular sites. The ESCRT machinery is involved in pathways that are pivotal for the physiology of the cell, including vesicle transport, cell division, and membrane repair. The subunits of the ESCRT I complex are mainly responsible for anchoring the machinery to the action site. The ESCRT II subunits function to bridge and recruit the ESCRT III subunits. The latter are responsible for finalizing operations that, independently of the action site, involve the repair and fusion of membrane edges. In this review, we report on the data related to the activity of the ESCRT machinery at two sites: the nuclear membrane and the midbody and the bridge linking cells in the final stages of cytokinesis. In these contexts, the machinery plays a significant role for the protection of genome integrity by contributing to the control of the abscission checkpoint and to nuclear envelope reorganization and correlated resilience. Consistently, several studies show how the dysfunction of the ESCRT machinery causes genome damage and is a codriver of pathologies, such as laminopathies and cancer.
Collapse
Affiliation(s)
- Mattia La Torre
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| | - Romina Burla
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
- CNR Institute of Molecular Biology and Pathology, 00185 Rome, Italy
| | - Isabella Saggio
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| |
Collapse
|
5
|
Bai L, Sun Y, Yue X, Ji N, Yan F, Yang T, Feng G, Guo Y, Li Z. Multifaceted interactions between host ESCRT-III and budded virus-related proteins involved in entry and egress of the baculovirus Autographa californica multiple nucleopolyhedrovirus. J Virol 2024; 98:e0190023. [PMID: 38289107 PMCID: PMC10878073 DOI: 10.1128/jvi.01900-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) is a conserved protein machine mediating membrane remodeling and scission. In the context of viral infection, different components of the ESCRT-III complex, which serve as the core machinery to catalyze membrane fission, are involved in diverse viruses' entry, replication, and/or budding. However, the interplay between ESCRT-III and viral factors in the virus life cycle, especially for that of large enveloped DNA viruses, is largely unknown. Recently, the ESCRT-III components Vps2B, Vps20, Vps24, Snf7, Vps46, and Vps60 were determined for entry and/or egress of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). Here, we identified the final three ESCRT-III components Chm7, Ist1, and Vps2A of Spodoptera frugiperda. Overexpression of the dominant-negative forms of these proteins or RNAi downregulation of their transcripts significantly reduced infectious budded viruses (BVs) production of AcMNPV. Quantitative PCR together with confocal and transmission electron microscopy analysis revealed that these proteins were required for internalization and trafficking of BV during entry and egress of nucleocapsids. In infected Sf9 cells, nine ESCRT-III components were distributed on the nuclear envelope and plasma membrane, and except for Chm7, the other components were also localized to the intranuclear ring zone. Y2H and BiFC analysis revealed that 42 out of 64 BV-related proteins including 35 BV structural proteins and 7 non-BV structural proteins interacted with single or multiple ESCRT-III components. By further mapping the interactome of 64 BV-related proteins, we established the interaction networks of ESCRT-III and the viral protein complexes involved in BV entry and egress.IMPORTANCEFrom archaea to eukaryotes, the endosomal sorting complex required for transport (ESCRT)-III complex is hijacked by many enveloped and nonenveloped DNA or RNA viruses for efficient replication. However, the mechanism of ESCRT-III recruitment, especially for that of large enveloped DNA viruses, remains elusive. Recently, we found the ESCRT-III components Vps2B, Vps20, Vps24, Snf7, Vps46, and Vps60 are necessary for the entry and/or egress of budded viruses (BVs) of Autographa californica multiple nucleopolyhedrovirus. Here, we demonstrated that the other three ESCRT-III components Chm7, Ist1, and Vps2A play similar roles in BV infection. By determining the subcellular localization of ESCRT-III components in infected cells and mapping the interaction of nine ESCRT-III components and 64 BV-related proteins, we built the interaction networks of ESCRT-III and the viral protein complexes involved in BV entry and egress. These studies provide a fundamental basis for understanding the mechanism of the ESCRT-mediated membrane remodeling for replication of baculoviruses.
Collapse
Affiliation(s)
- Lisha Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaorong Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Ning Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Fanye Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Tian Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Guozhong Feng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Ya Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhaofei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Nicolson S, Manning JA, Lim Y, Jiang X, Kolze E, Dayan S, Umargamwala R, Xu T, Sandow JJ, Webb AI, Kumar S, Denton D. The Drosophila ZNRF1/2 homologue, detour, interacts with HOPS complex and regulates autophagy. Commun Biol 2024; 7:183. [PMID: 38360932 PMCID: PMC10869362 DOI: 10.1038/s42003-024-05834-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Autophagy, the process of elimination of cellular components by lysosomal degradation, is essential for animal development and homeostasis. Using the autophagy-dependent Drosophila larval midgut degradation model we identified an autophagy regulator, the RING domain ubiquitin ligase CG14435 (detour). Depletion of detour resulted in increased early-stage autophagic vesicles, premature tissue contraction, and overexpression of detour or mammalian homologues, ZNRF1 and ZNRF2, increased autophagic vesicle size. The ablation of ZNRF1 or ZNRF2 in mammalian cells increased basal autophagy. We identified detour interacting proteins including HOPS subunits, deep orange (dor/VPS18), Vacuolar protein sorting 16A (VPS16A), and light (lt/VPS41) and found that detour promotes their ubiquitination. The detour mutant accumulated autophagy-related proteins in young adults, displayed premature ageing, impaired motor function, and activation of innate immunity. Collectively, our findings suggest a role for detour in autophagy, likely through regulation of HOPS complex, with implications for healthy aging.
Collapse
Affiliation(s)
- Shannon Nicolson
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia
| | - Jantina A Manning
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia
| | - Yoon Lim
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia
| | - Xin Jiang
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia
| | - Erica Kolze
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5001, Australia
| | - Sonia Dayan
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia
| | - Ruchi Umargamwala
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia
| | - Tianqi Xu
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia
| | - Jarrod J Sandow
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia.
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5001, Australia.
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia.
| |
Collapse
|
7
|
Fouks B, Harrison MC, Mikhailova AA, Marchal E, English S, Carruthers M, Jennings EC, Chiamaka EL, Frigard RA, Pippel M, Attardo GM, Benoit JB, Bornberg-Bauer E, Tobe SS. Live-bearing cockroach genome reveals convergent evolutionary mechanisms linked to viviparity in insects and beyond. iScience 2023; 26:107832. [PMID: 37829199 PMCID: PMC10565785 DOI: 10.1016/j.isci.2023.107832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 02/13/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Live birth (viviparity) has arisen repeatedly and independently among animals. We sequenced the genome and transcriptome of the viviparous Pacific beetle-mimic cockroach and performed comparative analyses with two other viviparous insect lineages, tsetse flies and aphids, to unravel the basis underlying the transition to viviparity in insects. We identified pathways undergoing adaptive evolution for insects, involved in urogenital remodeling, tracheal system, heart development, and nutrient metabolism. Transcriptomic analysis of cockroach and tsetse flies revealed that uterine remodeling and nutrient production are increased and the immune response is altered during pregnancy, facilitating structural and physiological changes to accommodate and nourish the progeny. These patterns of convergent evolution of viviparity among insects, together with similar adaptive mechanisms identified among vertebrates, highlight that the transition to viviparity requires changes in urogenital remodeling, enhanced tracheal and heart development (corresponding to angiogenesis in vertebrates), altered nutrient metabolism, and shifted immunity in animal systems.
Collapse
Affiliation(s)
- Bertrand Fouks
- University of Münster, Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Hüfferstrasse 1, 48149 Münster, Germany
| | - Mark C. Harrison
- University of Münster, Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Hüfferstrasse 1, 48149 Münster, Germany
| | - Alina A. Mikhailova
- University of Münster, Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Hüfferstrasse 1, 48149 Münster, Germany
| | - Elisabeth Marchal
- Department of Biology, Molecular Developmental Physiology and Signal Transduction Lab., Division of Animal Physiology and Neurobiology, Naamsestraat 59-Box 2465, B-3000 Leuven, Belgium
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Emily C. Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Ezemuoka L. Chiamaka
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Ronja A. Frigard
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Geoffrey M. Attardo
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences, University of California, Davis, Davis, CA, USA
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Erich Bornberg-Bauer
- University of Münster, Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Hüfferstrasse 1, 48149 Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Stephen S. Tobe
- Department of Biology, Molecular Developmental Physiology and Signal Transduction Lab., Division of Animal Physiology and Neurobiology, Naamsestraat 59-Box 2465, B-3000 Leuven, Belgium
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Wang C, Chen Y, Hu S, Liu X. Insights into the function of ESCRT and its role in enveloped virus infection. Front Microbiol 2023; 14:1261651. [PMID: 37869652 PMCID: PMC10587442 DOI: 10.3389/fmicb.2023.1261651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) is an essential molecular machinery in eukaryotic cells that facilitates the invagination of endosomal membranes, leading to the formation of multivesicular bodies (MVBs). It participates in various cellular processes, including lipid bilayer remodeling, cytoplasmic separation, autophagy, membrane fission and re-modeling, plasma membrane repair, as well as the invasion, budding, and release of certain enveloped viruses. The ESCRT complex consists of five complexes, ESCRT-0 to ESCRT-III and VPS4, along with several accessory proteins. ESCRT-0 to ESCRT-II form soluble complexes that shuttle between the cytoplasm and membranes, mainly responsible for recruiting and transporting membrane proteins and viral particles, as well as recruiting ESCRT-III for membrane neck scission. ESCRT-III, a soluble monomer, directly participates in vesicle scission and release, while VPS4 hydrolyzes ATP to provide energy for ESCRT-III complex disassembly, enabling recycling. Studies have confirmed the hijacking of ESCRT complexes by enveloped viruses to facilitate their entry, replication, and budding. Recent research has focused on the interaction between various components of the ESCRT complex and different viruses. In this review, we discuss how different viruses hijack specific ESCRT regulatory proteins to impact the viral life cycle, aiming to explore commonalities in the interaction between viruses and the ESCRT system.
Collapse
Affiliation(s)
- Chunxuan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yu Chen
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Zhang X, Fan Z, Zhang R, Kong X, Liu F, Fang J, Zhang S, Zhang Z. Bacteria-mediated RNAi for managing fall webworm, Hyphantria cunea: screening target genes and analyzing lethal effect. PEST MANAGEMENT SCIENCE 2023; 79:1566-1577. [PMID: 36527705 DOI: 10.1002/ps.7326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/23/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The fall webworm, Hyphantria cunea, an invasive forest pest found worldwide, causes serious ecological and economic damage. Currently, the application of chemical pesticides is the most widely used strategy for H. cunea management. However, long-term pesticide use leads to pest resistance, phytotoxicity, human poisoning, and environmental deterioration. RNA interference (RNAi) technology may provide an environmentally friendly and cost-effective option for H. cunea control. However, effective RNAi targets and application methods for H. cunea are lacking. RESULTS We screened and obtained two highly effective RNAi targets, vATPase A (V-type proton ATPase catalytic subunit A) and Rop (Ras opposite), from 23 candidate genes, using initial and repeat screening tests with the double-stranded RNA (dsRNA) injection method. RNAi against these two genes was effective in suppressing each target messenger RNA level and interfering with larval growth, leading to significant larval mortality and pupal abnormality. For massive production of dsRNA and practical application of RNAi technology in H. cunea, transformed bacteria expressing dsRNAs of these two genes were prepared using the L4440 expression vector and HT115 strain of Escherichia coli. Oral administration of bacterially expressed dsRNA targeting vATPase A and Rop genes showed high mortality and the same malformed phenotype as the injection treatment. To further investigate the lethal effects of targeting these two genes on larval development, transcriptome sequencing (RNA-seq) was performed on RNAi samples. The results demonstrated disorders in multiple metabolic pathways, and the expression levels of most genes related to insect cuticle metabolism were significantly different, which may directly threaten insect survival. In addition, some new findings were obtained via RNA-seq analysis; for example, the progesterone-mediated oocyte maturation and oocyte meiosis processes were significantly different after silencing vATPase A, and the insect olfactory protein-related genes were significantly downregulated after dsHcRop treatment. CONCLUSION vATPase A and Rop are two highly effective RNAi-mediated lethal genes in H. cunea that regulate insect growth via multiple metabolic pathways. Oral delivery of bacterially expressed dsRNA specific to vATPase A and Rop can potentially be used for RNAi-based H. cunea management. This is the first study to apply bacteria-mediated RNAi for the control of this invasive pest, which is a major step forward in the application of the RNAi technology in H. cunea. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xun Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Zhizhi Fan
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Rong Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Xiangbo Kong
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Fu Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Jiaxing Fang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Sufang Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
10
|
Zhao L, Sun X, Wang X, Qin S, Kong Y, Li M. Bombyx mori Vps13d is a key gene affecting silk yield. PLoS One 2022; 17:e0270840. [PMID: 35797274 PMCID: PMC9262180 DOI: 10.1371/journal.pone.0270840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
Bombyx mori is an important economic insect, its economic value mainly reflected in the silk yield. The major functional genes affecting the silk yield of B. mori have not been determined yet. Bombyx mori vacuolar protein sorting-associated protein 13d (BmVps13d) has been identified, but its function is not reported. In this study, BmVps13d protein shared 30.84% and 34.35% identity with that of in Drosophila melanogaster and Homo. sapiens, respectively. The expressions of BmVps13d were significantly higher in the midgut and silk gland of JS (high silk yield) than in that of L10 (low silk yield). An insertion of 9 bp nucleotides and two deficiencies of adenine ribonucleotides in the putative promoter region of BmVps13d gene in L10 resulted in the decline of promoter activity was confirmed using dual luciferase assay. Finally, the functions of BmVps13d in B. mori were studied using the CRISPR/Cas9 system, and the mutation of BmVps13d resulted in a 24.7% decline in weight of larvae, as well as a 27.1% (female) decline and a 11.8% (male) decline in the silk yield. This study provides a foundation for studying the molecular mechanism of silk yield and breeding the silkworm with high silk yield.
Collapse
Affiliation(s)
- Luochao Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Xia Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, 212018, Jiangsu, China
| | - Xueyang Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, 212018, Jiangsu, China
| | - Sheng Qin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, 212018, Jiangsu, China
| | - Yunhui Kong
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, 212018, Jiangsu, China
| | - Muwang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, 212018, Jiangsu, China
- * E-mail:
| |
Collapse
|
11
|
Cui Y, Liu P, Mooney BP, Franz AWE. Quantitative Proteomic Analysis of Chikungunya Virus-Infected Aedes aegypti Reveals Proteome Modulations Indicative of Persistent Infection. J Proteome Res 2020; 19:2443-2456. [PMID: 32375005 DOI: 10.1021/acs.jproteome.0c00173] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mosquito-borne chikungunya virus (CHIKV) poses a threat to human health in tropical countries throughout the world. The molecular interactions of CHIKV with its mosquito vector Aedes aegypti are not fully understood. Following oral acquisition of CHIKV via salinemeals, we analyzed changes in the proteome of Ae. aegypti in 12 h intervals by label-free quantification using a timsTOF Pro mass spectrometer. For each of the seven time points, between 2647 and 3167 proteins were identified among CHIKV-infected and noninfected mosquito samples, and fewer than 6% of those identified proteins were affected by the virus. Functional enrichment analysis revealed that the three pathways, Endocytosis, Oxidative phosphorylation, and Ribosome biogenesis, were enriched during CHIKV infection. On the other hand, three pathways of the cellular RNA machinery and five metabolism related pathways were significantly attenuated in the CHIKV-infected samples. Furthermore, proteins associated with cytoskeleton and vesicular transport, as well as various serine-type endopeptidases and metallo-proteinases, were modulated in the presence of CHIKV. Our study reveals biological pathways and novel proteins interacting with CHIKV in the mosquito. Overall, CHIKV infection caused minor changes to the mosquito proteome demonstrating a high level of adaption between the vector and the virus, essentially coexisting in a nonpathogenic relationship. The mass spectrometry data have been deposited to the MassIVE repository (https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=abfd14f7015243c69854731998d55df1) with the data set identifier MSV000085115.
Collapse
Affiliation(s)
- Yingjun Cui
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211, United States
| | - Pei Liu
- Charles W. Gehrke Proteomics Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Brian P Mooney
- Department of Biochemistry and Charles W. Gehrke Proteomics Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Alexander W E Franz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
12
|
Liu T, Li Y, Qiao B, Jiang Y, Ji N, Li Z. Disrupting the association of Autographa californica multiple nucleopolyhedrovirus Ac93 with cellular ESCRT-III/Vps4 hinders nuclear egress of nucleocapsids and intranuclear microvesicles formation. Virology 2020; 541:85-100. [PMID: 32056718 DOI: 10.1016/j.virol.2019.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 11/27/2022]
Abstract
The endosomal sorting complex required for transport (ESCRT) pathway is required for efficient egress of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). In this study, we found that Ac93, a baculovirus core protein, contains a conserved MIM1-like motif. Alanine substitutions for six leucine residues in MIM1-like motif revealed that L142, L145, L146, and L149 are required for association of Ac93 with the MIT domain of Vps4. Mutations of these residues also blocked self-association and the association of Ac93 with ESCRT-III proteins or other viral core proteins Ac76 and Ac103, and resulted in a substantial reduction of infectious virus production, less efficient nuclear egress of progeny nucleocapsids, and the defect of intranuclear microvesicles formation. Combined with the localization of the association of Ac93 with ESCRT-III/Vps4 and other viral proteins at the nuclear membrane, we propose that the coordinated action of these viral proteins and ESCRT-III/Vps4 may be involved in remodeling the nuclear membrane.
Collapse
Affiliation(s)
- Tingting Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bin Qiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuanyuan Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ning Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhaofei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
13
|
Coordination of host and symbiont gene expression reveals a metabolic tug-of-war between aphids and Buchnera. Proc Natl Acad Sci U S A 2020; 117:2113-2121. [PMID: 31964845 DOI: 10.1073/pnas.1916748117] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Symbioses between animals and microbes are often described as mutualistic, but are subject to tradeoffs that may manifest as shifts in host and symbiont metabolism, cellular processes, or symbiont density. In pea aphids, the bacterial symbiont Buchnera is confined to specialized aphid cells called bacteriocytes, where it produces essential amino acids needed by hosts. This relationship is dynamic; Buchnera titer varies within individual aphids and among different clonal aphid lineages, and is affected by environmental and host genetic factors. We examined how host genotypic variation relates to host and symbiont function among seven aphid clones differing in Buchnera titer. We found that bacteriocyte gene expression varies among individual aphids and among aphid clones, and that Buchnera gene expression changes in response. By comparing hosts with low and high Buchnera titer, we found that aphids and Buchnera oppositely regulate genes underlying amino acid biosynthesis and cell growth. In high-titer hosts, both bacteriocytes and symbionts show elevated expression of genes underlying energy metabolism. Several eukaryotic cell signaling pathways are differentially expressed in bacteriocytes of low- versus high-titer hosts: Cell-growth pathways are up-regulated in low-titer genotypes, while membrane trafficking, lysosomal processes, and mechanistic target of rapamycin (mTOR) and cytokine pathways are up-regulated in high-titer genotypes. Specific Buchnera functions are up-regulated within different bacteriocyte environments, with genes underlying flagellar body secretion and flagellar assembly overexpressed in low- and high-titer hosts, respectively. Overall, our results reveal allowances and demands made by both host and symbiont engaged in a metabolic "tug-of-war."
Collapse
|
14
|
Lü J, Liu Z, Guo W, Guo M, Chen S, Li H, Yang C, Zhang Y, Pan H. Feeding Delivery of dsHvSnf7 Is a Promising Method for Management of the Pest Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae). INSECTS 2019; 11:insects11010034. [PMID: 31906124 PMCID: PMC7022289 DOI: 10.3390/insects11010034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/25/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022]
Abstract
RNA interference (RNAi) techniques have emerged as powerful tools in the development of novel management strategies for the control of insect pests, such as Henosepilachna vigintioctopunctata, which is a major solanaceous pest in Asia. Our results showed that levels of HvSnf7 expression were greater in larval midguts than in other tissues. Silencing of HvSnf7 led to greater H. vigintioctopunctata mortality rates and appeared to be time- and partially dose-dependent. Bacterially expressed dsHvSnf7 that was applied to detached plant leaves caused 98, 88, and 60% mortality in 1st and 3rd instars, and adults after 10, 12, and 14 d, respectively; when applied to living plants, bacterially expressed dsHvSnf7 led to mortality in 1st and 3rd instars, with no effect on adults. Bacterially expressed dsHvSnf7 led to improved plant protection against H. vigintioctopunctata. Ultrastructural changes caused by HvSnf7-RNAi in larval midguts showed extensive loss of cellular contents that indicate loss of membrane integrity. This study indicate that HvSnf7 potentially can be used as RNAi target gene for controlling of H. vigintioctopunctata.
Collapse
Affiliation(s)
- Jing Lü
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Zhuoqi Liu
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Wei Guo
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Mujuan Guo
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Shimin Chen
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Huali Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (H.L.); (C.Y.)
| | - Chunxiao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (H.L.); (C.Y.)
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.Z.); (H.P.)
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
- Correspondence: (Y.Z.); (H.P.)
| |
Collapse
|
15
|
van der Beek J, Jonker C, van der Welle R, Liv N, Klumperman J. CORVET, CHEVI and HOPS – multisubunit tethers of the endo-lysosomal system in health and disease. J Cell Sci 2019; 132:132/10/jcs189134. [DOI: 10.1242/jcs.189134] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT
Multisubunit tethering complexes (MTCs) are multitasking hubs that form a link between membrane fusion, organelle motility and signaling. CORVET, CHEVI and HOPS are MTCs of the endo-lysosomal system. They regulate the major membrane flows required for endocytosis, lysosome biogenesis, autophagy and phagocytosis. In addition, individual subunits control complex-independent transport of specific cargoes and exert functions beyond tethering, such as attachment to microtubules and SNARE activation. Mutations in CHEVI subunits lead to arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome, while defects in CORVET and, particularly, HOPS are associated with neurodegeneration, pigmentation disorders, liver malfunction and various forms of cancer. Diseases and phenotypes, however, vary per affected subunit and a concise overview of MTC protein function and associated human pathologies is currently lacking. Here, we provide an integrated overview on the cellular functions and pathological defects associated with CORVET, CHEVI or HOPS proteins, both with regard to their complexes and as individual subunits. The combination of these data provides novel insights into how mutations in endo-lysosomal proteins lead to human pathologies.
Collapse
Affiliation(s)
- Jan van der Beek
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Caspar Jonker
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Reini van der Welle
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| |
Collapse
|
16
|
Hodgson JJ, Buchon N, Blissard GW. Identification of insect genes involved in baculovirus AcMNPV entry into insect cells. Virology 2019; 527:1-11. [PMID: 30445201 DOI: 10.1016/j.virol.2018.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 01/01/2023]
Abstract
The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a model enveloped DNA virus that infects and replicates in lepidopteran insect cells, and can efficiently enter a wide variety of non-host cells. Budded virions of AcMNPV enter cells by endocytosis and traffic to the nucleus where the virus initiates gene expression and genome replication. While trafficking of nucleocapsids by actin propulsion has been studied in detail, other important components of trafficking during entry remain poorly understood. We used a recombinant AcMNPV virus expressing an EGFP reporter in combination with an RNAi screen in Drosophila DL1 cells, to identify host proteins involved in AcMNPV entry. The RNAi screen targeted 86 genes involved in vesicular trafficking, including genes coding for VPS and ESCRT proteins, Rab GTPases, Exocyst proteins, and Clathrin adaptor proteins. We identified 24 genes required for efficient virus entry and reporter expression, and 4 genes that appear to restrict virus entry.
Collapse
Affiliation(s)
- Jeffrey J Hodgson
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY 14853, USA.
| | - Nicolas Buchon
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA.
| | - Gary W Blissard
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY 14853, USA.
| |
Collapse
|
17
|
Steinauer A, LaRochelle JR, Knox SL, Wissner RF, Berry S, Schepartz A. HOPS-dependent endosomal fusion required for efficient cytosolic delivery of therapeutic peptides and small proteins. Proc Natl Acad Sci U S A 2019; 116:512-521. [PMID: 30610181 PMCID: PMC6329960 DOI: 10.1073/pnas.1812044116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Protein therapeutics represent a significant and growing component of the modern pharmacopeia, but their potential to treat human disease is limited because most proteins fail to traffic across biological membranes. Recently, we discovered a class of cell-permeant miniature proteins (CPMPs) containing a precisely defined, penta-arginine (penta-Arg) motif that traffics readily to the cytosol and nucleus of mammalian cells with efficiencies that rival those of hydrocarbon-stapled peptides active in animals and man. Like many cell-penetrating peptides (CPPs), CPMPs enter the endocytic pathway; the difference is that CPMPs containing a penta-Arg motif are released efficiently from endosomes, while other CPPs are not. Here, we seek to understand how CPMPs traffic from endosomes into the cytosol and what factors contribute to the efficiency of endosomal release. First, using two complementary cell-based assays, we exclude endosomal rupture as the primary means of endosomal escape. Next, using an RNA interference screen, fluorescence correlation spectroscopy, and confocal imaging, we identify VPS39-a gene encoding a subunit of the homotypic fusion and protein-sorting (HOPS) complex-as a critical determinant in the trafficking of CPMPs and hydrocarbon-stapled peptides to the cytosol. Although CPMPs neither inhibit nor activate HOPS function, HOPS activity is essential to efficiently deliver CPMPs to the cytosol. CPMPs localize within the lumen of Rab7+ and Lamp1+ endosomes and their transport requires HOPS activity. Overall, our results identify Lamp1+ late endosomes and lysosomes as portals for passing proteins into the cytosol and suggest that this environment is prerequisite for endosomal escape.
Collapse
Affiliation(s)
- Angela Steinauer
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
| | - Jonathan R LaRochelle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103
| | - Susan L Knox
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
| | | | - Samuel Berry
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114
| | - Alanna Schepartz
- Department of Chemistry, Yale University, New Haven, CT 06520-8107;
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103
| |
Collapse
|
18
|
Jing T, Wang F, Qi F, Wang Z. Insect anal droplets contain diverse proteins related to gut homeostasis. BMC Genomics 2018; 19:784. [PMID: 30376807 PMCID: PMC6208037 DOI: 10.1186/s12864-018-5182-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Insects share similar fundamental molecular principles with mammals in innate immunity. For modulating normal gut microbiota, insects produce phenoloxidase (PO), which is absent in all vertebrates, and reactive nitrogen species (ROS) and antimicrobial proteins (AMPs). However, reports on insect gut phagocytosis are very few. Furthermore, most previous studies measure gene expression at the transcription level. In this study, we provided proteomic evidence on gut modulation of normal microorganisms by investigating the anal droplets from a weevil, Cryptorhynchus lapathi. RESULTS The results showed that the anal droplets contained diverse proteins related to physical barriers, epithelium renewal, pattern recognition, phenoloxidase activation, oxidative defense and phagocytosis, but AMPs were not detected. According to annotations, Scarb1, integrin βν, Dscam, spondin or Thbs2s might mediate phagocytosis. As a possible integrin βν pathway, βν activates Rho by an unknown mechanism, and Rho induces accumulation of mDia, which then promotes actin polymerization. CONCLUSIONS Our results well demonstrated that insect anal droplets can be used as materials to investigate the defense of a host to gut microorganisms and supported to the hypothesis that gut phagocytosis occurs in insects.
Collapse
Affiliation(s)
- Tianzhong Jing
- School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Fuxiao Wang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Fenghui Qi
- School of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zhiying Wang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
19
|
Abstract
Baculoviruses are large DNA viruses of insects that are highly pathogenic in many hosts. In the infection cycle, baculoviruses produce two types of virions. These virion phenotypes are physically and functionally distinct, and each serves a critical role in the biology of the virus. One phenotype, the occlusion-derived virus (ODV), is occluded within a crystallized protein that facilitates oral infection of the host. A large complex of at least nine ODV envelope proteins called per os infectivity factors are critically important for ODV infection of insect midgut epithelial cells. Viral egress from midgut cells is by budding to produce a second virus phenotype, the budded virus (BV). BV binds, enters, and replicates in most other tissues of the host insect. Cell recognition and entry by BV are mediated by a single major envelope glycoprotein: GP64 in some baculoviruses and F in others. Entry and egress by the two virion phenotypes occur by dramatically different mechanisms and reflect a life cycle in which ODV is specifically adapted for oral infection while BV mediates dissemination of the infection within the animal.
Collapse
Affiliation(s)
- Gary W Blissard
- Boyce Thompson Institute at Cornell University, Ithaca, New York 14853, USA;
| | - David A Theilmann
- Summerland Research and Development Center, Agriculture and Agri-Food Canada, Summerland, British Columbia V0H 1Z0, Canada;
| |
Collapse
|
20
|
Distinct Roles of Cellular ESCRT-I and ESCRT-III Proteins in Efficient Entry and Egress of Budded Virions of Autographa californica Multiple Nucleopolyhedrovirus. J Virol 2017; 92:JVI.01636-17. [PMID: 29046462 DOI: 10.1128/jvi.01636-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/06/2017] [Indexed: 11/20/2022] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is necessary for budding of many enveloped viruses. Recently, it was demonstrated that Vps4, the key regulator for recycling of the ESCRT-III complex, is required for efficient infection by the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). However, ESCRT assembly, regulation, and function are complex, and little is known regarding the details of participation of specific ESCRT complexes in AcMNPV infection. In this study, the core components of ESCRT-I (Tsg101 and Vps28) and ESCRT-III (Vps2B, Vps20, Vps24, Snf7, Vps46, and Vps60) were cloned from Spodoptera frugiperda Using a viral complementation system and RNA interference (RNAi) assays, we found that ESCRT-I and ESCRT-III complexes are required for efficient entry of AcMNPV into insect cells. In cells knocking down or overexpressing dominant negative (DN) forms of the components of ESCRT-I and ESCRT-III complexes, entering virions were partially trapped within the cytosol. To examine only egress, cells were transfected with the double-stranded RNA (dsRNA) targeting an individual ESCRT-I or ESCRT-III gene and viral bacmid DNA or viral bacmid DNA that expressed DN forms of ESCRT-I and ESCRT-III components. We found that ESCRT-III components (but not ESCRT-I components) are required for efficient nuclear egress of progeny nucleocapsids. In addition, we found that several baculovirus core or conserved proteins (Ac11, Ac76, Ac78, GP41, Ac93, Ac103, Ac142, and Ac146) interact with Vps4 and components of ESCRT-III. We propose that these viral proteins may form an "egress complex" that is involved in recruiting ESCRT-III components to a virus egress domain on the nuclear membrane.IMPORTANCE The ESCRT system is hijacked by many enveloped viruses to mediate budding and release. Recently, it was found that Vps4, the key regulator of the cellular ESCRT machinery, is necessary for efficient entry and egress of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). However, little is known about the roles of specific ESCRT complexes in AcMNPV infection. In this study, we demonstrated that ESCRT-I and ESCRT-III complexes are required for efficient entry of AcMNPV into insect cells. The components of ESCRT-III (but not ESCRT-I) are also necessary for efficient nuclear egress of progeny nucleocapsids. Several baculovirus core or conserved proteins were found to interact with Vps4 and components of ESCRT-III, and these interactions may suggest the formation of an "egress complex" involved in the nuclear release or transport of viral nucleocapsids.
Collapse
|
21
|
Rzepnikowska W, Flis K, Muñoz-Braceras S, Menezes R, Escalante R, Zoladek T. Yeast and other lower eukaryotic organisms for studies of Vps13 proteins in health and disease. Traffic 2017; 18:711-719. [PMID: 28846184 DOI: 10.1111/tra.12523] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/25/2022]
Abstract
Human Vps13 proteins are associated with several diseases, including the neurodegenerative disorder Chorea-acanthocytosis (ChAc), yet the biology of these proteins is still poorly understood. Studies in Saccharomyces cerevisiae, Dictyostelium discoideum, Tetrahymena thermophila and Drosophila melanogaster point to the involvement of Vps13 in cytoskeleton organization, vesicular trafficking, autophagy, phagocytosis, endocytosis, proteostasis, sporulation and mitochondrial functioning. Recent findings show that yeast Vps13 binds to phosphatidylinositol lipids via 4 different regions and functions at membrane contact sites, enlarging the list of Vps13 functions. This review describes the great potential of simple eukaryotes to decipher disease mechanisms in higher organisms and highlights novel insights into the pathological role of Vps13 towards ChAc.
Collapse
Affiliation(s)
- Weronika Rzepnikowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Flis
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Regina Menezes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo Escalante
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Teresa Zoladek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
22
|
Prentice K, Christiaens O, Pertry I, Bailey A, Niblett C, Ghislain M, Gheysen G, Smagghe G. RNAi-based gene silencing through dsRNA injection or ingestion against the African sweet potato weevil Cylas puncticollis (Coleoptera: Brentidae). PEST MANAGEMENT SCIENCE 2017; 73:44-52. [PMID: 27299308 DOI: 10.1002/ps.4337] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/20/2016] [Accepted: 06/10/2016] [Indexed: 05/28/2023]
Abstract
BACKGROUND RNA interference (RNAi) technology can potentially serve as a suitable strategy to control the African sweet potato weevil Cylas puncticollis (SPW), which is a critical pest in sub-Saharan Africa. Important prerequisites are required to use RNAi in pest control, such as the presence of an efficient RNAi response and the identification of suitable target genes. RESULTS Here we evaluated the toxicity of dsRNAs targeting essential genes by injection and oral feeding in SPW. In injection assays, 12 of 24 dsRNAs were as toxic as the one targeting Snf7, a gene used commercially against Diabrotica virgifera virgifera. Three dsRNAs with high insecticidal activity were then chosen for oral feeding experiments. The data confirmed that oral delivery can elicit a significant toxicity, albeit lower compared with injection. Subsequently, ex vivo assays revealed that dsRNA is affected by degradation in the SPW digestive system, possibly explaining the lower RNAi effect by oral ingestion. CONCLUSION We conclude that the full potential of RNAi in SPW is affected by the presence of nucleases. Therefore, for future application in crop protection, it is necessary constantly to provide new dsRNA and/or protect it against possible degradation in order to obtain a higher RNAi efficacy. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Katterinne Prentice
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- International Potato Centre (CIP), Genomics and Biotechnology Programme, Nairobi, Kenya
| | - Olivier Christiaens
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ine Pertry
- International Plant Biotechnology Outreach, VIB, Ghent, Belgium
| | | | | | - Marc Ghislain
- International Potato Centre (CIP), Genomics and Biotechnology Programme, Nairobi, Kenya
| | - Godelieve Gheysen
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Kanost MR, Arrese EL, Cao X, Chen YR, Chellapilla S, Goldsmith MR, Grosse-Wilde E, Heckel DG, Herndon N, Jiang H, Papanicolaou A, Qu J, Soulages JL, Vogel H, Walters J, Waterhouse RM, Ahn SJ, Almeida FC, An C, Aqrawi P, Bretschneider A, Bryant WB, Bucks S, Chao H, Chevignon G, Christen JM, Clarke DF, Dittmer NT, Ferguson LCF, Garavelou S, Gordon KHJ, Gunaratna RT, Han Y, Hauser F, He Y, Heidel-Fischer H, Hirsh A, Hu Y, Jiang H, Kalra D, Klinner C, König C, Kovar C, Kroll AR, Kuwar SS, Lee SL, Lehman R, Li K, Li Z, Liang H, Lovelace S, Lu Z, Mansfield JH, McCulloch KJ, Mathew T, Morton B, Muzny DM, Neunemann D, Ongeri F, Pauchet Y, Pu LL, Pyrousis I, Rao XJ, Redding A, Roesel C, Sanchez-Gracia A, Schaack S, Shukla A, Tetreau G, Wang Y, Xiong GH, Traut W, Walsh TK, Worley KC, Wu D, Wu W, Wu YQ, Zhang X, Zou Z, Zucker H, Briscoe AD, Burmester T, Clem RJ, Feyereisen R, Grimmelikhuijzen CJP, Hamodrakas SJ, Hansson BS, Huguet E, Jermiin LS, Lan Q, Lehman HK, Lorenzen M, Merzendorfer H, Michalopoulos I, Morton DB, Muthukrishnan S, Oakeshott JG, Palmer W, Park Y, Passarelli AL, et alKanost MR, Arrese EL, Cao X, Chen YR, Chellapilla S, Goldsmith MR, Grosse-Wilde E, Heckel DG, Herndon N, Jiang H, Papanicolaou A, Qu J, Soulages JL, Vogel H, Walters J, Waterhouse RM, Ahn SJ, Almeida FC, An C, Aqrawi P, Bretschneider A, Bryant WB, Bucks S, Chao H, Chevignon G, Christen JM, Clarke DF, Dittmer NT, Ferguson LCF, Garavelou S, Gordon KHJ, Gunaratna RT, Han Y, Hauser F, He Y, Heidel-Fischer H, Hirsh A, Hu Y, Jiang H, Kalra D, Klinner C, König C, Kovar C, Kroll AR, Kuwar SS, Lee SL, Lehman R, Li K, Li Z, Liang H, Lovelace S, Lu Z, Mansfield JH, McCulloch KJ, Mathew T, Morton B, Muzny DM, Neunemann D, Ongeri F, Pauchet Y, Pu LL, Pyrousis I, Rao XJ, Redding A, Roesel C, Sanchez-Gracia A, Schaack S, Shukla A, Tetreau G, Wang Y, Xiong GH, Traut W, Walsh TK, Worley KC, Wu D, Wu W, Wu YQ, Zhang X, Zou Z, Zucker H, Briscoe AD, Burmester T, Clem RJ, Feyereisen R, Grimmelikhuijzen CJP, Hamodrakas SJ, Hansson BS, Huguet E, Jermiin LS, Lan Q, Lehman HK, Lorenzen M, Merzendorfer H, Michalopoulos I, Morton DB, Muthukrishnan S, Oakeshott JG, Palmer W, Park Y, Passarelli AL, Rozas J, Schwartz LM, Smith W, Southgate A, Vilcinskas A, Vogt R, Wang P, Werren J, Yu XQ, Zhou JJ, Brown SJ, Scherer SE, Richards S, Blissard GW. Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:118-147. [PMID: 27522922 PMCID: PMC5010457 DOI: 10.1016/j.ibmb.2016.07.005] [Show More Authors] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/27/2016] [Accepted: 07/14/2016] [Indexed: 05/19/2023]
Abstract
Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its extremely large size, reaching more than 10 g in the larval stage. M. sexta larvae feed on solanaceous plants and thus must tolerate a substantial challenge from plant allelochemicals, including nicotine. We report the sequence and annotation of the M. sexta genome, and a survey of gene expression in various tissues and developmental stages. The Msex_1.0 genome assembly resulted in a total genome size of 419.4 Mbp. Repetitive sequences accounted for 25.8% of the assembled genome. The official gene set is comprised of 15,451 protein-coding genes, of which 2498 were manually curated. Extensive RNA-seq data from many tissues and developmental stages were used to improve gene models and for insights into gene expression patterns. Genome wide synteny analysis indicated a high level of macrosynteny in the Lepidoptera. Annotation and analyses were carried out for gene families involved in a wide spectrum of biological processes, including apoptosis, vacuole sorting, growth and development, structures of exoskeleton, egg shells, and muscle, vision, chemosensation, ion channels, signal transduction, neuropeptide signaling, neurotransmitter synthesis and transport, nicotine tolerance, lipid metabolism, and immunity. This genome sequence, annotation, and analysis provide an important new resource from a well-studied model insect species and will facilitate further biochemical and mechanistic experimental studies of many biological systems in insects.
Collapse
Affiliation(s)
- Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Estela L Arrese
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yun-Ru Chen
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY, 14853, USA
| | - Sanjay Chellapilla
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Marian R Goldsmith
- Biological Sciences Department, University of Rhode Island, Kingston, RI, 02881, USA
| | - Ewald Grosse-Wilde
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Nicolae Herndon
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Jiaxin Qu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jose L Soulages
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - James Walters
- Department of Ecology and Evolutionary Biology, Univ. Kansas, Lawrence, KS, 66045, USA
| | - Robert M Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211, Geneva, Switzerland; Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211, Geneva, Switzerland; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA, 02139, USA; The Broad Institute of MIT and Harvard, Cambridge, 415 Main Street, MA, 02142, USA
| | - Seung-Joon Ahn
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Francisca C Almeida
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Chunju An
- Department of Entomology, China Agricultural University, Beijing, China
| | - Peshtewani Aqrawi
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Anne Bretschneider
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - William B Bryant
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Sascha Bucks
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Hsu Chao
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Germain Chevignon
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France
| | - Jayne M Christen
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - David F Clarke
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Neal T Dittmer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Spyridoula Garavelou
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Karl H J Gordon
- CSIRO Health and Biosecurity, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Ramesh T Gunaratna
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yi Han
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Frank Hauser
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-21oo, Copenhagen, Denmark
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Hanna Heidel-Fischer
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Ariana Hirsh
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Divya Kalra
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Christian Klinner
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Christopher König
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Christie Kovar
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ashley R Kroll
- Department of Biology, Reed College, Portland, OR, 97202, USA
| | - Suyog S Kuwar
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Sandy L Lee
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Rüdiger Lehman
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Winchesterstrasse 2, 35394, Gießen, Germany
| | - Kai Li
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Zhaofei Li
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hanquan Liang
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Shanna Lovelace
- Department of Biological Sciences, University of Southern Maine, Portland, ME, 04104, USA
| | - Zhiqiang Lu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jennifer H Mansfield
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Kyle J McCulloch
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Tittu Mathew
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Brian Morton
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - David Neunemann
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Fiona Ongeri
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Ling-Ling Pu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ioannis Pyrousis
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Amanda Redding
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Charles Roesel
- Department of Marine and Environmental Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Alejandro Sanchez-Gracia
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, OR, 97202, USA
| | - Aditi Shukla
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Guillaume Tetreau
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Guang-Hua Xiong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Walther Traut
- Institut fuer Biologie, Universitaet Luebeck, D-23538, Luebeck, Germany
| | - Tom K Walsh
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Kim C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Di Wu
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Wenbi Wu
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yuan-Qing Wu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Xiufeng Zhang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hannah Zucker
- Neuroscience Program, Hamilton College, Clinton, NY, 13323, USA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | | | - Rollie J Clem
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - René Feyereisen
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Cornelis J P Grimmelikhuijzen
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-21oo, Copenhagen, Denmark
| | - Stavros J Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France
| | - Lars S Jermiin
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Que Lan
- Department of Entomology, University of Wisconsin, Madison, USA
| | - Herman K Lehman
- Biology Department and Neuroscience Program, Hamilton College, Clinton, NY, 13323, USA
| | - Marce Lorenzen
- Dept. Entomology, North Carolina State Univ., Raleigh, NC, 27695, USA
| | - Hans Merzendorfer
- University of Siegen, School of Natural Sciences and Engineering, Institute of Biology - Molecular Biology, Adolf-Reichwein-Strasse. 2, AR-C3010, 57076 Siegen, Germany
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - David B Morton
- Department of Integrative Biosciences, School of Dentistry, BRB421, L595, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - John G Oakeshott
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Will Palmer
- Department of Genetics, University of Cambridge, Downing St, Cambridge, CB2 3EH, UK
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Julio Rozas
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | | - Wendy Smith
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Agnes Southgate
- Department of Biology, College of Charleston, Charleston, SC, 29424, USA
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Richard Vogt
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29205, USA
| | - Ping Wang
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - John Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Xiao-Qiang Yu
- University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO, 64110, USA
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Susan J Brown
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Steven E Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Gary W Blissard
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY, 14853, USA
| |
Collapse
|
24
|
Lőrincz P, Lakatos Z, Varga Á, Maruzs T, Simon-Vecsei Z, Darula Z, Benkő P, Csordás G, Lippai M, Andó I, Hegedűs K, Medzihradszky KF, Takáts S, Juhász G. MiniCORVET is a Vps8-containing early endosomal tether in Drosophila. eLife 2016; 5. [PMID: 27253064 PMCID: PMC4935465 DOI: 10.7554/elife.14226] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/01/2016] [Indexed: 01/06/2023] Open
Abstract
Yeast studies identified two heterohexameric tethering complexes, which consist of 4 shared (Vps11, Vps16, Vps18 and Vps33) and 2 specific subunits: Vps3 and Vps8 (CORVET) versus Vps39 and Vps41 (HOPS). CORVET is an early and HOPS is a late endosomal tether. The function of HOPS is well known in animal cells, while CORVET is poorly characterized. Here we show that Drosophila Vps8 is highly expressed in hemocytes and nephrocytes, and localizes to early endosomes despite the lack of a clear Vps3 homolog. We find that Vps8 forms a complex and acts together with Vps16A, Dor/Vps18 and Car/Vps33A, and loss of any of these proteins leads to fragmentation of endosomes. Surprisingly, Vps11 deletion causes enlargement of endosomes, similar to loss of the HOPS-specific subunits Vps39 and Lt/Vps41. We thus identify a 4 subunit-containing miniCORVET complex as an unconventional early endosomal tether in Drosophila. DOI:http://dx.doi.org/10.7554/eLife.14226.001
Collapse
Affiliation(s)
- Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Zsolt Lakatos
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Ágnes Varga
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Maruzs
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsófia Simon-Vecsei
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsuzsanna Darula
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Péter Benkő
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Csordás
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Mónika Lippai
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - István Andó
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Krisztina Hegedűs
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Katalin F Medzihradszky
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Szabolcs Takáts
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary.,Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
25
|
Feng D, Li Q, Yu H, Zhao X, Kong L. Comparative Transcriptome Analysis of the Pacific Oyster Crassostrea gigas Characterized by Shell Colors: Identification of Genetic Bases Potentially Involved in Pigmentation. PLoS One 2015; 10:e0145257. [PMID: 26693729 PMCID: PMC4691203 DOI: 10.1371/journal.pone.0145257] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Shell color polymorphisms of Mollusca have contributed to development of evolutionary biology and population genetics, while the genetic bases and molecular mechanisms underlying shell pigmentation are poorly understood. The Pacific oyster (Crassostrea gigas) is one of the most important farmed oysters worldwide. Through successive family selection, four shell color variants (white, golden, black and partially pigmented) of C. gigas have been developed. To elucidate the genetic mechanisms of shell coloration in C. gigas and facilitate the selection of elite oyster lines with desired coloration patterns, differentially expressed genes (DEGs) were identified among the four shell color variants by RNA-seq. RESULTS Digital gene expression generated over fifteen million reads per sample, producing expression data for 28,027 genes. A total number of 2,645 DEGs were identified from pair-wise comparisons, of which 432, 91, 43 and 39 genes specially were up-regulated in white, black, golden and partially pigmented shell of C. gigas, respectively. Three genes of Abca1, Abca3 and Abcb1 which belong to the ATP-binding cassette (ABC) transporters super-families were significantly associated with white shell formation. A tyrosinase transcript (CGI_10008737) represented consistent up-regulated pattern with golden coloration. We proposed that white shell variant of C. gigas could employ "endocytosis" to down-regulate notch level and to prevent shell pigmentation. CONCLUSION This study discovered some potential shell coloration genes and related molecular mechanisms by the RNA-seq, which would provide foundational information to further study on shell coloration and assist in selective breeding in C. gigas.
Collapse
Affiliation(s)
- Dandan Feng
- Key Laboratory of Mariculture Ministry of Education, Ocean University of China, Qingdao, China
| | - Qi Li
- Key Laboratory of Mariculture Ministry of Education, Ocean University of China, Qingdao, China
| | - Hong Yu
- Key Laboratory of Mariculture Ministry of Education, Ocean University of China, Qingdao, China
| | - Xuelin Zhao
- Key Laboratory of Mariculture Ministry of Education, Ocean University of China, Qingdao, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture Ministry of Education, Ocean University of China, Qingdao, China
| |
Collapse
|
26
|
Avalos-Padilla Y, Betanzos A, Javier-Reyna R, García-Rivera G, Chávez-Munguía B, Lagunes-Guillén A, Ortega J, Orozco E. EhVps32 Is a Vacuole-Associated Protein Involved in Pinocytosis and Phagocytosis of Entamoeaba histolytica. PLoS Pathog 2015; 11:e1005079. [PMID: 26230715 PMCID: PMC4521941 DOI: 10.1371/journal.ppat.1005079] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 07/11/2015] [Indexed: 12/31/2022] Open
Abstract
Here, we investigated the role of EhVps32 protein (a member of the endosomal-sorting complex required for transport) in endocytosis of Entamoeba histolytica, a professional phagocyte. Confocal microscopy, TEM and cell fractionation revealed EhVps32 in cytoplasmic vesicles and also located adjacent to the plasma membrane. Between 5 to 30 min of phagocytosis, EhVps32 was detected on some erythrocytes-containing phagosomes of acidic nature, and at 60 min it returned to cytoplasmic vesicles and also appeared adjacent to the plasma membrane. TEM images revealed it in membranous structures in the vicinity of ingested erythrocytes. EhVps32, EhADH (an ALIX family member), Gal/GalNac lectin and actin co-localized in the phagocytic cup and in some erythrocytes-containing phagosomes, but EhVps32 was scarcely detected in late phagosomes. During dextran uptake, EhVps32, EhADH and Gal/GalNac lectin, but not actin, co-localized in pinosomes. EhVps32 recombinant protein formed oligomers composed by rings and filaments. Antibodies against EhVps32 monomers stained cytoplasmic vesicles but not erythrocytes-containing phagosomes, suggesting that in vivo oligomers are formed on phagosome membranes. The involvement of EhVps32 in phagocytosis was further study in pNeoEhvps32-HA-transfected trophozoites, which augmented almost twice their rate of erythrophagocytosis as well as the membranous concentric arrays built by filaments, spirals and tunnel-like structures. Some of these structures apparently connected phagosomes with the phagocytic cup. In concordance, the EhVps32-silenced G3 trophozoites ingested 80% less erythrocytes than the G3 strain. Our results suggest that EhVps32 participates in E. histolytica phagocytosis and pinocytosis. It forms oligomers on erythrocytes-containing phagosomes, probably as a part of the scission machinery involved in membrane invagination and intraluminal vesicles formation. Trophozoites of E. histolytica represent an excellent model to study endosomal-sorting complex required for transport components due to their high endocytic activity and vesicle trafficking. The key role of EhVps32 on phagocytosis is supported by: i) its presence on phagosomes, ii) its interaction with EhADH (an erythrocytes receptor), Gal/GalNac lectin and actin, iii) the higher rate of erythrophagocytosis showed by EhVps32 overexpressing trophozoites, iv) the diminish rate of phagocytosis in EhVps32-silenced G3 trophozoites, and v) its location in erythrocytes-containing acidic phagosomes. Here, we discovered the presence of membranous concentric helicoidally and tunnel-like structures constituted by EhVps32 and EhADH that may have a dynamic role in membrane remodeling and in the generation of intraluminal vesicles in the phagosomes. Elucidating molecular mechanisms of endocytosis-exocytosis pathways will help us to better understand the pathogenic process of E. histolytica and develop new drugs for diagnosis and vaccine methods.
Collapse
Affiliation(s)
- Yunuen Avalos-Padilla
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Anel Lagunes-Guillén
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Jaime Ortega
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
- * E-mail:
| |
Collapse
|