1
|
Xu Q, Wang M, Zeng J, Sun H, Wei X, Jiang H, Shentu X, Sun D. CRISPR/Cas Technology in Insect Insecticide Resistance. INSECTS 2025; 16:345. [PMID: 40332816 PMCID: PMC12027801 DOI: 10.3390/insects16040345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 05/08/2025]
Abstract
Chemicals and biological insecticides play a crucial role as pest management strategies in modern agriculture and forestry. However, their excessive and unreasonable use inevitably leads to varying degrees of resistance among insect populations, which seriously affects the sustainability of insecticide use. One primary reason for this resistance is alterations or mutations in insect gene expression. One class of genes encodes proteins that serve as critical targets for insecticides to exert their toxic effects in insects, while another class of genes encodes proteins involved in the detoxification process of insecticides within insects. Reverse genetics has become a vital research tool for studying the molecular mechanisms underlying changes and mutations in these target genes and their impact on insect resistance. The advent of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and the CRISPR-associated gene Cas as gene-editing technologies has significantly advanced our understanding of how insects adapt to and resist insecticides. This article aims to provide a comprehensive and objective review of the progress made using the CRISPR/Cas system in various arthropods within the field of pest control.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xuping Shentu
- Key Laboratory of Microbiological Metrology, Measurement & Bio-Product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou 310018, China; (Q.X.); (M.W.); (J.Z.); (H.S.); (X.W.); (H.J.)
| | - Dan Sun
- Key Laboratory of Microbiological Metrology, Measurement & Bio-Product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou 310018, China; (Q.X.); (M.W.); (J.Z.); (H.S.); (X.W.); (H.J.)
| |
Collapse
|
2
|
Zhang W, Lei W, Bo T, Xu J, Wang W. Beta-cypermethrin-induced stress response and ABC transporter-mediated detoxification in Tetrahymena thermophila. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110066. [PMID: 39510334 DOI: 10.1016/j.cbpc.2024.110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/18/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
β-Cypermethrin (β-CYP), a synthetic pyrethroid pesticide, is widely used for insect management. However, it also affects non-target organisms and pollutes aquatic ecosystems. Tetrahymena thermophila, a unicellular ciliated protist found in fresh water, is in direct contact with aquatic environments and sensitive to environmental changes. The proliferation of T. thermophila was inhibited and the cellular morphology changed under β-CYP stress. The intracellular ROS level significantly increased, and SOD activity gradually rose with increasing β-CYP concentrations. Under 25 mg/L β-CYP stress, 687 genes were up-regulated, primarily enriched in the organic cyclic compound binding and heterocyclic compound binding pathways. These include 8 ATP-binding cassette transporters (ABC) family genes, 2 cytochrome P450 monooxygenase genes, and 2 glutathione peroxidase related genes. Among of them, ABCG14 knockdown affected cellular proliferation under β-CYP stress. In contrast, overexpression of ABCG14 enhanced cellular tolerance to β-CYP. The results demonstrated that Tetrahymena tolerates high β-CYP concentration stress through various detoxification mechanisms, with ABCG14 playing a crucial role in detoxification of β-CYP.
Collapse
Affiliation(s)
- Wenyong Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; Taiyuan Institute of Technology, Taiyuan 030008, China.
| | - Wenliang Lei
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China.
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China.
| | - Jing Xu
- School of Life Science, Shanxi University, Taiyuan 030006, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China.
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China.
| |
Collapse
|
3
|
Wang L, Guo S, Wen B, Deng Z, Ding Q, Li X. Characterization of ATP-binding cassette transporters associated with emamectin benzoate tolerance: from the model insect Drosophila melanogaster to the agricultural pest Spodoptera frugiperda. PEST MANAGEMENT SCIENCE 2025; 81:340-350. [PMID: 39324440 DOI: 10.1002/ps.8437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Multiple families of detoxification genes, including the increasingly recognized family of ATP-binding cassette (ABC) transporters, work together to influence the toxicity of synthetic insecticides and thus their resistance. Effective management of insecticide resistance requires identification of all toxicity-affecting members from each family of toxicity-related genes. RESULTS Here, we used emamectin benzoate (EB), ABC transporters and Spodoptera frugiperda as a working case to test whether the strategy of 'from the model insect Drosophila melanogaster to agricultural pests' can identify all or most ABC transporter members related to EB tolerance in S. frugiperda. After confirming the involvement of ABC transporters in the toxicity of EB against fruit fly with the ABC inhibitor verapamil, four ABC transporter genes (DmCG3327, DmCG11147, DmCG4822, and DmCG7627) were found to be involved in EB tolerance using RNA interference-based family-wide functional screening. A combination of phylogenic analysis and a reciprocal TBLASTN search identified five S. frugiperda ABC transporter members as homologs (SfABCC4, SfABCG1, and SfABCG23) or one-way best hits (SfABCG4 and SfABCG20) of the four fly ABC genes. Real-time quantitative polymerase chain reaction (qPCR) analysis found that all five S. frugiperda ABC transporter genes were inducible by EB, and expressed in all the developmental stages and larval tissues, but with significant quantitative differences among stages and tissues. A cytotoxicity assay of ABC-overexpressing Sf9 cell lines showed that all the five S. frugiperda ABC transporter genes made Sf9 cells tolerant to EB. CONCLUSIONS This study not only identifies nine ABC transporter genes related to EB tolerance from D. melanogaster (four genes) and S. frugiperda (five genes), but also demonstrates the utility and effectiveness of the 'model to pests' strategy to identify most toxicity-affecting members from a given family of toxicity-related genes. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lixiang Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shaoyi Guo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Bin Wen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhongyuan Deng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Qian Ding
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
4
|
Pereira AE, Paddock KJ, Corcoran JA, Zhao Z, Gregory MLJ, Coudron TA, Hibbard BE, Shelby KS, Huynh MP. Knockdown of an ATP-binding cassette transporter in resistant western corn rootworm larvae partially reverses resistance to eCry3.1Ab protein. Sci Rep 2024; 14:31508. [PMID: 39733129 PMCID: PMC11682398 DOI: 10.1038/s41598-024-83135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, has evolved resistance to nearly every management tactic utilized in the field. This study investigated the resistance mechanisms in a WCR strain resistant to the Bacillus thuringiensis (Bt) protein eCry3.1Ab using dsRNA to knockdown WCR midgut genes previously documented to be associated with the resistance. ATP-binding cassette transporter (ABCC4), aminopeptidase-N, cadherin, and cathepsin-B were previously found to be differentially expressed in eCry3.1Ab-resistant WCR larvae when compared to susceptible larvae after feeding on maize expressing eCry3.1Ab and its near-isoline. Here we compared the susceptibility of resistant and susceptible WCR larvae to eCry3.1Ab protein in presence or absence of dsRNA targeting the above genes using 10-day diet overlay toxicity assays. Combining ABCC4 dsRNA with eCry3.1Ab protein increased susceptibility to Bt protein in WCR-resistant larvae, but the other three genes had no such effect. Among 65 ABC transport genes identified, several were expressed differently in resistant or susceptible WCR larvae, fed on eCry3.1Ab-expressing maize versus its isoline, that may be involved in Bt resistance. Our findings provide strong evidence that ABCC4 is indirectly involved in WCR resistance to eCry3.1Ab protein by enhancing the effects of Bt-induced toxicity.
Collapse
Affiliation(s)
- Adriano E Pereira
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
- RNAiSSANCE AG, St. Louis, MO, 63132, USA
| | - Kyle J Paddock
- Biological Control of Insects Research Laboratory, USDA-ARS, Columbia, MO, 65203, USA
| | - Jacob A Corcoran
- Biological Control of Insects Research Laboratory, USDA-ARS, Columbia, MO, 65203, USA
| | - Zixiao Zhao
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
- Agricultural Research and Development Program, Central State University, Wilberforce, OH, 45384, USA
| | - Michelle L J Gregory
- Biological Control of Insects Research Laboratory, USDA-ARS, Columbia, MO, 65203, USA
| | - Thomas A Coudron
- Biological Control of Insects Research Laboratory, USDA-ARS, Columbia, MO, 65203, USA
| | - Bruce E Hibbard
- Biological Control of Insects Research Laboratory, USDA-ARS, Columbia, MO, 65203, USA
- Plant Genetics Research Unit, USDA-ARS, University of Missouri, Columbia, MO, 65211, USA
| | - Kent S Shelby
- Biological Control of Insects Research Laboratory, USDA-ARS, Columbia, MO, 65203, USA
| | - Man P Huynh
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
5
|
Wang L, Wen B, Guo S, Han Y, Deng Z, Ding Q, Li X. Identification and characterization of ATP-binding cassette transporters involved in chlorantraniliprole tolerance of model insect Drosophila melanogaster and agricultural pest Spodoptera frugiperda. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106212. [PMID: 39672622 DOI: 10.1016/j.pestbp.2024.106212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 12/15/2024]
Abstract
ATP-binding cassette (ABC) transporter family is one of the largest transporter families, which plays an important role in insecticide tolerance. In this study, we found that the ABC transporter inhibitor verapamil could significantly enhance the toxicity of chlorantraniliprole (CHL) to the model insect Drosophila melanogaster. Forty-six ABC transporter genes of D. melanogaster were knocked down through the daughterless-GAL4 (Da-GAL4) strain. The subsequent bioassay result showed that D. melanogaster with DmCG5772, DmCG1494, and DmCG5853 genes silencing significantly increased mortality after CHL treatment. Based on the genome of the fall armyworm (FAW), three genes with the best hits were identified, and SfABCA1 (XM_035576510.2) and SfABCG10 (XM_035577893.2) were successfully cloned. Spatiotemporal expression pattern analysis showed that SfABCA1 and SfABCG10 were both highly expressed in adult and pupal stages. Hemolymph was also a tissue with high expression of these two genes. LC10 dose of CHL could induce the expression levels of SfABCA1 and SfABCG10, with SfABCG10 upregulated 8-fold after 48 h of CHL treatment. Furthermore, overexpression of SfABCA1 and SfABCG10 increased the viability of Sf9 cell under CHL treatment. Our findings indicate that SfABCA1 and SfABCG10 might associate with the tolerance of CHL in S. frugiperda. These results are not only helpful in understanding the role of ABC transporters in CHL tolerance of other agricultural pests, but also lay a theoretical foundation for delaying the development of CHL resistance in pest management.
Collapse
Affiliation(s)
- Lixiang Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Bin Wen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shaoyi Guo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yujie Han
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhongyuan Deng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Qian Ding
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
6
|
Sadova N, Blank-Landeshammer B, Curic D, Iken M, Weghuber J. Sex-specific pharmacokinetic response to phytoestrogens in Drosophila melanogaster. Biomed Pharmacother 2024; 175:116612. [PMID: 38663102 DOI: 10.1016/j.biopha.2024.116612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 06/03/2024] Open
Abstract
Drosophila melanogaster, or the fruit fly, is widely used for modeling numerous human diseases, such as neurodegeneration, tumor development, cachexia, and intestinal dysfunction. It is a suitable model organism for research targeting the physiology and pathophysiology of the intestinal epithelial barrier and has also been used as a model organism for preliminary drug and bioactive nutrient screening. However, the application of D. melanogaster in research on drug bioavailability and pharmacokinetic properties has not yet been well explored. In this study, we applied D. melanogaster to investigate the absorption and excretion of the orally administered phytoestrogens daidzein, glycitein, genistein, and their glycosides. Therefore, we established a quick, noninvasive method to quantify compound retention in D. melanogaster, suitable for the investigation of a broad variety of potentially bioactive substances. We showed that fruit fly sex plays a key role in the metabolization, transportation, and excretion of phytoestrogenic isoflavones. In particular, female fruit flies retained significantly more isoflavones than male fruit flies, which was reflected in the greater metabolic impact of isoflavones on females. Male fruit flies excreted more isoflavones than females did, which was linked to the upregulation of the xenobiotic transporter gene Mdr50. We also demonstrated that micellized isoflavones were more bioavailable than powdered isoflavones, independent of sex, age or the addition of dietary fibers.
Collapse
Affiliation(s)
- Nadiia Sadova
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels 4600, Austria
| | - Bernhard Blank-Landeshammer
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels 4600, Austria; FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln 3430, Austria
| | - David Curic
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels 4600, Austria
| | - Marcus Iken
- PM International AG, Schengen, Luxembourg 5445, Luxembourg
| | - Julian Weghuber
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels 4600, Austria; FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln 3430, Austria.
| |
Collapse
|
7
|
Huang Y, Chen Z, Lan J, Zhang L, Chen H, Jiang L, Yu H, Liu N, Liao C, Han Q. MDR49 coding for both P-glycoprotein and TMOF transporter functions in ivermectin resistance, trypsin activity inhibition, and fertility in the yellow fever mosquito, Aedes aegypti. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105899. [PMID: 38685208 DOI: 10.1016/j.pestbp.2024.105899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/30/2024] [Accepted: 04/06/2024] [Indexed: 05/02/2024]
Abstract
This study investigated the function of the MDR49 gene in Aedes aegypti. MDR49 mutants were constructed using CRISPR/Cas9 technology; the mutation led to increased sensitivity to ivermectin (LC50: from 1.3090 mg L-1 to 0.5904 mg L-1), and a reduction in midgut trypsin activity. These findings suggest that the P-gp encoded by MDR49 confers resistance to ivermectin and impacts the reproductive function in Ae. aegypti. RNA interference technology showed that knockdown of MDR49 gene resulted in a significant decrease in the expression of VGA1 after a blood meal, as well as a decrease in the number of eggs laid and their hatching rate. LC-MS revealed that following ivermectin treatment, the MDR493d+2s/3d+2s strain larvae exhibited significantly higher drug concentrations in the head and fat body compared to the wild type. Modeling of inward-facing P-gp and molecular docking found almost no difference in the affinity of P-gp for ivermectin before and after the mutation. However, modeling of the outward-facing conformation demonstrated that the flexible linker loop between TM5 and TM6 of P-gp undergoes changes after the mutation, resulting in a decrease in trypsin activity and an increase in sensitivity to ivermectin. These results provide useful insights into ivermectin resistance and the other roles played by the MDR49 gene.
Collapse
Affiliation(s)
- Yuqi Huang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Zhaohui Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Jianqiang Lan
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Lei Zhang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Huaqing Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Linlong Jiang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Hongxiao Yu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36830, USA
| | - Chenghong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
8
|
Everman ER, Macdonald SJ. Gene expression variation underlying tissue-specific responses to copper stress in Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae015. [PMID: 38262701 PMCID: PMC11021028 DOI: 10.1093/g3journal/jkae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Copper is one of a handful of biologically necessary heavy metals that is also a common environmental pollutant. Under normal conditions, copper ions are required for many key physiological processes. However, in excess, copper results in cell and tissue damage ranging in severity from temporary injury to permanent neurological damage. Because of its biological relevance, and because many conserved copper-responsive genes respond to nonessential heavy metal pollutants, copper resistance in Drosophila melanogaster is a useful model system with which to investigate the genetic control of the heavy metal stress response. Because heavy metal toxicity has the potential to differently impact specific tissues, we genetically characterized the control of the gene expression response to copper stress in a tissue-specific manner in this study. We assessed the copper stress response in head and gut tissue of 96 inbred strains from the Drosophila Synthetic Population Resource using a combination of differential expression analysis and expression quantitative trait locus mapping. Differential expression analysis revealed clear patterns of tissue-specific expression. Tissue and treatment specific responses to copper stress were also detected using expression quantitative trait locus mapping. Expression quantitative trait locus associated with MtnA, Mdr49, Mdr50, and Sod3 exhibited both genotype-by-tissue and genotype-by-treatment effects on gene expression under copper stress, illuminating tissue- and treatment-specific patterns of gene expression control. Together, our data build a nuanced description of the roles and interactions between allelic and expression variation in copper-responsive genes, provide valuable insight into the genomic architecture of susceptibility to metal toxicity, and highlight candidate genes for future functional characterization.
Collapse
Affiliation(s)
- Elizabeth R Everman
- School of Biological Sciences, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Stuart J Macdonald
- Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, USA
| |
Collapse
|
9
|
Mahalle RM, Sun W, Posos-Parra OA, Jung S, Mota-Sanchez D, Pittendrigh BR, Seong KM. Identification of differentially expressed miRNAs associated with diamide detoxification pathways in Spodoptera frugiperda. Sci Rep 2024; 14:4308. [PMID: 38383681 PMCID: PMC10881993 DOI: 10.1038/s41598-024-54771-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024] Open
Abstract
The fall armyworm (FAW) Spodoptera frugiperda is a severe economic pest of multiple crops globally. Control of this pest is often achieved using insecticides; however, over time, S. frugiperda has developed resistance to new mode of action compounds, including diamides. Previous studies have indicated diamide resistance is a complex developmental process involving multiple detoxification genes. Still, the mechanism underlying the possible involvement of microRNAs in post-transcriptional regulation of resistance has not yet been elucidated. In this study, a global screen of microRNAs (miRNAs) revealed 109 known and 63 novel miRNAs. Nine miRNAs (four known and five novel) were differentially expressed between insecticide-resistant and -susceptible strains. Gene Ontology analysis predicted putative target transcripts of the differentially expressed miRNAs encoding significant genes belonging to detoxification pathways. Additionally, miRNAs are involved in response to diamide exposure, indicating they are probably associated with the detoxification pathway. Thus, this study provides comprehensive evidence for the link between repressed miRNA expression and induced target transcripts that possibly mediate diamide resistance through post-transcriptional regulation. These findings highlight important clues for further research to unravel the roles and mechanisms of miRNAs in conferring diamide resistance.
Collapse
Affiliation(s)
- Rashmi Manohar Mahalle
- Institute of Agricultural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Weilin Sun
- Department of Entomology, Center for Urban and Industrial Pest Management, Purdue University, West Lafayette, IN, USA
| | - Omar A Posos-Parra
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Sunghoon Jung
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon, Republic of Korea
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - David Mota-Sanchez
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Barry R Pittendrigh
- Department of Entomology, Center for Urban and Industrial Pest Management, Purdue University, West Lafayette, IN, USA
| | - Keon Mook Seong
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
10
|
Wang L, Tian SH, Zhao W, Wang JJ, Wei DD. Overexpression of ABCB transporter genes confer multiple insecticide tolerances in Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105690. [PMID: 38072545 DOI: 10.1016/j.pestbp.2023.105690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023]
Abstract
Bactrocera dorsalis is a notable invasive pest that has developed resistance to several commonly used insecticides in the field, such as avermectin, beta-cypermethrin and malathion. Investigating the mechanisms of insecticide resistance in this pest is of paramount importance for ensuring its effective control. The ATP-binding cassette transporter subfamily B (ABCB) genes, responsible for encoding transmembrane efflux transporters, represent a potential source of insecticide detoxification activity or transportation that remains largely unexplored in B. dorsalis. In this study, seven BdABCB genes were identified and comprehensive analyzed based on the latest genome and transcriptome dataset. Subsequently, we characterized the expression profiles of these genes across different development stages and tissues, as well as under different insecticide exposures. The results showed that the BdABCB genes were expressed at all stages in B. dorsalis, with BdABCB2 and BdABCB7 being highly expressed in the pupal stage, while BdABCB5 and BdABCB6 were highly expressed in the larval stage. Besides, the BdABCBs were highly expressed in the detoxification metabolic tissues. Among them, BdABCB5 and BdABCB6 were significantly overexpressed in the midgut and Malpighian tubules, respectively. Furthermore, with the exception of BdABCB6, the expression levels of the other six BdABCBs were significantly up-regulated following induction with avermectin, beta-cypermethrin and malathion. Six BdABCBs (BdABCB1-5 and BdABCB7) were knocked down by RNA interference, and the interference efficiencies were 46.58%, 39.50%, 45.60%, 33.74%, 66.37% and 63.83%, respectively. After injecting dsBdABCBs, the mortality of flies increased by 25.23% to 39.67% compared to the control upon exposure to the three insecticides. These results suggested that BdABCBs play crucial roles in the detoxification or tolerance of B. dorsalis to multiple insecticides.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Shu-Hang Tian
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Wei Zhao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
11
|
Shakya M, Sharma AK, Kumar S, Upadhaya D, Nagar G, Singh K, M S, Ghosh S. Acaricides resistance in Rhipicephalus microplus and expression profile of ABC-transporter genes in the sampled populations. Exp Parasitol 2023; 252:108584. [PMID: 37468088 DOI: 10.1016/j.exppara.2023.108584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
Currently, livestock owners manage tick infestations using chemicals, but the method is increasingly losing effectiveness as resistant tick populations have established in the field conditions. Thus, to develop effective tick management strategies, monitoring of resistance in most predominant tick species, Rhipicephalus microplus was targeted. The ticks were collected from eleven districts of Madhya Pradesh and one district of Punjab and tested against deltamethrin (DLM), cypermethrin (CYP), coumaphos (CMP), ivermectin (IVM) and fipronil (FIP), through adult immersion and larval packet tests. The field isolates were highly resistant to DLM [Resistance factor (RF) = 3.98-38.84]. Against CYP, resistance was observed in BWN (Barwani; RF = 2.81) and MND (Mandsaur; RF = 3.23) isolates. Surprisingly, most of the isolates were susceptible to CMP (0.34-1.58). Emerging level of resistance against IVM (1.05-4.98) and FIP (0.40-2.18) was also observed in all the isolates. Significantly elevated production of esterases (p < 0.01) was 90% correlated with RF of DLM while no positive correlation between production of monooxygenase and Glutathione S-transferase with RF to DLM was noted. Multiple sequence analysis of S4-5 linker region of the sodium channel gene of all the isolates revealed a point mutation at 190th position (C190A) which is associated with DLM resistance. Treatment of resistant LDH (Ludhiana) isolate with IVM resulted in upregulation of RmABCC2 gene and insignificant upregulation of RmABCC1 and RmABCB10 genes indicating the probability of linking IVM resistance with over-expression of RmABCC2 gene. The possible tick management strategies are discussed.
Collapse
Affiliation(s)
- Mukesh Shakya
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly- 243122, Uttar Pradesh, India; IVRI-Eastern Regional Station, 37 Belgachia Road, Kolkata 700037, West Bengal, India
| | - Anil Kumar Sharma
- IVRI-Eastern Regional Station, 37 Belgachia Road, Kolkata 700037, West Bengal, India
| | - Sachin Kumar
- IVRI-Eastern Regional Station, 37 Belgachia Road, Kolkata 700037, West Bengal, India
| | - Deepak Upadhaya
- IVRI-Eastern Regional Station, 37 Belgachia Road, Kolkata 700037, West Bengal, India
| | - Gaurav Nagar
- IVRI-Eastern Regional Station, 37 Belgachia Road, Kolkata 700037, West Bengal, India
| | - Kaushlendra Singh
- IVRI-Eastern Regional Station, 37 Belgachia Road, Kolkata 700037, West Bengal, India
| | - Sankar M
- IVRI-Eastern Regional Station, 37 Belgachia Road, Kolkata 700037, West Bengal, India
| | - Srikant Ghosh
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly- 243122, Uttar Pradesh, India; IVRI-Eastern Regional Station, 37 Belgachia Road, Kolkata 700037, West Bengal, India.
| |
Collapse
|
12
|
Wu M, Zhang Y, Tian T, Xu D, Wu Q, Xie W, Zhang Y, Crickmore N, Guo Z, Wang S. Assessment of the role of an ABCC transporter TuMRP1 in the toxicity of abamectin to Tetranychus urticae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105543. [PMID: 37666614 DOI: 10.1016/j.pestbp.2023.105543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 09/06/2023]
Abstract
The rapid evolution of pest resistance threatens the sustainable utilization of bioinsecticides such as abamectin, and so deciphering the molecular mechanisms affecting toxicity and resistance is essential for their long-term application. Historical studies of abamectin resistance in arthropods have mainly focused on mechanisms involving the glutamate-gated chloride channel (GluCl) targets, with the role of metabolic processes less clear. The two-spotted spider mite, Tetranychus urticae, is a generalist herbivore notorious for rapidly developing resistance to pesticides worldwide, and abamectin has been widely used for its control in the field. After reanalyzing previous transcriptome and RNA-seq data, we here identified an ABC transporter subfamily C gene in T. urticae named multidrug resistance-associated protein 1 (TuMRP1), whose expression differed between susceptible and resistant populations. Synergism bioassays with the inhibitor MK-571, the existence of a genetic association between TuMRP1 expression and susceptibility to abamectin, and the effect of RNA interference mediated silencing of TuMRP1 were all consistent with a direct role of this transporter protein in the toxicity of abamectin. Although ABC transporters are often involved in removing insecticidal compounds from cells, our data suggest either an alternative role for these proteins in the mechanism of action of abamectin or highlight an indirect association between their expression and abamectin toxicity.
Collapse
Affiliation(s)
- Mingmei Wu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yan Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Tian Tian
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Agriculture, Yangtze University, Hubei, Jingzhou 434025, China.
| | - Dandan Xu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China.
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| | - Zhaojiang Guo
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shaoli Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
13
|
Everman ER, Macdonald SJ. Gene expression variation underlying tissue-specific responses to copper stress in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548746. [PMID: 37503205 PMCID: PMC10370140 DOI: 10.1101/2023.07.12.548746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Copper is one of a handful of biologically necessary heavy metals that is also a common environmental pollutant. Under normal conditions, copper ions are required for many key physiological processes. However, in excess, copper quickly results in cell and tissue damage that can range in severity from temporary injury to permanent neurological damage. Because of its biological relevance, and because many conserved copper-responsive genes also respond to other non-essential heavy metal pollutants, copper resistance in Drosophila melanogaster is a useful model system with which to investigate the genetic control of the response to heavy metal stress. Because heavy metal toxicity has the potential to differently impact specific tissues, we genetically characterized the control of the gene expression response to copper stress in a tissue-specific manner in this study. We assessed the copper stress response in head and gut tissue of 96 inbred strains from the Drosophila Synthetic Population Resource (DSPR) using a combination of differential expression analysis and expression quantitative trait locus (eQTL) mapping. Differential expression analysis revealed clear patterns of tissue-specific expression, primarily driven by a more pronounced gene expression response in gut tissue. eQTL mapping of gene expression under control and copper conditions as well as for the change in gene expression following copper exposure (copper response eQTL) revealed hundreds of genes with tissue-specific local cis-eQTL and many distant trans-eQTL. eQTL associated with MtnA, Mdr49, Mdr50, and Sod3 exhibited genotype by environment effects on gene expression under copper stress, illuminating several tissue- and treatment-specific patterns of gene expression control. Together, our data build a nuanced description of the roles and interactions between allelic and expression variation in copper-responsive genes, provide valuable insight into the genomic architecture of susceptibility to metal toxicity, and highlight many candidate genes for future functional characterization.
Collapse
Affiliation(s)
- Elizabeth R Everman
- 1200 Sunnyside Ave, University of Kansas, Molecular Biosciences, Lawrence, KS 66045, USA
- 730 Van Vleet Oval, University of Oklahoma, Biology, Norman, OK 73019, USA
| | - Stuart J Macdonald
- 1200 Sunnyside Ave, University of Kansas, Molecular Biosciences, Lawrence, KS 66045, USA
- 1200 Sunnyside Ave, University of Kansas, Center for Computational Biology, Lawrence, KS 66045, USA
| |
Collapse
|
14
|
Maiwald F, Haas J, Hertlein G, Lueke B, Roesner J, Nauen R. Expression profile of the entire detoxification gene inventory of the western honeybee, Apis mellifera across life stages. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105410. [PMID: 37105637 DOI: 10.1016/j.pestbp.2023.105410] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
The western honeybee, Apis mellifera, is a managed pollinator of many crops and potentially exposed to a wide range of foreign compounds, including pesticides throughout its life cycle. Honeybees as well as other insects recruit molecular defense mechanisms to facilitate the detoxification of xenobiotic compounds. The inventory of detoxification genes (DETOXome) is comprised of five protein superfamilies: cytochrome P450 monooxygenases (P450), carboxylesterases, glutathione S-transferases (GST), UDP-glycosyl transferases (UGT) and ATP-binding cassette (ABC) transporters. Here we characterized the gene expression profile of the entire honeybee DETOXome by analyzing 47 transcriptomes across the honeybee life cycle, including different larval instars, pupae, and adults. All life stages were well separated by principal component analysis, and K-means clustering revealed distinct temporal patterns of gene expression. Indeed, >50% of the honeybee detoxification gene inventory is found in one cluster and follows strikingly similar expression profiles, i.e., increased expression during larval development, followed by a sharp decline after pupation and a steep increase again in adults. This cluster includes 29 P450 genes dominated by CYP3 and CYP4 clan members, 15 ABC transporter genes mostly belonging to the ABCC subfamily and 13 carboxylesterase genes including almost all members involved in dietary/detox and hormone/semiochemical processing. RT-qPCR analysis of selected detoxification genes from all families revealed high expression levels in various tissues, especially Malpighian tubules, fatbody and midgut, supporting the view that these tissues are essential for metabolic clearance of environmental toxins and pollutants in honeybees. Our study is meant to spark further research on the molecular basis of detoxification in this critical pollinator to better understand and evaluate negative impacts from potentially toxic substances. Additionally, the entire gene set of 47 transcriptomes collected and analyzed provides a valuable resource for future honeybee research across different disciplines.
Collapse
Affiliation(s)
- Frank Maiwald
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim am Rhein, Germany
| | - Julian Haas
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim am Rhein, Germany
| | - Gillian Hertlein
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim am Rhein, Germany
| | - Bettina Lueke
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim am Rhein, Germany
| | - Janin Roesner
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim am Rhein, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim am Rhein, Germany.
| |
Collapse
|
15
|
Contreras EG, Klämbt C. The Drosophila blood-brain barrier emerges as a model for understanding human brain diseases. Neurobiol Dis 2023; 180:106071. [PMID: 36898613 DOI: 10.1016/j.nbd.2023.106071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The accurate regulation of the microenvironment within the nervous system is one of the key features characterizing complex organisms. To this end, neural tissue has to be physically separated from circulation, but at the same time, mechanisms must be in place to allow controlled transport of nutrients and macromolecules into and out of the brain. These roles are executed by cells of the blood-brain barrier (BBB) found at the interface of circulation and neural tissue. BBB dysfunction is observed in several neurological diseases in human. Although this can be considered as a consequence of diseases, strong evidence supports the notion that BBB dysfunction can promote the progression of brain disorders. In this review, we compile the recent evidence describing the contribution of the Drosophila BBB to the further understanding of brain disease features in human patients. We discuss the function of the Drosophila BBB during infection and inflammation, drug clearance and addictions, sleep, chronic neurodegenerative disorders and epilepsy. In summary, this evidence suggests that the fruit fly, Drosophila melanogaster, can be successfully employed as a model to disentangle mechanisms underlying human diseases.
Collapse
Affiliation(s)
- Esteban G Contreras
- University of Münster, Institute of Neuro- and Behavioral Biology, Badestr. 9, Münster, Germany.
| | - Christian Klämbt
- University of Münster, Institute of Neuro- and Behavioral Biology, Badestr. 9, Münster, Germany.
| |
Collapse
|
16
|
Shirk BD, Shirk PD, Furlong RB, Scully ED, Wu K, Siegfried BD. Gene editing of the ABC Transporter/White locus using CRISPR/Cas9-mediated mutagenesis in the Indian Meal Moth. JOURNAL OF INSECT PHYSIOLOGY 2023; 145:104471. [PMID: 36539178 DOI: 10.1016/j.jinsphys.2022.104471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
ATP binding cassette (ABC) proteins are involved in transport of substrates across membranes including eye pigments. Mutations of ABC transporter white, brown and scarlet genes of Drosophila and other insects result in visible eye color phenotypes. White locus was identified in a genome assembly of Plodia interpunctella and was found to extend for 16,670 bp comprising 13 exons. We report here recovery of heritable mutants in white in the Indian meal moth, P. interpunctella, using CRISPR/Cas9-mediated mutagenesis. A white eye strain of P. interpunctella c.737delC (Piw-/-) was previously isolated in 1986. Guide RNA (sgRNA) was designed for exon 1 (sgRNA242). Microinjection of Cas9/sgRNA242 complex into Plodia wild type eggs (≤20 min post oviposition) produced 156 viable larvae of which 81 eclosed as adults. Forty-five (56 %) adults displayed wild type phenotype, while 26 females (32 %) and 10 males (12 %) showed full or partial white eye phenotype. The 26 white eye females were mated with Piw-/- males and 21 matings resulted in F1 white eye progeny. Thirteen of the Piw-242 lines were established and sequencing showed indels at the CRISPR/Cas9 242AM site. Based on RT-PCR analysis, most white mutations resulted in suppressed levels of transcript. These results demonstrate the utility of CRISPR/Cas9 gene editing in Plodia which suggests this technology can be used to characterize the role of various genetic elements including those that encode novel targets or confer insecticide resistance mechanisms.
Collapse
Affiliation(s)
- Bryce D Shirk
- Entomology & Nematology Department, PO Box 11620, University of Florida, Gainesville, FL 32611, USA
| | - Paul D Shirk
- Entomology & Nematology Department, PO Box 11620, University of Florida, Gainesville, FL 32611, USA; USDA-ARS CMAVE IBBRU, 1700 SW 23rd Drive, Gainesville, FL 32608, USA.
| | - Richard B Furlong
- USDA-ARS CMAVE IBBRU, 1700 SW 23rd Drive, Gainesville, FL 32608, USA
| | - Erin D Scully
- USDA-ARS, CGAHR-SPIERU, 1515 College Avenue, Manhattan, KS 66502, USA
| | - Ke Wu
- Entomology & Nematology Department, PO Box 11620, University of Florida, Gainesville, FL 32611, USA
| | - Blair D Siegfried
- Entomology & Nematology Department, PO Box 11620, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
17
|
Macdonald SJ, Long AD. Discovery of malathion resistance QTL in Drosophila melanogaster using a bulked phenotyping approach. G3 (BETHESDA, MD.) 2022; 12:jkac279. [PMID: 36250804 PMCID: PMC9713458 DOI: 10.1093/g3journal/jkac279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/09/2022] [Indexed: 12/03/2022]
Abstract
Drosophila melanogaster has proved an effective system with which to understand the evolutionary genetics and molecular mechanisms of insecticide resistance. Insecticide use has left signatures of selection in the fly genome, and both functional and quantitative genetic studies in the system have identified genes and variants associated with resistance. Here, we use D. melanogaster and leverage a bulk phenotyping and pooled sequencing "extreme quantitative trait loci" approach to genetically dissect variation in resistance to malathion, an organophosphate insecticide. We resolve 2 quantitative trait loci, one of which implicates allelic variation at the cytochrome P450 gene Cyp6g1, a strong candidate based on previous work. The second shows no overlap with hits from a previous genome-wide association study for malathion resistance, recapitulating other studies showing that different strategies for complex trait dissection in flies can yield apparently different architectures. Notably, we see no genetic signal at the Ace gene. Ace encodes the target of organophosphate insecticide inhibition, and genome-wide association studies have identified strong Ace-linked associations with resistance in flies. The absence of quantitative trait locus implicating Ace here is most likely because our mapping population does not segregate for several of the known functional polymorphisms impacting resistance at Ace, perhaps because our population is derived from flies collected prior to the widespread use of organophosphate insecticides. Our fundamental approach can be an efficient, powerful strategy to dissect genetic variation in resistance traits. Nonetheless, studies seeking to interrogate contemporary insecticide resistance variation may benefit from deriving mapping populations from more recently collected strains.
Collapse
Affiliation(s)
- Stuart J Macdonald
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66046, USA
- Center for Computational Biology, University of Kansas, Lawrence, KS 66047, USA
| | - Anthony D Long
- Department of Ecology and Evolutionary Biology, University of California at Irvine, Irvine, CA 92697, USA
| |
Collapse
|
18
|
Wei J, Liu S, Wang K, Sun C, Li S, Liu X, Yin X, Bai S, Liang G, Crickmore N, An S. Cyclosporin A acts as a novel insecticide against Cry1Ac-susceptible and -resistant Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105283. [PMID: 36464338 DOI: 10.1016/j.pestbp.2022.105283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Cotton bollworm (Helicoverpa armigera) is an economically important pest, which is difficult to manage due to its biological and ecological traits, and resistance to most insecticides. Alternative compounds for the sustainable management of H. armigera are needed. As a fungal metabolite, Cyclosporin A (CsA) has not been applied in agriculture pests. Here, CsA was evaluated as a propective insecticide for H. armigera. The results showed that CsA displayed high insecticidal activity against both Cry1Ac-susceptible and -resistant populations of H. armigera. Moreover, lower concentrations of CsA had clear effects, including significantly reduced pupal weight, pupation rate, emergence rate, ovary size, female fecundity and egg hatchability. Further study confirmed that CsA suppressed calcineurin activity and the subsequent expression of endogenous antimicrobial peptide genes (APMs), leading to impaired immunity, ultimately resulting in delayed development and increased mortality. Thus, CsA treatment could control the cotton bollworm population and even showed efficacy against those with Bt resistance. In addition, the morphological changes observed in insects fed CsA with lower concentrations provide insight into insect immunity, regulation of growth and development, regulation of body color, ovary development and sexual selection under external pressure. Overall, our study provides information on biological control potential of Cry1Ac-susceptible and -resistant populations of H. armigera to develop novel bioinsecticides.
Collapse
Affiliation(s)
- Jizhen Wei
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shaokai Liu
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Kai Wang
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chengxian Sun
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shunjia Li
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoguang Liu
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinming Yin
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Sufen Bai
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Shiheng An
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
19
|
Rösner J, Merzendorfer H. Identification of two ABCC transporters involved in malathion detoxification in the red flour beetle, Tribolium castaneum. INSECT SCIENCE 2022; 29:1096-1104. [PMID: 34730283 DOI: 10.1111/1744-7917.12981] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/19/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
ABC transporters have been suggested to be involved in insecticide detoxification in different insect species mainly based on the indirect observation of transcriptional upregulation of ABC gene expression in response to insecticide exposure. Previous studies performed by us and others in the red flour beetle, Tribolium castaneum, have analyzed the function of TcABCA-C and TcABCG-H genes using RNA interference (RNAi) and demonstrated that specific TcABCA and TcABCC genes are involved in the elimination of the pyrethroid tefluthrin and the benzoylurea diflubenzuron, because gene silencing increased the beetle's susceptibility to the insecticides. In this study, we focused on the potential functions of TcABCA-C genes in detoxification of the pyrethroid cyfluthrin (CF), the organophosphate malathion (MAL) and the diacylhdyazine tebufenozide (TBF). Analysis of transcript levels of selected TcABCA-C genes in response to treatment with these three chemically unrelated insecticides revealed that some genes were particularly upregulated after insecticide treatment. In addition, the ABC inhibitor verapamil synergized significantly the toxicity of MAL but only negligibly CF and TBF toxicities. Finally, silencing of two TcABCC genes by RNAi revealed a significant increase in susceptibility to MAL. In contrast, we did not observe a significant increase in insecticide-induced mortalities when knocking down TcABC genes in larvae treated with CF or TBF, although they were upregulated in response to insecticide treatment. Our results suggest that two pleiotropic ABCC transporters expressed in metabolic and excretory tissues contribute to the elimination of MAL.
Collapse
Affiliation(s)
- Janin Rösner
- Department of Chemistry-Biology, Institute of Biology, University of Siegen, Siegen, Germany
| | - Hans Merzendorfer
- Department of Chemistry-Biology, Institute of Biology, University of Siegen, Siegen, Germany
| |
Collapse
|
20
|
Li J, Lv Y, Yan K, Yang F, Chen X, Gao X, Wen S, Xu H, Pan Y, Shang Q. Functional analysis of cyantraniliprole tolerance ability mediated by ATP-binding cassette transporters in Aphis gossypii glover. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105104. [PMID: 35715043 DOI: 10.1016/j.pestbp.2022.105104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/02/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
Cyantraniliprole, a second-generation anthranilic diamide insecticide, is widely used to control chewing and sucking pests. ATP-binding cassette transporters (ABCs) are a ubiquitous family of membrane proteins that play important roles in insect detoxification mechanisms. However, the potential effects of ABCs on cyantraniliprole-resistance remain unclear. In the present study, synergism bioassays revealed that verapamil, an ABC inhibitor, increased the toxicity of cyantraniliprole by 2.00- and 12.25-fold in the susceptible and cyantraniliprole-resistant strains of Aphis gossypii. Based on transcriptome data, the expression levels of ABCB4, ABCB5, ABCD1, ABCG4, ABCG7, ABCG13, ABCG16, ABCG17, ABCG26 and MRP12 were upregulated 1.56-, 1.32-, 1.51-, 2.03-, 1.65-, 1.50-, 4.18-, 6.07-, 4.68- and 4.69-fold, respectively, in the cyantraniliprole-resistant strain (CyR) compared to the susceptible strain (SS), as determined using RT-qPCR. Drosophila melanogaster ectopically overexpressing ABCB5, ABCG4, ABCG7, ABCG16, ABCG17, ABCG26 and MRP12 exhibited significantly increased tolerance to cyantraniliprole by 11.71-, 2.39-, 4.85-, 2.06-, 3.75-, 4.20- and 3.50-fold, respectively, with ABCB5 and ABCG family members being the most effective. Furthermore, the suppression of ABCB5, ABCG4, ABCG7, ABCG16, ABCG17, ABCG26 and MRP12 significantly increased the sensitivity of the CyR strain to cyantraniliprole. These results indicate that ABCs may play crucial roles in cyantraniliprole resistance and may provide information for shaping resistance management strategies.
Collapse
Affiliation(s)
- Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Fengting Yang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Shuyuan Wen
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Hongfei Xu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
21
|
Denecke S, Bảo Lương HN, Koidou V, Kalogeridi M, Socratous R, Howe S, Vogelsang K, Nauen R, Batterham P, Geibel S, Vontas J. Characterization of a novel pesticide transporter and P-glycoprotein orthologues in Drosophila melanogaster. Proc Biol Sci 2022; 289:20220625. [PMID: 35582794 PMCID: PMC9114944 DOI: 10.1098/rspb.2022.0625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Pesticides remain one of the most effective ways of controlling agricultural and public health insects, but much is still unknown regarding how these compounds reach their targets. Specifically, the role of ABC transporters in pesticide absorption and excretion is poorly understood, especially compared to the detailed knowledge about mammalian systems. Here, we present a comprehensive characterization of pesticide transporters in the model insect Drosophila melanogaster. An RNAi screen was performed, which knocked down individual ABCs in specific epithelial tissues and examined the subsequent changes in sensitivity to the pesticides spinosad and fipronil. This implicated a novel ABC drug transporter, CG4562, in spinosad transport, but also highlighted the P-glycoprotein orthologue Mdr65 as the most impactful ABC in terms of chemoprotection. Further characterization of the P-glycoprotein family was performed via transgenic overexpression and immunolocalization, finding that Mdr49 and Mdr50 play enigmatic roles in pesticide toxicology perhaps determined by their different subcellular localizations within the midgut. Lastly, transgenic Drosophila lines expressing P-glycoprotein from the major malaria vector Anopheles gambiae were used to establish a system for in vivo characterization of this transporter in non-model insects. This study provides the basis for establishing Drosophila as a model for toxicology research on drug transporters.
Collapse
Affiliation(s)
- Shane Denecke
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 100N. Plastira Street, 700 13 Heraklion Crete, Greece
| | - Hằng Ngọc Bảo Lương
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 100N. Plastira Street, 700 13 Heraklion Crete, Greece
| | - Venetia Koidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 100N. Plastira Street, 700 13 Heraklion Crete, Greece,Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece
| | - Maria Kalogeridi
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece
| | - Rafaella Socratous
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece
| | - Steven Howe
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kathrin Vogelsang
- Bayer AG, CropScience Division, R&D Pest Control, D-40789 Monheim, Germany
| | - Ralf Nauen
- Bayer AG, CropScience Division, R&D Pest Control, D-40789 Monheim, Germany
| | - Philip Batterham
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sven Geibel
- Bayer AG, CropScience Division, R&D Pest Control, D-40789 Monheim, Germany
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 100N. Plastira Street, 700 13 Heraklion Crete, Greece,Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Greece
| |
Collapse
|
22
|
Functional Diversity of the Lepidopteran ATP-Binding Cassette Transporters. J Mol Evol 2022; 90:258-270. [PMID: 35513601 DOI: 10.1007/s00239-022-10056-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
Abstract
The ATP-binding cassette (ABC) transporter gene family is ubiquitous in the living world. ABC proteins bind and hydrolyze ATP to transport a myriad of molecules across various lipid-containing membrane systems. They have been studied well in plants for transport of a variety of compounds and particularly, in vertebrates due to their direct involvement in resistance mechanisms against several toxic molecules/metabolites. ABC transporters in insects are found within large multigene families involved in the efflux of chemical insecticides and toxic/undesired metabolites originating from food and endogenous metabolism. This review deals with ABC transporter subfamilies of few agronomically important Lepidopteran pests. The transcriptional dynamics and regulation of ABC transporters during insect development emphasizes their functional diversity against insecticides, Cry toxins, and plant specialized metabolites. To generate insights about molecular function and physiological roles of ABCs, functional and structural characterization is necessary. Also, expansion and divergence of ABC transporter gene subfamilies in Lepidopteran insects needs more systematic investigation. We anticipate that newer methods of insect control in agriculture can benefit from an understanding of ABC transporter interactions with a vast range of natural specialized molecules and synthetic compounds.
Collapse
|
23
|
Ding CY, Ma YM, Li B, Wang Y, Zhao L, Peng JN, Li MY, Liu S, Li SG. Identification and Functional Analysis of Differentially Expressed Genes in Myzus persicae (Hemiptera: Aphididae) in Response to Trans-anethole. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:6484926. [PMID: 34958664 PMCID: PMC8711753 DOI: 10.1093/jisesa/ieab094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 06/14/2023]
Abstract
Plant essential oils, with high bioactivity and biodegradability, provide promising alternatives to synthetic pesticides for pest control. Trans-anethole is the major component of essential oil from star anise, Illicium verum Hook. The compound has a strong contact toxicity against the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), which is a major insect pest of many vegetables and crops. However, little information is known about how M. persicae responds to trans-anethole at the molecular level. We conducted a comparative transcriptome analysis of M. persicae in response to a LD50 dose of trans-anethole. A total of 559 differentially expressed genes were detected in the treated individuals, with 318 genes up-regulated, and 241 genes down-regulated. Gene ontology (GO) analysis revealed that these genes were classified into different biological processes and pathways. We also found that genes encoding ATP-binding cassette (ABC) transporters, DnaJ, and cuticle proteins were dramatically up-regulated in response to trans-anethole. To study the function of these genes, we performed RNA interference (RNAi) analysis. Knockdown of an ABC transporter gene (ABCG4) and a DnaJ gene (DnaJC1) resulted in a significantly increased mortality rate in M. persicae following trans-anethole exposure, indicating the involvement of these two genes in the toxicity response to trans-anethole. The findings provide new insights into the mechanisms of M. persicae in coping with plant essential oils.
Collapse
Affiliation(s)
- Chao-Yang Ding
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yu-Meng Ma
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Bin Li
- Department of Science and Technology, Sichuan Provincial Branch of China National Tobacco Corporation, Chengdu 610041, China
| | - Yun Wang
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Le Zhao
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | | | - Mao-Ye Li
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Su Liu
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Shi-Guang Li
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
24
|
Slo2/K Na Channels in Drosophila Protect against Spontaneous and Induced Seizure-like Behavior Associated with an Increased Persistent Na + Current. J Neurosci 2021; 41:9047-9063. [PMID: 34544836 DOI: 10.1523/jneurosci.0290-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/20/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Na+ sensitivity is a unique feature of Na+-activated K+ (KNa) channels, making them naturally suited to counter a sudden influx in Na+ ions. As such, it has long been suggested that KNa channels may serve a protective function against excessive excitation associated with neuronal injury and disease. This hypothesis, however, has remained largely untested. Here, we examine KNa channels encoded by the Drosophila Slo2 (dSlo2) gene in males and females. We show that dSlo2/KNa channels are selectively expressed in cholinergic neurons in the adult brain, as well as in glutamatergic motor neurons, where dampening excitation may function to inhibit global hyperactivity and seizure-like behavior. Indeed, we show that effects of feeding Drosophila a cholinergic agonist are exacerbated by the loss of dSlo2/KNa channels. Similar to mammalian Slo2/KNa channels, we show that dSlo2/KNa channels encode a TTX-sensitive K+ conductance, indicating that dSlo2/KNa channels can be activated by Na+ carried by voltage-dependent Na+ channels. We then tested the role of dSlo2/KNa channels in established genetic seizure models in which the voltage-dependent persistent Na+ current (INap) is elevated. We show that the absence of dSlo2/KNa channels increased susceptibility to mechanically induced seizure-like behavior. Similar results were observed in WT flies treated with veratridine, an enhancer of INap Finally, we show that loss of dSlo2/KNa channels in both genetic and pharmacologically primed seizure models resulted in the appearance of spontaneous seizures. Together, our results support a model in which dSlo2/KNa channels, activated by neuronal overexcitation, contribute to a protective threshold to suppress the induction of seizure-like activity.SIGNIFICANCE STATEMENT Slo2/KNa channels are unique in that they constitute a repolarizing K+ pore that is activated by the depolarizing Na+ ion, making them naturally suited to function as a protective "brake" against overexcitation and Na+ overload. Here, we test this hypothesis in vivo by examining how a null mutation of the Drosophila Slo2 (dSlo2)/KNa gene affects seizure-like behavior in genetic and pharmacological models of epilepsy. We show that indeed the loss of dSlo2/KNa channels results in increased incidence and severity of induced seizure behavior, as well as the appearance of spontaneous seizure activity. Our results advance our understanding of neuronal excitability and protective mechanisms that preserve normal physiology and the suppression of seizure susceptibility.
Collapse
|
25
|
Liu W, Sun X, Sun W, Zhou A, Li R, Wang B, Li X, Yan C. Genome-wide analyses of ATP-Binding Cassette (ABC) transporter gene family and its expression profile related to deltamethrin tolerance in non-biting midge Propsilocerus akamusi. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 239:105940. [PMID: 34455205 DOI: 10.1016/j.aquatox.2021.105940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/18/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Non-biting midges are dominant species in aquatic systems and often used for studying the toxicological researches of insecticides. ATP-binding cassette (ABC) transporters represent the largest known members in detoxification genes but is little known about their function in non-biting midges. Here, we selected Propsilocerus akamusi, widespread in urban streams, to first uncover the gene structure, location, characteristics, and phylogenetics of chironomid ABC transporters at genome-scale. Fifty-seven ABC transporter genes are located on four chromosomes, including eight subfamilies (ABCA-H). The ABCC, ABCG, and ABCH subfamilies experienced the duplication events to different degrees. The study showed that expression of the PaABCG17 gene is uniquely significantly elevated, with deltamethrin concentration increasing (1, 4, and 20 ug/L) both in RNA-seq and qPCR results. Additionally, the ABC transporter members of other six chironomids with assembled genomes are first described and used to investigate the characteristic of those living in the different adverse habitats. The ABC transporter frame for Propsilocerus akamusi and its transcriptomic results lay an important foundation for providing valuable resources for understanding the ABC transporter function in insecticide toxification of this species as well as those of other non-biting midges. The PaABCG17 gene is shown to play an important role in deltamethrin detoxification, and it functions need to be further investigated and might be used in the management of insecticide-resistance in chironomid adults.
Collapse
Affiliation(s)
- Wenbin Liu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Xiaoya Sun
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Wenwen Sun
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Anmo Zhou
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Ruoqun Li
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Bin Wang
- Tianjin Beidagang Wetland Nature Reserve Management Center, Tianjin, China
| | - Xun Li
- Tianjin Beidagang Wetland Nature Reserve Management Center, Tianjin, China
| | - Chuncai Yan
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China.
| |
Collapse
|
26
|
Wang L, Zhu J, Cui L, Wang Q, Huang W, Ji X, Yang Q, Rui C. Overexpression of ATP-binding cassette transporters associated with sulfoxaflor resistance in Aphis gossypii glover. PEST MANAGEMENT SCIENCE 2021; 77:4064-4072. [PMID: 33899308 DOI: 10.1002/ps.6431] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Sulfoxaflor is a new insecticide for controlling against Aphis gossypii in the field. ATP-binding cassette (ABC) transporters belong to a large superfamily of proteins and play an important role in the detoxification process. However, the potential role of ABC transporters in sulfoxaflor resistance in A. gossypii is unknown. RESULTS In this study, an ABC transporter inhibitor, verapamil, dramatically increased the toxicity of sulfoxaflor in the resistant population with a synergistic ratio of 8.55. However, verapamil did not synergize sulfoxaflor toxicity in the susceptible population. The contents of ABC transporters were significantly increased in the Sul-R population. Based on RT-qPCR analysis, 10 of 23 ABC transcripts, ABCA1, ABCA2, ABCB1, ABCB5, ABCD1, ABCG7, ABCG16, ABCG26, ABCG27, and MRP7, were up-regulated in the Sul-R population compared to the Sus population. Meanwhile, inductive effects of ABCA1, ABCD1, ABCG7 and ABCG26 by sulfoxaflor were found in A. gossypii. Furthermore, knockdown of ABCA1 and ABCD1 using RNAi significantly increased the sulfoxaflor sensitivity in Sul-R aphids. CONCLUSION These results suggested that ABC transporters, especially the ABCA1 and ABCD1 genes, might be related with sulfoxaflor resistance in A. gossypii. This study will promote further work to validate the functional roles of these ABCs in sulfoxaflor resistance and might be helpful for the management of sulfoxaflor-resistant A. gossypii.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Junshu Zhu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li Cui
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qinqin Wang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Weiling Huang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xuejiao Ji
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qingjie Yang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Changhui Rui
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
27
|
Denecke S, Rankić I, Driva O, Kalsi M, Luong NBH, Buer B, Nauen R, Geibel S, Vontas J. Comparative and functional genomics of the ABC transporter superfamily across arthropods. BMC Genomics 2021; 22:553. [PMID: 34281528 PMCID: PMC8290562 DOI: 10.1186/s12864-021-07861-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The ATP-binding cassette (ABC) transporter superfamily is comprised predominantly of proteins which directly utilize energy from ATP to move molecules across the plasma membrane. Although they have been the subject of frequent investigation across many taxa, arthropod ABCs have been less well studied. While the manual annotation of ABC transporters has been performed in many arthropods, there has so far been no systematic comparison of the superfamily within this order using the increasing number of sequenced genomes. Furthermore, functional work on these genes is limited. RESULTS Here, we developed a standardized pipeline to annotate ABCs from predicted proteomes and used it to perform comparative genomics on ABC families across arthropod lineages. Using Kruskal-Wallis tests and the Computational Analysis of gene Family Evolution (CAFE), we were able to observe significant expansions of the ABC-B full transporters (P-glycoproteins) in Lepidoptera and the ABC-H transporters in Hemiptera. RNA-sequencing of epithelia tissues in the Lepidoptera Helicoverpa armigera showed that the 7 P-glycoprotein paralogues differ substantially in their tissue distribution, suggesting a spatial division of labor. It also seems that functional redundancy is a feature of these transporters as RNAi knockdown showed that most transporters are dispensable with the exception of the highly conserved gene Snu, which is probably due to its role in cuticular formation. CONCLUSIONS We have performed an annotation of the ABC superfamily across > 150 arthropod species for which good quality protein annotations exist. Our findings highlight specific expansions of ABC transporter families which suggest evolutionary adaptation. Future work will be able to use this analysis as a resource to provide a better understanding of the ABC superfamily in arthropods.
Collapse
Affiliation(s)
- Shane Denecke
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece.
| | - Ivan Rankić
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czechia
| | - Olympia Driva
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece
| | - Megha Kalsi
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece
| | - Ngoc Bao Hang Luong
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece
| | - Benjamin Buer
- CropScience Division, Bayer AG, R&D Pest Control, D-40789, Monheim, Germany
| | - Ralf Nauen
- CropScience Division, Bayer AG, R&D Pest Control, D-40789, Monheim, Germany
| | - Sven Geibel
- CropScience Division, Bayer AG, R&D Pest Control, D-40789, Monheim, Germany
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece.,Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
28
|
Shan J, Sun X, Li R, Zhu B, Liang P, Gao X. Identification of ABCG transporter genes associated with chlorantraniliprole resistance in Plutella xylostella (L.). PEST MANAGEMENT SCIENCE 2021; 77:3491-3499. [PMID: 33837648 DOI: 10.1002/ps.6402] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Plutella xylostella (L.) is a serious worldwide pest that feeds on cruciferous plants and has evolved resistance to different classes of insecticides used for its control, including chlorantraniliprole. ATP-binding cassette (ABC) transporters, constituting the largest transport family in organisms, are involved in phase III of the detoxification process and may play important roles in insecticide resistance. RESULTS A total of 15 ABC transporter transcripts from subfamily G were identified in P. xylostella based on the latest DBM genome. Synergism studies showed that treatment with verapamil, a potent inhibitor of ABC transporters, significantly increased the toxicity of chlorantraniliprole against larvae of two chlorantraniliprole-resistant P. xylostella populations (NIL and BL). ABCG2, ABCG5, ABCG6, ABCG9, ABCG11, ABCG14 and ABCG15 were significantly overexpressed in NIL and BL compared with the susceptible population (SS), and ABCG1, ABCG6, ABCG8, ABCG9, ABCG14 and ABCG15 were significantly upregulated after treatment with the LC50 of chlorantraniliprole in SS. Subsequently, ABCG6, ABCG9 and ABCG14, which were overexpressed in both NIL and BL and could be induced in SS, were chosen for functional study. RNAi-mediated knockdown of each of the three ABCGs significantly increased the sensitivity of larvae to chlorantraniliprole. These results confirmed that overexpression of ABCG6, ABCG9 and ABCG14 may contribute to chlorantraniliprole resistance in P. xylostella. CONCLUSION Overexpression of some genes in the ABCG subfamily is involved in P. xylostella resistance to chlorantraniliprole. These results may help to establish a foundation for further studies investigating the role played by ABC transporters in chlorantraniliprole resistance in P. xylostella or other insect pests. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinqiong Shan
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Xi Sun
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Ran Li
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Bin Zhu
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
29
|
Rösner J, Tietmeyer J, Merzendorfer H. Functional analysis of ABCG and ABCH transporters from the red flour beetle, Tribolium castaneum. PEST MANAGEMENT SCIENCE 2021; 77:2955-2963. [PMID: 33620766 DOI: 10.1002/ps.6332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND ATP-binding cassette transporter (ABC transporter) subfamilies ABCA-C and ABCG-H have been implicated in insecticide detoxification, mostly based on findings of elevated gene expression in response to insecticide treatment. We previously characterized TcABCA-C genes from the model beetle and pest Tribolium castaneum and demonstrated that TcABCA and TcABCC genes are involved in the elimination of diflubenzuron, because RNA interference (RNAi)-mediated gene silencing increased susceptibility. In this study, we focused on the potential functions of TcABCG and TcABCH genes in insecticide detoxification. RESULTS When we silenced the expression of TcABCG-H genes using RNAi, we noticed a previously unreported developmental RNAi phenotype for TcABCG-4F, which is characterized by 50% mortality and ecdysial arrest during adult moult. When we knocked down the Drosophila brown orthologue TcABCG-XC, we did not obtain apparent eye colour phenotypes but did observe a loss of riboflavin uptake by Malpighian tubules. Next, we determined the expression profiles of all TcABCG-H genes in different tissues and developmental stages and analysed transcript levels in response to treatment with four chemically unrelated insecticides. We found that some genes were specifically upregulated after insecticide treatment. However, when we determined insecticide-induced mortalities in larvae that were treated by double-stranded RNA injection to silence those TcABCG-H genes that were upregulated, we did not observe a significant increase in susceptibility to insecticides. CONCLUSION Our findings suggest that the observed insecticide-dependent induction of TcABCG-H gene expression reflects an unspecific stress response, and hence underlines the significance of functional studies on insecticide detoxification. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Janin Rösner
- Department of Chemistry-Biology, University of Siegen, Siegen, Germany
| | - Johanne Tietmeyer
- Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Hans Merzendorfer
- Department of Chemistry-Biology, University of Siegen, Siegen, Germany
| |
Collapse
|
30
|
Lan J, Wang Z, Chen Z, Zhang L, Zhao J, Guan Q, Liao C, Liu N, Han Q. Identification of the Aedes aegypti nAChR gene family and molecular target of spinosad. PEST MANAGEMENT SCIENCE 2021; 77:1633-1641. [PMID: 33202106 DOI: 10.1002/ps.6183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/18/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Spinosad is an insecticide with unique mode of action (MOA) of disrupting nicotinic acetylcholine receptor and is efficacious against many insect species. Mutations in the nicotinic acetylcholine receptor (nAChR) α6 subunit have been identified that are associated with levels of spinosad resistance, but the molecular characterization of the nAChR gene family and a causative association between nAChR α6 and resistance to spinosad in Aedes aegypti, a primary vector of many arboviruses, have not yet been reported. RESULTS In this study, we identified 10 candidate nAChR subunits in Ae. Aegypti, nAChRα1-α9 and nAChRβ1, showing similarly orthologous relationships with Anopheles gambiae. With the application of the CRISPR/Cas9 genome editing system, we introduced a 32-bp deletion at the 5' end of the Aaeα6 (Ae. aegypti nAChR α6) gene in a homozygous mutant strain (Aaeα6-KO). The mutation produced two successive pre-mature stop codons, resulting in loss of function in the target receptor. The Aaeα6-KO mutant strain exhibited a 320-fold level of resistance to spinosad compared with wildtype. A recessive mode of inheritance for spinosad resistance was found in the Aaeα6-KO strain. CONCLUSION CRISPR/Cas9 introduced truncated Aaeα6 receptor in Ae. aegypti resulted in an increased level of resistance to spinosad, suggesting that the conserved nAChR α6 subunit is the target for spinosad insecticide. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianqiang Lan
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Zihe Wang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Zhaohui Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Lei Zhang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Jianguo Zhao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Qingfeng Guan
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Chenghong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| |
Collapse
|
31
|
Identification and Expression Characterization of ATP-Binding Cassette (ABC) Transporter Genes in Melon Fly. INSECTS 2021; 12:insects12030270. [PMID: 33806814 PMCID: PMC8005081 DOI: 10.3390/insects12030270] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022]
Abstract
Simple Summary The melon fly, Zeugodacus cucurbitae, is an important agricultural pest. At present, chemical pesticide treatment is the main method for field control, but this promotes pesticide resistance by Z. cucurbitae, because of its frequent use. ABC transporters are involved in detoxification metabolism, but few studies have yet considered their expression in melon fly. In this study, we identified the ABC transporters genes at a genome-wide level in melon fly, and analysed their spatiotemporal expression patterns, as well as changes in expression after insecticides treatments. A total of 49 ABC transporters were identified, and their expression levels varied at different developmental stages and between tissues. After three insecticides treatment, ZcABCB7 and ZcABCC2 were up-regulated. After β-cypermethrin induction, tissues were dissected at 12, 24 and 48 h, and the expression levels of a number of ABC genes were highly expressed within the fat body. From these results, we conclude that ZcABCB7 and ZcABCC2 may be involved in detoxification metabolism, and that the fat body is the main tissue that plays this role. Abstract The ATP-binding cassette (ABC) transporter is a protein superfamily that transports specific substrate molecules across lipid membranes in all living species. In insects, ABC transporter is one of the major transmembrane protein families involved in the development of xenobiotic resistance. Here, we report 49 ABC transporter genes divided into eight subfamilies (ABCA-ABCH), including seven ABCAs, seven ABCBs, 10 ABCCs, two ABCDs, one ABCE, three ABCFs, 16 ABCGs, and three ABCHs according to phylogenetic analysis in Zeugodacus cucurbitae, a highly destructive insect pest of cucurbitaceous and other related crops. The expressions level of 49 ABC transporters throughout various developmental stages and within different tissues were evaluated by quantitative transcriptomic analysis, and their expressions in response to three different insecticides were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). These ABC transporter genes were widely expressed at developmental stages but most highly expressed in tissues of the midgut, fat body and Malpighian tube. When challenged by exposure to three insecticides, abamectin, β-cypermethrin, and dinotefuran, the expressions of ZcABCB7 and ZcABCC2 were significantly up-regulated. ZcABCB1, ZcABCB6, ZcABCB7, ZcABCC2, ZcABCC3, ZcABCC4, ZcABCC5, and ZcABCC7 were significantly up-regulated in the fat body at 24 h after β-cypermethrin exposure. These data suggest that ZcABCB7 and ZcABCC2 might play key roles in xenobiotic metabolism in Z. cucurbitae. Collectively, these data provide a foundation for further analysis of ABCs in Z. cucurbitae.
Collapse
|
32
|
Meng X, Yang X, Wu Z, Shen Q, Miao L, Zheng Y, Qian K, Wang J. Identification and transcriptional response of ATP-binding cassette transporters to chlorantraniliprole in the rice striped stem borer, Chilo suppressalis. PEST MANAGEMENT SCIENCE 2020; 76:3626-3635. [PMID: 32406167 DOI: 10.1002/ps.5897] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/14/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND As the largest transporter gene family in metazoans, ATP-binding cassette (ABC) transporters regulate the efflux of a broad spectrum of substrates from the cytoplasm to the outside of the cell. In arthropods, ABC transporters are involved in phase III of the detoxification process, and play important roles in the metabolism and transport of insecticides. RESULTS We identified 54 ABC transporters from the genome and transcriptome of Chilo suppressalis, one of the most damaging pests of rice in China. The identified ABC transporters were classified into eight subfamilies (ABCA to ABCH) based on NCBI BLAST and phylogenetic analysis. Synergism studies showed that treatment with verapamil, a potent inhibitor of ABC transporters, resulted in significantly increased toxicity of chlorantraniliprole against C. suppressalis larvae. Among the 21 tested ABC genes, three ABC transporter genes including CsABCC8, CsABCG1C and CsABCH1 were significantly upregulated after chlorantraniliprole treatment. CONCLUSION ABC transporters play important roles in the detoxification and transport of chlorantraniliprole in C. suppressalis. The results from our study provide valuable information on C. suppressalis ABC transporters, and are helpful in understanding the roles of ABC transporters in chlorantraniliprole resistance mechanisms in C. suppressalis and other insect pests. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xuemei Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhaolu Wu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qinwen Shen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Lijun Miao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yang Zheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
33
|
Kowalski P, Baum M, Körten M, Donath A, Dobler S. ABCB transporters in a leaf beetle respond to sequestered plant toxins. Proc Biol Sci 2020; 287:20201311. [PMID: 32873204 PMCID: PMC7542790 DOI: 10.1098/rspb.2020.1311] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
Phytophagous insects can tolerate and detoxify toxic compounds present in their host plants and have evolved intricate adaptations to this end. Some insects even sequester the toxins for their defence. This necessitates specific mechanisms, especially carrier proteins that regulate uptake and transport to specific storage sites or protect sensitive tissues from noxious compounds. We identified three ATP-binding cassette subfamily B (ABCB) transporters from the transcriptome of the cardenolide-sequestering leaf beetle Chrysochus auratus and analysed their functional role in the sequestration process. These were heterologously expressed and tested for their ability to interact with various potential substrates: verapamil (standard ABCB substrate), the cardenolides digoxin (commonly used), cymarin (present in the species's host plant) and calotropin (present in the ancestral host plants). Verapamil stimulated all three ABCBs and each was activated by at least one cardenolide, however, they differed as to which they were activated by. While the expression of the most versatile transporter fits with a protective role in the blood-brain barrier, the one specific for cymarin shows an extreme abundance in the elytra, coinciding with the location of the defensive glands. Our data thus suggest a key role of ABCBs in the transport network needed for cardenolide sequestration.
Collapse
Affiliation(s)
- Paulina Kowalski
- Molecular Evolutionary Biology, Institute of Zoology, Universität Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Michael Baum
- Molecular Evolutionary Biology, Institute of Zoology, Universität Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Marcel Körten
- Molecular Evolutionary Biology, Institute of Zoology, Universität Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Alexander Donath
- ZFMK, Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere, Adenauerallee 160, 53113 Bonn, Germany
| | - Susanne Dobler
- Molecular Evolutionary Biology, Institute of Zoology, Universität Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| |
Collapse
|
34
|
Transcriptome analysis of Aedes aegypti Aag2 cells in response to dengue virus-2 infection. Parasit Vectors 2020; 13:421. [PMID: 32807211 PMCID: PMC7433057 DOI: 10.1186/s13071-020-04294-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Background Dengue virus (DENV) is a flavivirus transmitted by mosquitoes that is prevalent in tropical and subtropical countries and has four serotypes (DENV1-4). Aedes aegypti, as the main transmission vector of DENV, exhibits strong infectivity and transmission. With the aim of obtaining a better understanding of the Ae. aegypti-DENV interaction, the transcriptome changes in DENV-2-infected Aag2 cells were studied to describe the immune responses of mosquitoes using the Ae. aegypti Aag2 cell line as a model. Methods RNAseq technology was used to sequence the transcripts of the Ae. aegypti Aag2 cell line before and after infection with DENV-2. A bioinformatics analysis was then performed to assess the biological functions of the differentially expressed genes, and the sequencing data were verified by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Results The transcriptome analysis generated 8866 unigenes that were found in both groups, 225 unigenes that were only found in the infection group, and 683 unigenes that only existed in the control group. A total of 1199 differentially expressed genes, including 1014 upregulated and 185 downregulated genes, were identified. The bioinformatics analysis showed that the differentially expressed genes were mainly involved in the longevity regulating pathway, circadian rhythm, DNA replication, and peroxisome, purine, pyrimidine, and drug metabolism. The qRT-PCR verification results showed the same trend, which confirmed that the expression of the differentially expressed genes had changed, and that the transcriptome sequencing data were reliable. Conclusions This study investigated the changes in the transcriptome levels in the DENV-2-infected Ae. aegypti Aag2 cell line, which provides a faster and effective method for discovering genes related to Ae. aegypti pathogen susceptibility. The findings provide basic data and directions for further research on the complex mechanism underlying host-pathogen interactions.![]()
Collapse
|
35
|
Noriega DD, Arraes FBM, Antonino JD, Macedo LLP, Fonseca FCA, Togawa RC, Grynberg P, Silva MCM, Negrisoli AS, Morgante CV, Grossi-de-Sa MF. Comparative gut transcriptome analysis of Diatraea saccharalis in response to the dietary source. PLoS One 2020; 15:e0235575. [PMID: 32745084 PMCID: PMC7398519 DOI: 10.1371/journal.pone.0235575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
The sugarcane borer (Diatraea saccharalis, Fabricius, 1794) is a devastating pest that causes millions of dollars of losses each year to sugarcane producers by reducing sugar and ethanol yields. The control of this pest is difficult due to its endophytic behavior and rapid development. Pest management through biotechnological approaches has emerged in recent years as an alternative to currently applied methods. Genetic information about the target pests is often required to perform biotechnology-based management. The genomic and transcriptomic data for D. saccharalis are very limited. Herein, we report a tissue-specific transcriptome of D. saccharalis larvae and a differential expression analysis highlighting the physiological characteristics of this pest in response to two different diets: sugarcane and an artificial diet. Sequencing was performed on the Illumina HiSeq 2000 platform, and a de novo assembly was generated. A total of 27,626 protein-coding unigenes were identified, among which 1,934 sequences were differentially expressed between treatments. Processes such as defence, digestion, detoxification, signaling, and transport were highly represented among the differentially expressed genes (DEGs). Furthermore, seven aminopeptidase genes were identified as candidates to encode receptors of Cry proteins, which are toxins of Bacillus thuringiensis used to control lepidopteran pests. Since plant-insect interactions have produced a considerable number of adaptive responses in hosts and herbivorous insects, the success of phytophagous insects relies on their ability to overcome challenges such as the response to plant defences and the intake of nutrients. In this study, we identified metabolic pathways and specific genes involved in these processes. Thus, our data strongly contribute to the knowledge advancement of insect transcripts, which can be a source of target genes for pest management.
Collapse
Affiliation(s)
- Daniel D. Noriega
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
- Department of Cellular Biology, University of Brasília, Brasília-DF, Brazil
- Catholic University of Brasília, Brasília-DF, Brazil
| | - Fabricio B. M. Arraes
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
- Biotechnology Center, UFRGS, Porto Alegre-RS, Brazil
| | - José Dijair Antonino
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
- Departamento de Agronomia/Entomologia, UFRPE, Recife-PE, Brazil
| | | | - Fernando C. A. Fonseca
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
- Department of Cellular Biology, University of Brasília, Brasília-DF, Brazil
| | | | | | | | | | - Carolina V. Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
- Embrapa Semi Arid, Petrolina-PE, Brazil
| | - Maria F. Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
- Catholic University of Brasília, Brasília-DF, Brazil
- National Institute of Science and Technology–INCT PlantStress Biotech–EMBRAPA, Brasilia-DF, Brazil
| |
Collapse
|
36
|
Douris V, Denecke S, Van Leeuwen T, Bass C, Nauen R, Vontas J. Using CRISPR/Cas9 genome modification to understand the genetic basis of insecticide resistance: Drosophila and beyond. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 167:104595. [PMID: 32527434 DOI: 10.1016/j.pestbp.2020.104595] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Chemical insecticides are a major tool for the control of many of the world's most damaging arthropod pests. However, their intensive application is often associated with the emergence of resistance, sometimes with serious implications for sustainable pest control. To mitigate failure of insecticide-based control tools, the mechanisms by which insects have evolved resistance must be elucidated. This includes both identification and functional characterization of putative resistance genes and/or mutations. Research on this topic has been greatly facilitated by using powerful genetic model insects like Drosophila melanogaster, and more recently by advances in genome modification technology, notably CRISPR/Cas9. Here, we present the advances that have been made through the application of genome modification technology in insecticide resistance research. The majority of the work conducted in the field to date has made use of genetic tools and resources available in D. melanogaster. This has greatly enhanced our understanding of resistance mechanisms, especially those mediated by insensitivity of the pesticide target-site. We discuss this progress for a series of different insecticide targets, but also report a number of unsuccessful or inconclusive attempts that highlight some inherent limitations of using Drosophila to characterize resistance mechanisms identified in arthropod pests. We also discuss an experimental framework that may circumvent current limitations while retaining the genetic versatility and robustness that Drosophila has to offer. Finally, we describe examples of direct CRISPR/Cas9 use in non-model pest species, an approach that will likely find much wider application in the near future.
Collapse
Affiliation(s)
- Vassilis Douris
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13 Heraklion, Crete, Greece; Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece.
| | - Shane Denecke
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13 Heraklion, Crete, Greece
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Ralf Nauen
- Bayer AG, CropScience Division, R&D Pest Control, D-40789 Monheim, Germany
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13 Heraklion, Crete, Greece; Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Greece.
| |
Collapse
|
37
|
Salces-Ortiz J, Vargas-Chavez C, Guio L, Rech GE, González J. Transposable elements contribute to the genomic response to insecticides in Drosophila melanogaster. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190341. [PMID: 32075557 PMCID: PMC7061994 DOI: 10.1098/rstb.2019.0341] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Most of the genotype–phenotype analyses to date have largely centred attention on single nucleotide polymorphisms. However, transposable element (TE) insertions have arisen as a plausible addition to the study of the genotypic–phenotypic link because of to their role in genome function and evolution. In this work, we investigate the contribution of TE insertions to the regulation of gene expression in response to insecticides. We exposed four Drosophila melanogaster strains to malathion, a commonly used organophosphate insecticide. By combining information from different approaches, including RNA-seq and ATAC-seq, we found that TEs can contribute to the regulation of gene expression under insecticide exposure by rewiring cis-regulatory networks. This article is part of a discussion meeting issue ‘Crossroads between transposons and gene regulation’.
Collapse
Affiliation(s)
- Judit Salces-Ortiz
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Carlos Vargas-Chavez
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Lain Guio
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Gabriel E Rech
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
38
|
Rösner J, Merzendorfer H. Transcriptional plasticity of different ABC transporter genes from Tribolium castaneum contributes to diflubenzuron resistance. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103282. [PMID: 31740345 DOI: 10.1016/j.ibmb.2019.103282] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
The development of insecticide resistance challenges the sustainability of pest control and several studies have shown that ABC transporters contribute to this process. ABC transporters are known to transport a large range of chemically diverse molecules across cellular membranes, and therefore the identification of ABC transporters involved in insecticide resistance is difficult. Here, we describe a comprehensive strategy for the identification of whole sets of ABC transporters involved in insecticide resistance using the pest beetle, Tribolium castaneum (Tc) as a model. We analyzed the expression of ABCA to ABCC genes in different tissues and developmental stages using larvae that were sensitive or resistant to diflubenzuron (DFB). The mRNA levels of several ABC genes expressed in excretory or metabolic tissues such as midgut, Malpighian tubules or fat body were markedly upregulated in response to DFB. Next, we monitored mortality in the presence of the ABC inhibitor verapamil, and found that it causes sensitization to DFB. We furthermore established a competitive assay for the elimination of DFB, based on Texas Red (TR) fluorescence. We monitored TR elimination in larvae that were treated with DFB or different ABC inhibitors, and combinations of them. TR elimination was decreased significantly in the presence of DFB, verapamil and the ABCC inhibitor MK-571. The effect was synergized when DFB and verapamil were both present suggesting that the transport of TR and DFB involves overlapping sets of ABC transporters. Finally, we silenced the expression of DFB-responding ABC genes by RNA interference and then followed the survival rates after DFB exposure. Mortality increased particularly when specific ABCA and ABCC genes were silenced. Taken together, we were able to show that different ABC transporters expressed in metabolic and excretory tissues contribute to the elimination of DFB. Up- or down-regulation of gene expression occurs within a few days already at very low DFB concentrations. These results suggests that transcriptional plasticity of several ABC genes allows adaptation of the efflux capacity in different tissues to eliminate insecticides and/or their metabolites.
Collapse
Affiliation(s)
- Janin Rösner
- Department of Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57068, Siegen, Germany
| | - Hans Merzendorfer
- Department of Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57068, Siegen, Germany.
| |
Collapse
|
39
|
Scott JG, Buchon N. Drosophila melanogaster as a powerful tool for studying insect toxicology. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 161:95-103. [PMID: 31685202 DOI: 10.1016/j.pestbp.2019.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Insecticides are valuable and widely used tools for the control of pest insects. Despite the use of synthetic insecticides for >50 years, we continue to have a limited understanding of the genes that influence the key steps of the poisoning process. Major barriers for improving our understanding of insecticide toxicity have included a narrow range of tools and/or a large number of candidate genes that could be involved in the poisoning process. Herein, we discuss the numerous tools and resources available in Drosophila melanogaster that could be brought to bear to improve our understanding of the processes determining insecticide toxicity. These include unbiased approaches such as forward genetic screens, population genetic methods and candidate gene approaches. Examples are provided to showcase how D. melanogaster has been successfully used for insecticide toxicology studies in the past, and ideas for future studies using this valuable insect are discussed.
Collapse
Affiliation(s)
- Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA.
| | - Nicolas Buchon
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| |
Collapse
|
40
|
Yang H, Zhou C, Yang XB, Long GY, Jin DC. Effects of Insecticide Stress on Expression of NlABCG Transporter Gene in the Brown Planthopper, Nilaparvata lugens. INSECTS 2019; 10:insects10100334. [PMID: 31597380 PMCID: PMC6836012 DOI: 10.3390/insects10100334] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
The brown planthopper (BPH), Nilaparvata lugens, is an important pest of rice that severely affects production. Insecticides are an important means of controlling BPH, but their long-term use has led to resistance. To provide insight into BPH responses to insecticide stress, we determined the expression levels of BPH ABCG transporter genes under treatment with thiamethoxam, abamectin, and cyantraniliprole at LC10, LC25, LC50, and LC90. We cloned 13 BPH ABCG transporters, named NlABCG1 to NlABCG13. Conservative domain analysis showed that all 13 transporters have one nucleotide binding domain and one transmembrane domain, typical of semi-molecular transporters. Real-time quantitative PCR showed that thiamethoxam, abamectin, and cyantraniliprole stress increased the expression of some NlABCG transporters gene in BPH. However, after treatment with thiamethoxam at LC25 and abamectin at LC10, there was no significant upregulation of NlABCG. These results indicate that the expression of NlABCG varies in response to stress from different insecticides. These findings provide baseline information for further understanding of the molecular mechanisms of insecticide resistance in BPH.
Collapse
Affiliation(s)
- Hong Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China.
- College of Tobacco Science, Guizhou University, Guiyang 550025, China.
| | - Cao Zhou
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China.
| | - Xi-Bin Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China.
| | - Gui-Yun Long
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China.
| | - Dao-Chao Jin
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
41
|
Wu C, Chakrabarty S, Jin M, Liu K, Xiao Y. Insect ATP-Binding Cassette (ABC) Transporters: Roles in Xenobiotic Detoxification and Bt Insecticidal Activity. Int J Mol Sci 2019; 20:ijms20112829. [PMID: 31185645 PMCID: PMC6600440 DOI: 10.3390/ijms20112829] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 01/09/2023] Open
Abstract
ATP-binding cassette (ABC) transporters, a large class of transmembrane proteins, are widely found in organisms and play an important role in the transport of xenobiotics. Insect ABC transporters are involved in insecticide detoxification and Bacillus thuringiensis (Bt) toxin perforation. The complete ABC transporter is composed of two hydrophobic transmembrane domains (TMDs) and two nucleotide binding domains (NBDs). Conformational changes that are needed for their action are mediated by ATP hydrolysis. According to the similarity among their sequences and organization of conserved ATP-binding cassette domains, insect ABC transporters have been divided into eight subfamilies (ABCA–ABCH). This review describes the functions and mechanisms of ABC transporters in insecticide detoxification, plant toxic secondary metabolites transport and insecticidal activity of Bt toxin. With improved understanding of the role and mechanisms of ABC transporter in resistance to insecticides and Bt toxins, we can identify valuable target sites for developing new strategies to control pests and manage resistance and achieve green pest control.
Collapse
Affiliation(s)
- Chao Wu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Swapan Chakrabarty
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Minghui Jin
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Kaiyu Liu
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
42
|
Yang CL, Zhu HY, Zhang F. Comparative Proteomics Analysis Between the Short-Term Stress and Long-Term Adaptation of the Blattella germanica (Blattodea: Blattellidae) in Response to Beta-Cypermethrin. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1396-1402. [PMID: 30835785 DOI: 10.1093/jee/toz047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Indexed: 06/09/2023]
Abstract
A proteomic method combining two-dimensional polyacrylamide gel electrophoresis and tandem mass spectrometry was used to compare the hemolymph expression profiles of a beta-cypermethrin-resistant Blattella germanica L. strain (R) and a susceptible strain (S) after 24 h of beta-cypermethrin induction. The results showed that there were 42 differentially expressed proteins after induction of the R strain: 4 proteins were upregulated and 38 proteins were downregulated. One hundred one hemolymph proteins were differentially expressed after induction of the S strain: 53 proteins were upregulated and 48 proteins were downregulated. The identified proteins were mainly classified into the following categories: energy metabolism proteins such as arginine kinase and triose phosphate isomerase, detoxification-related proteins such as glutathione S-transferases (GSTs), signal molecule-regulated proteins such as nitric oxide synthase (NOS), and other proteins such as kinetic-related proteins and gene expression-related proteins. Several proteins show significant differences in response to short-term stress and long-term adaptation, and differential expression of these proteins reflects an overall change in cellular structure and metabolism associated with resistance to pyrethroid insecticides. In summary, our research has improved the understanding of the molecular mechanisms of beta-cypermethrin resistance in German cockroaches, which will facilitate the development of rational methods to improve the management of this pest.
Collapse
Affiliation(s)
- Cheng Long Yang
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan, People of Republic of China
| | - Hai Ying Zhu
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan, People of Republic of China
| | | |
Collapse
|
43
|
Ding BY, Yang L, Peng YY, Chang TY, Ye C, Shang F, Niu J, Wang JJ. RNA-sequencing of a citrus bud-feeder, Podagricomela weisei (Coleoptera: Chrysomelidae), reveals xenobiotic metabolism/core RNAi machinery-associated genes and conserved miRNAs. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 29:339-350. [PMID: 30682656 DOI: 10.1016/j.cbd.2019.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 11/15/2022]
Abstract
The citrus leaf-mining beetle, Podagricomela weisei Heikertinger, is an important citrus pest that ingests the mesophyll and new shoots. The mechanism underlying the xenobiotic metabolism of P. weisei is not well understood, in part because of a lack of available genomic and transcriptomic data, which has hampered the development of novel pest management approaches [e.g., RNA interference (RNAi)]. In this study, we completed the deep sequencing of the P. weisei transcriptome to identify factors potentially involved in xenobiotic metabolism and the core RNAi machinery. The sequencing of the P. weisei transcriptome generated >27 million clean reads, ultimately yielding 90,410 unigenes with an N50 of 1065 bp. The unigenes were used as queries to search the Nr database, which revealed that 21,847 unigenes were homologous to known genes in various species. Transcripts encoding genes involved in xenobiotic metabolism were identified, including genes encoding cytochrome P450 monooxygenase (P450, 47 unigenes), glutathione S-transferase (GST, 12 unigenes), esterase (EST, 25 unigenes), and the ATP-binding cassette transporter (ABC transporter, 32 unigenes). A parallel sequencing of small RNAs detected 30 conserved miRNAs, with the most abundant being Pwe-miR-1-3p, with an expression level reaching 517,996 reads in the prepared library, followed by Pwe-miR-8-3p (149,402 reads). Genes encoding components of the miRNA, siRNA, and piRNA pathways were also identified, and the results indicated that P. weisei possesses only one of each gene in all three pathways. In summary, this is the first detailed analysis of the transcriptome and small RNAs of P. weisei. The datasets presented herein may form the basis for future molecular characterizations of P. weisei as well as the development of enhanced pest control strategies.
Collapse
Affiliation(s)
- Bi-Yue Ding
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Li Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Yuan-Yuan Peng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Teng-Yu Chang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Chao Ye
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
44
|
Denecke S, Swevers L, Douris V, Vontas J. How do oral insecticidal compounds cross the insect midgut epithelium? INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 103:22-35. [PMID: 30366055 DOI: 10.1016/j.ibmb.2018.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/09/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
The use of oral insecticidal molecules (small molecules, peptides, dsRNA) via spray or plant mediated applications represents an efficient way to manage damaging insect species. With the exception of Bt toxins that target the midgut epithelium itself, most of these compounds have targets that lie within the hemocoel (body) of the insect. Because of this, one of the greatest factors in determining the effectiveness of an oral insecticidal compound is its ability to traverse the gut epithelium and enter the hemolymph. However, for many types of insecticidal compounds, neither the pathway taken across the gut nor the specific genes which influence uptake are fully characterized. Here, we review how different types of insecticidal compounds enter or cross the midgut epithelium through passive (diffusion) or active (transporter based, endocytosis) routes. A deeper understanding of how insecticidal molecules cross the gut will help to best utilize current insecticides and also provide for more rational design of future ones.
Collapse
Affiliation(s)
- Shane Denecke
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece.
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences & Applications, NCSR "Demokritos", Athens, Greece
| | - Vassilis Douris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece; Department of Crop Science, Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
45
|
Karlgren M, Simoff I, Keiser M, Oswald S, Artursson P. CRISPR-Cas9: A New Addition to the Drug Metabolism and Disposition Tool Box. Drug Metab Dispos 2018; 46:1776-1786. [PMID: 30126863 DOI: 10.1124/dmd.118.082842] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9), i.e., CRISPR-Cas9, has been extensively used as a gene-editing technology during recent years. Unlike earlier technologies for gene editing or gene knockdown, such as zinc finger nucleases and RNA interference, CRISPR-Cas9 is comparably easy to use, affordable, and versatile. Recently, CRISPR-Cas9 has been applied in studies of drug absorption, distribution, metabolism, and excretion (ADME) and for ADME model generation. To date, about 50 papers have been published describing in vitro or in vivo CRISPR-Cas9 gene editing of ADME and ADME-related genes. Twenty of these papers describe gene editing of clinically relevant genes, such as ATP-binding cassette drug transporters and cytochrome P450 drug-metabolizing enzymes. With CRISPR-Cas9, the ADME tool box has been substantially expanded. This new technology allows us to develop better and more predictive in vitro and in vivo ADME models and map previously underexplored ADME genes and gene families. In this mini-review, we give an overview of the CRISPR-Cas9 technology and summarize recent applications of CRISPR-Cas9 within the ADME field. We also speculate about future applications of CRISPR-Cas9 in ADME research.
Collapse
Affiliation(s)
- M Karlgren
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| | - I Simoff
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| | - M Keiser
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| | - S Oswald
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| | - P Artursson
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| |
Collapse
|
46
|
Perry T, Batterham P. Harnessing model organisms to study insecticide resistance. CURRENT OPINION IN INSECT SCIENCE 2018; 27:61-67. [PMID: 30025636 DOI: 10.1016/j.cois.2018.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
The vinegar fly, Drosophila melanogaster, has made an enormous contribution to our understanding of insecticide targets, metabolism and transport. This contribution has been enabled by the unmatched capacity to manipulate genes in D. melanogaster and the fact that lessons learn in this system have been applicable to pests, because of the evolutionary conservation of key genes, particularly those encoding targets. With the advent of the CRISPR-Cas9 gene editing technology, genes can now be manipulated in pest species, but this review points to advantages that are likely to keep D. melanogaster at the forefront of insecticide research.
Collapse
Affiliation(s)
- Trent Perry
- School of BioSciences/Bio21 Institute, University of Melbourne, Parkville 3052, Victoria, Australia
| | - Philip Batterham
- School of BioSciences/Bio21 Institute, University of Melbourne, Parkville 3052, Victoria, Australia.
| |
Collapse
|
47
|
Role of ABC transporters White, Scarlet and Brown in brown planthopper eye pigmentation. Comp Biochem Physiol B Biochem Mol Biol 2018; 221-222:1-10. [PMID: 29654886 DOI: 10.1016/j.cbpb.2018.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/02/2018] [Accepted: 04/06/2018] [Indexed: 11/24/2022]
Abstract
The brown planthopper ATP-binding cassette (ABC) proteins White (W), Scarlet (St) and Brown (Bw) belong to the ABC transporter superfamily and are responsible for the transportation of guanine and tryptophan precursors of eye pigments. In the present study, the brown planthopper White (NlW), S t(NlSt) and Bw (NlBw) genes were cloned, and subsequent phylogenetic analysis showed that these genes are clustered with their respective homologues, with a genetic relationship observed between NlW and its Bemisia tabaci homologue having the highest similarity. Sequence alignments showed that these three proteins have a highly conserved Walker A domain, an ABC "signature sequence" and a Walker B domain. QRT-PCR demonstrated that W, St and Bw are highly expressed in the head of long-winged males and are highly expressed in both egg and male. Adult eye colour was altered after the downregulation of NlW, NlSt and NlBw in the 1st to 3rd instar nymph. The eye colours of emerged adults became white, dark and red after injection of dsNlW, dsNlSt and dsNlBw, respectively. The eye pigment content assay revealed that xanthommatin and pteridine were significantly decreased after the injection of dsRNAs, and the range of variation was inversely correlated with nymph age. The present study provides a theoretical basis for understanding the function of ABC transporters at the molecular and biochemical levels.
Collapse
|