1
|
Xia L, Gao M, Xu Z, Yuan X, Hou W, Chen M, Peng X. Involvement of sensory neuron membrane protein gene ( SNMP) in host plant searching in the bird cherry-oat aphid. BULLETIN OF ENTOMOLOGICAL RESEARCH 2025:1-9. [PMID: 40151156 DOI: 10.1017/s0007485325000173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Sensory neuron membrane protein (SNMP) gene play a crucial role in insect chemosensory systems. However, the role of SNMP in the host searching behaviour of Rhopalosiphum padi (Hemiptera: Aphididae), a highly destructive pest of cereal crops, has not been clearly understood. Our previous research has shown that three wheat volatile organic compounds (VOCs) - (E)-2-hexenol, linalool, and octanal can attract R. padi, but the involvement of SNMP in the aphid's olfactory response to these wheat VOCs has not to be elucidated. In this study, only one SNMP gene was cloned and characterised from R. padi. The results revealed that the SNMP belongs to the SNMP1 subfamily and was named RpadSNMP1. RpadSNMP11 was predominantly expressed in the antennae of the aphid, with significantly higher expression levels observed in winged forms, indicating that it is involved in olfactory responses of R. padi. RpadSNMP1 expression was significantly up-regulated following starvation, and the expression of this gene showed a decreasing trend after 24 h of aphid feeding. Functional analysis through RpadSNMP1 knockdown demonstrated a significant decrease in R. padi's ability to search for host plants. The residence time of R. padi injected with dsRpadSNMP1 significantly shortened in response to (E)-2-hexenol, linalool and octanal according to the four-arm olfactometer, indicating the crucial role of RpadSNMP1 in mediating the aphid's response to these wheat VOCs. Molecular docking suggested potential binding interactions between RpadSNMP1 and three wheat VOCs. Overall, these findings provided evidence for the involvement of RpadSNMP1 in host plant searching and lay a foundation for developing new methods to control this destructive pest.
Collapse
Affiliation(s)
- Linhai Xia
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengjie Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhimin Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoxiao Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenhua Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Feng HY, Zhao YQ, Yang T, Zhou YY, Gong LL, Zhang MQ, Ma YF, Hull JJ, Dewer Y, Zhang F, Smagghe G, He M, He P. Female contact sex pheromone recognition in the German cockroach (Blattella germanica) is mediated by two male antennae-enriched sensory neuron membrane proteins. PEST MANAGEMENT SCIENCE 2025; 81:572-584. [PMID: 39506909 DOI: 10.1002/ps.8530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND The German cockroach Blattella germanica is a notorious urban health pest that has developed resistance to multiple pesticides. Thus, novel non-lethal pest control agents are urgently needed. Olfaction interference via disruption of sex pheromone recognition-related genes offers a promising approach. The German cockroach has a unique courtship behavior in which female adults emit contact sex pheromones (CSPs) in response to antennal touching, which subsequently triggers distinctive male sex behavioral responses. Due to the limited volatility of CSPs, the molecular mechanisms underlying their recognition and the specific olfactory pathways activated remain poorly defined. Although the odorant receptor coreceptor (Orco) is critical for most insect olfaction, sensory neuron membrane proteins (SNMPs), in particular SNMP1, also play crucial roles in sex pheromone recognition in moths and flies. While multiple SNMP1 homologs have been identified in multiple insect species, they have yet to be fully functionally characterized in cockroaches. RESULTS In this study, RNA-interference (RNAi)-mediated knockdown of BgerOrco reduced both the electrophysiology responses and courtship behaviors of males, indicating CSP perception proceeds via an olfaction pathway. Similar RNAi knockdown of BgerSNMP1e and BgerSNMP1d, which are predominantly expressed in male antennae, revealed critical roles in perceiving the major component of the Blattella germanica CSP blend. Unlike BgerSNMP1e, BgerSNMP1d was also found to function in the perception of the minor CSP component. Molecular docking analyses revealed no differences in the binding affinities of BgerSNMP1d for the major and minor CSP components, whereas the binding affinities of BgerSNMP1e displayed clear selectivity for the major component. CONCLUSION Our results show that the olfactory pathway is critical for CSP recognition and that two male-enriched SNMP genes, BgerSNMP1e and BgerSNMP1d, are crucial factors mediating the male response to CSP stimulation in German cockroaches. This study lays a foundation for studying the mechanisms of CSP recognition and provides novel molecular targets with potential to be exploited as disruptors of courtship behavior. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hong-Yan Feng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Ya-Qin Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Tao Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Yang-Yuntao Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Lang-Lang Gong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Meng-Qi Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Yun-Feng Ma
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ, USA
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Fan Zhang
- College of Life Science, Shandong Normal University, Jinan, P. R. China
| | - Guy Smagghe
- Institute Entomology, Guizhou University, Guiyang, P. R. China
- Department of Plants and Crops, Ghent University, Ghent, Belgium
- Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ming He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Peng He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| |
Collapse
|
3
|
Yang H, Liu L, Chen L, Yang C, Huang Q, Wang N, Hu H. Screening, validation and functional characterization of genes encoding proteins that interact with sensory neuron membrane protein 1b (SNMP1b) from Cyrtotrachelus buqueti (Coleoptera: Curculionidae). Int J Biol Macromol 2025; 284:138113. [PMID: 39608529 DOI: 10.1016/j.ijbiomac.2024.138113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Sensory neuron membrane proteins (SNMPs) play critical roles in insect olfactory system. However, functional studies outside of Drosophila remain limited, especially in Coleoptera species. In our previous study, a SNMP1 (CbuqSNMP1b) was identified from Cyrtotrachelus buqueti (Coleoptera: Curculionidae), an insect pest that seriously influence the development of the bamboo industry. Here in a membrane protein yeast two-hybrid system, protein interactions between CbuqSNMP1b as a bait protein and a cDNA library of antenna of male C. buqueti adults as prey protein were assessed. Of 29 proteins identified as putative interactors, the Minus-C odorant-binding protein (CbuqOBP1) was selected for further analysis. The interaction between CbuqSNMP1b and CbuqOBP1 was further confirmed by both the in vivo yeast spotting analysis and the in vitro glutathione-S-transferase pull-down assay. Fluorescence binding assays indicated that the interaction between CbuqSNMP1b and CbuqOBP1 could enhance the binding abilities of CbuqOBP1 to four adult C. buqueti biologically active volatiles. The knockdown of CbuqSNMP1b + CbuqOBP1 expression by RNA interference significantly reduced the behavior responses of male adults to ethyl hexanoate and trans,trans-2,4-Nonadienal. These results increase our understanding of insect SNMP1 and will aid in exploring the underlying mechanisms of CbuqSNMP1b functions in the future.
Collapse
Affiliation(s)
- Hua Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
| | - Long Liu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Chen
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunlin Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiong Huang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Nanxi Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongling Hu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Johny J, Nihad M, Alharbi HA, AlSaleh MA, Antony B. Silencing sensory neuron membrane protein RferSNMPu1 impairs pheromone detection in the invasive Asian Palm Weevil. Sci Rep 2024; 14:16541. [PMID: 39019908 PMCID: PMC11254914 DOI: 10.1038/s41598-024-67309-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
The red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier), also known as the Asian palm weevil, is an invasive pest that causes widespread damage to palm trees around the globe. As pheromone communication is crucial for their mass attack and survival on palm trees, the olfactory concept of pest control strategies has been widely explored recently. We aim to understand the molecular basis of olfaction in RPW by studying one of the key olfactory proteins in insect pheromone communication, sensory neuron membrane proteins (SNMPs). SNMPs belong to the CD36 (cluster of differentiation 36) family that perform two distinct olfactory roles in insects, either in pheromone (odorant) transfer to the odorant receptors (SNMP1) or in the pheromone clearing process (SNMP2). In this study, we performed antennal transcriptomic screening and identified six SNMPs, mapping them on the R. ferrugineus genome, and confirmed four distinct SNMPs. Both SNMP1 proteins in RPW, viz., RferSNMPu1 and RferSNMPu2, were mapped onto the same scaffold in different loci in the RPW genome. To further understand the function of these proteins, we first classified them using phylogenetic analysis and checked their tissue-specific expression patterns. Further, we measured the relative transcript abundance of SNMPs in laboratory-reared, field-collected adults and pheromone-exposure experiments, ultimately identifying RferSNMPu1 as a potential candidate for functional analysis. We mapped RferSNMPu1 expression in the antennae and found that expression patterns were similar in both sexes. We used RNAi-based gene silencing to knockdown RferSNMPu1 and tested the changes in the RPW responses to aggregation pheromone compounds, 4-methyl-5-nonanol (ferrugineol) and 4-methyl-5-nonanone (ferrugineone), and a kairomone, ethyl acetate using electroantennogram (EAG) recordings. We found a significant reduction in the EAG recordings in the RferSNMPu1 knockdown strain of adult RPWs, confirming its potential role in pheromone detection. The structural modelling revealed the key domains in the RferSNMPu1 structure, which could likely be involved in pheromone detection based on the identified ectodomain tunnels. Our studies on RferSNMPu1 with a putative role in pheromone detection provide valuable insight into understanding the olfaction in R. ferrugineus as well as in other Curculionids, as SNMPs are under-explored in terms of its functional role in insect olfaction. Most importantly, RferSNMPu1 can be used as a potential target for the olfactory communication disruption in the R. ferrugineus control strategies.
Collapse
Affiliation(s)
- Jibin Johny
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czechia
| | - Mohammad Nihad
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hattan A Alharbi
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohammed Ali AlSaleh
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Binu Antony
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Lehmann J, Günzel Y, Khosravian M, Cassau S, Kraus S, Libnow JS, Chang H, Hansson BS, Breer H, Couzin-Fuchs E, Fleischer J, Krieger J. SNMP1 is critical for sensitive detection of the desert locust aromatic courtship inhibition pheromone phenylacetonitrile. BMC Biol 2024; 22:150. [PMID: 38973001 PMCID: PMC11229289 DOI: 10.1186/s12915-024-01941-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Accurate detection of pheromones is crucial for chemical communication and reproduction in insects. In holometabolous flies and moths, the sensory neuron membrane protein 1 (SNMP1) is essential for detecting long-chain aliphatic pheromones by olfactory neurons. However, its function in hemimetabolous insects and its role for detecting pheromones of a different chemical nature remain elusive. Therefore, we investigated the relevance of SNMP1 for pheromone detection in a hemimetabolous insect pest of considerable economic importance, the desert locust Schistocerca gregaria, which moreover employs the aromatic pheromone phenylacetonitrile (PAN) to govern reproductive behaviors. RESULTS Employing CRISPR/Cas-mediated gene editing, a mutant locust line lacking functional SNMP1 was established. In electroantennography experiments and single sensillum recordings, we found significantly decreased electrical responses to PAN in SNMP1-deficient (SNMP1-/-) locusts. Moreover, calcium imaging in the antennal lobe of the brain revealed a substantially reduced activation of projection neurons in SNMP1-/- individuals upon exposure to PAN, indicating that the diminished antennal responsiveness to PAN in mutants affects pheromone-evoked neuronal activity in the brain. Furthermore, in behavioral experiments, PAN-induced effects on pairing and mate choice were altered in SNMP1-/- locusts. CONCLUSIONS Our findings emphasize the importance of SNMP1 for chemical communication in a hemimetabolous insect pest. Moreover, they show that SNMP1 plays a crucial role in pheromone detection that goes beyond long-chain aliphatic substances and includes aromatic compounds controlling reproductive behaviors.
Collapse
Affiliation(s)
- Joris Lehmann
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Yannick Günzel
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany
- International Max Planck Research School for Quantitative Behavior, Ecology and Evolution From Lab to Field, Konstanz, Germany
| | - Maryam Khosravian
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sina Cassau
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Susanne Kraus
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Johanna S Libnow
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Hetan Chang
- Department of Evolutionary Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bill S Hansson
- Department of Evolutionary Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Heinz Breer
- Department of Physiology (190V), Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Einat Couzin-Fuchs
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Joerg Fleischer
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Jürgen Krieger
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
6
|
Yang H, Liu L, Wang F, Yang W, Huang Q, Wang N, Hu H. The Molecular and Functional Characterization of Sensory Neuron Membrane Protein 1b (SNMP1b) from Cyrtotrachelus buqueti (Coleoptera: Curculionidae). INSECTS 2024; 15:111. [PMID: 38392530 PMCID: PMC10889769 DOI: 10.3390/insects15020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Sensory neuron membrane proteins (SNMPs) play important roles in insect chemoreception and SNMP1s have been reported to be essential in detecting sex pheromones in Drosophila and some lepidopteran species. However, SNMPs for Cyrtotrachelus buqueti (Coleoptera: Curculionidae), a major insect pest of bamboo plantations, remain uncharacterized. In this study, a novel SNMP gene, CbuqSNMP1b, from C. buqueti was functionally characterized. The expression of CbuqSNMP1b was significantly higher in antennae than in other tissues of both sexes and the expression level was significantly male-biased. Additionally, CbuqSNMP1b showed significantly higher transcription levels in the adult stage and very low transcription levels in other stages, suggesting that CbuqSNMP1b is involved in the process of olfaction. Fluorescence binding assays indicated that CbuqSNMP1b displayed the strongest binding affinity to dibutyl phthalate (Ki = 9.03 μM) followed by benzothiazole (Ki = 11.59 μM) and phenol (Ki = 20.95 μM) among fourteen C. buqueti volatiles. Furthermore, molecular docking revealed key residues in CbuqSNMP1b that interact with dibutyl phthalate, benzothiazole, and phenol. In conclusion, these findings will lay a foundation to further understand the olfactory mechanisms of C. buqueti and promote the development of novel methods for controlling this pest.
Collapse
Affiliation(s)
- Hua Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Long Liu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Fan Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiong Huang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Nanxi Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongling Hu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
7
|
Li H, Hong X, Zeng F, Bai C. Identification and expression profiles of olfactory-related genes based on transcriptome analysis in Plodia interpunctella (Lepidoptera: Pyralidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22061. [PMID: 37905450 DOI: 10.1002/arch.22061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023]
Abstract
The sophisticated olfactory system of insects is plays a critical role in detecting chemical signals and guiding insect behaviors, such as selecting mates, finding hosts, evading predators, and discovering oviposition sites. Therefore, exploring and clarifying the molecular processes of this system is crucial for developing new insecticides or efficient pest control methods. Plodia interpunctella (Hübner) is a disruptive insect pest damaging the stored grains over the world. However, the olfactory processes of P. interpunctella remain unclear. Herein, we employed a transcriptome analysis to identify olfactory and differentially expressed genes to characterize their expression patterns in different developmental stages and antennal tissue. Subsequently, a total of 172 potential olfactory-related genes included 42 odorant-binding proteins, 12 chemosensory proteins, 51 odorant receptors, 13 gustatory receptors, three sensory neuron membrane proteins, and 51 ionotropic receptors. Furthermore, phylogenetic analysis and BLASTx best-hit analyses showed that these olfactory genes were closely linked with those identified in other lepidopterans. Transcriptome analysis revealed 49 differentially expressed olfactory-related genes, and a semiquantitative reverse transcription polymerase chain reaction showed that 11 olfactory genes were particularly expressed in the legs and wings of female P. interpunctella. Meanwhile, PintOBP29 was notably expressed in female antennae and legs. Genes with high expression levels in the abdomen showed high expression in the legs, but low expression in the antennae. Our findings provide the candidate genetic factors for analysis of the olfactory processes in P. interpunctella.
Collapse
Affiliation(s)
- Hui Li
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, Henan, China
- Henan Collaborative Innovation Center of Grain Storage and Security, Henan University of Technology, Zhengzhou, Henan, China
- Collaborative Innovation Center of Henan Grain Crops, Henan University of Technology, Zhengzhou, Henan, China
| | - Xiwen Hong
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, Henan, China
| | - Fangfang Zeng
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, Henan, China
- Henan Collaborative Innovation Center of Grain Storage and Security, Henan University of Technology, Zhengzhou, Henan, China
| | - Chunqi Bai
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, Henan, China
- Henan Collaborative Innovation Center of Grain Storage and Security, Henan University of Technology, Zhengzhou, Henan, China
- Collaborative Innovation Center of Henan Grain Crops, Henan University of Technology, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Kaleem Ullah RM, Jia B, Liang S, Sikandar A, Gao F, Wu H. Uncovering the Chemosensory System of a Subterranean Termite, Odontotermes formosanus (Shiraki) (Isoptera: Termitidae): Revealing the Chemosensory Genes and Gene Expression Patterns. INSECTS 2023; 14:883. [PMID: 37999082 PMCID: PMC10672159 DOI: 10.3390/insects14110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Termites are eusocial insects. Chemical signals between colony members are crucial to the smooth running of colony operations, but little is known about their olfactory system and the roles played by various chemosensory genes in this process. Chemosensory genes are involved in basic olfactory perception in insects. Odontotermes formosanus (Shiraki) is one of the most damaging pests to agricultural crops, forests, and human-made structures. To better understand the olfactory system and the genes involved in olfactory processing in O. formosanus, we produced a transcriptome of worker termites. In this study, we identified 13 OforOBPs, 1 OforCSP, 15 OforORs, 9 OforGRs, and 4 OforSNMPs. Multiple sequence alignments were used in the phylogenetic study, which included data from other termite species and a wide variety of insect species. Moreover, we also investigated the mRNA expression levels using qRT-PCR. The significantly high expression levels of OforCSP1, OforOBP2, OforOR1, and OforSNMP1 suggest that these genes may play important roles in olfactory processing in termite social behavior, including caste differentiation, nestmate and non-nestmate discrimination, and the performance of colony operations among members. Our research establishes a foundation for future molecular-level functional studies of chemosensory genes in O. formosanus, which might lead to the identification of novel targets for termite integrated pest management.
Collapse
Affiliation(s)
- Rana Muhammad Kaleem Ullah
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China; (R.M.K.U.); (A.S.); (F.G.)
| | - Bao Jia
- Nanning Institute of Termite Control, Nanning 530023, China; (B.J.); (S.L.)
| | - Sheng Liang
- Nanning Institute of Termite Control, Nanning 530023, China; (B.J.); (S.L.)
| | - Aatika Sikandar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China; (R.M.K.U.); (A.S.); (F.G.)
| | - Fukun Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China; (R.M.K.U.); (A.S.); (F.G.)
| | - Haiyan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China; (R.M.K.U.); (A.S.); (F.G.)
| |
Collapse
|
9
|
Suzuki RH, Hanada T, Hayashi Y, Shigenobu S, Maekawa K, Hojo MK. Gene expression profiles of chemosensory genes of termite soldier and worker antennae. INSECT MOLECULAR BIOLOGY 2023. [PMID: 37017304 DOI: 10.1111/imb.12841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Termites have an elaborate social system that involves cooperation and division of labour among colony members. Although this social system is regulated by chemical signals produced in the colony, it remains unclear how these signals are perceived by other members. Signal transduction is well known to be triggered by the reception of odorant molecules by some binding proteins in the antennae, after which, a signal is transmitted to chemosensory receptors. However, there is insufficient information on the role of chemosensory genes involved in signal transduction in termites. Here, we identified the genes involved in chemosensory reception in the termite Reticulitermes speratus and performed a genome-wide comparative transcriptome analysis of worker and soldier antennae. First, we identified 31 odorant-binding proteins (OBPs), and three chemosensory protein A (CheA) from the genome data. Thereafter, we performed RNA sequencing to compare the expression levels of OBPs, CheAs, and previously identified chemosensory receptor genes between worker and soldier antennae. There were no receptor genes with significant differences in expression between castes. However, the expression levels of three non-receptor odorant-detection/binding proteins (OBP, CheA, and Sensory neuron membrane protein) were significantly different between castes. Real-time qPCR (RT-qPCR) analysis using antennae and other head parts confirmed that these genes were highly expressed in soldier antennae. Finally, independent RT-qPCR analysis showed that the expression patterns of these genes were altered in soldiers from different social contexts. Present results suggest that gene expression levels of some non-receptors are affected by both castes and behavioural interactions among colony members in termites.
Collapse
Affiliation(s)
- Ryohei H Suzuki
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Takumi Hanada
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | | | - Shuji Shigenobu
- Trans-Scale Biology Center, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| | | | - Masaru K Hojo
- School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
10
|
Cheng J, Chen Q, Guo Q, Du Y. Moth sex pheromones affect interspecific competition among sympatric species and possibly population distribution by modulating pre-mating behavior. INSECT SCIENCE 2023; 30:501-516. [PMID: 35900899 DOI: 10.1111/1744-7917.13099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Premating behaviors mediated by pheromones play pivotal roles in animal mating choices. In natural populations of the striped stem borer Chilo suppressalis and the rice leaf roller Cnaphalocrocis medinalis in the rice field habitat, we discovered that Z11-16:Ald, a major component of the C. suppressalis pheromone, modulated the premating behavior of C. medinalis. Z11-16:Ald evoked a strong olfactory response in male antennae and strongly inhibited the sex pheromone trapping of male C. medinalis in the field. The functions of three C. medinalis sex pheromone receptor genes (CmedPR1-3) were verified through heterologous expression in Xenopus oocytes. CmedPR1 responded to Z11-18:OH and Z11-18:Ald, as well as the interspecific pheromone compound Z11-16:Ac of sympatric species; CmedPR2 responded to Z13-18:OH and Z13-18:Ald, as well as the sex pheromone compounds Z11-16:Ald and Z9-16:Ald of sympatric species; and CmedPR3 responded to Z11-18:OH and Z13-18:OH, as well as the interspecific pheromones Z11-16:OH, Z9-16:Ald, Z11-16:Ac, and Z11-16:Ald of sympatric species. Thus, CmedPR2 and CmedPR3 share the ligand Z11-16:Ald, which is not a component of the C. medinalis sex pheromone. Therefore, the sex pheromones of interspecific species affected the input of neural signals by stimulating the sex pheromone receptors on the antennae of male C. medinalis moths, thereby inhibiting the olfactory responses of the male moths to the sex pheromones. Our results demonstrate chemical communication among sympatric species in the rice field habitat, the recognition of intra- and interspecific sex pheromones by olfactory receptors, and how insect premating behaviors are modulated to possibly affect resource partitioning.
Collapse
Affiliation(s)
- Jianjun Cheng
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Qinghua Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Qianshuang Guo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yongjun Du
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Liu Y, Luo Y, Du L, Ban L. Antennal Transcriptome Analysis of Olfactory Genes and Characterization of Odorant Binding Proteins in Odontothrips loti (Thysanoptera: Thripidae). Int J Mol Sci 2023; 24:ijms24065284. [PMID: 36982358 PMCID: PMC10048907 DOI: 10.3390/ijms24065284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
To identify odors in complex environments accurately, insects have evolved multiple olfactory proteins. In our study, various olfactory proteins of Odontothrips loti Haliday, an oligophagous pest that primarily affects Medicago sativa (alfalfa), were explored. Specifically, 47 putative olfactory candidate genes were identified in the antennae transcriptome of O. loti, including seven odorant-binding proteins (OBPs), nine chemosensory proteins (CSPs), seven sensory neuron membrane proteins (SNMPs), eight odorant receptors (ORs), and sixteen ionotropic receptors (IRs). PCR analysis further confirmed that 43 out of 47 genes existed in O. loti adults, and O.lotOBP1, O.lotOBP4, and O.lotOBP6 were specifically expressed in the antennae with a male-biased expression pattern. In addition, both the fluorescence competitive binding assay and molecular docking showed that p-Menth-8-en-2-one, a component of the volatiles of the host, had strong binding ability to the O.lotOBP6 protein. Behavioral experiments showed that this component has a significant attraction to both female and male adults, indicating that O.lotOBP6 plays a role in host location. Furthermore, molecular docking reveals potential active sites in O.lotOBP6 that interact with most of the tested volatiles. Our results provide insights into the mechanism of O. loti odor-evoked behavior and the development of a highly specific and sustainable approach for thrip management.
Collapse
Affiliation(s)
- Yanqi Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yingning Luo
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lixiao Du
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100091, China
| | - Liping Ban
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence:
| |
Collapse
|
12
|
Cassau S, Degen A, Krüger S, Krieger J. The specific expression patterns of sensory neuron membrane proteins are retained throughout the development of the desert locust Schistocerca gregaria. CURRENT RESEARCH IN INSECT SCIENCE 2023; 3:100053. [PMID: 36874554 PMCID: PMC9974456 DOI: 10.1016/j.cris.2023.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The desert locust Schistocerca gregaria detects odorants through olfactory sensory neurons (OSNs) that are surrounded by non-neuronal support cells (SCs). OSNs and SCs are housed in cuticle structures, named sensilla found abundantly on the antenna in all developmental stages of the hemimetabolic insect. In insects, multiple proteins expressed by OSNs and SCs are indicated to play a pivotal role in the detection of odorants. This includes insect-specific members of the CD36 family of lipid receptors and transporters called sensory neuron membrane proteins (SNMPs). While the distribution pattern of the SNMP1 and SNMP2 subtypes in OSNs and SCs across different sensilla types has been elucidated for the adult S. gregaria antenna, their localization in cells and sensilla of different developmental stages is unclear. Here, we determined the SNMP1 and SNMP2 expression topography on the antenna of the first, third and fifth instar nymphs. Through FIHC experiments we found that in all developmental stages SNMP1 is expressed in OSNs and SCs of the trichoid and basiconic sensilla while SNMP2 is restricted to the SCs of the basiconic and coeloconic sensilla thus resembling the adult arrangement. Our results demonstrate that both SNMP types have defined cell- and sensilla-specific distribution patterns established already in the first instar nymphs and retained into the adult stage. This conserved expression topography underlines the importance of SNMP1 and SNMP2 in olfactory processes throughout the development of the desert locust.
Collapse
Affiliation(s)
- Sina Cassau
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, 06120 Halle (Saale), Germany
| | - Angelina Degen
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, 06120 Halle (Saale), Germany
| | - Stephanie Krüger
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Developmental Biology, 06120 Halle (Saale), Germany
- Martin Luther University Halle-Wittenberg, Biocenter, Microscopy Unit, 06120 Halle (Saale), Germany
| | - Jürgen Krieger
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, 06120 Halle (Saale), Germany
| |
Collapse
|
13
|
Li LL, Xu BQ, Li CQ, Li BL, Luo K, Li GW, Chen XL. Functional disparity of four pheromone-binding proteins from the plum fruit moth Grapholita funebrana Treitscheke in detection of sex pheromone components. Int J Biol Macromol 2023; 225:1267-1279. [PMID: 36423808 DOI: 10.1016/j.ijbiomac.2022.11.186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Grapholita funebrana, also known as the plum fruit moth, is an oligophagous pest species that causes enormous economic losses of the fruits of Rosaceae. An eco-friendly method for the control of G. funebrana besides chemical control has not yet been developed. The sex pheromone communication system plays an important role in moth courtship and mating, in which pheromone-binding proteins (PBPs) are critical. In this research, we identified four PBPs, namely, GfunPBP1.1, GfunPBP1.2, GfunPBP2, and GfunPBP3, from the antennae of G. funebrana. The results of real-time quantitative PCR (RT-qPCR) showed that all four GfunPBPs were overwhelmingly expressed in the antennae and that GfunPBP1.2 and GfunPBP2 showed male-biased expression patterns, whereas GfunPBP1.1 and GfunPBP3 were equally expressed between sexes. The results of ligand-binding assays illustrated that although all four recombinant GfunPBPs (rGfunPBPs) had binding activity with the tested sex pheromone compounds, their preferred ligands were significantly different. rGfunPBP2 had the strongest binding affinity to Z8-12:Ac and Z8-12:OH; rGfunPBP1.1 preferred to bind Z8-14:Ac, Z10-14:Ac, and 12:OH more than to the other three GfunPBPs; and rGfunPBP1.2 exhibited stronger binding affinity to E8-12:Ac than to the other rGfunPBPs. Molecular docking results demonstrated that hydrophobic forces, especially van der Waals forces and hydrogen bonds, were the most important forces that maintained GfunPBP-pheromone ligand complexes. This study will improve our understanding of the sex pheromone recognition mechanisms of G. funebrana and promote the development of novel strategies for controlling G. funebrana.
Collapse
Affiliation(s)
- Lin-Lin Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an 716000, China
| | - Bing-Qiang Xu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumchi 830091, China
| | - Chun-Qin Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an 716000, China
| | - Bo-Liao Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an 716000, China
| | - Kun Luo
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an 716000, China
| | - Guang-Wei Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Xiu-Lin Chen
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an 716000, China.
| |
Collapse
|
14
|
Kohlmeier P, Billeter JC. Genetic mechanisms modulating behaviour through plastic chemosensory responses in insects. Mol Ecol 2023; 32:45-60. [PMID: 36239485 PMCID: PMC10092625 DOI: 10.1111/mec.16739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 12/29/2022]
Abstract
The ability to transition between different behavioural stages is a widespread phenomenon across the animal kingdom. Such behavioural adaptations are often linked to changes in the sensitivity of those neurons that sense chemical cues associated with the respective behaviours. To identify the genetic mechanisms that regulate neuronal sensitivity, and by that behaviour, typically *omics approaches, such as RNA- and protein-sequencing, are applied to sensory organs of individuals displaying differences in behaviour. In this review, we discuss these genetic mechanisms and how they impact neuronal sensitivity, summarize the correlative and functional evidence for their role in regulating behaviour and discuss future directions. As such, this review can help interpret *omics data by providing a comprehensive list of already identified genes and mechanisms that impact behaviour through changes in neuronal sensitivity.
Collapse
Affiliation(s)
- Philip Kohlmeier
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Wu ZR, Fan JT, Tong N, Guo JM, Li Y, Lu M, Liu XL. Transcriptome analysis and identification of chemosensory genes in the larvae of Plagiodera versicolora. BMC Genomics 2022; 23:845. [PMID: 36544089 PMCID: PMC9773597 DOI: 10.1186/s12864-022-09079-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In insects, the chemosensory system is crucial in guiding their behaviors for survival. Plagiodera versicolora (Coleoptera: Chrysomelidae), is a worldwide leaf-eating forest pest in salicaceous trees. There is little known about the chemosensory genes in P. versicolora. Here, we conducted a transcriptome analysis of larvae heads in P. versicolora. RESULTS In this study, 29 odorant binding proteins (OBPs), 6 chemosensory proteins (CSPs), 14 odorant receptors (ORs), 13 gustatory receptors (GRs), 8 ionotropic receptors (IRs) and 4 sensory neuron membrane proteins (SNMPs) were identified by transcriptome analysis. Compared to the previous antennae and foreleg transcriptome data in adults, 12 OBPs, 2 CSPs, 5 ORs, 4 IRs, and 7 GRs were newly identified in the larvae. Phylogenetic analyses were conducted and found a new candidate CO2 receptor (PverGR18) and a new sugar receptor (PverGR23) in the tree of GRs. Subsequently, the dynamic expression profiles of various genes were analyzed by quantitative real-time PCR. The results showed that PverOBP31, OBP34, OBP35, OBP38, and OBP40 were highly expressed in larvae, PverOBP33 and OBP37 were highly expressed in pupae, and PverCSP13 was highly expressed in eggs, respectively. CONCLUSIONS We identified a total of 74 putative chemosensory genes based on a transcriptome analysis of larvae heads in P. versicolora. This work provides new information for functional studies on the chemoreception mechanism in P. versicolora.
Collapse
Affiliation(s)
- Zhe-Ran Wu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Jian-Ting Fan
- grid.443483.c0000 0000 9152 7385School of Forestry and Biotechnology, Zhejiang A & F University, National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Lin’an, 311300 China
| | - Na Tong
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Jin-Meng Guo
- grid.27871.3b0000 0000 9750 7019Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/ Department of Entomology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yang Li
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Min Lu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Xiao-Long Liu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
16
|
Yuan TT, Luo ZJ, Luo ZX, Cai XM, Bian L, Xiu CL, Fu NX, Chen ZM, Zhang LW, Li ZQ. Olfactory Gene Families in Scopula subpunctaria and Candidates for Type-II Sex Pheromone Detection. Int J Mol Sci 2022; 23:ijms232415775. [PMID: 36555416 PMCID: PMC9779464 DOI: 10.3390/ijms232415775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Scopula subpunctaria, an abundant pest in tea gardens, produce type-II sex pheromone components, which are critical for its communicative and reproductive abilities; however, genes encoding the proteins involved in the detection of type-II sex pheromone components have rarely been documented in moths. In the present study, we sequenced the transcriptomes of the male and female S. subpunctaria antennae. A total of 150 candidate olfaction genes, comprising 58 odorant receptors (SsubORs), 26 ionotropic receptors (SsubIRs), 24 chemosensory proteins (SsubCSPs), 40 odorant-binding proteins (SsubOBPs), and 2 sensory neuron membrane proteins (SsubSNMPs) were identified in S. subpunctaria. Phylogenetic analysis, qPCR, and mRNA abundance analysis results suggested that SsubOR46 may be the Orco (non-traditional odorant receptor, a subfamily of ORs) of S. subpunctaria. SsubOR9, SsubOR53, and SsubOR55 belonged to the pheromone receptor (PR) clades which have a higher expression in male antennae. Interestingly, SsubOR44 was uniquely expressed in the antennae, with a higher expression in males than in females. SsubOBP25, SsubOBP27, and SsubOBP28 were clustered into the moth pheromone-binding protein (PBP) sub-family, and they were uniquely expressed in the antennae, with a higher expression in males than in females. SsubOBP19, a member of the GOBP2 group, was the most abundant OBP in the antennae. These findings indicate that these olfactory genes, comprising five candidate PRs, three candidate PBPs, and one candidate GOBP2, may be involved in type II sex pheromone detection. As well as these genes, most of the remaining SsubORs, and all of the SsubIRs, showed a considerably higher expression in the female antennae than in the male antennae. Many of these, including SsubOR40, SsubOR42, SsubOR43, and SsubIR26, were more abundant in female antennae. These olfactory and ionotropic receptors may be related to the detection of host plant volatiles. The results of this present study provide a basis for exploring the olfaction mechanisms in S. subpunctaria, with a focus on the genes involved in type II sex pheromones. The evolutionary analyses in our study provide new insights into the differentiation and evolution of lepidopteran PRs.
Collapse
Affiliation(s)
- Ting-Ting Yuan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Agricultural University, Hefei 230036, China
| | - Zi-Jun Luo
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Zong-Xiu Luo
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Xiao-Ming Cai
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Lei Bian
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Chun-Li Xiu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Nan-Xia Fu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Zong-Mao Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (L.-W.Z.); (Z.-Q.L.)
| | - Zhao-Qun Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Science, Hangzhou 310008, China
- Correspondence: (L.-W.Z.); (Z.-Q.L.)
| |
Collapse
|
17
|
Lizana P, Mutis A, Quiroz A, Venthur H. Insights Into Chemosensory Proteins From Non-Model Insects: Advances and Perspectives in the Context of Pest Management. Front Physiol 2022; 13:924750. [PMID: 36072856 PMCID: PMC9441497 DOI: 10.3389/fphys.2022.924750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Nowadays, insect chemosensation represents a key aspect of integrated pest management in the Anthropocene epoch. Olfaction-related proteins have been the focus of studies due to their function in vital processes, such ashost finding and reproduction behavior. Hence, most research has been based on the study of model insects, namely Drosophila melanogaster, Bombyx mori or Tribolium castaneum. Over the passage of time and the advance of new molecular techniques, insects considered non-models have been studied, contributing greatly to the knowledge of insect olfactory systems and enhanced pest control methods. In this review, a reference point for non-model insects is proposed and the concept of model and non-model insects is discussed. Likewise, it summarizes and discusses the progress and contribution in the olfaction field of both model and non-model insects considered pests in agriculture.
Collapse
Affiliation(s)
- Paula Lizana
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Ana Mutis
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Andrés Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
18
|
Guo R, Papanicolaou A, Fritz ML. Validation of reference-assisted assembly using existing and novel Heliothine genomes. Genomics 2022; 114:110441. [PMID: 35931274 DOI: 10.1016/j.ygeno.2022.110441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Chloridea subflexa and Chloridea virescens are a pair of closely related noctuid species exhibiting pheromone-based sexual isolation and divergent host plant preferences. We produced a novel Illumina short read C. subflexa genome assembly and an improved C. virescens genome assembly, which offer opportunities to study the genomic basis for evolutionarily important traits in this lepidopteran family with few genomic resources. We then examined the feasibility of reference-assisted assembly, an approach that leverages existing high quality genomic resources for genome improvement in closely related taxa and applied it to our Heliothine genomes. Our work demonstrates that reference-assisted assembly has the potential to enhance contiguity and completeness of existing insect genomic resources with minimal additional laboratory costs. We conclude by discussing both the potential and pitfalls of reference-assisted assembly according to the intended downstream assembly application.
Collapse
Affiliation(s)
- Rong Guo
- Department of Entomology, University of Maryland, College Park, MD 20742, USA; Computational Biology, Bioinformatics and Genomics Program, Department of Biological Sciences, University of Maryland, College Park, MD 20742, USA
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia.
| | - Megan L Fritz
- Department of Entomology, University of Maryland, College Park, MD 20742, USA; Computational Biology, Bioinformatics and Genomics Program, Department of Biological Sciences, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
19
|
Hu J, Wang XY, Tan LS, Lu W, Zheng XL. Identification of Chemosensory Genes, Including Candidate Pheromone Receptors, in Phauda flammans (Walker) (Lepidoptera: Phaudidae) Through Transcriptomic Analyses. Front Physiol 2022; 13:907694. [PMID: 35846004 PMCID: PMC9283972 DOI: 10.3389/fphys.2022.907694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Olfactory and gustatory systems play an irreplaceable role in all cycles of growth of insects, such as host location, mating, and oviposition. Many chemosensory genes in many nocturnal moths have been identified via omics technology, but knowledge of these genes in diurnal moths is lacking. In our recent studies, we reported two sex pheromone compounds and three host plant volatiles that play a vital role in attracting the diurnal moth, Phauda flammans. The antennal full-length transcriptome sequence of P. flammans was obtained using the Pacbio sequencing to further explore the process of sex pheromone and host plant volatile recognition in P. flammans. Transcriptome analysis identified 166 candidate olfactory and gustatory genes, including 58 odorant-binding proteins (OBPs), 19 chemosensory proteins (CSPs), 59 olfactory receptors (ORs), 16 ionotropic receptors (IRs), 14 gustatory receptors (GRs), and 2 sensory neuron membrane proteins (SNMPs). Subsequently, a phylogenetic tree was established using P. flammans and other lepidopteran species to investigate orthologs. Among the 17 candidate pheromone receptor (PR) genes, the expression levels of PflaOR21, PflaOR25, PflaOR35, PflaOR40, PflaOR41, PflaOR42, PflaOR44, PflaOR49, PflaOR51, PflaOR61, and PflaOR63 in the antennae were significantly higher than those in other non-antennae tissues. Among these PR genes, PflaOR21, PflaOR27, PflaOR29, PflaOR35, PflaOR37, PflaOR40, PflaOR42, PflaOR44, PflaOR60, and PflaOR62 showed male-biased expression, whereas PflaOR49, PflaOR61, and PflaOR63 revealed female-biased expression. The functions of related OR genes were also discussed. This research filled the gap of the chemosensory genes of P. flammans and provided basic data for future functional molecular mechanisms studies on P. flammans olfaction.
Collapse
|
20
|
Cassau S, Sander D, Karcher T, Laue M, Hause G, Breer H, Krieger J. The Sensilla-Specific Expression and Subcellular Localization of SNMP1 and SNMP2 Reveal Novel Insights into Their Roles in the Antenna of the Desert Locust Schistocerca gregaria. INSECTS 2022; 13:insects13070579. [PMID: 35886755 PMCID: PMC9317141 DOI: 10.3390/insects13070579] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary The desert locust, Schistocerca gregaria, can form gigantic swarms of millions of individuals that devastate the vegetation of invaded landscapes. Locust food search, reproduction, and aggregation behaviors are triggered and controlled by complex olfactory signals. Insects detect odorants through different types of olfactory sensilla on the antenna that house olfactory sensory neurons and associated support cells, both of which express the proteins required for olfactory signaling. Among these proteins, two members of the CD36 lipid transporter/receptor family, named sensory neuron membrane proteins 1 and 2 (SNMP1 and SNMP2), are indicated to be of vital importance. Towards a better understanding of the role of the two SNMPs in the olfactory system of S. gregaria, we have analysed their antennal topography and subcellular localization using specific antibodies. The results indicate sensilla type- and cell type-specific distribution patterns of the SNMP proteins. SNMP1 was located in the receptive dendrites of subpopulations of olfactory sensory neurons as well as in the microvilli of associated support cells, suggesting a dual function of this protein, both in olfactory signal detection and in sensillum lymph maintenance, respectively. In contrast, SNMP2 was found solely in support cells and their microvilli membranes, suggesting a role limited to sensillum lymph recovery processes. Abstract Insect olfactory sensilla house olfactory sensory neurons (OSNs) and supports cells (SCs). The olfactory sensory processes require, besides the odorant receptors (ORs), insect-specific members of the CD36 family, named sensory neuron membrane proteins (SNMPs). While SNMP1 is considered to act as a coreceptor in the OR-mediated detection of pheromones, SNMP2 was found to be expressed in SCs; however, its function is unknown. For the desert locust, Schistocerca gregaria, we previously visualized mRNA for SNMP1 in OSNs and SNMP2 mRNA in cells associated with OSN clusters. Towards an understanding of their functional implication, it is imperative to explore the cellular and the subcellular localization the SNMP proteins. Therefore, we have generated polyclonal antibodies against SNMP1 and SNMP2 and used fluorescence immunohistochemistry (FIHC) to visualize the SNMP proteins. We found SNMP1 in the somata and respective dendrites of all OSNs in trichoid sensilla and in subsets of OSNs in basiconic sensilla. Notably, SNMP1 was also detected in SCs of these sensilla types. In contrast, SNMP2 protein was only visualized in SCs of basiconic and coeloconic sensilla, but not of trichoid sensilla. Exploring the subcellular localization by electron microscopy using anti-SNMP1-ab and anti-SNMP2-ab revealed an immunogold labelling of SC microvilli bordering the sensillum lymph. Together our findings suggest a dual role of SNMP1 in the antenna of S. gregaria, in some OSN subpopulations in odor detection as well as in functions of some SCs, whereas the role of SNMP2 is limited to the functions of support cells.
Collapse
Affiliation(s)
- Sina Cassau
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (D.S.); (T.K.)
- Correspondence: (S.C.); (J.K.)
| | - Doreen Sander
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (D.S.); (T.K.)
| | - Thomas Karcher
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (D.S.); (T.K.)
- BMG Labtech GmbH, 77799 Ortenberg, Germany
| | - Michael Laue
- Advanced Light and Electron Microscopy, Centre for Biological Threats and Special Pathogens 4 (ZBS 4), Robert Koch Institute, 13353 Berlin, Germany;
| | - Gerd Hause
- Microscopy Unit, Biocenter, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Heinz Breer
- Institute of Physiology, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Jürgen Krieger
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (D.S.); (T.K.)
- Correspondence: (S.C.); (J.K.)
| |
Collapse
|
21
|
Crava CM, Bobkov YV, Sollai G, Anfora G, Crnjar R, Cattaneo AM. Chemosensory Receptors in the Larval Maxilla of Papilio hospiton. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.795994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Among the butterflies of the genus Papilio (Lepidoptera: Papilionidae), Papilio hospiton (Géné) has a geographical distribution limited to the Mediterranean islands of Sardinia (Italy) and Corsica (France). This is mainly due to the host range that includes only a few plant species of Apiaceae and Rutaceae growing on these islands. In a previous electrophysiological investigation conducted on the maxillary gustatory system of larvae of P. hospiton and its closely phylogenetically related species Papilio machaon, a significantly higher spike activity was shown for the gustatory neurons of lateral and medial styloconic sensilla in P. hospiton when bitter compounds were tested. This effect was possibly correlated to the limited host choice range for P. hospiton. To shed light on the molecular aspects of this phenomenon, we investigated the expression pattern of sensory-related sequences by conducting a transcriptomic analysis from total RNA isolates of P. hospiton larval maxillae. We identified several transcripts that may be involved in taste (one gustatory receptor, one divergent ionotropic receptor, and several transient receptor potential channels, TRPs) as well as transcripts supporting an olfactory function for this appendage, including odorant receptors (ORs), antennal ionotropic receptors (A-IRs), sensory neuron membrane proteins (SNMPs), and odorant-binding proteins (OBPs). We used Human Embryonic Kidney (HEK293A) cells to heterologously express two of the identified receptors, PhospOR1 and PhospPain, together with their orthologs from P. machaon, for functional characterization. While our data suggest no activation of these two receptors by the ligands known so far to activate the electrophysiological response in larval maxillary neurons of Papilio species, nor temperature activation of both Papilio TRPA-channel Painless, they represent the first attempt in connecting neuronal activity with their molecular bases to unravel diet specialization between closely related Papilio species.
Collapse
|
22
|
Genome-wide identification and expression pattern analysis of novel chemosensory genes in the German cockroach Blattella germanica. Genomics 2022; 114:110310. [DOI: 10.1016/j.ygeno.2022.110310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 11/21/2022]
|
23
|
Identification and Expression Profile of Chemosensory Receptor Genes in Aromia bungii (Faldermann) Antennal Transcriptome. INSECTS 2022; 13:insects13010096. [PMID: 35055940 PMCID: PMC8781584 DOI: 10.3390/insects13010096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 01/05/2023]
Abstract
The red-necked longicorn beetle, Aromia bungii (Faldermann) (Coleoptera: Cerambycidae), is a major destructive, wood-boring pest, which is widespread throughout the world. The sex pheromone of A. bungii was reported earlier; however, the chemosensory mechanism of the beetle remains almost unknown. In this study, 45 AbunORs, 6 AbunGRs and 2 AbunIRs were identified among 42,197 unigenes derived from the antennal transcriptome bioinformatic analysis of A. bungii adults. The sequence of putative Orco (AbunOR25) found in this study is highly conserved with the known Orcos from other Coleoptera species, and these Orco genes might be potentially used as target genes for the future development of novel and effective control strategies. Tissue expression analysis showed that 29 AbunOR genes were highly expressed in antennae, especially in the antennae of females, which was consistent with the idea that females might express more pheromone receptors for sensing pheromones, especially the sex pheromones produced by males. AbunOR5, 29, 31 and 37 were clustered with the pheromone receptors of the cerambycid Megacyllene caryae, suggesting that they might be putative pheromone receptors of A. bungii. All six AbunGRs were highly expressed in the mouthparts, indicating that these GRs may be involved in the taste perception process. Both AbunIRs were shown to be female-mouthparts-biased, suggesting that they might also be related to the tasting processes. Our study provides some basic information towards a deeper understanding of the chemosensing mechanism of A. bungii at a molecular level.
Collapse
|
24
|
Kaczmarek A, Boguś M. The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance. PeerJ 2021; 9:e12563. [PMID: 35036124 PMCID: PMC8710053 DOI: 10.7717/peerj.12563] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Insects are the most widespread group of organisms and more than one million species have been described. These animals have significant ecological functions, for example they are pollinators of many types of plants. However, they also have direct influence on human life in different manners. They have high medical and veterinary significance, stemming from their role as vectors of disease and infection of wounds and necrotic tissue; they are also plant pests, parasitoids and predators whose activities can influence agriculture. In addition, their use in medical treatments, such as maggot therapy of gangrene and wounds, has grown considerably. They also have many uses in forensic science to determine the minimum post-mortem interval and provide valuable information about the movement of the body, cause of the death, drug use, or poisoning. It has also been proposed that they may be used as model organisms to replace mammal systems in research. The present review describes the role of free fatty acids (FFAs) in key physiological processes in insects. By focusing on insects of medical, veterinary significance, we have limited our description of the physiological processes to those most important from the point of view of insect control; the study examines their effects on insect reproduction and resistance to the adverse effects of abiotic (low temperature) and biotic (pathogens) factors.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Biomibo, Warsaw, Poland
| |
Collapse
|
25
|
Olfactory Sensilla and Olfactory Genes in the Parasitoid Wasp Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). INSECTS 2021; 12:insects12110998. [PMID: 34821797 PMCID: PMC8620382 DOI: 10.3390/insects12110998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Parasitic wasps are the major natural enemies of many organisms, and therefore they are broadly used in the biological control of numerous agricultural and horticultural pests. For example, Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) is a tiny natural egg parasitoid of various agricultural pest insects, including Plutella xylostella, Helicoverpa armigera, Spodoptera frugiperda and Ectomyelois ceratoniae. However, how T. pretiosum seek and localise host insect eggs is still not clear. The olfactory system is critical in guiding insect behaviours, including mating, feeding and oviposition, which play pivotal roles in the interactions between parasitoid wasps and their hosts. This project aimed to investigate T. pretiosum major olfactory tissue (antennae) and the olfactory genes, including odorant binding proteins (OBPs) and odorant receptors (ORs). T. pretiosum adult antennae were examined under scanning electron microscopy, and four types of olfactory sensilla were observed. Using T. pretiosum genome, 22 OBPs and 105 ORs were identified, which were further compared with olfactory genes of other Hymenoptera insect species. The expression patterns of OBPs between T. pretiosum male and female adults were examined to identify female- or male-specific OBPs. This study enriches our knowledge of T. pretiosum olfactory system and will help better use it in the integrated pest management (IPM) for many insect pest species. Abstract Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) is a tiny natural egg parasitoid of several agricultural pest insects, which has been widely used in the biological control for Plutella xylostella, Helicoverpa armigera, Spodoptera frugiperda and Ectomyelois ceratoniae. However, limited studies have been conducted on T. pretiosum olfactory system, which is critical in regulating insect behaviours. In this study, T. pretiosum adult antennae were investigated under ascanning electron microscopy (SEM). Four types of olfactory sensilla were observed, including chaetica sensilla (CS), trichoid sensilla (TS), faleate sensilla (FS) and placoid sensilla (PS). Using T. pretiosum genome, 22 putative odorant binding proteins (OBPs) and 105 odorant receptors (ORs) were identified, which were further compared with olfactory genes of Apis mellifera, Nasonia vitripennis and Diachasma alloeum. The expression patterns of OBPs between T. pretiosum male and female adults were examined by quantitative real time PCR (qRT-PCR) approaches. Three female-specific OBPs (TpreOBP19, TpreOBP15 and TpreOBP3) were identified, which may play crucial roles in T. pretiosum host-seeking and oviposition behaviours. This study enriches our knowledge of T. pretiosum olfactory genes and improves our understanding of its olfactory system.
Collapse
|
26
|
Wang ZQ, Wu C, Li GC, Nuo SM, Yin NN, Liu NY. Transcriptome Analysis and Characterization of Chemosensory Genes in the Forest Pest, Dioryctria abietella (Lepidoptera: Pyralidae). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.748199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In Lepidoptera, RNA sequencing has become a useful tool in identifying chemosensory genes from antennal transcriptomes, but little attention is paid to non-antennal tissues. Though the antennae are primarily responsible for olfaction, studies have found that a certain number of chemosensory genes are exclusively or highly expressed in the non-antennal tissues, such as proboscises, legs and abdomens. In this study, we report a global transcriptome of 16 tissues from Dioryctria abietella, including chemosensory and non-chemosensory tissues. Through Illumina sequencing, totally 952,658,466 clean reads were generated, summing to 142.90 gigabases of data. Based on the transcriptome, 235 chemosensory-related genes were identified, comprising 42 odorant binding proteins (OBPs), 23 chemosensory proteins (CSPs), 75 odorant receptors (ORs), 62 gustatory receptors (GRs), 30 ionotropic receptors (IRs), and 3 sensory neuron membrane proteins (SNMPs). Compared to a previous study in this species, 140 novel genes were found. A transcriptome-wide analysis combined with PCR results revealed that except for GRs, the majority of other five chemosensory gene families in Lepidoptera were expressed in the antennae, including 160 chemosensory genes in D. abietella. Using phylogenetic and expression profiling analyses, members of the six chemosensory gene repertoires were characterized, in which 11 DabiORs were candidates for detecting female sex pheromones in D. abietella, and DabiOR23 may be involved in the sensing of plant-derived phenylacetaldehyde. Intriguingly, more than half of the genes were detected in the proboscises, and one fourth of the genes were found to have the expression in the legs. Our study not only greatly extends and improves the description of chemosensory genes in D. abietella, but also identifies potential molecular targets involved in olfaction, gustation and non-chemosensory functions for control of this pest.
Collapse
|
27
|
Ernst DA, Westerman EL. Stage- and sex-specific transcriptome analyses reveal distinctive sensory gene expression patterns in a butterfly. BMC Genomics 2021; 22:584. [PMID: 34340656 PMCID: PMC8327453 DOI: 10.1186/s12864-021-07819-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/11/2021] [Indexed: 01/24/2023] Open
Abstract
Background Animal behavior is largely driven by the information that animals are able to extract and process from their environment. However, the function and organization of sensory systems often change throughout ontogeny, particularly in animals that undergo indirect development. As an initial step toward investigating these ontogenetic changes at the molecular level, we characterized the sensory gene repertoire and examined the expression profiles of genes linked to vision and chemosensation in two life stages of an insect that goes through metamorphosis, the butterfly Bicyclus anynana. Results Using RNA-seq, we compared gene expression in the heads of late fifth instar larvae and newly eclosed adults that were reared under identical conditions. Over 50 % of all expressed genes were differentially expressed between the two developmental stages, with 4,036 genes upregulated in larval heads and 4,348 genes upregulated in adult heads. In larvae, upregulated vision-related genes were biased toward those involved with eye development, while phototransduction genes dominated the vision genes that were upregulated in adults. Moreover, the majority of the chemosensory genes we identified in the B. anynana genome were differentially expressed between larvae and adults, several of which share homology with genes linked to pheromone detection, host plant recognition, and foraging in other species of Lepidoptera. Conclusions These results revealed promising candidates for furthering our understanding of sensory processing and behavior in the disparate developmental stages of butterflies and other animals that undergo metamorphosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07819-4.
Collapse
Affiliation(s)
- David A Ernst
- Department of Biological Sciences, University of Arkansas, 72701, Fayetteville, AR, USA.
| | - Erica L Westerman
- Department of Biological Sciences, University of Arkansas, 72701, Fayetteville, AR, USA
| |
Collapse
|
28
|
Cai LJ, Zheng LS, Huang YP, Xu W, You MS. Identification and characterization of odorant binding proteins in the diamondback moth, Plutella xylostella. INSECT SCIENCE 2021; 28:987-1004. [PMID: 32436367 DOI: 10.1111/1744-7917.12817] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/09/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Odorant binding proteins (OBPs) are a group of soluble proteins functioning as odorant carriers in insect antennae, mouth parts and other chemosensory organs. However, multiple insect OBPs have been detected in other tissues and various functions have been proposed. Therefore, a detailed expression profile including stages, tissues and sexes where OBPs are expressed will assist in building the links to their potential functions, enhancing the functional studies of insect OBPs. Here, we identified 39 putative OBP genes from its genome and transcriptome sequences of diamondback moth (DBM), Plutella xylostella. The expression patterns of identified PxylOBPs were further investigated from eggs, larvae, pupae, virgin adults, mated adults, larval midgut, larval heads, adult antennae, adult heads and adult tarsi. Moreover, P. xylostella larvae and adults with and without host plants for 5 h were utilized to study the interactions between OBP expression and host plants. The results showed that most PxylOBPs were highly expressed in male and female adult antennae. The expression levels of certain PxyOBPs could be regulated by mating activities and feeding host plants. This study advances our knowledge of P. xylostella OBPs, which may help develop new strategies for more environmentally sustainable management of P. xylostella.
Collapse
Affiliation(s)
- Li-Jun Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Li-Shuang Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Yu-Ping Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Wei Xu
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Australia
| | - Min-Sheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| |
Collapse
|
29
|
Identification and expression profiling of chemosensory membrane protein genes in Achelura yunnanensis (Lepidoptera: Zygaenidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100876. [PMID: 34246924 DOI: 10.1016/j.cbd.2021.100876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 11/20/2022]
Abstract
During the past decade, antennal transcriptome sequencing has been applied to at least 50 species from 16 families of the Lepidoptera order of insects, emphasizing the identification and characterization of chemosensory-related genes. However, little is known about the chemosensory genes in the Zygaenidae family of Lepidoptera. Herein, we report the transmembrane protein gene repertoires involved in chemoreception from Achelura yunnanensis (Lepidoptera: Zygaenidae) through transcriptome sequencing, bioinformatics, phylogenetics and polymerase chain reaction (PCR) approaches. Transcriptome analysis led to the generation of 555.47 million clean reads and accumulation of 83.30 gigabases of data. From this transcriptome, 132 transcripts encoding 69 odorant receptors (ORs), 33 gustatory receptors (GRs), 26 ionotropic receptors (IRs), and four sensory neuron membrane proteins (SNMPs) were identified, 69 of which were full-length sequences. Notably, the number of SNMPs in A. yunnanensis was the largest set in Lepidoptera to date. Phylogenetic analysis combined with sequence homology highlighted several conserved groups of chemoreceptors, including pheromone receptors (a so-called pheromone receptor (PR) clade: AyunOR50 and novel PR members: AyunOR39 and OR40), a phenylacetaldehyde-sensing OR (AyunOR28), carbon dioxide receptors (AyunGR1-3), and antennal IRs (13 A-IRs). In addition, a Zygaenidae-specific OR expansion was observed, including 15 A. yunnanensis members. Expression profiles revealed 99 detectable chemosensory genes in the antennae and 20 in the reproductive tissues, some of which displayed a sex-biased expression. This study identifies potential olfactory molecular candidates for sensing sex pheromones, phenylacetaldehyde or other odorants, and provides preliminary evidence for the putative reproductive function of chemosensory membrane protein genes in A. yunnanensis.
Collapse
|
30
|
Xu W, Zhang H, Liao Y, Papanicolaou A. Characterization of sensory neuron membrane proteins (SNMPs) in cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae). INSECT SCIENCE 2021; 28:769-779. [PMID: 32420694 DOI: 10.1111/1744-7917.12816] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/27/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Sensory neuron membrane proteins (SNMPs) play a critical role in insect chemosensory system. Previously, three SNMPs were identified, characterized and functionally investigated in a lepidopteran model insect, Bombyx mori. However, whether these results are consistent across other lepidopteran species are unknown. Here genome and transcriptome data analysis, expression profiling, quantitative real-time PCR (qRT-PCR) and the yeast hybridization system were utilized to examine snmp genes of Helicoverpa armigera, one of the most destructive lepidopteran pests in cropping areas. In silico expression and qRT-PCR analyses showed that, just as the B. mori snmp genes, H. armigera snmp1 (Harmsnmp1) is specifically expressed in adult antennae. Harmsnmp2 is broadly expressed in multiple tissues including adult antennae, tarsi, larval antennae and mouthparts. Harmsnmp3 is specifically expressed in larval midguts. Further RNAseq analysis suggested that the expression levels of Harmsnmp2 and Harmsnmp3 differed significantly depending on the plant species on which the larvae fed, indicating they may be involved in plant-feeding behaviours. Yeast hybridization results revealed a protein-protein interaction between HarmSNMP1 and the sex pheromone receptor, HarmOR13. This study demonstrated that SNMPs may share same functions and mechanisms in different lepidopteran species, which improved our understanding of insect snmp genes and their functions in lepidopterans.
Collapse
Affiliation(s)
- Wei Xu
- Department of Agricultural Sciences, Murdoch University, Murdoch, Australia
| | - Huijie Zhang
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yalin Liao
- Department of Agricultural Sciences, Murdoch University, Murdoch, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Australia
| |
Collapse
|
31
|
Jiang XC, Liu S, Jiang XY, Wang ZW, Xiao JJ, Gao Q, Sheng CW, Shi TF, Zeng HR, Yu LS, Cao HQ. Identification of Olfactory Genes From the Greater Wax Moth by Antennal Transcriptome Analysis. Front Physiol 2021; 12:663040. [PMID: 34093226 PMCID: PMC8172125 DOI: 10.3389/fphys.2021.663040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/22/2021] [Indexed: 11/23/2022] Open
Abstract
The olfactory system is used by insects to find hosts, mates, and oviposition sites. Insects have different types of olfactory proteins, including odorant-binding proteins (OBPs), chemosensory proteins (CSPs), odorant receptors (ORs), ionotropic receptors (IRs), and sensory neuron membrane proteins (SNMPs) to perceive chemical cues from the environment. The greater wax moth, Galleria mellonella, is an important lepidopteran pest of apiculture. However, the molecular mechanism underlying odorant perception in this species is unclear. In this study, we performed transcriptome sequencing of G. mellonella antennae to identify genes involved in olfaction. A total of 42,544 unigenes were obtained by assembling the transcriptome. Functional classification of these unigenes was determined by searching against the Gene Ontology (GO), eukaryotic orthologous groups (KOG), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. We identified a total of 102 olfactory-related genes: 21 OBPs, 18 CSPs, 43 ORs, 18 IRs, and 2 SNMPs. Results from BLASTX best hit and phylogenetic analyses showed that most of the genes had a close relationship with orthologs from other Lepidoptera species. A large number of OBPs and CSPs were tandemly arrayed in the genomic scaffolds and formed gene clusters. Reverse transcription-quantitative PCR results showed that GmelOBP19 and GmelOR47 are mainly expressed in male antennae. This work provides a transcriptome resource for olfactory genes in G. mellonella, and the findings pave the way for studying the function of these genes.
Collapse
Affiliation(s)
- Xing-Chuan Jiang
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Su Liu
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiu-Yun Jiang
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zheng-Wei Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jin-Jing Xiao
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Quan Gao
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Cheng-Wang Sheng
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Teng-Fei Shi
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hua-Rui Zeng
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Lin-Sheng Yu
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hai-Qun Cao
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
32
|
Gonzalez F, Johny J, Walker WB, Guan Q, Mfarrej S, Jakše J, Montagné N, Jacquin-Joly E, Alqarni AS, Al-Saleh MA, Pain A, Antony B. Antennal transcriptome sequencing and identification of candidate chemoreceptor proteins from an invasive pest, the American palm weevil, Rhynchophorus palmarum. Sci Rep 2021; 11:8334. [PMID: 33859212 PMCID: PMC8050089 DOI: 10.1038/s41598-021-87348-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/26/2021] [Indexed: 02/02/2023] Open
Abstract
For decades, the American palm weevil (APW), Rhynchophorus palmarum, has been a threat to coconut and oil palm production in the Americas. It has recently spread towards North America, endangering ornamental palms, and the expanding date palm production. Its behavior presents several parallelisms with a closely related species, R. ferrugineus, the red palm weevil (RPW), which is the biggest threat to palms in Asia and Europe. For both species, semiochemicals have been used for management. However, their control is far from complete. We generated an adult antennal transcriptome from APW and annotated chemosensory related gene families to obtain a better understanding of these species' olfaction mechanism. We identified unigenes encoding 37 odorant-binding proteins (OBPs), ten chemosensory proteins (CSPs), four sensory neuron membrane proteins (SNMPs), seven gustatory receptors (GRs), 63 odorant receptors (ORs), and 28 ionotropic receptors (IRs). Noticeably, we find out the R. ferrugineus pheromone-binding protein and pheromone receptor orthologs from R. palmarum. Candidate genes identified and annotated in this study allow us to compare these palm weevils' chemosensory gene sets. Most importantly, this study provides the foundation for functional studies that could materialize as novel pest management strategies.
Collapse
Affiliation(s)
- Francisco Gonzalez
- Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Research and Development, ChemTica Internacional S.A., Santo Domingo, Heredia, Costa Rica
| | - Jibin Johny
- Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - William B Walker
- Department To Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Qingtian Guan
- BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Jeddah, Saudi Arabia
| | - Sara Mfarrej
- BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Jeddah, Saudi Arabia
| | - Jernej Jakše
- Biotechnical Faculty, Agronomy Department, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Abdulaziz S Alqarni
- Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed Ali Al-Saleh
- Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Arnab Pain
- BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Jeddah, Saudi Arabia
| | - Binu Antony
- Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
33
|
Liu J, Liu H, Yi J, Mao Y, Li J, Sun D, An Y, Wu H. Transcriptome Characterization and Expression Analysis of Chemosensory Genes in Chilo sacchariphagus (Lepidoptera Crambidae), a Key Pest of Sugarcane. Front Physiol 2021; 12:636353. [PMID: 33762968 PMCID: PMC7982955 DOI: 10.3389/fphys.2021.636353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Insect chemoreception involves many families of genes, including odourant/pheromone binding proteins (OBP/PBPs), chemosensory proteins (CSPs), odourant receptors (ORs), ionotropic receptors (IRs), and sensory neuron membrane proteins (SNMPs), which play irreplaceable roles in mediating insect behaviors such as host location, foraging, mating, oviposition, and avoidance of danger. However, little is known about the molecular mechanism of olfactory reception in Chilo sacchariphagus, which is a major pest of sugarcane. A set of 72 candidate chemosensory genes, including 31 OBPs/PBPs, 15 CSPs, 11 ORs, 13 IRs, and two SNMPs, were identified in four transcriptomes from different tissues and genders of C. sacchariphagus. Phylogenetic analysis was conducted on gene families and paralogs from other model insect species. Quantitative real-time PCR (qRT-PCR) showed that most of these chemosensory genes exhibited antennae-biased expression, but some had high expression in bodies. Most of the identified chemosensory genes were likely involved in chemoreception. This study provides a molecular foundation for the function of chemosensory proteins, and an opportunity for understanding how C. sacchariphagus behaviors are mediated via chemical cues. This research might facilitate the discovery of novel strategies for pest management in agricultural ecosystems.
Collapse
Affiliation(s)
- Jianbai Liu
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Huan Liu
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Jiequn Yi
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Yongkai Mao
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Jihu Li
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Donglei Sun
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuxing An
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Han Wu
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
34
|
Abstract
The sense of smell enables insects to recognize olfactory signals crucial for survival and reproduction. In insects, odorant detection highly depends on the interplay of distinct proteins expressed by specialized olfactory sensory neurons (OSNs) and associated support cells which are housed together in chemosensory units, named sensilla, mainly located on the antenna. Besides odorant-binding proteins (OBPs) and olfactory receptors, so-called sensory neuron membrane proteins (SNMPs) are indicated to play a critical role in the detection of certain odorants. SNMPs are insect-specific membrane proteins initially identified in pheromone-sensitive OSNs of Lepidoptera and are indispensable for a proper detection of pheromones. In the last decades, genome and transcriptome analyses have revealed a wide distribution of SNMP-encoding genes in holometabolous and hemimetabolous insects, with a given species expressing multiple subtypes in distinct cells of the olfactory system. Besides SNMPs having a neuronal expression in subpopulations of OSNs, certain SNMP types were found expressed in OSN-associated support cells suggesting different decisive roles of SNMPs in the peripheral olfactory system. In this review, we will report the state of knowledge of neuronal and non-neuronal members of the SNMP family and discuss their possible functions in insect olfaction.
Collapse
Affiliation(s)
- Sina Cassau
- Institute of Biology/Zoology, Department of Animal Physiology, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jürgen Krieger
- Institute of Biology/Zoology, Department of Animal Physiology, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
35
|
Liu S, Chang H, Liu W, Cui W, Liu Y, Wang Y, Ren B, Wang G. Essential role for SNMP1 in detection of sex pheromones in Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103485. [PMID: 33049282 DOI: 10.1016/j.ibmb.2020.103485] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
The sensory neuron membrane protein, SNMP1, was initially discovered in moths and is associated with sex pheromone sensitive neurons, suggesting a role in the detection of these semiochemicals. Although DrosophilaSNMP1 has been reported to be involved in detecting of the sex pheromone cis-vaccenyl acetate (cVA), the role of this protein in moths in vivo is still largely unexplored. In this study we developed a SNMP1-/- homozygous mutant line of Helicoverpa armigera using CRISPR/Cas9. Wind-tunnel behavioral experiments showed that HarmSNMP1-/- males could not be attracted by sex pheromones (Z11-16:Ald/Z9-16:Ald = 97/3), while mating behavior obvervations revealed that the SNMP1 mutant males didn't react much to calling females and the rate of copulation was significantly decreased. The electrophysiological results indicated that HarmSNMP1 contributes to the detection of 16-carbon liner sex pheromones, (Z)-11-hexadecenal (Z11-16:Ald), (Z)-9-hexadecenal (Z9-16:Ald), (Z)-11-hexadecanol (Z11-16:OH) and 16-carbon acetate (Z)-11-hexadecenyl acetate (Z11-16:OAc), but is not required for detecting the 14-carbon sex pheromone component (Z)-9-tetradecenal (Z9-14:Ald) an analogue of Z11-16:Ald, (Z)-9-tetradecen-1-yl formate (Z9-14:OFor), which can activate the Z11-16:Ald-responsive neuron. Taken together, our studies indicated that HarmSNMP1 has an important role in the detection of long-chain sex pheromones, but is not essential for detecting shorter chain sex pheromone in vivo.
Collapse
Affiliation(s)
- Shuai Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hetan Chang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Weichan Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yinliang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
36
|
Abstract
Insects thrive in diverse ecological niches in large part because of their highly sophisticated olfactory systems. Over the last two decades, a major focus in the study of insect olfaction has been on the role of olfactory receptors in mediating neuronal responses to environmental chemicals. In vivo, these receptors operate in specialized structures, called sensilla, which comprise neurons and non-neuronal support cells, extracellular lymph fluid and a precisely shaped cuticle. While sensilla are inherent to odour sensing in insects, we are only just beginning to understand their construction and function. Here, we review recent work that illuminates how odour-evoked neuronal activity is impacted by sensillar morphology, lymph fluid biochemistry, accessory signalling molecules in neurons and the physiological crosstalk between sensillar cells. These advances reveal multi-layered molecular and cellular mechanisms that determine the selectivity, sensitivity and dynamic modulation of odour-evoked responses in insects.
Collapse
Affiliation(s)
- Hayden R Schmidt
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
37
|
Yang H, Dong J, Sun YL, Hu Z, Lyu QH, Li D. Identification and expression profiles of candidate chemosensory receptors in Histia rhodope (Lepidoptera: Zygaenidae). PeerJ 2020; 8:e10035. [PMID: 33024644 PMCID: PMC7520089 DOI: 10.7717/peerj.10035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
Insect olfaction and vision play important roles in survival and reproduction. Diurnal butterflies mainly rely on visual cues whereas nocturnal moths rely on olfactory signals to locate external resources. Histia rhodope Cramer (Lepidoptera: Zygaenidae) is an important pest of the landscape tree Bischofia polycarpa in China and other Southeast Asian regions. As a diurnal moth, H. rhodope represents a suitable model for studying the evolutionary shift from olfactory to visual communication. However, only a few chemosensory soluble proteins have been characterized and information on H. rhodope chemoreceptor genes is currently lacking. In this study, we identified 45 odorant receptors (ORs), nine ionotropic receptors (IRs), eight gustatory receptors (GRs) and two sensory neuron membrane proteins (SNMPs) from our previously acquired H. rhodope antennal transcriptomic data. The number of chemoreceptors of H. rhodope was less compared with that found in many nocturnal moths. Some specific chemoreceptors such as OR co-receptor (ORco), ionotropic receptors co-receptor, CO2 receptors, sugar receptors and bitter receptors were predicted by phylogenetic analysis. Notably, two candidate pheromone receptors (PRs) were identified within a novel PR lineage. qRT-PCR results showed that almost all tested genes (22/24) were predominantly expressed in antennae, indicating that they may be important in olfactory function. Among these antennae-enriched genes, six ORs, five IRs and two GRs displayed female-biased expression, while two ORs displayed male-biased expression. Additionally, HrhoIR75q.2 and HrhoGR67 were more highly expressed in heads and legs. This study enriches the olfactory gene inventory of H. rhodope and provides the foundation for further research of the chemoreception mechanism in diurnal moths.
Collapse
Affiliation(s)
- Haibo Yang
- College of Forestry, Henan University of Science and Technology, Luoyang, Henan, China
| | - Junfeng Dong
- College of Forestry, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ya-Lan Sun
- College of Forestry, Henan University of Science and Technology, Luoyang, Henan, China
| | - Zhenjie Hu
- College of Forestry, Henan University of Science and Technology, Luoyang, Henan, China
| | - Qi-Hui Lyu
- College of Forestry, Henan University of Science and Technology, Luoyang, Henan, China
| | - Dingxu Li
- College of Forestry, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
38
|
Sun D, Huang Y, Qin Z, Zhan H, Zhang J, Liu Y, Yang S. Identification of Candidate Olfactory Genes in the Antennal Transcriptome of the Stink Bug Halyomorpha halys. Front Physiol 2020; 11:876. [PMID: 32792985 PMCID: PMC7394822 DOI: 10.3389/fphys.2020.00876] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/29/2020] [Indexed: 12/03/2022] Open
Abstract
The brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae), is a serious agricultural and urban pest that has become an invasive species in many parts of the world. Olfaction plays an indispensable role in regulating insect behaviors, such as host plant location, partners searching, and avoidance of predators. In this study, we sequenced and analyzed the antennal transcriptomes of both male and female adults of H. halys to better understand the olfactory mechanisms in this species. A total of 241 candidate chemosensory genes were identified, including 138 odorant receptors (ORs), 24 ionotropic receptors (IRs), 15 gustatory receptors (GRs), 44 odorant-binding proteins (OBPs), 17 chemosensory proteins (CSPs), and three sensory neuron membrane proteins (SNMPs). The results of semi-quantitative reverse transcription PCR (RT-PCR) assays showed that some HhalOBP and HhalCSP genes have tissue-specific and sex-biased expression patterns. Our results provide an insight into the molecular mechanisms of the olfactory system in H. halys and identify potential novel targets for pest control strategies.
Collapse
Affiliation(s)
- Dongdong Sun
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yuan Huang
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Zhenjie Qin
- College of Life Sciences, Anhui Normal University, Wuhu, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haixia Zhan
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jinping Zhang
- MoA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shiyong Yang
- College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory for the Conservation and Exploitation of Biology Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
39
|
Li L, Gao X, Gui H, Lan M, Zhu J, Xie Y, Zhan Y, Wang Z, Li Z, Ye M, Wu G. Identification and preliminary characterization of chemosensory-related proteins in the gall fly, Procecidochares utilis by transcriptomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100724. [PMID: 32836214 DOI: 10.1016/j.cbd.2020.100724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/24/2020] [Accepted: 08/05/2020] [Indexed: 01/20/2023]
Abstract
Chemoreception is critical for insect behaviors such as foraging, host searching and oviposition. The process of chemoreception is mediated by a series of proteins, including odorant-binding proteins (OBPs), gustatory receptors (GRs), odorant receptors (ORs), ionotropic receptors (IRs), chemosensory proteins (CSPs) and sensory neuron membrane proteins (SNMPs). The tephritid stem gall fly, Procecidochares utilis Stone, is a type of egg parasitic insect, which is an effective biological control agent for the invasive weed Ageratina adenophora in many countries. However, the study of molecular components related to the olfactory system of P. utilis has not been investigated. Here, we conducted the developmental transcriptome (egg, first-third instar larva, pupa, female and male adult) of P. utilis using next-generation sequencing technology and identified a total of 133 chemosensory genes, including 40 OBPs, 29 GRs, 24 ORs, 28 IRs, 6 CSPs, and 6 SNMPs. The sequences of these candidate chemosensory genes were confirmed by BLAST, and phylogenetic analysis was performed. Quantitative real-time PCR (qRT-PCR) confirmed that the expression levels of the candidate OBPs varied at the different developmental stages of P. utilis with most OBPs expressed mainly in the pupae, female and male adults but scarcely in eggs and larvae, which was consistent with the differentially expressed genes (DEGs) analysis using the fragments per kilobase per million fragments (FPKM) value. Our results provide a significant contribution towards the knowledge of the set of chemosensory proteins and help advance the use of P. utilis as biological control agents.
Collapse
Affiliation(s)
- Lifang Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Xi Gao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Huamin Gui
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Mingxian Lan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Jiaying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yonghui Xie
- Kunming Branch of Yunnan Provincial Tobacco Company, Kunming 650021, China
| | - Youguo Zhan
- Kunming Branch of Yunnan Provincial Tobacco Company, Kunming 650021, China
| | - Zhijiang Wang
- Kunming Branch of Yunnan Provincial Tobacco Company, Kunming 650021, China
| | - Zhengyue Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Min Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| | - Guoxing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
40
|
Liu P, Zhang X, Meng R, Liu C, Li M, Zhang T. Identification of chemosensory genes from the antennal transcriptome of Semiothisa cinerearia. PLoS One 2020; 15:e0237134. [PMID: 32764791 PMCID: PMC7413487 DOI: 10.1371/journal.pone.0237134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/20/2020] [Indexed: 11/24/2022] Open
Abstract
Olfaction plays vital roles in the survival and reproduction of insects. The completion of olfactory recognition requires the participation of various complex protein families. However, little is known about the olfactory-related proteins in Semiothisa cinerearia Bremer et Grey, an important pest of Chinese scholar tree. In this study, we sequenced the antennal transcriptome of S. cinerearia and identified 125 olfactory-related genes, including 25 odorant-binding proteins (OBPs), 15 chemosensory proteins (CSPs), two sensory neuron membrane proteins (SNMPs), 52 odorant receptors (ORs), eight gustatory receptors (GRs) and 23 ionotropic receptors (IRs). BLASTX best hit results and phylogenetic analyses indicated that these genes were most identical to their respective orthologs from Ectropis obliqua. Further quantitative real-time PCR (qRT-PCR) analysis revealed that three ScinOBPs and three ScinORs were highly expressed in male antennae, while seven ScinOBPs and twelve ScinORs were female-specifically expressed. Our study will be useful for the elucidation of olfactory mechanisms in S. cinerearia.
Collapse
Affiliation(s)
- Panjing Liu
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences/Integrated Pest Management Center of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, P. R. China
| | - Xiaofang Zhang
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences/Integrated Pest Management Center of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, P. R. China
| | - Runjie Meng
- Baoding Vocational and Technical College, Baoding, P. R. China
| | - Chang Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, P. R. China
| | - Min Li
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences/Integrated Pest Management Center of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, P. R. China
| | - Tao Zhang
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences/Integrated Pest Management Center of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, P. R. China
| |
Collapse
|
41
|
Zhao YJ, Li GC, Zhu JY, Liu NY. Genome-based analysis reveals a novel SNMP group of the Coleoptera and chemosensory receptors in Rhaphuma horsfieldi. Genomics 2020; 112:2713-2728. [PMID: 32145380 DOI: 10.1016/j.ygeno.2020.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/22/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Through an exhaustive homology-based approach, coupled with manual efforts, we annotated and characterized 128 sensory neuron membrane proteins (SNMPs) from genomes and transcriptomes of 22 coleopteran species, with 107 novel candidates. Remarkably, we discovered, for the first time, a novel SNMP group, defined as Group 4 based on the phylogeny, sequence characteristics, gene structure and organization. The lineage-specific expansions in SNMPs occurred mainly in the family Scarabaeidae, harboring 12 representatives in Onthophagus taurus as a typical gene duplication and the most massive set of SNMPs in insects to date. Transcriptome sequencing of Rhaphuma horsfieldi resulted in the yields of approximately 611.9 million clean reads that were further assembled into 543,841 transcripts and 327,550 unigenes, respectively. From the transcriptome, 177 transcripts encoding 84 odorant (ORs), 62 gustatory (GRs), 20 ionotropic (IRs), and 11 ionotropic glutamate (iGluRs) receptors were identified. Phylogenetic analysis classified RhorORs into six groups, RhorGRs into four subfamilies, and RhorIRs into 10 conserved antennal IRs and one divergent IRs. Expression profiles revealed that over 80% of chemosensory genes were specifically or highly transcribed in antennae or tarsi, suggestive of their olfactory and/or gustatory roles. This study has greatly complemented the resources for chemosensory genes in the cerambycid beetles, and most importantly, identifies a novel group of SNMPs in Coleoptera.
Collapse
Affiliation(s)
- Yu-Jie Zhao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Gen-Ceng Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|