1
|
Tang Y, Zou Q, Yu G, Liu F, Wu Y, Zhao X, Wang W, Liu X, Hu F, Wang Z. Immunotranscriptomic Profiling of Spodoptera frugiperda Challenged by Different Pathogenic Microorganisms. INSECTS 2025; 16:360. [PMID: 40332833 PMCID: PMC12028137 DOI: 10.3390/insects16040360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/13/2025] [Accepted: 03/22/2025] [Indexed: 05/08/2025]
Abstract
Spodoptera frugiperda is a globally significant migratory agricultural pest that requires proactive monitoring. Understanding the molecular mechanisms underlying the interactions between pathogenic microorganisms and S. frugiperda is crucial for enhancing the effectiveness of microbial control agents against this pest. This study used transcriptome sequencing and molecular biology techniques on S. frugiperda larvae infected by bacteria and fungi to investigate the composition and molecular regulatory mechanisms of its immune system. A total of 598 immune-related genes were identified. Upon microbial infection, most immune-related genes showed an upregulated expression trend. Phylogenetic analysis revealed that the immune gene repertoire of S. frugiperda is relatively conserved. The expression of the genes of peptidoglycan recognition proteins in different tissues of S. frugiperda induced by microorganisms at different times was verified using qPCR, and the results confirmed that these genes were significantly upregulated under specific pathogenic infections. This study elucidates the immune transcriptome of S. frugiperda in response to various pathogenic microorganisms, providing valuable insights for improving the effectiveness of existing microbial agents and developing new, highly efficient, and specific biopesticides.
Collapse
Affiliation(s)
- Yan Tang
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou 233100, China; (Y.T.); (G.Y.)
| | - Qi Zou
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (Q.Z.); (F.L.); (Y.W.); (X.Z.); (W.W.); (X.L.)
| | - Guojie Yu
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou 233100, China; (Y.T.); (G.Y.)
| | - Feng Liu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (Q.Z.); (F.L.); (Y.W.); (X.Z.); (W.W.); (X.L.)
| | - Yu Wu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (Q.Z.); (F.L.); (Y.W.); (X.Z.); (W.W.); (X.L.)
| | - Xueyan Zhao
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (Q.Z.); (F.L.); (Y.W.); (X.Z.); (W.W.); (X.L.)
| | - Wensheng Wang
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (Q.Z.); (F.L.); (Y.W.); (X.Z.); (W.W.); (X.L.)
| | - Xinchang Liu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (Q.Z.); (F.L.); (Y.W.); (X.Z.); (W.W.); (X.L.)
| | - Fei Hu
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China;
| | - Zengxia Wang
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (Q.Z.); (F.L.); (Y.W.); (X.Z.); (W.W.); (X.L.)
- Anhui Engineering Research Center for Smart Crop Planting and Processin Technology, Anhui Science and Technology University, Chuzhou 233100, China
| |
Collapse
|
2
|
Sun T, Jin Y, Rao Z, Liyan W, Tang R, Zaryab KM, Li M, Li Z, Wang Y, Xu J, Han R, Cao L. Knockdown of Thitarodes host genes influences dimorphic transition of Ophiocordyceps sinensis in the host hemolymph. Front Cell Infect Microbiol 2024; 14:1451628. [PMID: 39397862 PMCID: PMC11466941 DOI: 10.3389/fcimb.2024.1451628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/22/2024] [Indexed: 10/15/2024] Open
Abstract
The Chinese cordyceps, a unique parasitic complex of Thitarodes/Hepialus ghost moths and Ophiocordyceps sinensis fungus in the Tibetan Plateau, is a highly valuable biological resource for medicine and health foods in Asian countries. Efficient system for artificial cultivation of Chinese cordyceps relies on understanding the gene functions involved in the induction of growing blastospores into hyphae in the larval hemolymph of insect host, during O. sinensis infection. Transcriptome analysis and ribonucleic acid interference (RNA interference) method were employed to identify the key differentially expressed genes and to demonstrate their functions in Thitarodes xiaojinensis. Key larval genes critical for O. sinensis blastospore development or filamentation were identified. Nine of the 20 top upregulated genes encoded cuticles proteins, indicating that these proteins highly activated when the larval hemolymph was full of blastospores. Small interfering RNA (siRNA) knockdown of five larval genes such as Flightin, larval cuticle protein LCP-30, 26-hydroxylase (CYP18A1), cuticle protein 18.6, isoform B, and probable chitinase 3 significantly stimulated the dimorphic transition from blastospores to prehyphae in O. sinensis in the larval hemolymph after 120 h after injection. The expressions of these genes determined by quantitative real-time PCR were suppressed in various levels from 38.64% to 91.54%, compared to the controls. These results demonstrated that injection of the siRNAs of key upregulated genes into the larval hemolymph containing high load of blastospores caused the gene silence in T. xiaojinensis larvae and induced the fungal transition from blastospores to prehyphae, providing novel knowledge on the regulation of O. sinensis fungal dimorphism by Thitarodes host and cues for further study of Thitarodes biology and commercial cultivation of Chinese cordyceps.
Collapse
Affiliation(s)
- Tanqi Sun
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yongling Jin
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhongchen Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wang Liyan
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Rui Tang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Khalid Muhammad Zaryab
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Mingyan Li
- Research Centre, Zhejiang Shouxiangu Pharmaceutical Co. Ltd, Zhejiang, Jinhua, China
| | - Zhenhao Li
- Research Centre, Zhejiang Shouxiangu Pharmaceutical Co. Ltd, Zhejiang, Jinhua, China
| | - Ying Wang
- Research Centre, Zhejiang Shouxiangu Pharmaceutical Co. Ltd, Zhejiang, Jinhua, China
| | - Jing Xu
- Research Centre, Zhejiang Shouxiangu Pharmaceutical Co. Ltd, Zhejiang, Jinhua, China
| | - Richou Han
- Research Centre, Zhejiang Yuewangshengcao Biotechnological Company Limited, Zhejiang, Jinhua, China
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
3
|
Chai W, Mao X, Li C, Zhu L, He Z, Wang B. Neurotransmitter acetylcholine mediates the mummification of Ophiocordyceps sinensis-infected Thitarodes xiaojinensis larvae. Appl Environ Microbiol 2024; 90:e0033324. [PMID: 39109874 PMCID: PMC11409639 DOI: 10.1128/aem.00333-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/15/2024] [Indexed: 09/19/2024] Open
Abstract
Parasites can manipulate host behavior to facilitate parasite transmission. One such host-pathogen interaction occurs between the fungus Ophiocordyceps sinensis and the ghost moth Thitarodes xiaojinensis. O. sinensis is involved in the mummification process of infected host larvae. However, the underlying molecular and chemical mechanism for this phenomenon is unknown. We characterized the small molecules regulating host behaviors and the altered metabolites in infected and mummified host larvae. Lipid-related metabolites, such as phosphatidylcholine, were identified in infected and mummified larvae. Decreased levels of the neurotransmitter acetylcholine (ACh) and elevated choline levels were observed in the brains of both the infected and mummified larvae. The aberrant activity of acetylcholinesterase (AChE) and relative mRNA expression of ACE2 (acetylcholinesterase) may mediate the altered transformation between ACh and choline, leading to the brain dysfunction of mummified larvae. Caspofungin treatment inhibited the mummification of infected larvae and the activity of AChE. These findings indicate the importance of ACh in the mummification of host larvae after O. sinensis infection.IMPORTANCEOphiocordyceps sinensis-infected ghost moth larvae are manipulated to move to the soil surface with their heads up in death. A fruiting body then grows from the caterpillar's head, eventually producing conidia for dispersal. However, the underlying molecular and chemical mechanism has not been characterized. In this study, we describe the metabolic profile of Thitarodes xiaojinensis host larvae after O. sinensis infection. Altered metabolites, particularly lipid-related metabolites, were identified in infected and mummified larvae, suggesting that lipids are important in O. sinensis-mediated behavioral manipulation of host larvae. Decreased levels of the neurotransmitter acetylcholine were observed in both infected and mummified larvae brains. This suggests that altered or reduced acetylcholine can mediate brain dysfunction and lead to aberrant behavior. These results reveal the critical role of acetylcholine in the mummification process of infected host larvae.
Collapse
Affiliation(s)
- Wenmin Chai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xianbing Mao
- Chongqing Xinstant Biotechnology Co., Ltd., Chongqing, China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Zongyi He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
4
|
Li XZ, Xiao MJ, Li YL, Gao L, Zhu JS. Mutations and Differential Transcription of Mating-Type and Pheromone Receptor Genes in Hirsutella sinensis and the Natural Cordyceps sinensis Insect-Fungi Complex. BIOLOGY 2024; 13:632. [PMID: 39194570 DOI: 10.3390/biology13080632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Sexual reproduction in ascomycetes is controlled by the mating-type (MAT) locus. (Pseudo)homothallic reproduction has been hypothesized on the basis of genetic data from Hirsutella sinensis (Genotype #1 of Ophiocordyceps sinensis). However, the differential occurrence and differential transcription of mating-type genes in the MAT1-1 and MAT1-2 idiomorphs were found in the genome and transcriptome assemblies of H. sinensis, and the introns of the MAT1-2-1 transcript were alternatively spliced with an unspliced intron I that contains stop codons. These findings reveal that O. sinensis reproduction is controlled at the genetic, transcriptional, and coupled transcriptional-translational levels. This study revealed that mutant mating proteins could potentially have various secondary structures. Differential occurrence and transcription of the a-/α-pheromone receptor genes were also found in H. sinensis. The data were inconsistent with self-fertilization under (pseudo)homothallism but suggest the self-sterility of H. sinensis and the requirement of mating partners to achieve O. sinensis sexual outcrossing under heterothallism or hybridization. Although consistent occurrence and transcription of the mating-type genes of both the MAT1-1 and MAT1-2 idiomorphs have been reported in natural and cultivated Cordyceps sinensis insect-fungi complexes, the mutant MAT1-1-1 and α-pheromone receptor transcripts in natural C. sinensis result in N-terminal or middle-truncated proteins with significantly altered overall hydrophobicity and secondary structures of the proteins, suggesting heterogeneous fungal source(s) of the proteins and hybridization reproduction because of the co-occurrence of multiple genomically independent genotypes of O. sinensis and >90 fungal species in natural C. sinensis.
Collapse
Affiliation(s)
- Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China
| | - Meng-Jun Xiao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China
| | - Yu-Ling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China
| | - Ling Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China
| | - Jia-Shi Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China
| |
Collapse
|
5
|
He L, Wang JY, Su QJ, Chen ZH, Xie F. Selection and validation of reference genes for RT-qPCR in ophiocordyceps sinensis under different experimental conditions. PLoS One 2024; 19:e0287882. [PMID: 38319940 PMCID: PMC10846742 DOI: 10.1371/journal.pone.0287882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/14/2023] [Indexed: 02/08/2024] Open
Abstract
The Chinese caterpillar mushroom, Ophiocordyceps sinensis (O. sinensis), is a rarely medicinal fungus in traditional chinese herbal medicine due to its unique medicinal values, and the expression stability of reference genes is essential to normalize its gene expression analysis. In this study, BestKeeper, NormFinder and geNorm, three authoritative statistical arithmetics, were applied to evaluate the expression stability of sixteen candidate reference genes (CRGs) in O. sinensis under different stress [low temperature (4°C), light treatment (300 lx), NaCl (3.8%)] and different development stages (mycelia, primordia and fruit bodies) and formation of morphologic mycelium (aeriasubstrate, hyphae knot mycelium). The paired variation values indicated that two genes could be enough to accurate standardization exposed to different conditions of O.sinensis. Among these sixteen CRGs, 18S ribosomal RNA (18S rRNA) and beta-Tubulin (β-TUB) showed the topmost expression stability in O.sinensis exposed to all conditions, while glutathione hydrolase proenzym (GGT) and Phosphoglucose isomerase (PGI) showed the least expression stability. The optimal reference gene in different conditions was various. β-TUB and Ubiquitin (UBQ) were identified as the two most stable genes in different primordia developmental stage, while phosphoglucomutase (PGM) with elongation factor 1-alpha (EF1-α) and 18S rRNA with UBQ were the most stably expressed for differentially morphologic mycelium stages and different stresses, respectively. These results will contribute to more accurate evaluation of the gene relative expression levels in O.sinensis under different conditions using the optimal reference gene in real-time quantitative PCR (RT-qPCR) analysis.
Collapse
Affiliation(s)
- Li He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P. R. China
| | - Jin Yi Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P. R. China
| | - Qiang Jun Su
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P. R. China
| | - Zhao He Chen
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P. R. China
| | - Fang Xie
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P. R. China
| |
Collapse
|
6
|
Bao X, Song H, He L, Li Y, Niu S, Guo J. Histopathological observations and comparative transcriptome analysis of Ophiocordyceps sinensis infection of Hepialus xiaojinensis in the early stage. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 150:105067. [PMID: 37797777 DOI: 10.1016/j.dci.2023.105067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Hepialus xiaojinensis is a Lepidopteran insect and one of the hosts for the artificial cultivation of Cordyceps. Ophiocordyceps sinensis can infect and coexist with H. xiaojinensis larvae for a long time. Little studies focused on the interaction process through its early infection stage. In this research, we particularly study the interaction of infected and uninfected larvae in the 3rd (OS-3, CK-3) and 4th (OS-4, CK-4) instars. O. sinensis was distributed within the larvae and accompanied by pathological changes in some tissue structures. In response to O. sinensis infection, OS-3 enhanced the antioxidant defense ability, while OS-4 decreased. The transcriptome analysis showed that OS-3 resisted the invasion of O. sinensis by the immune and nervous systems. Correspondingly, OS-4 reduced immune response and utilized more energy for growth and development. This study provides a comprehensive resource for analyzing the mechanism of H. xiaojinensis and O. sinensis interaction.
Collapse
Affiliation(s)
- Xiuwen Bao
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Haoran Song
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Liying He
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yong Li
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Shuqi Niu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, China.
| | - Jinlin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, China.
| |
Collapse
|
7
|
Li M, Zhang J, Qin Q, Zhang H, Li X, Wang H, Meng Q. Transcriptome and Metabolome Analyses of Thitarodes xiaojinensis in Response to Ophiocordyceps sinensis Infection. Microorganisms 2023; 11:2361. [PMID: 37764206 PMCID: PMC10537090 DOI: 10.3390/microorganisms11092361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Ophiocordyceps sinensis exhibits more than 5 months of vegetative growth in Thitarodes xiaojinensis hemocoel. The peculiar development process of O. sinensis has been elucidated through morphological observation and omics technology; however, little information has been reported regarding the changes that occur in the host T. xiaojinensis. The RNA sequencing data showed that when O. sinensis blastospores were in the proliferative stage, the greatest change in the infected larval fat body was the selectively upregulated immune recognition and antimicrobial peptide genes. When O. sinensis blastospores were in the stationary stage, the immune pathways of T. xiaojinensis reverted to normal levels, which coincides with the successful settlement of O. sinensis. Pathway enrichment analysis showed a higher expression of genes involved in energy metabolism pathway in this stage. Metabolomic analyses revealed a reduction of amino acids and lipids in hemolymph, but an upregulation of lipids in the fat body of the host larvae after O. sinensis infection. We present the first transcriptome integrated with the metabolome study of T. xiaojinensis infected by O. sinensis. It will improve our understanding of the interaction mechanisms between the host and entomopathogenic fungi, and facilitate future functional studies of genes and pathways involved in these interactions.
Collapse
Affiliation(s)
- Miaomiao Li
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (H.Z.)
| | - Jihong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (H.Z.)
| | - Qilian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (H.Z.)
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (H.Z.)
| | - Xuan Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (H.Z.)
| | - Hongtuo Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (H.Z.)
| | - Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (H.Z.)
| |
Collapse
|
8
|
Tong X, Peng T, Liu S, Zhang D, Guo J. Transcriptomic Analysis Insight into the Immune Modulation during the Interaction of Ophiocordyceps sinensis and Hepialus xiaojinensis. INSECTS 2022; 13:1119. [PMID: 36555029 PMCID: PMC9788539 DOI: 10.3390/insects13121119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Ophiocordyceps sinensis (Berk.) is an entomopathogenic fungus that can infect the larva of the ghost moth, Hepialus xiaojinensis, causing mummification after more than one year. This prolonged infection provides a valuable model for studying the immunological interplay between an insect host and a pathogenic fungus. A comparative transcriptome analysis of pre-infection (L) and one-year post-infection (IL) larvae was performed to investigate the immune response in the host. Here, a total of 59,668 unigenes were obtained using Illumina Sequencing in IL and L. Among the 345 identified immune-related genes, 83 out of 86 immune-related differentially expressed genes (DEGs) had a much higher expression in IL than in L. Furthermore, the immune-related DEGs were classified as pathogen recognition receptors (PRRs), signal modulators or transductors, and immune effector molecules. Serpins and protease inhibitors were found to be upregulated in the late phase of infection, suppressing the host’s immune response. Based on the above analysis, the expression levels of most immune-related genes would return to the baseline with the immune response being repressed in the late phase of infection, leading to the fungal immunological tolerance after prolonged infection. Meanwhile, the transcriptomes of IL and the mummified larva (ML) were compared to explore O. sinensis invasion. A total of 1408 novel genes were identified, with 162 of them annotated with putative functions. The gene families likely implicated in O. sinensis pathogenicity have been identified, primarily including serine carboxypeptidase, peroxidase, metalloprotease peptidase, aminopeptidases, cytochrome P450, and oxidoreductase. Furthermore, quantitative real-time PCR (qPCR) was used to assess the expression levels of some critical genes that were involved in immune response and fungal pathogenicity. The results showed that their expression levels were consistent with the transcriptomes. Taken together, our findings offered a comprehensive and precise transcriptome study to understand the immune defense in H. xiaojinensis and O. sinensis invasion, which would accelerate the large-scale artificial cultivation of this medicinal fungus.
Collapse
|
9
|
Bai J, Cao J, Zhang Y, Xu Z, Li L, Liang L, Ma X, Han R, Ma W, Xu L, Ma L. Comparative analysis of the immune system and expression profiling of Lymantria dispar infected by Beauveria bassiana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105212. [PMID: 36127056 DOI: 10.1016/j.pestbp.2022.105212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Lymantria dispar is one of the most devastating forest pests worldwide. Fungal biopesticides have great potential as alternatives owing to their high lethality to pests and eco-friendly feature, which is, however, often severely compromised by the pests' innate immunity. A better understanding of the antifungal immune system in L. dispar would significantly facilitate the development of the biopesticide. Here, we investigated phylogenetic characteristics of immunity-related genes as well as the tissue expression patterns in L. dispar after the infection of an entomopathogen Beauveria bassiana using RNA-sequencing data. Results showed most immune genes remain at a low level of response after 24 h post-infection (HPI). Almost all genes in the Toll pathway were significantly up-regulated at 48 HPI, and SPH1, SPN6, Toll6, Toll12, Myd88, pelle, and Drosal were significantly down-regulated at 72 HPI. Immunoblotting analysis revealed that the protein levels of βGRP3 and PPO1 were significantly upregulated at 24 and 48 HPI, while Myd88 was downregulated at 24 HPI, which was further confirmed by Quantitative real-time PCR experiments. Moreover, the relative content of H2O2, a potent reactive oxygen species (ROS), was significantly increased with the decrease of the total antioxidant capacity, indicating that oxidative stress system positively participates in the clearance of the pathogenic fungus. Together, our study provides detailed genetic characteristics of antifungal immunity as well as profiling of the host defense against entomopathogenic infection, and comprehensive insight into molecular interaction between L. dispar and the entomopathogen.
Collapse
Affiliation(s)
- Jianyang Bai
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jingyu Cao
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yue Zhang
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Zhe Xu
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Lu Li
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Liwei Liang
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Xiaoqian Ma
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China; Institute of Forest Protection, Heilongjiang Academy of Forestry, Harbin 150081, China
| | - Runhua Han
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China.
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
| | - Ling Ma
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China; Forest Protection Technology Innovation Center, Harbin, China.
| |
Collapse
|
10
|
Wu PP, Shu RH, Gao XX, Li MM, Zhang JH, Zhang H, Qin QL, Zou Z, Meng Q. Immulectin-2 from the ghost moth, Thitarodes xiaojinensis (Lepidoptera: Hepialidae), modulates cellular and humoral responses against fungal infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104429. [PMID: 35489421 DOI: 10.1016/j.dci.2022.104429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
C type-lectins constitute a large family of pattern recognition receptors, playing important roles in insect immune defenses. Thitarodes xiaojinensis larvae showed distinct immune features after Ophiocordyceps sinensis, Cordyceps militaris, or Beauveria bassiana infection. Based on transcriptome and immunoblot analysis, we found that immulectin-2 (IML2) was induced after T. xiaojinensis larvae were infected by C. militaris or B. bassiana but maintained at a low level after larvae injected with O. sinensis or Ringer's buffer. Recombinant IML2 (rIML2) could promote melanization, encapsulation, phagocytosis, and hemocyte aggregation in vitro. RNA interference with IML2 induced a significant reduction in the transcript levels of various antimicrobial peptides. Importantly, we found that the abundance of O. sinensis blastospores coated with rIML2 dramatically decreased in the host hemolymph. Overall, this study demonstrated that T. xiaojinensis IML2 modulates cellular and humoral responses to entomopathogenic fungi, broadening our view of the immune interaction between O. sinensis and its host.
Collapse
Affiliation(s)
- Pei-Pei Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rui-Hao Shu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xin-Xin Gao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Miao-Miao Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ji-Hong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi-Lian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Analysis of the Humoral Immunal Response Transcriptome of Ectropis obliqua Infected by Beauveria bassiana. INSECTS 2022; 13:insects13030225. [PMID: 35323523 PMCID: PMC8955196 DOI: 10.3390/insects13030225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Ectropis obliqua is a destructive leaf-eating pest that is widely distributed in China’s tea gardens. This pest shows remarkable resistance against multiple insecticides. As an environmentally friendly entomopathogen, Beauveria bassiana has been widely used to prevent agricultural pest infestations. However, the molecular mechanism of B. bassiana against E. obliqua remains unclear. We firstly isolated and identified a highly virulent B. bassiana strain. Using a transcriptome, we analyzed the differences of immune gene expression levels in fat bodies and hemocytes of E. obliqua that were infected by the B. bassiana, which provide molecular insights into the insect–pathogen interaction. Abstract Ectropis obliqua is a destructive masticatory pest in China’s tea gardens. Beauveria bassiana as microbial insecticides can effectively control E. obliqua larvae; however, the immune response of this insect infected by B. bassiana are largely unknown. Here, after isolating a highly virulent strain of B. bassiana from E. obliqua, the changes in gene expression among different tissues, including hemocytes and fat bodies, of E. obliqua larvae infected by the entomopathogen were investigated using transcriptome sequencing. A total of 5877 co-expressed differentially expressed genes (DEGs) were identified in hemocytes and fat bodies, of which 5826 were up-regulated in hemocytes and 5784 were up-regulated in fat bodies. We identified 249 immunity-related genes, including pattern recognition receptors, immune effectors, signal modulators, and members of immune pathways. A quantitative real-time PCR analysis confirmed that several pattern recognition receptors were upregulated in hemocytes and fat bodies; however, others were downregulated. The investigated immune effectors (ATT and PPO-1) were suppressed. The results showed that there were tissue differences in the expression of immune genes. This study provides a large number of immunity-related gene sequences from E. obliqua after being infected by B. bassiana, furthering the understanding of the molecular mechanisms of E. obliqua defenses against B. bassiana.
Collapse
|
12
|
Kaczmarek A, Boguś M. The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance. PeerJ 2021; 9:e12563. [PMID: 35036124 PMCID: PMC8710053 DOI: 10.7717/peerj.12563] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Insects are the most widespread group of organisms and more than one million species have been described. These animals have significant ecological functions, for example they are pollinators of many types of plants. However, they also have direct influence on human life in different manners. They have high medical and veterinary significance, stemming from their role as vectors of disease and infection of wounds and necrotic tissue; they are also plant pests, parasitoids and predators whose activities can influence agriculture. In addition, their use in medical treatments, such as maggot therapy of gangrene and wounds, has grown considerably. They also have many uses in forensic science to determine the minimum post-mortem interval and provide valuable information about the movement of the body, cause of the death, drug use, or poisoning. It has also been proposed that they may be used as model organisms to replace mammal systems in research. The present review describes the role of free fatty acids (FFAs) in key physiological processes in insects. By focusing on insects of medical, veterinary significance, we have limited our description of the physiological processes to those most important from the point of view of insect control; the study examines their effects on insect reproduction and resistance to the adverse effects of abiotic (low temperature) and biotic (pathogens) factors.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Biomibo, Warsaw, Poland
| |
Collapse
|
13
|
Wu H, Cao L, He M, Han R, De Clercq P. Interspecific Hybridization and Complete Mitochondrial Genome Analysis of Two Ghost Moth Species. INSECTS 2021; 12:insects12111046. [PMID: 34821846 PMCID: PMC8625261 DOI: 10.3390/insects12111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/01/2022]
Abstract
Simple Summary The Chinese cordyceps is a valuable parasitic Ophiocordyceps sinensis fungus–Thitarodes/Hepialus larva complex. In view of culturing this complex, a method for the artificial rearing of the Thitarodes/Hepialus ghost moth hosts was established. Deterioration of the host insect population and low mummification rates in infected larvae constrain effective cultivation. Hybridization of Thitarodes/Hepialus populations may overcome this problem. Thitarodes shambalaensis and Thitarodes sp. were inbred or hybridized, and the biological parameters, larval sensitivity to the fungal infection and mitochondrial genomes of the resulting populations were investigated. Hybridization of T. shambalaensis and Thitarodes sp. allowed producing a new generation. One hybrid population (T. shambalaensis females mated with Thitarodes sp. males) showed increased population growth as compared with the parental Thitarodes sp. population. The sensitivity of the inbred larval populations to four fungal isolates of O. sinensis differed. The complete mitochondrial genomes of T. shambalaensis, Thitarodes sp. and the hybrid population were 15,612 bp, 15,389 bp and 15,496 bp in length, respectively. A + T-rich regions were variable in sizes and repetitive sequences. The hybrid population was located in the same clade with T. shambalaensis, implying the maternal inheritance of mitochondrial DNA. Abstract The Chinese cordyceps, a parasitic Ophiocordyceps sinensis fungus–Thitarodes/Hepialus larva complex, is a valuable biological resource endemic to the Tibetan Plateau. Protection of the Plateau environment and huge market demand make it necessary to culture this complex in an artificial system. A method for the large-scale artificial rearing of the Thitarodes/Hepialus insect host has been established. However, the deterioration of the insect rearing population and low mummification of the infected larvae by the fungus constrain effective commercial cultivation. Hybridization of Thitarodes/Hepialus populations may be needed to overcome this problem. The species T. shambalaensis (GG♂ × GG♀) and an undescribed Thitarodes species (SD♂ × SD♀) were inbred or hybridized to evaluate the biological parameters, larval sensitivity to the fungal infection and mitochondrial genomes of the resulting populations. The two parental Thitarodes species exhibited significant differences in adult fresh weights and body lengths but not in pupal emergence rates. Hybridization of T. shambalaensis and Thitarodes sp. allowed producing a new generation. The SD♂ × GG♀ population showed a higher population trend index than the SD♂ × SD♀ population, implying increased population growth compared with the male parent. The sensitivity of the inbred larval populations to four fungal isolates of O. sinensis also differed. This provides possibilities to create Thitarodes/Hepialus populations with increased growth potential for the improved artificial production of the insect hosts. The mitochondrial genomes of GG♂ × GG♀, SD♂ × SD♀ and SD♂ × GG♀ were 15,612 bp, 15,389 bp and 15,496 bp in length, with an A + T content of 80.92%, 82.35% and 80.87%, respectively. The A + T-rich region contains 787 bp with two 114 bp repetitive sequences, 554 bp without repetitive sequences and 673 bp without repetitive sequences in GG♂ × GG♀, SD♂ × SD♀ and SD♂ × GG♀, respectively. The hybrid population (SD♂ × GG♀) was located in the same clade with GG♂ × GG♀, based on the phylogenetic tree constructed by 13 PCGs, implying the maternal inheritance of mitochondrial DNA.
Collapse
Affiliation(s)
- Hua Wu
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (L.C.); (M.H.)
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (L.C.); (M.H.)
| | - Meiyu He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (L.C.); (M.H.)
| | - Richou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (L.C.); (M.H.)
- Correspondence: (R.H.); (P.D.C.)
| | - Patrick De Clercq
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
- Correspondence: (R.H.); (P.D.C.)
| |
Collapse
|
14
|
Meng Q, Wu PP, Li MM, Shu RH, Zhou GL, Zhang JH, Zhang H, Jiang H, Qin QL, Zou Z. Distinct Responses of Thitarodes xiaojinensis β-1,3-Glucan Recognition Protein-1 and Immulectin-8 to Ophiocordyceps sinensis and Cordyceps militaris Infection. THE JOURNAL OF IMMUNOLOGY 2021; 207:200-209. [PMID: 34162722 DOI: 10.4049/jimmunol.2000447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 04/23/2021] [Indexed: 11/19/2022]
Abstract
Melanization and encapsulation are prominent defense responses against microbes detected by pattern recognition receptors of their host insects. In the ghost moth Thitarodes xiaojinensis, an activated immune system can melanize and encapsulate the fungus Cordyceps militaris However, these responses were hardly detected in the host hemolymph postinfection of another fungus Ophiocordyceps sinensis The immune interaction between O. sinensis and the host remains largely unknown, which hinders the artificial cultivation of Chinese cordyceps. We found that T. xiaojinensis β-1,3-glucan recognition protein-1 (βGRP1) was needed for prophenoloxidase activation induced by C. militaris Failure of βGRP1 to recognize O. sinensis is a primary reason for the lack of melanization in the infected host. Lyticase or snailase treatment combined with binding and immunofluorescence detection showed the existence of a protective layer preventing the fungus from βGRP1 recognition. Coimmunoprecipitation and mass spectrometry analysis indicated that βGRP1 interacted with immulectin-8 (IML8) via binding to C. militaris IML8 promotes encapsulation. This study suggests the roles of T. xiaojinensis βGRP1 and IML8 in modulating immune responses against C. militaris Most importantly, the data indicate that O. sinensis may evade melanization by preventing βGRP1 recognition.
Collapse
Affiliation(s)
- Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pei-Pei Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Miao-Miao Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rui-Hao Shu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gui-Ling Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ji-Hong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK; and
| | - Qi-Lian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; .,Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Gut Bacterial and Fungal Communities of the Wild and Laboratory-Reared Thitarodes Larvae, Host of the Chinese Medicinal Fungus Ophiocordyceps sinensis on Tibetan Plateau. INSECTS 2021; 12:insects12040327. [PMID: 33916889 PMCID: PMC8067570 DOI: 10.3390/insects12040327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022]
Abstract
Simple Summary The ghost moth, Thitarodes sp., is an obligate host of the most precious fungus Ophiocordyceps sinensis on Tibetan plateau. Artificial rearing of the ghost moth at low-altitude laboratory by mimicking the environment of the wild habitat for the cultivation of the Chinese cordyceps has been realized. However, the high mortality of ghost moth larvae by pathogens, low and slow infection, and mummification rate by O. sinensis still constrain the efficient cultivation of the Chinese cordyceps. Both larval gut microbiota and their exploitation in the Thitarodes artificial rearing system have attracted a renewed interest. In the present study, the gut bacterial and fungal communities of the wild and laboratory-reared populations were characterized using both culture-dependent and -independent approaches. The discovery of apparent microbial community shifts between the wild and laboratory-reared ghost moth larvae, many opportunistic pathogenic bacteria and fungi in the gut of the laboratory-reared ghost moth larvae, and the dominant bacteria enriched in the wild ghost moth provide interesting cues for selecting beneficial probiotic bacteria to improve the effectiveness of Thitarodes rearing system and the cultivation of the Chinese cordyceps. Abstract By employing a culture-dependent and -independent 16S rRNA and ITS gene high-throughput sequencing analyses, comprehensive information was obtained on the gut bacterial and fungal communities in the ghost moth larvae of three different geographic locations from high-altitude on Tibet plateau and from low-altitude laboratory. Twenty-six culturable bacterial species belonging to 21 genera and 14 fungal species belonging to 12 genera were identified from six populations by culture-dependent method. Carnobacterium maltaromaticum was the most abundant bacterial species from both the wild and laboratory-reared larvae. The most abundant OTUs in the wild ghost moth populations were Carnobacteriaceae, Enterobacteriaceae for bacteria, and Ascomycota and Basidiomycota for fungi. Larval microbial communities of the wild ghost moth from different geographic locations were not significantly different from each other but significant difference in larval microbial community was detected between the wild and laboratory-reared ghost moth. The larval gut of the wild ghost moth was dominated by the culturable Carnobacterium. However, that of the laboratory-reared ghost moth exhibited significantly abundant Wolbachia, Rhizobium, Serratia, Pseudomonas, and Flavobacterium. Furthermore, the larval gut of the wild ghost moth had a significantly higher abundance of Ophiocordyceps but lower abundance of Candida and Aspergillus than that of the laboratory-reared ghost moth.
Collapse
|
16
|
Yang Z, Wu Q, Fan J, Huang J, Wu Z, Lin J, Bin S, Shu B. Effects of the entomopathogenic fungus Clonostachys rosea on mortality rates and gene expression profiles in Diaphorina citri adults. J Invertebr Pathol 2021; 179:107539. [PMID: 33508316 DOI: 10.1016/j.jip.2021.107539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/20/2022]
Abstract
Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a serious pest of citrus. The insect also transmits Candidatus Liberibacter asiaticus, the pathogen of a devastating citrus disease called Huanglongbing. Clonostachys rosea is a versatile fungus that possesses nematicidal and insecticidal activities. The effect of C. rosea against D. citri remains unclear. Here we examined the pathogenicity of C. rosea against D. citri adults. A mortality rate of 46.67% was observed in adults treated with 1 × 108 conidia/mL spore suspension. Comparative transcriptomic analyses identified 259 differentially-expressed genes (DEGs) between controls and samples treated with fungi. Among the DEGs, 183 were up-regulated and 76 down-regulated. Genes with altered expression included those involved in immunity, apoptosis and cuticle formation. Our preliminary observation indicated that C. rosea is virulent against ACP adults and has the potential as a biological control agent for ACP management in the field.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qijing Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jinlan Fan
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jierong Huang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhongzhen Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shuying Bin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
17
|
Wu H, Rao ZC, Cao L, De Clercq P, Han RC. Infection of Ophiocordyceps sinensis Fungus Causes Dramatic Changes in the Microbiota of Its Thitarodes Host. Front Microbiol 2020; 11:577268. [PMID: 33343519 PMCID: PMC7744566 DOI: 10.3389/fmicb.2020.577268] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/13/2020] [Indexed: 12/31/2022] Open
Abstract
The Chinese cordyceps is a unique and valuable parasitic complex of Thitarodes/Hepialus ghost moths and the Ophiocordyceps sinensis fungus for medicine and health foods from the Tibetan Plateau. During artificial cultivation of Chinese cordyceps, the induction of blastospores into hyphae is a prerequisite for mummification of the infected Thitarodes larvae. To explore the microbial involvement in the induction of mycelia-blastospore transition, the microbiota of the hemolymph and gut from Thitarodes xiaojinensis larvae with or without injected O. sinensis blastospores were investigated by culture-dependent and -independent methods. Twenty-five culturable bacterial species and 14 fungal species, together with 537 bacterial operational taxonomic units (OTUs) and 218 fungal OTUs, were identified from the hemolymph and gut of samples from five stages including living larvae without injected fungi (A) or with high blastospore load (B), mummifying larvae without mycelia coating (C), freshly mummifying larvae coated with mycelia (D), and completely mummified larvae with mycelia (E). Two culturable bacterial species (Serratia plymuthica, Serratia proteamaculans), and 47 bacterial and 15 fungal OTUs were considered as shared species. The uninfected larval hemolymph contained 13 culturable bacterial species but no fungal species, together with 164 bacterial and 73 fungal OTUs. To our knowledge, this is the first study to detect large bacterial communities from the hemolymph of healthy insect larvae. When the living larvae contained high blastospore load, the culturable bacterial community was sharply inhibited in the hemolymph but the bacterial and fungal community greatly increased in the gut. In general, high blastospore load increased bacterial diversity but sharply decreased fungal diversity in the hemolymph and gut by OTUs. The bacterial loads of four culturable species (Chryseobacterium sp., Pseudomonas fragi, S. plymuthica, S. proteamaculans) increased significantly and O. sinensis and Pseudomonas spp. became dominant microbes, when the infected larvae became mummified, indicating their possible involvement in the larval mummification process. The discovery of many opportunistic pathogenic bacteria in the hemolymph of the healthy larvae, the larval microbial diversity influenced by O. sinensis challenge and the involvement of dominant bacteria during larval mummification process provide new insight into the infection and mummification mechanisms of O. sinensis in its Thitarodes hosts.
Collapse
Affiliation(s)
- Hua Wu
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhong-Chen Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Patrick De Clercq
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ri-Chou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
18
|
Transcriptomic analysis of the orchestrated molecular mechanisms underlying fruiting body initiation in Chinese cordyceps. Gene 2020; 763:145061. [DOI: 10.1016/j.gene.2020.145061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/15/2020] [Accepted: 08/14/2020] [Indexed: 01/29/2023]
|
19
|
Bai J, Xu Z, Li L, Ma W, Xu L, Ma L. Temporospatial modulation of Lymantria dispar immune system against an entomopathogenic fungal infection. PEST MANAGEMENT SCIENCE 2020; 76:3982-3989. [PMID: 32506667 DOI: 10.1002/ps.5947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/21/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Lymantria dispar is an economically impactful forest pest worldwide. The entomopathogenic fungi Beauveria bassiana shows great promise in pest management due to its high lethality in Lymantria dispar. A complete understanding of the immune interactions between the pest and the pathogenic fungus is essential to actualizing biological pest management. RESULTS Following the infection of Lymantria dispar by Beauveria bassiana spores, we performed a time-course analysis of transcriptome in Lymantria dispar fat bodies and hemocytes to explore host immune response. A total of 244 immunity-related genes including pattern recognition receptors, extracellular signal modulators, immune pathways (Toll, IMD, JNK and JAK/STAT), and response effectors were identified. We observed contrasting tissue and time-specific differences in the expression of immune genes. At the early stage of infection, several recognition receptors and effector genes were activated, while the signal modulation and effector genes were suppressed at later stages. Further enzyme activity-based assays coupled with gene expression analysis of prophenoloxidase revealed a significant upregulation of phenoloxidase activity at 48- and 72-h post-infection. Moreover, fungal infection led to dysbiosis in gut microbiota that seems to be partially attributed to reduced gut hydrogen peroxide (H2 O2 ) amount, which indicates a significant impact of fungal infection on host gut microbes. CONCLUSION Our study provides a comprehensive sequence resource and crucial new insights about an economically important forest pest. Specifically, we elucidate the complicated multipartite interaction between host and fungal pathogen and contribute to a better understanding of Lymantria dispar anti-fungal immunity, resulting in better tools for biological pest control. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianyang Bai
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Zhe Xu
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Lu Li
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ling Ma
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
- Forest Protection Technology Innovation Center, Harbin, China
| |
Collapse
|
20
|
Lin Z, Wang JL, Cheng Y, Wang JX, Zou Z. Pattern recognition receptors from lepidopteran insects and their biological functions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103688. [PMID: 32222357 DOI: 10.1016/j.dci.2020.103688] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 03/03/2020] [Accepted: 03/20/2020] [Indexed: 05/08/2023]
Abstract
Lepidopteran insects have potent innate immunity to fight against the invading pathogens. As the initiation step, pattern recognition receptors (PRRs) recognize and bind microbial surface configurations known as pathogen-associated molecular patterns (PAMPs). Aftermath, they initiate both cellular and humoral immune responses, including phagocytosis, agglutination, nodulation, encapsulation, prophenoloxidase activation, and synthesis of antimicrobial peptides. In this review, we summarize the recent findings concerning PRRs in lepidoptaeran insects, mostly agriculture pests including Helicoverpa armigera, Plutella xylostella, and Spodoptera exigua. We mainly focus on the function and phylogeny of C-type lectins (CTLs), peptidoglycan recognition proteins (PGRPs), β-1,3-glucan recognition proteins (βGRPs), and galectins (GALEs). It enriches our understanding of the immune system of lepidopteran insects and provides directions in the future research.
Collapse
Affiliation(s)
- Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan, 430079, China
| | - Yang Cheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, 311300, China.
| |
Collapse
|
21
|
Liu G, Cao L, Rao Z, Qiu X, Han R. Identification of the genes involved in growth characters of medicinal fungus Ophiocordyceps sinensis based on Agrobacterium tumefaciens–mediated transformation. Appl Microbiol Biotechnol 2020; 104:2663-2674. [DOI: 10.1007/s00253-020-10417-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/09/2020] [Accepted: 01/26/2020] [Indexed: 01/06/2023]
|
22
|
Li M, Meng Q, Zhang H, Ni R, Zhou G, Zhao Y, Wu P, Shu R, Qin Q, Zhang J. Vegetative development and host immune interaction of Ophiocordyceps sinensis within the hemocoel of the ghost moth larva, Thitarodes xiaojinensis. J Invertebr Pathol 2020; 170:107331. [DOI: 10.1016/j.jip.2020.107331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/13/2020] [Accepted: 01/18/2020] [Indexed: 01/09/2023]
|
23
|
Comparative Transcriptome Analysis of Thitarodes Armoricanus in Response to the Entomopathogenic Fungi Paecilomyces Hepiali and Ophiocordyceps Sinensis. INSECTS 2019; 11:insects11010004. [PMID: 31861642 PMCID: PMC7022891 DOI: 10.3390/insects11010004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/02/2022]
Abstract
Thitarodes armoricanus is a medicinal and economically important Lepidopteran insect species. The larvae infected by Paecilomyces hepiali survive no more than four days, while those infected by Ophiocordyceps sinensis can survive for several months before mummification. This provides a valuable comparative system to study interactions between an insect host and different pathogenic fungi. By using the T. armoricanus genome, a time-course transcriptome analysis of the whole larvae without guts was performed to explore the larvae response to P. hepiali and O. sinensis infection. A total of 3106 differentially expressed genes in five clusters were identified. The genes involved in coagulation and multiple metabolisms were both suppressed after P. hepiali or O. sinensis infection, whereas those related to environmental information responses, cell processes, biotic stimulus, and immunity (such as cecropin (CEC)) were elevated. The rapid death of T. armoricanus after P. hepiali infection might be caused by osmotic imbalance, immunocompromise (such as DEFs and GLVs), and nervous system dysfunction (glutamatergic synapse). Up-regulation of the genes related to cuticle structure, nervous system (such as neurotrophin signal pathway and dopaminergic synapse) and immune effectors (such as attacin (ATT) and proline-rich antimicrobial peptide 1 (PRAMP1)) in T. armoricanus, may contribute to the co-existence of T. armoricanus and O. sinensis. This study provides a global view and potential key genes of the interaction between T. armoricanus and two fungal entomopathogens.
Collapse
|
24
|
Liu G, Han R, Cao L. Artificial Cultivation of the Chinese Cordyceps From Injected Ghost Moth Larvae. ENVIRONMENTAL ENTOMOLOGY 2019; 48:1088-1094. [PMID: 31517384 DOI: 10.1093/ee/nvz099] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Indexed: 06/10/2023]
Abstract
The Chinese cordyceps, regarded as the 'Himalayan Viagra', is highly valued for its medicinal benefits. The decline of its yield due to over-exploitation and increased market demand have stimulated efforts to artificially cultivate Chinese cordyceps for over half a century. However, successful cultivation of Chinese cordyceps through caterpillar infection by the fungus Ophiocordyceps sinensis (Berk.) and the induction of the fruiting body from each mummified cadaver remains difficult for its complex life cycle. Herein, we report the developmental dynamics of hyphal bodies in hemolymph of injected Thitarodes xiaojinensis (Tu, Ma & Zhang) larvae and the success in artificial cultivation of sexual fruiting bodies from the mummified cadavers in the low-altitude area. We find that not only the numbers of hyphal bodies but also the conversion of hyphal bodies into hyphae played important roles in the mummification of the injected larvae. This cultivation will be beneficial for sustainable utilization of natural resources and provides the possibility for further research on the mechanism of the interaction between pathogenic fungus and host insect.
Collapse
Affiliation(s)
- Guiqing Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China
| | - Richou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Gupta AK, Carviel J, Shear NH. A Stealthy Fungal Attack Requires an Equally Clandestine Approach to Onychomycosis Treatment. J Am Podiatr Med Assoc 2019; 109:374-378. [PMID: 31599670 DOI: 10.7547/17-080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Onychomycosis is a chronic fungal infection of the nail that is recalcitrant to treatment. It is unclear why normally effective antifungal therapy results in low cure rates. Evidence suggests that there may be a plethora of reasons that include the limited immune presence in the nail, reduced circulation, presence of commensal microbes, and fungal influence on immune signaling. Therefore, treatment should be designed to address these possibilities and work synergistically with both the innate and adaptive immune responses.
Collapse
Affiliation(s)
- Aditya K. Gupta
- Mediprobe Research, Inc, London, Ontario, Canada
- Division of Dermatology, Department of Medicine, University of Toronto School of Medicine, Toronto, Canada
| | | | - Neil H. Shear
- Division of Dermatology, Department of Medicine, University of Toronto School of Medicine, Toronto, Canada
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Zhu W, Meng Q, Zhang H, Wang ML, Li X, Wang HT, Zhou GL, Miao L, Qin QL, Zhang JH. Metabolomics reveals the key role of oxygen metabolism in heat susceptibility of an alpine-dwelling ghost moth, Thitarodes xiaojinensis (Lepidoptera: Hepialidae). INSECT SCIENCE 2019; 26:695-710. [PMID: 29790270 DOI: 10.1111/1744-7917.12605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/11/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Ghost moths inhabiting the alpine meadows of the Tibetan Plateau are cold-adapted stenothermal organisms that are susceptible to heat (dead within 7 days at 27 °C exposure). Exploring the metabolic basis of their heat susceptibility would extend our understanding of the thermal biology of alpine-dwelling invertebrates. Here, gas chromatography-mass spectrometry-based metabolomics was combined with physiological and transcriptional approaches to determine the metabolic mechanisms of heat susceptibility in Thitarodes xiaojinensis larvae. The metabolomics results showed that 27 °C heat stress impaired the Krebs cycle and lipolysis in T. xiaojinensis larvae, as demonstrated by the accumulation of intermediary metabolites. In addition, carbohydrate reserves were highly and exclusively consumed, and an anaerobic product, lactate, accumulated. This evidence suggested a strong reliance on glycolysis to anaerobically generate energy. The respiration rate and enzymatic activity test results indicated a deficiency in O2 metabolism; in addition, the Krebs cycle capacity was not decreased, and the metabolic flux through aerobic pathways was limited. These findings were further supported by the occurrence of hypoxia symptoms in midgut mitochondria (vacuolation and swelling) and increased transcription of hypoxia-induced factor 1-α. Overall, heat stress caused O2 limitation and depressed the overall intensity of aerobic metabolism in ghost moths, and less efficient anaerobic glycolysis was activated to sustain their energy supply. As carbohydrates were depleted, the energy supply became deficient. Our study presents a comprehensive metabolic explanation for the heat susceptibility of ghost moths and reveals the relationship between O2 metabolism and heat susceptibility in these larvae.
Collapse
Affiliation(s)
- Wei Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Meng-Long Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xuan Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hong-Tuo Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gui-Ling Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lin Miao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi-Lian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ji-Hong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Meng Q, Zhang J, Zhang H, Zhou G, Ni R, Zhao Y, Qin Q, Zou Z. Comparative analysis of C-type lectin domain proteins in the ghost moth, Thitarodes xiaojinensis (Lepidoptera: Hepialidae). INSECT SCIENCE 2019; 26:453-465. [PMID: 29274206 PMCID: PMC7379682 DOI: 10.1111/1744-7917.12564] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/03/2017] [Accepted: 11/19/2017] [Indexed: 05/24/2023]
Abstract
Insects have a large family of C-type lectins involved in cell adhesion, pathogen recognition and activation of immune responses. In this study, 32 transcripts encoding C-type lectin domain proteins (CTLDPs) were identified from the Thitarodes xiaojinensis transcriptome. According to their domain structures, six CTLDPs with one carbohydrate-recognition domain (CRD) were classified into the CTL-S subfamily. The other 23 CTLDPs with two CRDs were grouped into the immulectin (IML) subfamily. The remaining three with extra regulatory domains were sorted into the CTL-X subfamily. Phylogenetic analysis showed that CTL-S and CTL-X members from different insects could form orthologous groups. In contrast, no T. xiaojinensis IML orthologues were found in other insects. Remarkable lineage-specific expansion in this subfamily was observed reflecting that these CTLDPs, as important receptors, have evolved diversified members in response to a variety of microbes. Prediction of binding ligands revealed that T. xiaojinensis, a cold-adapted species, conserved the ability of CRDs to combine with Ca2+ to keep its receptors from freezing. Comparative analysis of induction of CTLDP genes after different immune challenges indicated that IMLs might play critical roles in immune defenses. This study examined T. xiaojinensis CTLDPs and provides a basis for further studies of their characteristics.
Collapse
Affiliation(s)
- Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Ji‐Hong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Gui‐Ling Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Ruo‐Yao Ni
- College of Life SciencesHebei UniversityBaodingHebeiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yan‐Ni Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qi‐Lian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
28
|
Xu L, Zhang Y, Zhang S, Deng J, Lu M, Zhang L, Zhang J. Comparative analysis of the immune system of an invasive bark beetle, Dendroctonus valens, infected by an entomopathogenic fungus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:65-69. [PMID: 30017857 DOI: 10.1016/j.dci.2018.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Dendroctonus valens LeConte is one of the most economically important forest pest in China. Leptographium procerum, a mutualistic fungus can assist the host beetle in overcoming the pine's chemical defenses, and Beauveria bassiana, an entomopathogenic fungus has shown high beetle killing efficiency. Considering that the D. valens immune system remains unknown at the genomic level, a mutualistic and antagonistic fungus associated with the beetle provides an ideal model for studying immune interactions between the insect and associated fungi. Here, B. bassiana killed most tested larvae more effectively than L. procerum and Tween. The entomopathogenic fungus provoked stronger responses than the symbiotic fungus at the transcriptome level. We identified 185 immunity-related genes, including pattern recognition receptors, signal modulators, members of immune pathways (Toll, IMD, and JAK/STAT), and immune effectors. Quantitative real-time PCR analysis confirmed that several recognition receptors and effector genes were activated at 1 or 2 days post infection, while the effector genes were suppressed at 4 days post infection by B. bassiana, respectively. In contrast, effector genes were upregulated in response to L. procerum. Together, this study provides a comprehensive sequence resource and insight into the D. valens immune system and lays a basis for understanding the molecular aspects of the interaction between the host and associated fungi.
Collapse
Affiliation(s)
- Letian Xu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China.
| | - Yiqiu Zhang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Shihan Zhang
- Cardiff Sixth Form College, Cardiff CF24 0AA, United Kingdom
| | - Jundan Deng
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Min Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Longwa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Jiang Zhang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China.
| |
Collapse
|
29
|
Zhou J, Yu HY, Zhang W, Ahmad F, Hu SN, Zhao LL, Zou Z, Sun JH. Comparative analysis of the Monochamus alternatus immune system. INSECT SCIENCE 2018; 25:581-603. [PMID: 28247970 DOI: 10.1111/1744-7917.12453] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/05/2017] [Accepted: 02/20/2017] [Indexed: 05/26/2023]
Abstract
The pine sawyer beetle, Monochamus alternatus, is regarded as a notorious forest pest in Asia, vectoring an invasive pathogenic nematode, Bursaphelenchus xylophilus, which is known to cause pine wilt disease. However, little sequence information is available for this vector beetle. This hampered the research on its immune system. Based on the transcriptome of M. alternatus, we have identified and characterized 194 immunity-related genes in M. alternatus, and compared them with homologues molecules from other species known to exhibit immune responses against invading microbes. The lower number of putative immunity-related genes in M. alternatus were attributed to fewer C-type lectin, serine protease (SP) and anti-microbial peptide (AMP) genes. Phylogenetic analysis revealed that M. alternatus had a unique recognition gene, galectin3, orthologues of which were not identified in Tribolium castaneum, Drosophila melanogastor, Anopheles gambiae and Apis mellifera. This suggested a lineage-specific gene evolution for coleopteran insects. Our study provides the comprehensive sequence resources of the immunity-related genes of M. alternatus, presenting valuable information for better understanding of the molecular mechanism of innate immunity processes in M. alternatus against B. xylophilus.
Collapse
Affiliation(s)
- Jiao Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hai-Ying Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Faheem Ahmad
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Song-Nian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Li-Lin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiang-Hua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
The IMD pathway regulates lysozyme-like proteins (LLPs) in the silkmoth Antheraea mylitta. J Invertebr Pathol 2018; 154:102-108. [DOI: 10.1016/j.jip.2018.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/02/2018] [Accepted: 04/16/2018] [Indexed: 11/30/2022]
|
31
|
Zhou J, Zhao LL, Yu HY, Wang YH, Zhang W, Hu SN, Zou Z, Sun JH. Immune tolerance of vector beetle to its partner plant parasitic nematode modulated by its insect parasitic nematode. FASEB J 2018; 32:4862-4877. [DOI: 10.1096/fj.201800247r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jiao Zhou
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyBeijingChina
| | - Li-Lin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyBeijingChina
| | - Hai-Ying Yu
- Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of SciencesBeijingChina
| | - Yan-Hong Wang
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyBeijingChina
| | - Wei Zhang
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyBeijingChina
| | - Song-Nian Hu
- Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of SciencesBeijingChina
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jiang-Hua Sun
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
32
|
Yu H, Li ZQ, He L, Ou-Yang YY, Li N, Huang GH. Response analysis of host Spodoptera exigua larvae to infection by Heliothis virescens ascovirus 3h (HvAV-3h) via transcriptome. Sci Rep 2018; 8:5367. [PMID: 29599494 PMCID: PMC5876357 DOI: 10.1038/s41598-018-23715-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022] Open
Abstract
Heliothis virescens ascovirus 3 h (HvAV-3h), a dsDNA insect virus, belonging to the family Ascoviridae, can infect caterpillars of several Noctuidae species by ovipositing parasitoid wasps. In order to provide a comprehensive overview of the interactive responses of host larvae after infection by the ascovirus, a transcriptome analysis of Spodoptera exigua to HvAV-3h was conducted from 6 to 168 hours post infection (hpi). Approximately 101.64 Gb of RNA sequencing (RNA-seq) data obtained from infected and uninfected S. exigua larvae were used to perform a de novo transcriptome assembly, which generated approximately 62,258 S. exigua unigenes. Using differential gene expression analysis, it was determined that the majority of host transcripts were down-regulated beginning at 6 hpi and continuing throughout the infection period, although there was an increase in up-regulated unigene number during the 12 to 72 hpi stage. It is noteworthy that the most abundantly enriched pathways in KEGG annotation were Metabolism terms, indicating that the host larval metabolic mechanisms were highly influenced post HvAV-3h infection. In addition, the host cuticle protein encoding unigenes were highly down-regulated in most of the situations, suggesting that the host larval cuticle synthesis were inhibited by the viral infection.
Collapse
Affiliation(s)
- Huan Yu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China.,College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
| | - Zi-Qi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China.,College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
| | - Lei He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China.,College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
| | - Yi-Yi Ou-Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China.,College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
| | - Ni Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China.,College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
| | - Guo-Hua Huang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China. .,College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China.
| |
Collapse
|
33
|
Gene expression profiling provides insights into the immune mechanism of Plutella xylostella midgut to microbial infection. Gene 2018; 647:21-30. [DOI: 10.1016/j.gene.2018.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 12/29/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022]
|
34
|
Wang M, Hu X. Antimicrobial peptide repertoire of Thitarodes armoricanus, a host species of Ophiocordyceps sinensis, predicted based on de novo transcriptome sequencing and analysis. INFECTION GENETICS AND EVOLUTION 2017; 54:238-244. [DOI: 10.1016/j.meegid.2017.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/03/2017] [Accepted: 07/08/2017] [Indexed: 01/24/2023]
|
35
|
Zhang W, Meng J, Ning J, Qin P, Zhou J, Zou Z, Wang Y, Jiang H, Ahmad F, Zhao L, Sun J. Differential immune responses of Monochamus alternatus against symbiotic and entomopathogenic fungi. SCIENCE CHINA-LIFE SCIENCES 2017; 60:902-910. [PMID: 28762123 DOI: 10.1007/s11427-017-9102-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/28/2017] [Indexed: 10/19/2022]
Abstract
Monochamus alternatus, the main vector beetles of invasive pinewood nematode, has established a symbiotic relationship with a native ectotrophic fungal symbiont, Sporothrix sp. 1, in China. The immune response of M. alternatus to S. sp. 1 in the coexistence of beetles and fungi is, however, unknown. Here, we report that immune responses of M. alternatus pupae to infection caused by ectotrophic symbiotic fungus S. sp. 1 and entomopathogenic fungus Beauveria bassiana differ significantly. The S. sp. 1 did not kill the beetles while B. bassiana killed all upon injection. The transcriptome results showed that the numbers of differentially expressed genes in M. alternatus infected with S. sp. 1 were 2-fold less than those infected with B. bassiana at 48 hours post infection. It was noticed that Toll and IMD pathways played a leading role in the beetle's immune system when infected by symbiotic fungus, but upon infection by entomopathogenic fungus, only the Toll pathway gets triggered actively. Furthermore, the beetles could tolerate the infection of symbiotic fungi by retracing their Toll and IMD pathways at 48 h. This study provided a comprehensive sequence resource of M. alternatus transcriptome for further study of the immune interactions between host and associated fungi.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Ning
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science, Hebei University, Baoding, 071002, China
| | - Peijun Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiao Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanhong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong Jiang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Faheem Ahmad
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, 45550, Pakistan
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
36
|
Xing L, Yuan C, Wang M, Lin Z, Shen B, Hu Z, Zou Z. Dynamics of the Interaction between Cotton Bollworm Helicoverpa armigera and Nucleopolyhedrovirus as Revealed by Integrated Transcriptomic and Proteomic Analyses. Mol Cell Proteomics 2017; 16:1009-1028. [PMID: 28404795 DOI: 10.1074/mcp.m116.062547] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 03/17/2017] [Indexed: 01/23/2023] Open
Abstract
Over the past decades, Helicoverpa armigera nucleopolyhedrovirus (HearNPV) has been widely used for biocontrol of cotton bollworm, which is one of the most destructive pest insects in agriculture worldwide. However, the molecular mechanism underlying the interaction between HearNPV and host insects remains poorly understood. In this study, high-throughput RNA-sequencing was integrated with label-free quantitative proteomics analysis to examine the dynamics of gene expression in the fat body of H. armigera larvae in response to challenge with HearNPV. RNA sequencing-based transcriptomic analysis indicated that host gene expression was substantially altered, yielding 3,850 differentially expressed genes (DEGs), whereas no global transcriptional shut-off effects were observed in the fat body. Among the DEGs, 60 immunity-related genes were down-regulated after baculovirus infection, a finding that was consistent with the results of quantitative real-time RT-PCR. Gene ontology and functional classification demonstrated that the majority of down-regulated genes were enriched in gene cohorts involved in energy, carbohydrate, and amino acid metabolic pathways. Proteomics analysis identified differentially expressed proteins in the fat body, among which 76 were up-regulated, whereas 373 were significantly down-regulated upon infection. The down-regulated proteins are involved in metabolic pathways such as energy metabolism, carbohydrate metabolism (CM), and amino acid metabolism, in agreement with the RNA-sequence data. Furthermore, correlation analysis suggested a strong association between the mRNA level and protein abundance in the H. armigera fat body. More importantly, the predicted gene interaction network indicated that a large subset of metabolic networks was significantly negatively regulated by viral infection, including CM-related enzymes such as aldolase, enolase, malate dehydrogenase, and triose-phosphate isomerase. Taken together, transcriptomic data combined with proteomic data elucidated that baculovirus established systemic infection of host larvae and manipulated the host mainly by suppressing the host immune response and down-regulating metabolism to allow viral self-replication and proliferation. Therefore, this study provided important insights into the mechanism of host-baculovirus interaction.
Collapse
Affiliation(s)
- Longsheng Xing
- From the ‡State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101.,§University of Chinese Academy of Sciences, Beijing 100049
| | - Chuanfei Yuan
- §University of Chinese Academy of Sciences, Beijing 100049.,¶State Key Laboratory of Virology and Joint Laboratory of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071; and
| | - Manli Wang
- ¶State Key Laboratory of Virology and Joint Laboratory of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071; and
| | - Zhe Lin
- From the ‡State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101
| | - Benchang Shen
- ‖Guangzhou Medical University, Guangzhou 510182, China
| | - Zhihong Hu
- ¶State Key Laboratory of Virology and Joint Laboratory of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071; and
| | - Zhen Zou
- From the ‡State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101; .,§University of Chinese Academy of Sciences, Beijing 100049
| |
Collapse
|
37
|
Liu G, Qiu X, Cao L, Zhang Y, Zhan Z, Han R. Evaluation of Reference Genes for Reverse Transcription Quantitative PCR Studies of Physiological Responses in the Ghost Moth, Thitarodes armoricanus (Lepidoptera, Hepialidae). PLoS One 2016; 11:e0159060. [PMID: 27392023 PMCID: PMC4938418 DOI: 10.1371/journal.pone.0159060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/27/2016] [Indexed: 12/18/2022] Open
Abstract
Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is the sensitive method to quantify the expression levels of target genes on the basis of endogenous control. An appropriate reference gene set for normalization is essential for reliable results. The ghost moth, Thitarodes armoricanus, a host species of a medicinal fungus, Ophiocordyceps sinensis, is an economically important member of the Lepidoptera. Recent studies have focused on the mechanism of adaptation of this species to its high-altitude environment and host immune response to O. sinensis infection and RT-qPCR is commonly used in these studies to decipher the genetic basis of physiological functions. However, a thorough assessment of candidate reference genes in the genus Thitarodes is lacking. Here, the expression levels of eight candidate reference genes (ACT, EF, EIF4A, GAPDH, G6PDH, RPL13A, TUB and 18S) in T. armoricanus at different developmental stages and in different body parts of the seventh instar larvae were analyzed, along with larvae kept under low temperatures, larvae exposed to two fungal infections and larvae fed different diets. Three established software programs–Bestkeeper, geNorm and NormFinder–were employed to calculate variation among the treatments. The results revealed that the best-suited reference genes differed across the treatments, with EF, EIF4A and GAPDH found to be the best suited for the different developmental stages and larvae body parts; EF, EIF4A and RPL13A found to be the best suited for low-temperature challenge; and EF, EIF4A and TUB found to be the best suited for the fungal infections and dietary treatments. This study thus further contributes to the establishment of an accurate method for normalizing RT-qPCR results for T. armoricanus and serves as a reference for gene expression studies of related insect species.
Collapse
Affiliation(s)
- Guiqing Liu
- Guangdong Key Laboratory of IPM in Agriculture and Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Xuehong Qiu
- Guangdong Key Laboratory of IPM in Agriculture and Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Li Cao
- Guangdong Key Laboratory of IPM in Agriculture and Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Yi Zhang
- Guangdong Key Laboratory of IPM in Agriculture and Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Zubing Zhan
- Guangdong Key Laboratory of IPM in Agriculture and Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Richou Han
- Guangdong Key Laboratory of IPM in Agriculture and Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
- * E-mail:
| |
Collapse
|