1
|
Li WS, Xiao YD, Liu JQ, Li SL, Chen Y, Xu YJ, Yang X, Wang YJ, Li ZQ, Xia QY, Mita K. The T2T Genome of the Domesticated Silkworm Bombyx mori. Int J Mol Sci 2024; 25:12341. [PMID: 39596406 PMCID: PMC11594454 DOI: 10.3390/ijms252212341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Genome sequences contain the fundamental genetic information that largely determines the biology of a species. Over the past 20 years, advancements in high-throughput sequencing technologies and bioinformatics tools have matured, facilitating genome assembly and ushering in the telomere-to-telomere (T2T) era. Bombyx mori is renowned as a silk-producing insect and serves as an important model organism extensively studied across various fields of biology. In this study, we present the first assembled T2T genome by integrating HiFi, ultra-long ONT, NGS, and Hi-C data. This assembly comprises 450,267,439 base pairs from 28 chromosomes and includes annotations for a total of 18,253 protein-coding genes. A completeness evaluation revealed that 99.1% of conserved single-copy genes were included, as determined by a BUSCO analysis. Furthermore, the consensus quality (QV) assessed through Merqury was recorded at 59.88. The proportion of repeat sequence achieved 60.77%, marking it as the highest reported value for B. mori to date. In comparison to previously published genomes, our assembly offers a more complete and higher quality representation, particularly concerning highly homologous tandem regions such as telomeres, rDNA clusters, and Gr family regions. Furthermore, our extensive experience in genome assembly, including sample preparation experience and assembly strategies to reduce complexity, will provide valuable references for other species aiming to achieve their own T2T genome assemblies.
Collapse
Affiliation(s)
- Wan-Shun Li
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (W.-S.L.); (Y.-D.X.); (J.-Q.L.); (Q.-Y.X.)
| | - Ying-Dan Xiao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (W.-S.L.); (Y.-D.X.); (J.-Q.L.); (Q.-Y.X.)
| | - Jian-Qiu Liu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (W.-S.L.); (Y.-D.X.); (J.-Q.L.); (Q.-Y.X.)
| | - Sheng-Long Li
- Department of Bioinformatics, The Basic Medical School of Chongqing Medical University, Chongqing 400016, China;
| | - Yue Chen
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (W.-S.L.); (Y.-D.X.); (J.-Q.L.); (Q.-Y.X.)
| | - Ya-Jing Xu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (W.-S.L.); (Y.-D.X.); (J.-Q.L.); (Q.-Y.X.)
| | - Xue Yang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (W.-S.L.); (Y.-D.X.); (J.-Q.L.); (Q.-Y.X.)
| | - Yan-Jue Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (W.-S.L.); (Y.-D.X.); (J.-Q.L.); (Q.-Y.X.)
| | - Zhi-Qing Li
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (W.-S.L.); (Y.-D.X.); (J.-Q.L.); (Q.-Y.X.)
| | - Qing-You Xia
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (W.-S.L.); (Y.-D.X.); (J.-Q.L.); (Q.-Y.X.)
| | - Kazuei Mita
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (W.-S.L.); (Y.-D.X.); (J.-Q.L.); (Q.-Y.X.)
| |
Collapse
|
2
|
Sun J, Zhang W, Cui Z, Pan Y, Smagghe G, Zhang L, Wickham JD, Sun J, Mang D. HcGr76 responds to fructose and chlorogenic acid and is involved in regulation of peptide expression in the midgut of Hyphantria cunea larvae. PEST MANAGEMENT SCIENCE 2024; 80:5672-5683. [PMID: 38982883 DOI: 10.1002/ps.8285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Sensing dietary components in the gut is important to ensure an appropriate hormonal response and metabolic regulation after food intake. The fall webworm, Hyphantria cunea, is a major invasive pest in China and has led to significant economic losses and ecosystem disruption. The larvae's broad host range and voracious appetite for leaves make H. cunea a primary cause of serious damage to both forests and crops. To date, however, the gustatory receptors (Grs) of H. cunea and their regulatory function remain largely unknown. RESULTS We identified the fall webworm gustatory receptor HcGr76 as a fructose and chlorogenic acid receptor using Ca2+ imaging and determination of intracellular Ca2+ concentration by a microplate reader. Moreover, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis revealed that HcGr76 is highly expressed in the anterior and middle midgut. Knockdown of HcGr76 caused a significant reduction in the expression of neuropeptide F 1 (NPF1) and CCHamide-2, and led to a decrease in carbohydrate and lipid levels in the hemolymph. CONCLUSION Our studies provide circumstantial evidence that HcGr76 expressed in the midgut is involved in sensing dietary components, and regulates the expression of relevant peptide hormones to alter metabolism in H. cunea larvae, thus providing a promising molecular target for the development of new insect-specific control products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Sun
- College of Life Science, Hebei University, Baoding, China
| | - Wenjing Zhang
- College of Life Science, Hebei University, Baoding, China
| | - Zhebo Cui
- College of Life Science, Hebei University, Baoding, China
| | - Yifan Pan
- College of Life Science, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Guy Smagghe
- Institute of Entomology and Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang, China
- Cellular and Molecular Life Sciences, Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Longwa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Jacob D Wickham
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Jianghua Sun
- College of Life Science, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Dingze Mang
- College of Life Science, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
3
|
Zou Y, Wu W, Luo T, Tang Y, Hu H, Ye A, Xu L, Dai F, Tong X. Disruption of Zfh3 abolishes mulberry-specific monophagy in silkworm larvae. INSECT SCIENCE 2024; 31:1397-1411. [PMID: 38622976 DOI: 10.1111/1744-7917.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 04/17/2024]
Abstract
Feeding behavior is critical for insect survival and fitness. Most researchers have explored the molecular basis of feeding behaviors by identifying and elucidating the function of olfactory receptors (ORs) and gustatory receptors (GRs). Other types of genes, such as transcription factors, have rarely been investigated, and little is known about their potential roles. The silkworm (Bombyx mori) is a well-studied monophagic insect which primarily feeds on mulberry leaves, but the genetic basis of its monophagy is still not understood. In this report, we focused on a transcription factor encoded by the Zfh3 gene, which is highly expressed in the silkworm central and peripheral nervous systems, including brain, antenna, and maxilla. To investigate its function, Zfh3 was abrogated using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) mutagenesis. Since Zfh3 knockout homozygotes are not viable, we studied feeding behavior in heterozygotes, and found that disruption of Zfh3 affects both gustation and olfaction. Mutant larvae lose preference for mulberry leaves, acquire the ability to consume an expanded range of diets, and exhibit improved adaptation to the M0 artificial diet, which contains no mulberry leaves. These results provide the first demonstration that a transcription factor modulates feeding behaviors in an insect.
Collapse
Affiliation(s)
- Yunlong Zou
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Wentao Wu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Tianfu Luo
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Yuxia Tang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Hai Hu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Aijun Ye
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Lifeng Xu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Lizana P, Mutis A, Palma-Millanao R, Larama G, Antony B, Quiroz A, Venthur H. Transcriptomic and Gene Expression Analysis of Chemosensory Genes from White Grubs of Hylamorpha elegans (Coleoptera: Scarabaeidae), a Subterranean Pest in South America. INSECTS 2024; 15:660. [PMID: 39336628 PMCID: PMC11432230 DOI: 10.3390/insects15090660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 09/30/2024]
Abstract
Olfaction and gustation processes play key roles in the life cycle of insects, such as finding and accepting food sources, oviposition sites, and mates, among other fundamental aspects of insect development. In this context, chemosensory genes found in sensory organs (e.g., antennae and maxillary palps) are crucial for understanding insect behaviour, particularly the phytophagous behaviour of insect pests that attack economically important crops. An example is the scarab beetle Hylamorpha elegans, which feeds on the roots of several crops important for livestock in its larval stage. In this study, chemosensory gene candidates of H. elegans white grubs identified through the head transcriptome and phylogenetic and tissue-biased gene expression (antennae, head without antennae, and legs) have been reported. Overall, 47 chemosensory genes were identified (2 ORs, 1 GR, 11 IRs, 9 CSPs, and 24 OBPs). Gene expression analysis revealed the predominant presence of IRs in the legs, whereas ORs and the GR were present in the heads and/or antennae. Particularly, HeleOBP9 and HeleCSP2 were significantly expressed in the head but not in the antennae or legs; these and other genes are discussed as potential targets in the context of H. elegans management.
Collapse
Affiliation(s)
- Paula Lizana
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile;
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (A.M.); (A.Q.)
| | - Ana Mutis
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (A.M.); (A.Q.)
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco 4811230, Chile
| | - Rubén Palma-Millanao
- Vicerrectoría de Investigación y Postgrado, Universidad de La Frontera, Temuco 4811230, Chile
| | - Giovanni Larama
- Biocontrol Research Laboratory and Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Binu Antony
- Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Andrés Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (A.M.); (A.Q.)
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco 4811230, Chile
| | - Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (A.M.); (A.Q.)
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
5
|
Wada-Katsumata A, Schal C. Glucose aversion: a behavioral resistance mechanism in the German cockroach. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101182. [PMID: 38403065 DOI: 10.1016/j.cois.2024.101182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
The German cockroach is a valuable model for research on indoor pest management strategies and for understanding mechanisms of adaptive evolution under intense anthropogenic selection. Under the selection pressure of toxic baits, populations of the German cockroach have evolved a variety of physiological and behavioral resistance mechanisms. In this review, we focus on glucose aversion, an adaptive trait that underlies a behavioral resistance to baits. Taste polymorphism, a change in taste quality of glucose from sweet to bitter, causes cockroaches to avoid glucose-containing baits. We summarize recent findings, including the contribution of glucose aversion to olfactory learning-based avoidance of baits, aversion to other sugars, and assortative mating under sexual selection, which underscores the behavioral phenotype to all oligosaccharides that contain glucose. It is a remarkable example of how anthropogenic selection drove the evolution of an altered gustatory trait that reshapes the foraging ecology and sexual communication.
Collapse
Affiliation(s)
- Ayako Wada-Katsumata
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
6
|
Zhang SS, Wang PC, Ning C, Yang K, Li GC, Cao LL, Huang LQ, Wang CZ. The larva and adult of Helicoverpa armigera use differential gustatory receptors to sense sucrose. eLife 2024; 12:RP91711. [PMID: 38814697 PMCID: PMC11139476 DOI: 10.7554/elife.91711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Almost all herbivorous insects feed on plants and use sucrose as a feeding stimulant, but the molecular basis of their sucrose reception remains unclear. Helicoverpa armigera as a notorious crop pest worldwide mainly feeds on reproductive organs of many plant species in the larval stage, and its adult draws nectar. In this study, we determined that the sucrose sensory neurons located in the contact chemosensilla on larval maxillary galea were 100-1000 times more sensitive to sucrose than those on adult antennae, tarsi, and proboscis. Using the Xenopus expression system, we discovered that Gr10 highly expressed in the larval sensilla was specifically tuned to sucrose, while Gr6 highly expressed in the adult sensilla responded to fucose, sucrose and fructose. Moreover, using CRISPR/Cas9, we revealed that Gr10 was mainly used by larvae to detect lower sucrose, while Gr6 was primarily used by adults to detect higher sucrose and other saccharides, which results in differences in selectivity and sensitivity between larval and adult sugar sensory neurons. Our results demonstrate the sugar receptors in this moth are evolved to adapt toward the larval and adult foods with different types and amounts of sugar, and fill in a gap in sweet taste of animals.
Collapse
Affiliation(s)
- Shuai-Shuai Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Pei-Chao Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Chao Ning
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Ke Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Guo-Cheng Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Lin-Lin Cao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
7
|
Wang Z, Liu D, Ma L, Cheng H, Lin C, Fu L, Chen Y, Dong X, Liu C. Genome-wide analysis of gustatory receptor genes and identification of the fructose gustatory receptor in Arma chinensis. Heliyon 2024; 10:e30795. [PMID: 38765039 PMCID: PMC11096949 DOI: 10.1016/j.heliyon.2024.e30795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024] Open
Abstract
Gustatory receptors (GRs) allow insects to sense tastes in their external environment. Gustatory perception is crucial for distinguishing between beneficial and harmful or toxic compounds, affecting survival. This study is the first to identify and classify the GR genes and investigate their expression in the predatory Arma chinensis. Thirteen GR genes (ArmaGr1-ArmaGr13) were identified and classified into four families via phylogenetic analysis. In the predacious developmental stages, ArmaGr7 expression gradually increased from the 2nd to 5th instar stages and then to adults. However, ArmaGr7 was also highly expressed in the non-predation 1st instar nymph and egg stages. ArmaGr7 expression was localized in the antennae, scalpella, forelegs, wings, head, and midgut of male and female adults, with wings displaying the highest expression. Furthermore, ArmaGr7 expression was positively correlated with fructose solution intake; molecular docking results showed that fructose could effectively dock withArmaGr7. A protein structure comparison revealed that the ArmaGr7 structure was different from that of other GR43a-like proteins, which may be related to the gene splicing of the A. chinensis GR gene. These results elucidate the crucial role of ArmaGr7 in fructose recognition by A. chinensis and provide a foundation for further studies on gustatory perception.
Collapse
Affiliation(s)
- Zhen Wang
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Dianyu Liu
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
- College of Agriculture, Yangtze University, No. 1 Nanhuan Road, Jingzhou, 434025, Hubei, China
| | - Le Ma
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
- College of Agriculture, Yangtze University, No. 1 Nanhuan Road, Jingzhou, 434025, Hubei, China
| | - Hongmei Cheng
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Changjin Lin
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Luyao Fu
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yu Chen
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
- College of Agriculture, Yangtze University, No. 1 Nanhuan Road, Jingzhou, 434025, Hubei, China
| | - Xiaolin Dong
- College of Agriculture, Yangtze University, No. 1 Nanhuan Road, Jingzhou, 434025, Hubei, China
| | - Chenxi Liu
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| |
Collapse
|
8
|
Li JQ, Chen YW, Wang Q, Yin MZ, Ma S, Liu Q, Sun XY, Zhang WJ, Yang YY, Mang DZ, Zhu XY, Sun L, Zhang YN. Gustatory Receptor 206 Participates in the Foraging Behavior of Larvae of Polyphagous Pest Spodoptera litura. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12003-12013. [PMID: 38748811 DOI: 10.1021/acs.jafc.4c01434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Insect gustatory receptors (GRs) aid in the precise identification of deterrent or stimulant compounds associated with food, mating, and egg-laying. Thus, they are promising targets for developing efficient insecticides. Here, 61 GRs in the chemosensory organs of Spodoptera litura larvae and adults were identified. Among them, SlitGR206 exhibited larval labium (LL)-specific expression characteristics. To explore the role of SlitGR206, a bacterial expression system was established to produce high-quality double-stranded RNA (dsRNA) and suppress SlitGR206 expression in LL. Subsequent behavioral assessments revealed that SlitGR206 silencing influenced larval feeding preferences and absorption. Moreover, it was found to reduce the ability of larvae to forage the five crucial host odorants. These findings demonstrate that SlitGR206 likely plays an indirect regulatory role in host recognition, consequently affecting foraging behavior. This provides a crucial foundation for the analysis of functional diversity among insect GRs and the precise development of nucleic acid pesticides in the future.
Collapse
Affiliation(s)
- Jian-Qiao Li
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Yu-Wen Chen
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Qian Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou311300,China
| | - Mao-Zhu Yin
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Sai Ma
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Qiang Liu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Xin-Yao Sun
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Wen-Jing Zhang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yan-Yan Yang
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 2-24-16, Tokyo 184-8588, Japan
| | - Ding-Ze Mang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 2-24-16, Tokyo 184-8588, Japan
| | - Xiu-Yun Zhu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Liang Sun
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Ya-Nan Zhang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
9
|
Chen R, Yan J, Wickham JD, Gao Y. Genomic identification and evolutionary analysis of chemosensory receptor gene families in two Phthorimaea pest species: insights into chemical ecology and host adaptation. BMC Genomics 2024; 25:493. [PMID: 38762533 PMCID: PMC11102633 DOI: 10.1186/s12864-024-10428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/17/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Insects rely on sophisticated sensitive chemosensory systems to sense their complex chemical environment. This sensory process involves a combination of odorant receptors (ORs), gustatory receptors (GRs) and ionotropic receptors (IRs) in the chemosensory system. This study focused on the identification and characterization of these three types of chemosensory receptor genes in two closely related Phthorimaea pest species, Phthorimaea operculella (potato tuber moth) and Phthorimaea absoluta (tomato leaf miner). RESULTS Based on manual annotation of the genome, we identified a total of 349 chemoreceptor genes from the genome of P. operculella, including 93 OR, 206 GR and 50 IR genes, while for P. absoluta, we identified 72 OR, 122 GR and 46 IR genes. Through phylogenetic analysis, we observed minimal differences in the number and types of ORs and IRs between the potato tuber moth and tomato leaf miner. In addition, we found that compared with those of tomato leaf miners, the gustatory receptor branch of P. operculella has undergone a large expansion, which may be related to P. absoluta having a narrower host range than P. operculella. Through analysis of differentially expressed genes (DEGs) of male and female antennae, we uncovered 45 DEGs (including 32ORs, 9 GRs, and 4 IRs). CONCLUSIONS Our research provides a foundation for exploring the chemical ecology of these two pests and offers new insights into the dietary differentiation of lepidopteran insects, while simultaneously providing molecular targets for developing environmentally friendly pest control methods based on insect chemoreception.
Collapse
Affiliation(s)
- Ruipeng Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junjie Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jacob D Wickham
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071, Russia
- Department of Entomology, Rutgers University, 93 Lipman Drive, New Brunswick, New Jersey, USA
| | - Yulin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
10
|
Endo H, Tsuneto K, Mang D, Zhang W, Yamagishi T, Ito K, Nagata S, Sato R. Molecular basis of host plant recognition by silkworm larvae. JOURNAL OF INSECT PHYSIOLOGY 2024; 154:104628. [PMID: 38387524 DOI: 10.1016/j.jinsphys.2024.104628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Herbivorous insects can identify their host plants by sensing plant secondary metabolites as chemical cues. We previously reported the two-factor host acceptance system of the silkworm Bombyx mori larvae. The chemosensory neurons in the maxillary palp (MP) of the larvae detect mulberry secondary metabolites, chlorogenic acid (CGA), and isoquercetin (ISQ), with ultrahigh sensitivity, for host plant recognition and feeding initiation. Nevertheless, the molecular basis for the ultrasensitive sensing of these compounds remains unknown. In this study, we demonstrated that two gustatory receptors (Grs), BmGr6 and BmGr9, are responsible for sensing the mulberry compounds with attomolar sensitivity for host plant recognition by silkworm larvae. Calcium imaging assay using cultured cells expressing the silkworm putative sugar receptors (BmGr4-10) revealed that BmGr6 and BmGr9 serve as receptors for CGA and ISQ with attomolar sensitivity in human embryonic kidney 293T cells. CRISPR/Cas9-mediated knockout (KO) of BmGr6 and BmGr9 resulted in a low probability of making a test bite of the mulberry leaves, suggesting that they lost the ability to recognize host leaves. Electrophysiological recordings showed that the loss of host recognition ability in the Gr-KO strains was due to a drastic decrease in MP sensitivity toward ISQ in BmGr6-KO larvae and toward CGA and ISQ in BmGr9-KO larvae. Our findings have revealed that the two Grs, previously considered to be sugar receptors, are molecules responsible for detecting plant phenolics in host plant recognition.
Collapse
Affiliation(s)
- Haruka Endo
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; Department of Integrated Bioscience, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| | - Kana Tsuneto
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Dingze Mang
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Wenjing Zhang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Takayuki Yamagishi
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Katsuhiko Ito
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu,Tokyo 183-8509, Japan
| | - Shinji Nagata
- Department of Integrated Bioscience, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
11
|
Waris MI, Lei Y, Qi G, Guan Z, Rashied A, Chen J, Lyu L. The temporal-spatial expression and functional analysis of three gustatory receptor genes in Solenopsis invicta using sweet and bitter compounds. INSECT SCIENCE 2024; 31:448-468. [PMID: 38010036 DOI: 10.1111/1744-7917.13301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 11/29/2023]
Abstract
The insect gustatory system participates in identifying potential food sources and avoiding toxic compounds. During this process, gustatory receptors (GRs) recognize feeding stimulant and deterrent compounds. However, the GRs involved in recognizing stimulant and deterrent compounds in the red imported fire ant, Solenopsis invicta, remain unknown. Therefore, we conducted a study on the genes SinvGR1, SinvGR32b, and SinvGR28a to investigate the roles of GRs in detecting feeding stimulant and deterrent compounds. In this current study, we found that sucrose and fructose are feeding stimulants and the bitter compound quinine is a feeding deterrent. The fire ant workers showed significant behavior changes to avoid the bitter taste in feeding stimulant compounds. Reverse transcription quantitative real-time polymerase chain reaction results from developmental stages showed that the SinvGR1, SinvGR32b, and SinvGR28a genes were highly expressed in fire ant workers. Tissue-specific expression profiles indicated that SinvGR1, SinvGR32b, and SinvGR28a were specifically expressed in the antennae and foreleg tarsi of workers, whereas SinvGR32b gene transcripts were also highly accumulated in the male antennae. Furthermore, the silencing of SinvGR1 or SinvGR32b alone and the co-silencing of both genes disrupted worker stimulation and feeding on sucrose and fructose. The results also showed that SinvGR28a is required for avoiding quinine, as workers with knockdown of the SinvGR28a gene failed to avoid and fed on quinine. This study first identified stimulant and deterrent compounds of fire ant workers and then the GRs involved in the taste recognition of these compounds. This study could provide potential target gustatory genes for the control of the fire ant.
Collapse
Affiliation(s)
- Muhammad Irfan Waris
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Yanyuan Lei
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Guojun Qi
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Ziying Guan
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Abdul Rashied
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jie Chen
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Lihua Lyu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| |
Collapse
|
12
|
Lu TT, Yin NN, Yang AJ, Yao YJ, Li ZQ, Liu NY. Comparative transcriptomics reveals the conservation and divergence of reproductive genes across three sympatric Tomicus bark beetles. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101168. [PMID: 38061252 DOI: 10.1016/j.cbd.2023.101168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 02/15/2024]
Abstract
Three tree-killing bark beetles belonging to the genus Tomicus, Tomicus yunnanensis, Tomicus brevipilosus and Tomicus minor (Coleoptera; Curculionidae, Scolytinae), are serious wood-borers with larvae feeding on the phloem tissues of Pinus yunnanensis. The three Tomicus beetles, in some cases, coexist in a same habitat, providing a best system for exploring the conservation and divergence of reproductive genes. Here, we applied comparative transcriptomics and molecular biology approaches to characterize reproductive-related genes in three sympatric Tomicus species. Illumina sequencing of female and male reproductive systems and residual bodies generated a large number of clean reads, representing 185,920,232 sequences in T. yunnanensis, 169,153,404 in T. brevipilosus and 178,493,176 in T. minor that were assembled into 32,802, 56,912 and 33,670 unigenes, respectively. The majority of the genes had detectable expression in reproductive tissues (FPKM >1), particularly those genes in T. brevipilosus accounting for 76.61 % of the total genes. From the transcriptomes, totally 838 genes encoding 463 detoxification enzymes, 339 chemosensory membrane proteins and 36 ionotropic glutamate receptors (iGluRs) were identified, including 622 reproductive tissue-expressed genes. Of these, members of carboxylesterases (COEs), ionotropic receptors (IRs), sensory neuron membrane proteins (SNMPs) and iGluRs were highly conserved in gene numbers and sequence identities across three Tomicus species. Further, expression profiling analyses revealed a number of genes expressed in reproductive tissues and the diverse expression characteristics in these beetles. The results provide evidence for the conservation and differences of reproductive genes among three sympatric closely related beetles, helping understand their different reproductive strategies and the maximization of the reproductive success.
Collapse
Affiliation(s)
- Ting-Ting Lu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Ning-Na Yin
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - An-Jing Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yu-Juan Yao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Zhao-Qun Li
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China.
| | - Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
13
|
Ruedenauer FA, Parreño MA, Grunwald Kadow IC, Spaethe J, Leonhardt SD. The ecology of nutrient sensation and perception in insects. Trends Ecol Evol 2023; 38:994-1004. [PMID: 37328389 DOI: 10.1016/j.tree.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/18/2023]
Abstract
Insects are equipped with neurological, physiological, and behavioral tools to locate potential food sources and assess their nutritional quality based on volatile and chemotactile cues. We summarize current knowledge on insect taste perception and the different modalities of reception and perception. We suggest that the neurophysiological mechanisms of reception and perception are closely linked to the species-specific ecology of different insects. Understanding these links consequently requires a multidisciplinary approach. We also highlight existing knowledge gaps, especially in terms of the exact ligands of receptors, and provide evidence for a perceptional hierarchy suggesting that insects have adapted their reception and perception to preferentially perceive nutrient stimuli that are important for their fitness.
Collapse
Affiliation(s)
- Fabian A Ruedenauer
- Plant-Insect Interactions, Research Department Life Science Systems, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany.
| | - Maria Alejandra Parreño
- Plant-Insect Interactions, Research Department Life Science Systems, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Ilona C Grunwald Kadow
- Institute of Physiology II, University of Bonn, University Clinic Bonn (UKB), Bonn, Germany
| | - Johannes Spaethe
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Sara D Leonhardt
- Plant-Insect Interactions, Research Department Life Science Systems, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| |
Collapse
|
14
|
Toyam T, Yamagishi T, Sato R. The roles of enteroendocrine cell distribution and gustatory receptor expression in regulating peptide hormone secretion in the midgut of Bombyx mori larvae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22032. [PMID: 37424326 DOI: 10.1002/arch.22032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
To regulate physiological homeostasis and behavior in Bombyx mori, more than 20 peptide hormones in the midgut of larvae are secreted upon detection of food substances at the lumen. Although it is logical to assume that the timings of peptide hormone secretions are regulated, little is known about the mechanisms. In this study, the distributions of enteroendocrine cells (EECs) producing five peptide hormones and EECs expressing gustatory receptors (Grs), as candidate receptors for luminal food substances and nutrients, were examined via immunostaining in B. mori larvae. Three patterns of peptide hormone distribution were observed. Tachykinin (Tk)- and K5-producing EECs were located throughout the midgut; myosuppressin-producing EECs were located in the middle-to-posterior midgut; and allatostatin C- and CCHamide-2-producing EECs were located in the anterior-to-middle midgut. BmGr4 was expressed in some Tk-producing EECs in the anterior midgut, where food and its digestive products arrived 5 min after feeding began. Enzyme-linked immunosorbent assay (ELISA) revealed secretion of Tk starting approximately 5 min after feeding began, suggesting that food sensing by BmGr4 may regulate Tk secretion. BmGr6 was expressed in a few Tk-producing EECs in the middle-to-posterior midgut, although its significance was unclear. BmGr6 was also expressed in many myosuppressin-producing EECs in the middle midgut, where food and its digestive products arrived 60 min after feeding began. ELISA revealed secretion of myosuppressin starting approximately 60 min after feeding began, suggesting that food sensing by BmGr6 may regulate myosuppressin secretion. Finally, BmGr9 was expressed in many BmK5-producing EECs throughout the midgut, suggesting that BmGr9 may function as a sensor for the secretion of BmK5.
Collapse
Affiliation(s)
- Tomoko Toyam
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takayuki Yamagishi
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
15
|
Aidlin Harari O, Dekel A, Wintraube D, Vainer Y, Mozes-Koch R, Yakir E, Malka O, Morin S, Bohbot JD. A sucrose-specific receptor in Bemisia tabaci and its putative role in phloem feeding. iScience 2023; 26:106752. [PMID: 37234092 PMCID: PMC10206433 DOI: 10.1016/j.isci.2023.106752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/22/2022] [Accepted: 04/22/2023] [Indexed: 05/27/2023] Open
Abstract
In insects, specialized feeding on the phloem sap (containing mainly the sugar sucrose) has evolved only in some hemipteran lineages. This feeding behavior requires an ability to locate feeding sites buried deeply within the plant tissue. To determine the molecular mechanism involved, we hypothesized that the phloem-feeding whitefly Bemisia tabaci relies on gustatory receptor (GR)-mediated sugar sensing. We first conducted choice assays, which indicated that B. tabaci adults consistently choose diets containing higher sucrose concentrations. Next, we identified four GR genes in the B. tabaci genome. One of them, BtabGR1, displayed significant sucrose specificity when expressed in Xenopus oocytes. Silencing of BtabGR1 significantly interfered with the ability of B. tabaci adults to discriminate between non-phloem and phloem concentrations of sucrose. These findings suggest that in phloem feeders, sugar sensing by sugar receptors might allow tracking an increasing gradient of sucrose concentrations in the leaf, leading eventually to the location of the feeding site.
Collapse
Affiliation(s)
- Ofer Aidlin Harari
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Amir Dekel
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Dor Wintraube
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Yuri Vainer
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Rita Mozes-Koch
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Esther Yakir
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Osnat Malka
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Shai Morin
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Jonathan D. Bohbot
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| |
Collapse
|
16
|
Jiang L, Huang T, Liu Q, Zhong S, Shen D, Chen A, Zhao Q. Transcriptome analysis of anorexic and preferred silkworms (Bombyx mori) on artificial diet. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101086. [PMID: 37163839 DOI: 10.1016/j.cbd.2023.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
The silkworm, Bombyx mori, is an important oligophagous economic insect and feeding habits of different silkworm varieties to artificial diet are different. Research on the mechanisms of feeding habits on artificial diet, and breeding of silkworm varieties adapted on artificial diet, which is a necessary condition for industrial silkworm rearing, is currently lacking. For an artificial diet, Xin was anorexic, whereas Haoyue A showed a strong appetite. When the two varieties were crossed, the F1 generation showed a poor appetite for the artificial diet and had a setae dispersion rate of <50 %. However, the F2 generation, self-bred progeny of F1, had a good appetite for the artificial diet, with a setae dispersion rate of 70 %. Herein, transcriptome analysis was conducted on the F2 generation, comparing individuals with anorexic and preferred feeding habits, and 2188 differential genes were identified, with 1524 genes up-regulated and 934 genes down-regulated. Several genes were identified to contribute to feeding habits, such as genes involved olfactory system, energy supply, and cell proliferation and differentiation. GO enrichment revealed a large number of DEGs related to behavior, growth, signaling, developmental process, response to stimulation, and other pathways. Furthermore, proteins closely related to feeding were expressed differently. Some DEGs were selected for qRT-PCR, and results indicated the reliability of the DEG results. The DEGs between individuals with anorexic and preferred feeding habits were screened by RNA-Seq technology, which provides a reliable reference to study molecule mechanisms of feeding habits on artificial diet.
Collapse
Affiliation(s)
- Li Jiang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China; Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang, Shaanxi 725000, China.
| | - Tianchen Huang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| | - Qiang Liu
- Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang, Shaanxi 725000, China.
| | - Shanshan Zhong
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| | - Dongxu Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| | - Anli Chen
- Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang, Shaanxi 725000, China.
| | - Qiaoling Zhao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| |
Collapse
|
17
|
Gauthier J, Meier J, Legeai F, McClure M, Whibley A, Bretaudeau A, Boulain H, Parrinello H, Mugford ST, Durbin R, Zhou C, McCarthy S, Wheat CW, Piron-Prunier F, Monsempes C, François MC, Jay P, Noûs C, Persyn E, Jacquin-Joly E, Meslin C, Montagné N, Lemaitre C, Elias M. First chromosome scale genomes of ithomiine butterflies (Nymphalidae: Ithomiini): Comparative models for mimicry genetic studies. Mol Ecol Resour 2023; 23:872-885. [PMID: 36533297 PMCID: PMC7617422 DOI: 10.1111/1755-0998.13749] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
The ithomiine butterflies (Nymphalidae: Danainae) represent the largest known radiation of Müllerian mimetic butterflies. They dominate by number the mimetic butterfly communities, which include species such as the iconic neotropical Heliconius genus. Recent studies on the ecology and genetics of speciation in Ithomiini have suggested that sexual pheromones, colour pattern and perhaps hostplant could drive reproductive isolation. However, no reference genome was available for Ithomiini, which has hindered further exploration on the genetic architecture of these candidate traits, and more generally on the genomic patterns of divergence. Here, we generated high-quality, chromosome-scale genome assemblies for two Melinaea species, M. marsaeus and M. menophilus, and a draft genome of the species Ithomia salapia. We obtained genomes with a size ranging from 396 to 503 Mb across the three species and scaffold N50 of 40.5 and 23.2 Mb for the two chromosome-scale assemblies. Using collinearity analyses we identified massive rearrangements between the two closely related Melinaea species. An annotation of transposable elements and gene content was performed, as well as a specialist annotation to target chemosensory genes, which is crucial for host plant detection and mate recognition in mimetic species. A comparative genomic approach revealed independent gene expansions in ithomiines and particularly in gustatory receptor genes. These first three genomes of ithomiine mimetic butterflies constitute a valuable addition and a welcome comparison to existing biological models such as Heliconius, and will enable further understanding of the mechanisms of adaptation in butterflies.
Collapse
Affiliation(s)
| | - Joana Meier
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Fabrice Legeai
- BIPAA, IGEPP, INRAE, Institut Agro, Univ Rennes, Rennes, France
- Univ Rennes, Inria, CNRS, IRISA, Rennes, France
| | - Melanie McClure
- Institut Systématique Évolution Biodiversité (ISYEB), Centre National de la Recherche Scientifique, MNHN, EPHE, Sorbonne Université, Université des Antilles, Paris, France
- Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, Cayenne, France
| | - Annabel Whibley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Anthony Bretaudeau
- BIPAA, IGEPP, INRAE, Institut Agro, Univ Rennes, Rennes, France
- Univ Rennes, Inria, CNRS, IRISA, Rennes, France
| | - Hélène Boulain
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Hugues Parrinello
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Sam T. Mugford
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Chenxi Zhou
- Department of Genetics, University of Cambridge, Cambridge, UK
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Shane McCarthy
- Department of Genetics, University of Cambridge, Cambridge, UK
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, UK
| | | | - Florence Piron-Prunier
- Institut Systématique Évolution Biodiversité (ISYEB), Centre National de la Recherche Scientifique, MNHN, EPHE, Sorbonne Université, Université des Antilles, Paris, France
| | - Christelle Monsempes
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | - Marie-Christine François
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | - Paul Jay
- Ecologie Systématique Evolution, Bâtiment 360, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | | | - Emma Persyn
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
- CIRAD, UMR PVBMT, St Pierre, France
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | - Camille Meslin
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | - Nicolas Montagné
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | | | - Marianne Elias
- Institut Systématique Évolution Biodiversité (ISYEB), Centre National de la Recherche Scientifique, MNHN, EPHE, Sorbonne Université, Université des Antilles, Paris, France
| |
Collapse
|
18
|
Li J, Deng J, Deng X, Liu L, Zha X. Metabonomic Analysis of Silkworm Midgut Reveals Differences between the Physiological Effects of an Artificial and Mulberry Leaf Diet. INSECTS 2023; 14:347. [PMID: 37103160 PMCID: PMC10146990 DOI: 10.3390/insects14040347] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Bombyx mori is a model lepidopteran insect of great economic value. Mulberry leaves are its only natural food source. The development of artificial diets can not only resolve the seasonal shortage of mulberry leaves but also enable changes to be made to the feed composition according to need. Metabolomic differences between the midguts of male and female silkworms fed either on fresh mulberry leaves or an artificial diet were studied using liquid chromatography-mass spectrography (LC-MS/MS) analysis. A total of 758 differential metabolites were identified. Our analysis showed that they were mainly involved in disease resistance and immunity, silk quality, and silkworm growth and development. These experimental results provide insights into the formulation of optimized artificial feed for silkworms.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jing Deng
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xuan Deng
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Lianlian Liu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xingfu Zha
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
19
|
Zhang B, Liu B, Huang C, Xing L, Li Z, Liu C, Zhou H, Zheng G, Li J, Han J, Yu Q, Yang C, Qian W, Wan F, Li C. A chromosome-level genome assembly of the beet armyworm Spodoptera exigua. Genomics 2023; 115:110571. [PMID: 36746219 DOI: 10.1016/j.ygeno.2023.110571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/06/2023]
Abstract
BACKGROUND The beet armyworm Spodoptera exigua is a polyphagous caterpillar that causes serious damage to many species of crops and vegetables. To gain insight into how this polyphagous insect differs from less harmful oligophagous species, we generated a chromosome-level assembly and compared it to closely related species with the same or different feeding habits. RESULTS Based on Illumina and Pacific Biosciences data and Hi-C technology, 425.6 Mb of genome sequences were anchored and oriented into 31 linkage groups, with an N50 length of 14.8 Mb. A total of 24,649 gene models were predicted, of which 97.4% were identified in the genome assembly. Chemosensory genes are vital for locating food: of the four main families, odorant-binding proteins, chemosensory proteins and olfactory receptors showed little difference, whereas gustatory receptors are greatly expanded in S. exigua. Examination of other polyphagous insects confirmed this difference from oligophagous congeners and further identified the bitter receptor subfamily as being particularly affected. CONCLUSION Our high-quality genome sequence for beet armyworm identified a key expansion of the bitter gustatory receptor subfamily in this and other pests that differs crucially from more benign relatives and offers insight into the biology and possible future means of control for these economically important insects.
Collapse
Affiliation(s)
- Bin Zhang
- Key Lab of Integrated Crop Pest Management of Shandong, China-Australia Joint Institute of Agricultural and Environmental Health, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Bo Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Cong Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Longsheng Xing
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zaiyuan Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Institute of Entomological Science, College of Agriculture, Yangtze University, Jingzhou, China
| | - Conghui Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hongxu Zhou
- Key Lab of Integrated Crop Pest Management of Shandong, China-Australia Joint Institute of Agricultural and Environmental Health, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Guiling Zheng
- Key Lab of Integrated Crop Pest Management of Shandong, China-Australia Joint Institute of Agricultural and Environmental Health, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jie Li
- Key Lab of Integrated Crop Pest Management of Shandong, China-Australia Joint Institute of Agricultural and Environmental Health, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jiachen Han
- Key Lab of Integrated Crop Pest Management of Shandong, China-Australia Joint Institute of Agricultural and Environmental Health, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qianlong Yu
- Key Lab of Integrated Crop Pest Management of Shandong, China-Australia Joint Institute of Agricultural and Environmental Health, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Chunhong Yang
- Key Lab of Integrated Crop Pest Management of Shandong, China-Australia Joint Institute of Agricultural and Environmental Health, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wanqiang Qian
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Fanghao Wan
- Key Lab of Integrated Crop Pest Management of Shandong, China-Australia Joint Institute of Agricultural and Environmental Health, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China; Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Changyou Li
- Key Lab of Integrated Crop Pest Management of Shandong, China-Australia Joint Institute of Agricultural and Environmental Health, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
20
|
Zhang S, Tang J, Li Y, Li D, Chen G, Chen L, Yang Z, He N. The silkworm gustatory receptor BmGr63 is dedicated to the detection of isoquercetin in mulberry. Proc Biol Sci 2022; 289:20221427. [DOI: 10.1098/rspb.2022.1427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gustatory systems in phytophagous insects are used to perceive feeding stimulants and deterrents, and are involved in insect decisions to feed on particular plants. During the process, gustatory receptors (Grs) can recognize diverse phytochemicals and provide a molecular basis for taste perception. The silkworm, as a representative Lepidoptera species, has developed a strong feeding preference for mulberry leaves. The mulberry-derived flavonoid glycoside, isoquercetin, is required to induce feeding behaviours. However, the corresponding Grs for isoquercetin and underlying molecular mechanisms remain unclear. In this study, we used molecular methods, voltage clamp recordings and feeding assays to identify silkworm BmGr63, which was tuned to isoquercetin. The use of qRT-PCR confirmed that
BmGr63
was highly expressed in the mouthpart of fourth and fifth instar larvae. Functional analysis showed that oocytes expressing
BmGr63
from the ‘bitter’ clade responded to mulberry extracts. Among 20 test chemicals, BmGr63 specifically recognized isoquercetin. The preference for isoquercetin was not observed in
BmGr63
knock-down groups. The tuning between BmGr63 and isoquercetin has been demonstrated, which is meaningful to explain the silkworm-mulberry feeding mechanism from molecular levels and thus provides evidence for further feeding relationship studies between phytophagous insects and host plants.
Collapse
Affiliation(s)
- Shaoyu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Jiaqi Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Yunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Dong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Guo Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Lin Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Zhen Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| |
Collapse
|
21
|
Functional analysis of a bitter gustatory receptor highly expressed in the larval maxillary galea of Helicoverpa armigera. PLoS Genet 2022; 18:e1010455. [PMID: 36206313 PMCID: PMC9581421 DOI: 10.1371/journal.pgen.1010455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/19/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Many plant secondary substances are feeding deterrents for insects and play a key role in the selection of host plants. The taste sensilla of phytophagous insects contain gustatory sensory neurons sensitive to deterrents but the molecular basis of deterrent chemoreception remains unknown. We investigated the function of Gr180, the most highly expressed bitter gustatory receptor in the maxillary galea of Helicoverpa armigera larvae. Functional analyses using the Xenopus oocyte expression system and two-electrode voltage clamp revealed that the oocytes expressing Gr180 responded to coumarin. Tip recording results showed that the medial sensilla styloconica of the maxilla of fifth instar larvae exhibited electrophysiological responses to coumarin. Two-choice feeding bioassays confirmed that coumarin inhibited larval feeding. A homozygous mutant strain of H. armigera with truncated Gr180 proteins (Gr180-/-) was established using the CRISPR-Cas9 system. The responses of the medial sensilla styloconica in Gr180-/- to coumarin were almost abolished, and the responses to sinigrin and strychnine were also significantly decreased. Knockout of Gr180 alleviated the feeding deterrent effects of coumarin, sinigrin, and strychnine. Thus, we conclude that Gr180 is a receptor responding to coumarin,and also participates in sensing sinigrin and strychnine. These results enhance our understanding of the gustatory sensing mechanisms of phytophagous insects to deterrents.
Collapse
|
22
|
Structural model for ligand binding and channel opening of an insect gustatory receptor. J Biol Chem 2022; 298:102573. [PMID: 36209821 PMCID: PMC9643425 DOI: 10.1016/j.jbc.2022.102573] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
Abstract
Insect gustatory receptors play roles in sensing tastants, such as sugars and bitter substances. We previously demonstrated that the BmGr9 silkworm gustatory receptor is a d-fructose–gated ion channel receptor. However, the molecular mechanism of how d-fructose could initiate channel opening were unclear. Herein, we present a structural model for a channel pore and a d-fructose–binding site in BmGr9. Since the membrane topology and oligomeric state of BmGr9 appeared to be similar to those of an insect odorant receptor coreceptor, Orco, we constructed a structural model of BmGr9 based on the cryo-EM Orco structure. Our site-directed mutagenesis data suggested that the transmembrane region 7 forms channel pore and controls channel gating. This model also suggested that a pocket formed by transmembrane helices 2 to 4 and 6 binds d-fructose. Using mutagenesis experiments in combination with docking simulations, we were able to determine the potent binding mode of d-fructose. Finally, based on these data, we propose a conformational change that leads to channel opening upon d-fructose binding. Taken together, these findings detail the molecular mechanism by which an insect gustatory receptor can be activated by its ligand molecule.
Collapse
|
23
|
Yin N, Xiao H, Yang A, Wu C, Liu N. Genome-Wide Analysis of Odorant and Gustatory Receptors in Six Papilio Butterflies (Lepidoptera: Papilionidae). INSECTS 2022; 13:779. [PMID: 36135480 PMCID: PMC9500883 DOI: 10.3390/insects13090779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
The chemical interactions of insects and host plants are shaping the evolution of chemosensory receptor gene families. However, the correlation between host range and chemoreceptor gene repertoire sizes is still elusive in Papilionidae. Here, we addressed the issue of whether host plant diversities are correlated with the expansions of odorant (ORs) or gustatory (GRs) receptors in six Papilio butterflies. By combining genomics, transcriptomics and bioinformatics approaches, 381 ORs and 328 GRs were annotated in the genomes of a generalist P. glaucus and five specialists, P. xuthus, P. polytes, P. memnon, P. machaon and P. dardanus. Orthologous ORs or GRs in Papilio had highly conserved gene structure. Five Papilio specialists exhibited a similar frequency of intron lengths for ORs or GRs, but which was different from those in the generalist. Phylogenetic analysis revealed 60 orthologous OR groups, 45 of which shared one-to-one relationships. Such a single gene in each butterfly also occurred in 26 GR groups. Intriguingly, bitter GRs had fewer introns than other GRs and clustered into a large clade. Focusing on the two chemoreceptor gene families in P. xuthus, most PxutORs (52/58) were expressed in antennae and 31 genes in reproductive tissues. Eleven out of 28 foretarsus-expressed PxutGRs were female-biased genes, as strong candidates for sensing oviposition stimulants. These results indicate that the host range may not shape the large-scale expansions of ORs and GRs in Papilio butterflies and identify important molecular targets involved in olfaction, oviposition or reproduction in P. xuthus.
Collapse
Affiliation(s)
| | | | | | | | - Naiyong Liu
- Correspondence: ; Tel./Fax: +86-871-63862665
| |
Collapse
|
24
|
Tom MT, Cortés Llorca L, Bucks S, Bisch-Knaden S, Hansson BS. Sex- and tissue-specific expression of chemosensory receptor genes in a hawkmoth. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.976521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For the nocturnal hawkmoth Manduca sexta, olfactory and gustatory cues are essential for finding partners, food, and oviposition sites. Three chemosensory receptor families, odorant receptors (ORs), ionotropic receptors (IRs), and gustatory receptors (GRs) are involved in the detection of these stimuli. While many chemosensory receptor genes have been identified, knowledge of their expression profile in potentially chemoreceptive organs is incomplete. Here, we studied the expression patterns of chemosensory receptors in different tissues including the antennae, labial palps, proboscis, legs, wings and ovipositor. We compared the receptors’ expression in female and male moths both before and after mating by using the NanoString platform. This tool allowed us to measure expression levels of chemosensory receptor genes in a single reaction using probes designed against 71 OR, 29 IR and 49 GR transcripts. In all tissues investigated, we detected expression of genes from all three receptor families. The highest number of receptors was detected in the antennae (92), followed by the ovipositor (59), while the least number was detected in the hindlegs (21). The highest number of OR genes were expressed in the antennae (63), of which 24 were specific to this main olfactory organ. The highest number of IRs were also expressed in the antennae (16), followed by the ovipositor (15). Likewise, antennae and ovipositor expressed the highest number of GRs (13 and 14). Expression of the OR co-receptor MsexORCo, presumably a prerequisite for OR function, was found in the antennae, labial palps, forelegs and ovipositor. IR co-receptors MsexIR25a and MsexIR76b were expressed across all tested tissues, while expression of the IR co-receptor MsexIR8a was restricted to antennae and ovipositor. Comparing the levels of all 149 transcripts across the nine tested tissues allowed us to identify sex-biased gene expression in the antennae and the legs, two appendages that are also morphologically different between the sexes. However, none of the chemosensory receptors was differentially expressed based on the moths’ mating state. The observed gene expression patterns form a strong base for the functional characterization of chemosensory receptors and the understanding of olfaction and gustation at the molecular level in M. sexta.
Collapse
|
25
|
Ai D, Dong C, Yang B, Yu C, Wang G. A fructose receptor gene influences development and feed intake in Helicoverpa armigera. INSECT SCIENCE 2022; 29:993-1005. [PMID: 34780113 DOI: 10.1111/1744-7917.12984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Gustatory receptors (GRs) are critical for multiple life activities of insects. Owing to the rapid development of genome and transcriptome sequencing, numerous insect GRs have been identified. However, the expression patterns and functions of these receptors are poorly understood. In this study, we analyzed the expression pattern of GRs in Helicoverpa armigera and found that the fructose receptor HarmGR9 was highly expressed in the foregut and abdomen. The function of HarmGR9 was identified using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system. Knockout of the HarmGR9 gene shortened the developmental period of the larval stages and increased food consumption in both larvae and adults. This study revealed the tissue distribution of sugar-sense-related receptors in H. armigera and thereby expanded the understanding of insect feeding regulation.
Collapse
Affiliation(s)
- Dong Ai
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenxi Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Caihong Yu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| |
Collapse
|
26
|
Meslin C, Mainet P, Montagné N, Robin S, Legeai F, Bretaudeau A, Johnston JS, Koutroumpa F, Persyn E, Monsempès C, François MC, Jacquin-Joly E. Spodoptera littoralis genome mining brings insights on the dynamic of expansion of gustatory receptors in polyphagous noctuidae. G3 (BETHESDA, MD.) 2022; 12:6598846. [PMID: 35652787 PMCID: PMC9339325 DOI: 10.1093/g3journal/jkac131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022]
Abstract
The bitter taste, triggered via gustatory receptors, serves as an important natural defense against the ingestion of poisonous foods in animals, and the increased host breadth is usually linked to an increase in the number of gustatory receptor genes. This has been especially observed in polyphagous insect species, such as noctuid species from the Spodoptera genus. However, the dynamic and physical mechanisms leading to these gene expansions and the evolutionary pressures behind them remain elusive. Among major drivers of genome dynamics are the transposable elements but, surprisingly, their potential role in insect gustatory receptor expansion has not been considered yet. In this work, we hypothesized that transposable elements and possibly positive selection would be involved in the highly dynamic evolution of gustatory receptor in Spodoptera spp. We first sequenced de novo the full 465 Mb genome of S. littoralis, and manually annotated the main chemosensory genes, including a large repertoire of 373 gustatory receptor genes (including 19 pseudogenes). We also improved the completeness of S. frugiperda and S. litura gustatory receptor gene repertoires. Then, we annotated transposable elements and revealed that a particular category of class I retrotransposons, the SINE transposons, was significantly enriched in the vicinity of gustatory receptor gene clusters, suggesting a transposon-mediated mechanism for the formation of these clusters. Selection pressure analyses indicated that positive selection within the gustatory receptor gene family is cryptic, only 7 receptors being identified as positively selected. Altogether, our data provide a new good quality Spodoptera genome, pinpoint interesting gustatory receptor candidates for further functional studies and bring valuable genomic information on the mechanisms of gustatory receptor expansions in polyphagous insect species.
Collapse
Affiliation(s)
- Camille Meslin
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France
| | - Pauline Mainet
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France
| | - Stéphanie Robin
- INRAE, UMR Institut de Génétique, Environnement et Protection des Plantes (IGEPP), BioInformatics Platform for Agroecosystems Arthropods (BIPAA), Campus Beaulieu, 35042 Rennes, France.,INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes 5042, France
| | - Fabrice Legeai
- INRAE, UMR Institut de Génétique, Environnement et Protection des Plantes (IGEPP), BioInformatics Platform for Agroecosystems Arthropods (BIPAA), Campus Beaulieu, 35042 Rennes, France.,INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes 5042, France
| | - Anthony Bretaudeau
- INRAE, UMR Institut de Génétique, Environnement et Protection des Plantes (IGEPP), BioInformatics Platform for Agroecosystems Arthropods (BIPAA), Campus Beaulieu, 35042 Rennes, France.,INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes 5042, France
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Fotini Koutroumpa
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France.,Present address: INRAE, Université Tours, Infectiologie et Santé Publique (ISP), 37380 Nouzilly, France
| | - Emma Persyn
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France.,CIRAD, UMR PVBMT, Réunion, France
| | - Christelle Monsempès
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France
| | - Marie-Christine François
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France
| |
Collapse
|
27
|
Crava CM, Bobkov YV, Sollai G, Anfora G, Crnjar R, Cattaneo AM. Chemosensory Receptors in the Larval Maxilla of Papilio hospiton. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.795994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Among the butterflies of the genus Papilio (Lepidoptera: Papilionidae), Papilio hospiton (Géné) has a geographical distribution limited to the Mediterranean islands of Sardinia (Italy) and Corsica (France). This is mainly due to the host range that includes only a few plant species of Apiaceae and Rutaceae growing on these islands. In a previous electrophysiological investigation conducted on the maxillary gustatory system of larvae of P. hospiton and its closely phylogenetically related species Papilio machaon, a significantly higher spike activity was shown for the gustatory neurons of lateral and medial styloconic sensilla in P. hospiton when bitter compounds were tested. This effect was possibly correlated to the limited host choice range for P. hospiton. To shed light on the molecular aspects of this phenomenon, we investigated the expression pattern of sensory-related sequences by conducting a transcriptomic analysis from total RNA isolates of P. hospiton larval maxillae. We identified several transcripts that may be involved in taste (one gustatory receptor, one divergent ionotropic receptor, and several transient receptor potential channels, TRPs) as well as transcripts supporting an olfactory function for this appendage, including odorant receptors (ORs), antennal ionotropic receptors (A-IRs), sensory neuron membrane proteins (SNMPs), and odorant-binding proteins (OBPs). We used Human Embryonic Kidney (HEK293A) cells to heterologously express two of the identified receptors, PhospOR1 and PhospPain, together with their orthologs from P. machaon, for functional characterization. While our data suggest no activation of these two receptors by the ligands known so far to activate the electrophysiological response in larval maxillary neurons of Papilio species, nor temperature activation of both Papilio TRPA-channel Painless, they represent the first attempt in connecting neuronal activity with their molecular bases to unravel diet specialization between closely related Papilio species.
Collapse
|
28
|
Wang ZQ, Wu C, Li GC, Nuo SM, Yin NN, Liu NY. Transcriptome Analysis and Characterization of Chemosensory Genes in the Forest Pest, Dioryctria abietella (Lepidoptera: Pyralidae). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.748199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In Lepidoptera, RNA sequencing has become a useful tool in identifying chemosensory genes from antennal transcriptomes, but little attention is paid to non-antennal tissues. Though the antennae are primarily responsible for olfaction, studies have found that a certain number of chemosensory genes are exclusively or highly expressed in the non-antennal tissues, such as proboscises, legs and abdomens. In this study, we report a global transcriptome of 16 tissues from Dioryctria abietella, including chemosensory and non-chemosensory tissues. Through Illumina sequencing, totally 952,658,466 clean reads were generated, summing to 142.90 gigabases of data. Based on the transcriptome, 235 chemosensory-related genes were identified, comprising 42 odorant binding proteins (OBPs), 23 chemosensory proteins (CSPs), 75 odorant receptors (ORs), 62 gustatory receptors (GRs), 30 ionotropic receptors (IRs), and 3 sensory neuron membrane proteins (SNMPs). Compared to a previous study in this species, 140 novel genes were found. A transcriptome-wide analysis combined with PCR results revealed that except for GRs, the majority of other five chemosensory gene families in Lepidoptera were expressed in the antennae, including 160 chemosensory genes in D. abietella. Using phylogenetic and expression profiling analyses, members of the six chemosensory gene repertoires were characterized, in which 11 DabiORs were candidates for detecting female sex pheromones in D. abietella, and DabiOR23 may be involved in the sensing of plant-derived phenylacetaldehyde. Intriguingly, more than half of the genes were detected in the proboscises, and one fourth of the genes were found to have the expression in the legs. Our study not only greatly extends and improves the description of chemosensory genes in D. abietella, but also identifies potential molecular targets involved in olfaction, gustation and non-chemosensory functions for control of this pest.
Collapse
|
29
|
Piron-Prunier F, Persyn E, Legeai F, McClure M, Meslin C, Robin S, Alves-Carvalho S, Mohammad A, Blugeon C, Jacquin-Joly E, Montagné N, Elias M, Gauthier J. Comparative transcriptome analysis at the onset of speciation in a mimetic butterfly-The Ithomiini Melinaea marsaeus. J Evol Biol 2021; 34:1704-1721. [PMID: 34570954 DOI: 10.1111/jeb.13940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 11/28/2022]
Abstract
Ecological speciation entails divergent selection on specific traits and ultimately on the developmental pathways responsible for these traits. Selection can act on gene sequences but also on regulatory regions responsible for gene expression. Mimetic butterflies are a relevant system for speciation studies because wing colour pattern (WCP) often diverges between closely related taxa and is thought to drive speciation through assortative mating and increased predation on hybrids. Here, we generate the first transcriptomic resources for a mimetic butterfly of the tribe Ithomiini, Melinaea marsaeus, to examine patterns of differential expression between two subspecies and between tissues that express traits that likely drive reproductive isolation; WCP and chemosensory genes. We sequenced whole transcriptomes of three life stages to cover a large catalogue of transcripts, and we investigated differential expression between subspecies in pupal wing discs and antennae. Eighteen known WCP genes were expressed in wing discs and 115 chemosensory genes were expressed in antennae, with a remarkable diversity of chemosensory protein genes. Many transcripts were differentially expressed between subspecies, including two WCP genes and one odorant receptor. Our results suggest that in M. marsaeus the same genes as in other mimetic butterflies are involved in traits causing reproductive isolation, and point at possible candidates for the differences in those traits between subspecies. Differential expression analyses of other developmental stages and body organs and functional studies are needed to confirm and expand these results. Our work provides key resources for comparative genomics in mimetic butterflies, and more generally in Lepidoptera.
Collapse
Affiliation(s)
- Florence Piron-Prunier
- Institut de Systématique, Evolution, Biodiversité, MNHN, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Emma Persyn
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | - Fabrice Legeai
- BIPAA, IGEPP, INRAE, Institut Agro, Univ Rennes, Rennes, France.,Univ Rennes, INRIA, CNRS, IRISA, Rennes, France
| | - Melanie McClure
- Institut de Systématique, Evolution, Biodiversité, MNHN, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.,Laboratoire Écologie, Évolution,Interactions des Systèmes Amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, Cayenne, France
| | - Camille Meslin
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | - Stéphanie Robin
- BIPAA, IGEPP, INRAE, Institut Agro, Univ Rennes, Rennes, France.,Univ Rennes, INRIA, CNRS, IRISA, Rennes, France
| | | | - Ammara Mohammad
- Département de Biologie, Genomics Core Facility, Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Corinne Blugeon
- Département de Biologie, Genomics Core Facility, Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | - Nicolas Montagné
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | - Marianne Elias
- Institut de Systématique, Evolution, Biodiversité, MNHN, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Jérémy Gauthier
- Univ Rennes, INRIA, CNRS, IRISA, Rennes, France.,Geneva Natural History Museum, Geneva, Switzerland
| |
Collapse
|
30
|
Identification and expression profiling of chemosensory membrane protein genes in Achelura yunnanensis (Lepidoptera: Zygaenidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100876. [PMID: 34246924 DOI: 10.1016/j.cbd.2021.100876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 11/20/2022]
Abstract
During the past decade, antennal transcriptome sequencing has been applied to at least 50 species from 16 families of the Lepidoptera order of insects, emphasizing the identification and characterization of chemosensory-related genes. However, little is known about the chemosensory genes in the Zygaenidae family of Lepidoptera. Herein, we report the transmembrane protein gene repertoires involved in chemoreception from Achelura yunnanensis (Lepidoptera: Zygaenidae) through transcriptome sequencing, bioinformatics, phylogenetics and polymerase chain reaction (PCR) approaches. Transcriptome analysis led to the generation of 555.47 million clean reads and accumulation of 83.30 gigabases of data. From this transcriptome, 132 transcripts encoding 69 odorant receptors (ORs), 33 gustatory receptors (GRs), 26 ionotropic receptors (IRs), and four sensory neuron membrane proteins (SNMPs) were identified, 69 of which were full-length sequences. Notably, the number of SNMPs in A. yunnanensis was the largest set in Lepidoptera to date. Phylogenetic analysis combined with sequence homology highlighted several conserved groups of chemoreceptors, including pheromone receptors (a so-called pheromone receptor (PR) clade: AyunOR50 and novel PR members: AyunOR39 and OR40), a phenylacetaldehyde-sensing OR (AyunOR28), carbon dioxide receptors (AyunGR1-3), and antennal IRs (13 A-IRs). In addition, a Zygaenidae-specific OR expansion was observed, including 15 A. yunnanensis members. Expression profiles revealed 99 detectable chemosensory genes in the antennae and 20 in the reproductive tissues, some of which displayed a sex-biased expression. This study identifies potential olfactory molecular candidates for sensing sex pheromones, phenylacetaldehyde or other odorants, and provides preliminary evidence for the putative reproductive function of chemosensory membrane protein genes in A. yunnanensis.
Collapse
|
31
|
Shii F, Mang D, Kasubuchi M, Tsuneto K, Toyama T, Endo H, Sasaki K, Sato R. Ultrasensitive detection by maxillary palp neurons allows non-host recognition without consumption of harmful allelochemicals. JOURNAL OF INSECT PHYSIOLOGY 2021; 132:104263. [PMID: 34052304 DOI: 10.1016/j.jinsphys.2021.104263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Most lepidopteran insect larvae exhibit stepwise feeding behaviors, such as palpation using the maxillary palps (MPs) followed by test biting and persistent biting. However, the purpose of palpation has been unclear. In particular, nothing is known about the neurons in the MP and their mode of recognition of undesired plants, although such neurons have been suggested to exist. In this study, we used larvae of the stenophagous insect Bombyx mori and compared the roles of palpation and test biting in the selection of feeding behavior. When the larvae were given non-host plant leaves, they did not initiate test biting, indicating that non-host plant leaves were recognized via palpation without biting, and that this behavior resulted in a lack of persistent biting, as the leaves were judged non-suitable for consumption. Surface extracts of inedible leaves significantly suppressed test biting of mulberry leaves, a host plant of B. mori, suggesting that secondary metabolites on the leaf surface of inedible leaves function as test biting suppressors, even when another conditions are suitable for test biting. The allelochemical coumarin, which is found in the inedible leaves of cherry, Cerasus speciosa, significantly suppressed test biting of mulberry leaves, suggesting that coumarin is a possible deterrent to the eating of cherry leaves. Using the electrophysiological method of tip recording and a leaf-surface extract as the test material, leaf-surface compound-responsive neurons were identified in the MP. In addition, several neurons that respond to coumarin in the attomolar range were identified, suggesting that the larvae use ultrasensitive neurons in the MP to recognize inedible leaves. In the HEK293T cell heterologous expression system, the B. mori gustatory receptors BmGr53 and BmGr19, which were previously found to be expressed in the MP and to respond to coumarin in the attomolar range, responded to a leaf-surface extract of C. speciosa, suggesting that these receptors may be present on the inedible-leaf-recognizing neurons of the MP. These findings suggest that ultrasensitive plant secondary metabolite-recognizing neurons in the MP allow for the recognition of non-host plants via palpation without risking damage caused by ingesting harmful allelochemicals.
Collapse
Affiliation(s)
- Fumika Shii
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Dingze Mang
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Mayu Kasubuchi
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Kana Tsuneto
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Tomoko Toyama
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Haruka Endo
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Ken Sasaki
- Graduate School of Agriculture, Tamagawa University, Tamagawagakuen 6-1-1, Machida, Tokyo 194-8610, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
32
|
Zhang J, Li S, Li W, Chen Z, Guo H, Liu J, Xu Y, Xiao Y, Zhang L, Arunkumar KP, Smagghe G, Xia Q, Goldsmith MR, Takeda M, Mita K. Circadian regulation of night feeding and daytime detoxification in a formidable Asian pest Spodoptera litura. Commun Biol 2021; 4:286. [PMID: 33674721 PMCID: PMC7935888 DOI: 10.1038/s42003-021-01816-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/08/2021] [Indexed: 01/08/2023] Open
Abstract
Voracious feeding, trans-continental migration and insecticide resistance make Spodoptera litura among the most difficult Asian agricultural pests to control. Larvae exhibit strong circadian behavior, feeding actively at night and hiding in soil during daytime. The daily pattern of larval metabolism was reversed, with higher transcription levels of genes for digestion (amylase, protease, lipase) and detoxification (CYP450s, GSTs, COEs) in daytime than at night. To investigate the control of these processes, we annotated nine essential clock genes and analyzed their transcription patterns, followed by functional analysis of their coupling using siRNA knockdown of interlocked negative feedback system core and repressor genes (SlituClk, SlituBmal1 and SlituCwo). Based on phase relationships and overexpression in cultured cells the controlling mechanism seems to involve direct coupling of the circadian processes to E-boxes in responding promoters. Additional manipulations involving exposure to the neonicotinoid imidacloprid suggested that insecticide application must be based on chronotoxicological considerations for optimal effectiveness. Zhang et al. show that the circadian gene coupling between night feeding and day detoxification is regulated through the binding of circadian elements to E-boxes in Spodoptera litura, one of the most difficult Asian agricultural pests to control. Exposure of these larvae to a pesticide affects them more at night than during the day, suggesting the need for time-of-day considerations for pesticide application.
Collapse
Affiliation(s)
- Jiwei Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Shenglong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Wanshun Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Zhiwei Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Huizhen Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Jianqiu Liu
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Yajing Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Yingdan Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Liying Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Kallare P Arunkumar
- Central Muga Eri Research and Training Institute, (CMER&TI), Central Silk Board, Lahdoigarh, Jorhat, India
| | - Guy Smagghe
- College of Plant Protection and Academy of Agricultural Sciences, Southwest University, Chongqing, China.,Department of Plants and Crops, Laboratory of Agrozoology and International Joint China-Belgium Laboratory on Sustainable Control of Crop Pests, Ghent University, Ghent, Belgium
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Marian R Goldsmith
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA.
| | - Makio Takeda
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| | - Kazuei Mita
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China. .,Biological Science Research Center, Southwest University, Chongqing, China.
| |
Collapse
|
33
|
Obiero GF, Pauli T, Geuverink E, Veenendaal R, Niehuis O, Große-Wilde E. Chemoreceptor Diversity in Apoid Wasps and Its Reduction during the Evolution of the Pollen-Collecting Lifestyle of Bees (Hymenoptera: Apoidea). Genome Biol Evol 2021; 13:6117318. [PMID: 33484563 PMCID: PMC8011036 DOI: 10.1093/gbe/evaa269] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Chemoreceptors help insects to interact with their environment, to detect and assess food sources and oviposition sites, and to aid in intra- and interspecific communication. In Hymenoptera, species of eusocial lineages possess large chemoreceptor gene repertoires compared with solitary species, possibly because of their additional need to recognize nest-mates and caste. However, a critical piece of information missing so far has been the size of chemoreceptor gene repertoires of solitary apoid wasps. Apoid wasps are a paraphyletic group of almost exclusively solitary Hymenoptera phylogenetically positioned between ant and bee, both of which include eusocial species. We report the chemosensory-related gene repertoire sizes of three apoid wasps: Ampulex compressa, Cerceris arenaria, and Psenulus fuscipennis. We annotated genes encoding odorant (ORs), gustatory, and ionotropic receptors and chemosensory soluble proteins and odorant-binding proteins in transcriptomes of chemosensory tissues of the above three species and in early draft genomes of two species, A. compressa and C. arenaria. Our analyses revealed that apoid wasps possess larger OR repertoires than any bee lineage, that the last common ancestor of Apoidea possessed a considerably larger OR repertoire (∼160) than previously estimated (73), and that the expansion of OR genes in eusocial bees was less extensive than previously assumed. Intriguingly, the evolution of pollen-collecting behavior in the stem lineage of bees was associated with a notable loss of OR gene diversity. Thus, our results support the view that herbivorous Hymenoptera tend to possess smaller OR repertoires than carnivorous, parasitoid, or kleptoparasitic species.
Collapse
Affiliation(s)
- George F Obiero
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany.,School of Biological and Life Sciences, The Technical University of Kenya, Nairobi, Kenya
| | - Thomas Pauli
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University of Freiburg, Germany
| | - Elzemiek Geuverink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | | | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University of Freiburg, Germany
| | - Ewald Große-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany.,EXTEMIT-K, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Praha-Suchdol, Czech Republic
| |
Collapse
|
34
|
Yang K, Gong XL, Li GC, Huang LQ, Ning C, Wang CZ. A gustatory receptor tuned to the steroid plant hormone brassinolide in Plutella xylostella (Lepidoptera: Plutellidae). eLife 2020; 9:64114. [PMID: 33305735 PMCID: PMC7806260 DOI: 10.7554/elife.64114] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/10/2020] [Indexed: 01/18/2023] Open
Abstract
Feeding and oviposition deterrents help phytophagous insects to identify host plants. The taste organs of phytophagous insects contain bitter gustatory receptors (GRs). To explore their function, the GRs in Plutella xylostella were analyzed. Through RNA sequencing and qPCR, we detected abundant PxylGr34 transcripts in the larval head and adult antennae. Functional analyses using the Xenopus oocyte expression system and 24 diverse phytochemicals showed that PxylGr34 is tuned to the canonical plant hormones brassinolide (BL) and 24-epibrassinolide (EBL). Electrophysiological analyses revealed that the medial sensilla styloconica of 4th instar larvae are responsive to BL and EBL. Dual-choice bioassays demonstrated that BL inhibits larval feeding and female oviposition. Knock-down of PxylGr34 by RNAi attenuates the taste responses to BL, and abolishes BL-induced feeding inhibition. These results increase our understanding of how herbivorous insects detect compounds that deter feeding and oviposition, and may be useful for designing plant hormone-based pest management strategies. Plant-eating insects use their sense of taste to decide where to feed and where to lay their eggs. They do this using taste sensors called gustatory receptors which reside in the antennae and legs of adults, and in the mouthparts of larvae. Some of these sensors detect sugars which signal to the insect that the plant is a nutritious source of food. While others detect bitter compounds, such as poisons released by plants in self-defense. One of the most widespread plant-eating insects is the diamondback moth, which feeds and lays its eggs on cruciferous vegetable crops, like cabbage, oilseed rape and broccoli. Before laying its eggs, female diamondback moths pat the vegetable’s leaves with their antennae, tasting for the presence of chemicals. But little was known about the identity of these chemicals. Cabbages produce large amounts of a hormone called brassinolide, which is known to play a role in plant growth. To find out whether diamondback moths can taste this hormone, Yang et al. examined all their known gustatory receptors. This revealed that the adult antennae and larval mouthparts of these moths make high levels of a receptor called PxylGr34. To investigate the role of PxylGr34, Yang et al. genetically modified frog eggs to produce this receptor. Various tests on these receptors, as well as receptors in the mouthparts of diamondback larvae, showed that PxylGr34 is able to sense the hormone brassinolide. To find out how this affects the behavior of the moths, Yang et al. investigated how adults and larvae responded to different levels of the hormone. This revealed that the presence of brassinolide significantly decreased both larval feeding and the amount of eggs laid by adult moths. Farmers already use brassinolide to enhance plant growth and protect crops from stress. These results suggest that the hormone might also help to shield plants from insect damage. However, more research is needed to understand how this hormone acts as a deterrent. Further studies could improve understanding of insect behavior and potentially identify more chemicals that can be used for pest control.
Collapse
Affiliation(s)
- Ke Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Lin Gong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guo-Cheng Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chao Ning
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Xu W. How do moth and butterfly taste?-Molecular basis of gustatory receptors in Lepidoptera. INSECT SCIENCE 2020; 27:1148-1157. [PMID: 31433559 PMCID: PMC7687262 DOI: 10.1111/1744-7917.12718] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/21/2019] [Accepted: 08/10/2019] [Indexed: 05/04/2023]
Abstract
Insect gustatory system plays a central role in guiding insect feeding behaviors, insect-plant interactions and coevolutions. Gustatory receptors (GRs) form the interface between the insect taste system and their environment. Previously, most studies on insect GRs are focused on Drosophila; much less attention has been paid to Lepidoptera species, which consist of a large number of serious agricultural crop pests. With the exceptional advances in the next generation sequencing (NGS), cellular biology, RNA interference (RNAi), and clustered regularly interspaced short palindromic repeats (CRISPR) technologies in recent years, extraordinary progresses have been achieved elucidating the molecular mechanisms of Lepidopteran GRs. In this review, we highlighted these advances, discussed what these advances have revealed and provide our new insights into this field.
Collapse
Affiliation(s)
- Wei Xu
- Agricultural SciencesCollege of Science, Health, Engineering and Education, Murdoch UniversityWAAustralia
| |
Collapse
|
36
|
Llopis-Giménez A, Carrasco-Oltra T, Jacquin-Joly E, Herrero S, Crava CM. Coupling Transcriptomics and Behaviour to Unveil the Olfactory System of Spodoptera exigua Larvae. J Chem Ecol 2020; 46:1017-1031. [PMID: 33150456 DOI: 10.1007/s10886-020-01224-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/14/2020] [Accepted: 10/06/2020] [Indexed: 01/28/2023]
Abstract
Insect chemosensation is crucial for many aspects related to food seeking, enemy avoidance, and reproduction. Different families of receptors and binding proteins interact with chemical stimuli, including odorant receptors (ORs), ionotropic receptors (IRs), gustatory receptors (GRs), odorant binding proteins (OBPs) and chemosensory proteins (CSPs). In this work, we describe the chemosensory-related gene repertoire of the worldwide pest Spodoptera exigua (Lepidoptera: Noctuidae), focusing on the transcripts expressed in larvae, which feed on many horticultural crops producing yield losses. A comprehensive de novo assembly that includes reads from chemosensory organs of larvae and adults, and other larval tissues, enabled us to annotate 200 candidate chemosensory-related genes encoding 63 ORs, 28 IRs, 38 GRs, 48 OBPs and 23 CSPs. Of them, 51 transcripts are new annotations. Fifty ORs are expressed in larval heads based on RNA-seq and reverse transcription PCR analyses. Fourteen OBPs are expressed in larval, but not in adult heads. We also observe that expression profiles of ORs are strongly and non-specifically up-regulated upon pre-exposure of larvae to single volatile organic compounds (VOCs). Finally, we develop a behavioural assay to study the attraction/repellence to VOCs in S. exigua larvae and thus identify candidate ecologically relevant odours. A single-dose assay demonstrated that 1-hexanol triggers attraction and indole repels larvae at any timepoint. This work establishes the foundation for the study of chemosensation in S. exigua larvae, allowing further studies aimed to characterize chemosensory-related genes that underlie the ecologically relevant behaviours of larvae.
Collapse
Affiliation(s)
- Angel Llopis-Giménez
- Department of Genetics and Institut Universitari de Biotecnología i Biomedicina (BIOTECMED), Universitat de València, Dr Moliner 50, 46100, Burjassot, Spain
| | - Tamara Carrasco-Oltra
- Department of Genetics and Institut Universitari de Biotecnología i Biomedicina (BIOTECMED), Universitat de València, Dr Moliner 50, 46100, Burjassot, Spain
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, University P7, F-78000, Versailles, France
| | - Salvador Herrero
- Department of Genetics and Institut Universitari de Biotecnología i Biomedicina (BIOTECMED), Universitat de València, Dr Moliner 50, 46100, Burjassot, Spain.
| | - Cristina M Crava
- Department of Genetics and Institut Universitari de Biotecnología i Biomedicina (BIOTECMED), Universitat de València, Dr Moliner 50, 46100, Burjassot, Spain.
| |
Collapse
|
37
|
Yang H, Dong J, Sun YL, Hu Z, Lyu QH, Li D. Identification and expression profiles of candidate chemosensory receptors in Histia rhodope (Lepidoptera: Zygaenidae). PeerJ 2020; 8:e10035. [PMID: 33024644 PMCID: PMC7520089 DOI: 10.7717/peerj.10035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
Insect olfaction and vision play important roles in survival and reproduction. Diurnal butterflies mainly rely on visual cues whereas nocturnal moths rely on olfactory signals to locate external resources. Histia rhodope Cramer (Lepidoptera: Zygaenidae) is an important pest of the landscape tree Bischofia polycarpa in China and other Southeast Asian regions. As a diurnal moth, H. rhodope represents a suitable model for studying the evolutionary shift from olfactory to visual communication. However, only a few chemosensory soluble proteins have been characterized and information on H. rhodope chemoreceptor genes is currently lacking. In this study, we identified 45 odorant receptors (ORs), nine ionotropic receptors (IRs), eight gustatory receptors (GRs) and two sensory neuron membrane proteins (SNMPs) from our previously acquired H. rhodope antennal transcriptomic data. The number of chemoreceptors of H. rhodope was less compared with that found in many nocturnal moths. Some specific chemoreceptors such as OR co-receptor (ORco), ionotropic receptors co-receptor, CO2 receptors, sugar receptors and bitter receptors were predicted by phylogenetic analysis. Notably, two candidate pheromone receptors (PRs) were identified within a novel PR lineage. qRT-PCR results showed that almost all tested genes (22/24) were predominantly expressed in antennae, indicating that they may be important in olfactory function. Among these antennae-enriched genes, six ORs, five IRs and two GRs displayed female-biased expression, while two ORs displayed male-biased expression. Additionally, HrhoIR75q.2 and HrhoGR67 were more highly expressed in heads and legs. This study enriches the olfactory gene inventory of H. rhodope and provides the foundation for further research of the chemoreception mechanism in diurnal moths.
Collapse
Affiliation(s)
- Haibo Yang
- College of Forestry, Henan University of Science and Technology, Luoyang, Henan, China
| | - Junfeng Dong
- College of Forestry, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ya-Lan Sun
- College of Forestry, Henan University of Science and Technology, Luoyang, Henan, China
| | - Zhenjie Hu
- College of Forestry, Henan University of Science and Technology, Luoyang, Henan, China
| | - Qi-Hui Lyu
- College of Forestry, Henan University of Science and Technology, Luoyang, Henan, China
| | - Dingxu Li
- College of Forestry, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
38
|
Lim S, Jung J, Yunusbaev U, Ilyasov R, Kwon HW. Characterization and its implication of a novel taste receptor detecting nutrients in the honey bee, Apis mellifera. Sci Rep 2019; 9:11620. [PMID: 31406120 PMCID: PMC6690930 DOI: 10.1038/s41598-019-46738-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 07/02/2019] [Indexed: 11/20/2022] Open
Abstract
Umami taste perception indicates the presence of amino acids, which are essential nutrients. Although the physiology of umami perception has been described in mammals, how insects detect amino acids remains unknown except in Drosophila melanogaster. We functionally characterized a gustatory receptor responding to L-amino acids in the western honey bee, Apis mellifera. Using a calcium-imaging assay and two-voltage clamp recording, we found that one of the honey bee's gustatory receptors, AmGr10, functions as a broadly tuned amino acid receptor responding to glutamate, aspartate, asparagine, arginine, lysine, and glutamine, but not to other sweet or bitter compounds. Furthermore, the sensitivity of AmGr10 to these L-amino acids was dramatically enhanced by purine ribonucleotides, like inosine-5'-monophosphate (IMP). Contact sensory hairs in the mouthpart of the honey bee responded strongly to glutamate and aspartate, which house gustatory receptor neurons expressing AmGr10. Interestingly, AmGr10 protein is highly conserved among hymenopterans but not other insects, implying unique functions in eusocial insects.
Collapse
Affiliation(s)
- Sooho Lim
- Department of Life Sciences & Convergence Research Center for Insect Vectors, College of Life Science and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Jewon Jung
- Department of Life Sciences & Convergence Research Center for Insect Vectors, College of Life Science and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Ural Yunusbaev
- Department of Life Sciences & Convergence Research Center for Insect Vectors, College of Life Science and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa, Russia
| | - Rustem Ilyasov
- Department of Life Sciences & Convergence Research Center for Insect Vectors, College of Life Science and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa, Russia
| | - Hyung Wook Kwon
- Department of Life Sciences & Convergence Research Center for Insect Vectors, College of Life Science and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
| |
Collapse
|
39
|
Chen WW, Kang K, Yang P, Zhang WQ. Identification of a sugar gustatory receptor and its effect on fecundity of the brown planthopper Nilaparvata lugens. INSECT SCIENCE 2019; 26:441-452. [PMID: 29178612 DOI: 10.1111/1744-7917.12562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
In insects, the gustatory system plays a crucial role in multiple physiological behaviors, including feeding, toxin avoidance, courtship, mating and oviposition. Gustatory stimuli from the environment are recognized by gustatory receptors. To date, little is known about the function of gustatory receptors in agricultural pest insects. In this study, we cloned a sugar gustatory receptor gene, NlGr11, from the brown planthopper (BPH), Nilaparvata lugens (Stål), a serious pest of rice in Asia; we then identified its ligands, namely, fructose, galactose and arabinose, by calcium imaging assay. After injection of NlGr11 double-stranded RNA, we found that the number of eggs laid by BPH decreased. Moreover, we found that NlGr11 inhibited the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and promoted the phosphorylation of protein kinase B (AKT). These findings demonstrated that NlGr11 could accelerate the fecundity of BPH through AMPK- and AKT-mediated signaling pathways. This is the first report to indicate that a gustatory receptor modulates the fecundity of insects and that the receptor could be a potential target for pest control.
Collapse
Affiliation(s)
- Wei-Wen Chen
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kui Kang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pan Yang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Qing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
40
|
Kawamoto M, Jouraku A, Toyoda A, Yokoi K, Minakuchi Y, Katsuma S, Fujiyama A, Kiuchi T, Yamamoto K, Shimada T. High-quality genome assembly of the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 107:53-62. [PMID: 30802494 DOI: 10.1016/j.ibmb.2019.02.002] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 05/21/2023]
Abstract
In 2008, the genome assembly and gene models for the domestic silkworm, Bombyx mori, were published by a Japanese and Chinese collaboration group. However, the genome assembly contains a non-negligible number of misassembled and gap regions due to the presence of many repetitive sequences within the silkworm genome. The erroneous genome assembly occasionally causes incorrect gene prediction. Here we performed hybrid assembly based on 140 × deep sequencing of long (PacBio) and short (Illumina) reads. The remaining gaps in the initial genome assembly were closed using BAC and Fosmid sequences, giving a new total length of 460.3 Mb, with 30 gap regions and an N50 comprising 16.8 Mb in scaffolds and 12.2 Mb in contigs. More RNA-seq and piRNA-seq reads were mapped on the new genome assembly compared with the previous version, indicating that the new genome assembly covers more transcribed regions, including repetitive elements. We performed gene prediction based on the new genome assembly using available mRNA and protein sequence data. The number of gene models was 16,880 with an N50 of 2154 bp. The new gene models reflected more accurate coding sequences and gene sets than old ones. The proportion of repetitive elements was also reestimated using the new genome assembly, and was calculated to be 46.8% in the silkworm genome. The new genome assembly and gene models are provided in SilkBase (http://silkbase.ab.a.u-tokyo.ac.jp).
Collapse
Affiliation(s)
- Munetaka Kawamoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Akiya Jouraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan; Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Kakeru Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Yohei Minakuchi
- Comparative Genomics Laboratory, Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan; Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Kimiko Yamamoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan.
| | - Toru Shimada
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
41
|
Zhang ZJ, Zhang SS, Niu BL, Ji DF, Liu XJ, Li MW, Bai H, Palli SR, Wang CZ, Tan AJ. A determining factor for insect feeding preference in the silkworm, Bombyx mori. PLoS Biol 2019; 17:e3000162. [PMID: 30811402 PMCID: PMC6411195 DOI: 10.1371/journal.pbio.3000162] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/11/2019] [Accepted: 02/08/2019] [Indexed: 12/24/2022] Open
Abstract
Feeding preference is critical for insect adaptation and survival. However, little is known regarding the determination of insect feeding preference, and the genetic basis is poorly understood. As a model lepidopteran insect with economic importance, the domesticated silkworm, Bombyx mori, is a well-known monophagous insect that predominantly feeds on fresh mulberry leaves. This species-specific feeding preference provides an excellent model for investigation of host-plant selection of insects, although the molecular mechanism underlying this phenomenon remains unknown. Here, we describe the gene GR66, which encodes a putative bitter gustatory receptor (GR) that is responsible for the mulberry-specific feeding preference of B. mori. With the aid of a transposon-based, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) system, the GR66 locus was genetically mutated, and homozygous mutant silkworm strains with truncated gustatory receptor 66 (GR66) proteins were established. GR66 mutant larvae acquired new feeding activity, exhibiting the ability to feed on a number of plant species in addition to mulberry leaves, including fresh fruits and grain seeds that are not normally consumed by wild-type (WT) silkworms. Furthermore, a feeding choice assay revealed that the mutant larvae lost their specificity for mulberry. Overall, our findings provide the first genetic and phenotypic evidences that a single bitter GR is a major factor affecting the insect feeding preference.
Collapse
Affiliation(s)
- Zhong-Jie Zhang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Shuai-Shuai Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bao-Long Niu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Dong-Feng Ji
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiao-Jing Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Mu-Wang Li
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - An-Jiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
42
|
Identification of candidate chemosensory receptors in the antennal transcriptome of the large black chafer Holotrichia parallela Motschulsky (Coleoptera: Scarabaeidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:63-71. [DOI: 10.1016/j.cbd.2018.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/28/2018] [Accepted: 06/20/2018] [Indexed: 11/19/2022]
|
43
|
Suzuki HC, Ozaki K, Makino T, Uchiyama H, Yajima S, Kawata M. Evolution of Gustatory Receptor Gene Family Provides Insights into Adaptation to Diverse Host Plants in Nymphalid Butterflies. Genome Biol Evol 2018; 10:1351-1362. [PMID: 29788112 PMCID: PMC6007367 DOI: 10.1093/gbe/evy093] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2018] [Indexed: 12/16/2022] Open
Abstract
The host plant range of herbivorous insects is a major aspect of insect–plant interaction, but the genetic basis of host range expansion in insects is poorly understood. In butterflies, gustatory receptor genes (GRs) play important roles in host plant selection by ovipositing females. Since several studies have shown associations between the repertoire sizes of chemosensory gene families and the diversity of resource use, we hypothesized that the increase in the number of genes in the GR family is associated with host range expansion in butterflies. Here, we analyzed the evolutionary dynamics of GRs among related species, including the host generalist Vanessa cardui and three specialists. Although the increase of the GR repertoire itself was not observed, we found that the gene birth rate of GRs was the highest in the lineage leading to V. cardui compared with other specialist lineages. We also identified two taxon-specific subfamilies of GRs, characterized by frequent lineage-specific duplications and higher non-synonymous substitution rates. Together, our results suggest that frequent gene duplications in GRs, which might be involved in the detection of plant secondary metabolites, were associated with host range expansion in the V. cardui lineage. These evolutionary patterns imply that the capability to perceive various compounds during host selection was favored during adaptation to diverse host plants.
Collapse
Affiliation(s)
- Hiromu C Suzuki
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hironobu Uchiyama
- NODAI Genome Research Center, Tokyo University of Agriculture, Japan
| | - Shunsuke Yajima
- NODAI Genome Research Center, Tokyo University of Agriculture, Japan.,Department of Bioscience, Tokyo University of Agriculture, Japan
| | - Masakado Kawata
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
44
|
Wada-Katsumata A, Robertson HM, Silverman J, Schal C. Changes in the Peripheral Chemosensory System Drive Adaptive Shifts in Food Preferences in Insects. Front Cell Neurosci 2018; 12:281. [PMID: 30210303 PMCID: PMC6123360 DOI: 10.3389/fncel.2018.00281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/09/2018] [Indexed: 12/17/2022] Open
Abstract
A key challenge in understanding the evolution of animal behaviors is to identify cellular and molecular mechanisms that underlie the evolution of adaptive traits and behaviors in polymorphic populations under local selection pressures. Despite recent advances in fish, mice, and insects, there are still only a few compelling examples of major genes and cellular mechanisms associated with complex behavioral changes. Shifts in food or host preferences in insects, accompanied by changes in the peripheral chemosensory system, offer some of the best examples of adaptive behavioral evolution. A remarkable example is the German cockroach, Blattella germanica, a major indoor pest with a highly diverse omnivorous diet. Strong and persistent selection pressure with toxic-baits has induced rapid evolution of behavioral resistance in multiple cockroach populations. While typical cockroaches detect and accept the sugar glucose as a feeding-stimulant, behaviorally resistant cockroaches avoid eating glucose-containing toxic baits by sensing glucose as a deterrent. We review the peripheral gustatory neural mechanisms of glucose-aversion and discuss how the rapid emergence of taste polymorphisms can impede pest control efforts and affect foraging and mate-choice in adapted cockroach populations.
Collapse
Affiliation(s)
- Ayako Wada-Katsumata
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jules Silverman
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
45
|
Gong J, Cheng T, Wu Y, Yang X, Feng Q, Mita K. Genome-wide patterns of copy number variations in Spodoptera litura. Genomics 2018; 111:1231-1238. [PMID: 30114452 DOI: 10.1016/j.ygeno.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/26/2018] [Accepted: 08/04/2018] [Indexed: 01/06/2023]
Abstract
Spodoptera litura is a polyphagous pest and can feed on more than 100 species of plants, causing great damage to agricultural production. The SNP results showed that there were gene exchanges between different regions. To explore the variations of larger segments in S. litura genome, we used genome resequencing samples from 14 regions of China, India, and Japan to study the copy number variations (CNVs). We identified 3976 CNV events and 1581 unique copy number variation regions (CNVRs) occupying the 108.5 Mb genome of S. litura. A total of 5527 genes that overlapped with CNVRs were detected. Selection signal analysis identified 19 shared CNVRs and 105 group-specific CNVRs, whose related genes were involved in various biological processes in S. litura. We constructed the first CNVs map in S. litura genome, and our findings will be valuable for understanding the genomic variations and population differences of S. litura.
Collapse
Affiliation(s)
- Jiao Gong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400715, China.
| | - Yuqian Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Xi Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Qili Feng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, South China Normal University, Guangzhou 510631, China
| | - Kazuei Mita
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| |
Collapse
|
46
|
Kasubuchi M, Shii F, Tsuneto K, Yamagishi T, Adegawa S, Endo H, Sato R. Insect taste receptors relevant to host identification by recognition of secondary metabolite patterns of non-host plants. Biochem Biophys Res Commun 2018; 499:901-906. [DOI: 10.1016/j.bbrc.2018.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022]
|
47
|
Zhang YN, Qian JL, Xu JW, Zhu XY, Li MY, Xu XX, Liu CX, Xue T, Sun L. Identification of Chemosensory Genes Based on the Transcriptomic Analysis of Six Different Chemosensory Organs in Spodoptera exigua. Front Physiol 2018; 9:432. [PMID: 29740343 PMCID: PMC5928209 DOI: 10.3389/fphys.2018.00432] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/06/2018] [Indexed: 12/25/2022] Open
Abstract
Insects have a complex chemosensory system that accurately perceives external chemicals and plays a pivotal role in many insect life activities. Thus, the study of the chemosensory mechanism has become an important research topic in entomology. Spodoptera exigua Hübner (Lepidoptera: Noctuidae) is a major agricultural polyphagous pest that causes significant agricultural economic losses worldwide. However, except for a few genes that have been discovered, its olfactory and gustatory mechanisms remain uncertain. In the present study, we acquired 144,479 unigenes of S. exigua by assembling 65.81 giga base reads from 6 chemosensory organs (female and male antennae, female and male proboscises, and female and male labial palps), and identified many differentially expressed genes in the gustatory and olfactory organs. Analysis of the transcriptome data obtained 159 putative chemosensory genes, including 24 odorant binding proteins (OBPs; 3 were new), 19 chemosensory proteins (4 were new), 64 odorant receptors (57 were new), 22 ionotropic receptors (16 were new), and 30 new gustatory receptors. Phylogenetic analyses of all genes and SexiGRs expression patterns using quantitative real-time polymerase chain reactions were investigated. Our results found that several of these genes had differential expression features in the olfactory organs compared to the gustatory organs that might play crucial roles in the chemosensory system of S. exigua, and could be utilized as targets for future functional studies to assist in the interpretation of the molecular mechanism of the system. They could also be used for developing novel behavioral disturbance agents to control the population of the moths in the future.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Department of Biological Sciences, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Jia-Li Qian
- Department of Biological Sciences, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Ji-Wei Xu
- Department of Biological Sciences, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Xiu-Yun Zhu
- Department of Biological Sciences, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Meng-Ya Li
- Department of Biological Sciences, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Xiao-Xue Xu
- Department of Biological Sciences, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Chun-Xiang Liu
- Department of Biological Sciences, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Tao Xue
- Department of Biological Sciences, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Liang Sun
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
48
|
Sun L, Zhang YN, Qian JL, Kang K, Zhang XQ, Deng JD, Tang YP, Chen C, Hansen L, Xu T, Zhang QH, Zhang LW. Identification and Expression Patterns of Anoplophora chinensis (Forster) Chemosensory Receptor Genes from the Antennal Transcriptome. Front Physiol 2018; 9:90. [PMID: 29497384 PMCID: PMC5819563 DOI: 10.3389/fphys.2018.00090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/26/2018] [Indexed: 11/25/2022] Open
Abstract
The citrus long-horned beetle (CLB), Anoplophora chinensis (Forster) is a destructive native pest in China. Chemosensory receptors including odorant receptors (ORs), gustatory receptors (GRs), and ionotropic receptors (IRs) function to interface the insect with its chemical environment. In the current study, we assembled the antennal transcriptome of A. chinensis by next-generation sequencing. We assembled 44,938 unigenes from 64,787,784 clean reads and annotated their putative gene functions based on gene ontology (GO) and Clusters of Orthologous Groups of proteins (COG). Overall, 74 putative receptor genes from chemosensory receptor gene families, including 53 ORs, 17 GRs, and 4 IRs were identified. Expression patterns of these receptors on the antennae, maxillary and labial palps, and remaining body segments of both male and female A. chinensis were performed using quantitative real time-PCR (RT-qPCR). The results revealed that 23 ORs, 6 GRs, and 1 IR showed male-biased expression profiles, suggesting that they may play a significant role in sensing female-produced sex pheromones; whereas 8 ORs, 5 GRs, and 1 IR showed female-biased expression profiles, indicating that these receptors may be involved in some female-specific behaviors such as oviposition site seeking. These results lay a solid foundation for deeply understanding CLB olfactory processing mechanisms. Moreover, by comparing our results with those from chemosensory receptor studies in other cerambycid species, several highly probable pheromone receptor candidates were highlighted, which may facilitate the identification of additional pheromone and/or host attractants in CLB.
Collapse
Affiliation(s)
- Long Sun
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Jia-Li Qian
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Ke Kang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
- Forest Diseases and Insect Pests Control and Quarantine Station of Chaohu City, Chaohu, China
| | - Xiao-Qing Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Jun-Dan Deng
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yan-Ping Tang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Cheng Chen
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Laura Hansen
- College of Environmental Science and Forestry, State University of New York, Syracuse, NY, United States
| | - Tian Xu
- College of Environmental Science and Forestry, State University of New York, Syracuse, NY, United States
| | - Qing-He Zhang
- Sterling International, Inc., Spokane, WA, United States
| | - Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
49
|
Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. Nat Ecol Evol 2017; 1:1747-1756. [PMID: 28963452 DOI: 10.1038/s41559-017-0314-4] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/14/2017] [Indexed: 11/08/2022]
Abstract
The tobacco cutworm, Spodoptera litura, is among the most widespread and destructive agricultural pests, feeding on over 100 crops throughout tropical and subtropical Asia. By genome sequencing, physical mapping and transcriptome analysis, we found that the gene families encoding receptors for bitter or toxic substances and detoxification enzymes, such as cytochrome P450, carboxylesterase and glutathione-S-transferase, were massively expanded in this polyphagous species, enabling its extraordinary ability to detect and detoxify many plant secondary compounds. Larval exposure to insecticidal toxins induced expression of detoxification genes, and knockdown of representative genes using short interfering RNA (siRNA) reduced larval survival, consistent with their contribution to the insect's natural pesticide tolerance. A population genetics study indicated that this species expanded throughout southeast Asia by migrating along a South India-South China-Japan axis, adapting to wide-ranging ecological conditions with diverse host plants and insecticides, surviving and adapting with the aid of its expanded detoxification systems. The findings of this study will enable the development of new pest management strategies for the control of major agricultural pests such as S. litura.
Collapse
|
50
|
Pentzold S, Burse A, Boland W. Contact chemosensation of phytochemicals by insect herbivores. Nat Prod Rep 2017; 34:478-483. [PMID: 28485430 PMCID: PMC5436039 DOI: 10.1039/c7np00002b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Contact chemosensation, or tasting, is a complex process governed by nonvolatile phytochemicals that tell host-seeking insects whether they should accept or reject a plant. During this process, insect gustatory receptors (GRs) contribute to deciphering a host plant's metabolic code. GRs recognise many different classes of nonvolatile compounds; some GRs are likely to be narrowly tuned and others, broadly tuned. Although primary and/or secondary plant metabolites influence the insect's feeding choice, their decoding by GRs is challenging, because metabolites in planta occur in complex mixtures that have additive or inhibitory effects; in diverse forms composed of structurally unrelated molecules; and at different concentrations depending on the plant species, its tissue and developmental stage. Future studies of the mechanism of insect herbivore GRs will benefit from functional characterisation taking into account the spatio-temporal dynamics and diversity of the plant's metabolome. Metabolic information, in turn, will help to elucidate the impact of single ligands and complex natural mixtures on the insect's feeding choice.
Collapse
Affiliation(s)
- Stefan Pentzold
- Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Hans-Knöll-Str. 8, D-07745 Jena, Germany.
| | | | | |
Collapse
|