1
|
Zou H, Gao Y, Zhang S, Liu T, Zhang G. Regulation of chitin synthesis by the juvenile hormone analogue fenoxycarb in Hyphantria cunea. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106268. [PMID: 40015860 DOI: 10.1016/j.pestbp.2024.106268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 03/01/2025]
Abstract
Fenoxycarb, a non-terpenoid carbamate with stomach and contact toxicity, is a promising insecticide affecting insect growth and development. However, fenoxycarb how to regulate insect digestion and absorption and chitin synthesis remains largely unclear. Here, we investigated the effects of fenoxycarb on growth, chitin synthesis, carbohydrate homeostasis, and digestive capabilities in Hyphantria cunea, a widespread agricultural and forestry pest, to clarify the action mechanism of fenoxycarb from the perspective of digestive function and carbohydrate metabolism, and confirmed that fenoxycarb significantly decreased chitin content, increased chitinase activity, and regulated the expression of genes related to chitin synthesis and degradation. Further studies showed that fenoxycarb significantly reduced glycogen content and increased glucose and trehalose contents, increased trehalase activity, and down-regulated trehalase synthesis and degradation related genes in the larvae, indicating abnormal metabolism of chitin synthesis substrates. Moreover, from the perspective of midgut digestive function, fenoxycarb significantly affected the activities of digestive enzymes in the midgut of the larvae, indicating that the larvae had digestive and absorption disorders. The findings provide a novel insight into the molecular mechanism by which fenoxycarb abnormally promotes digestive enzyme activity in the midgut and eventually interferes with insect chitin synthesis.
Collapse
Affiliation(s)
- Hang Zou
- Chinese Academy of Inspection and Quarantine, Beijing 100123, PR China
| | - Yuan Gao
- East China Academy of Inventory and Planning of NFGA, Hangzhou 310000, PR China
| | - Shengyu Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Tao Liu
- Chinese Academy of Inspection and Quarantine, Beijing 100123, PR China
| | - Guocai Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
2
|
Delamotte P, Montagne J. Dietary Lipids and Their Metabolism in the Midgut. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39565560 DOI: 10.1007/5584_2024_835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Animals use dietary lipids to sustain their growth and survival. Insects can synthesize fatty acids (FAs) and are autotroph for a number of lipids, but auxotroph for specific lipids classes (e.g. sterols, polyunsaturated FAs). Once ingested, lipids are hydrolysed in the intestinal lumen and taken up into intestinal cells within specific regions of the insect digestive tract. These lipids can be either stored in the intestinal cells or exported through the haemolymph circulation to specific organs. In this chapter, we describe the various lipids provided by insect diets, their extracellular hydrolysis in the gut lumen and their intake and metabolic fate in the intestinal cells. This chapter emphasizes the critical role of the digestive tract and its regionalization in processing dietary lipids prior to their transfer to the requiring tissues.
Collapse
Affiliation(s)
- Pierre Delamotte
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Jacques Montagne
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France.
| |
Collapse
|
3
|
Wang Y, Jiang H. Hemolymph protease-17b activates proHP6 to stimulate melanization and Toll signaling in Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 174:104193. [PMID: 39406299 PMCID: PMC11558693 DOI: 10.1016/j.ibmb.2024.104193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Manduca sexta hemolymph protease-6 (HP6) plays a central role in coordinating antimicrobial responses, such as prophenoloxidase (PPO) activation and Toll signaling. Our previous studies indicated that HP5 and GP6 activate proHP6 in larval hemolymph and extraembryonic tissues, respectively. Here, we report the characterization of HP17b as another HP6 activating enzyme and its regulation by multiple serpins in hemolymph. The precursor of HP17b expressed in baculovirus infected Sf9 cells became spontaneously cleaved at two sites, and these products were purified together in one preparation named HP17b', a mixture of proHP17b, a 35 kDa intermediate, and HP17b. HP17b' converted proHP6 to HP6. As reported before, HP6 converted precursors of PPO activating protease-1 (PAP1) and HP8 to their active forms. HP8 activates proSpӓtzle-1 to turn on Toll signaling. We found HP17b' directly activated proSPHI and II to form a cofactor for PPO activation by PAP1. Supplementation of larval hemolymph with HP17b', HP17b, or proHP17b significantly increased PPO activation. Adding Micrococcus luteus to the reactions did not enhance PPO activation in the reactions containing HP17b', HP17b, or proHP17b. Using HP17b antibodies, we isolated from induced plasma HP17b fragments and associated proteins (e.g., serpin-4). Serpin-1A, 1J, 1J', 4, 5, or 6 reduced the activation of proHP6 by HP17b' through formation of covalent complexes with active HP17b. We detected an activity for proHP17b cleavage in hemolymph from bar-stage pharate pupae but failed to purify the protease due to its high instability. Other known HPs did not activate proHP17b in vitro. Together, these results suggest that HP17b is a clip-domain protease activated by an unknown endopeptidase in response to a danger signal and regulated by multiple serpins.
Collapse
Affiliation(s)
- Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
4
|
Zhiganov NI, Vinokurov KS, Salimgareev RS, Tereshchenkova VF, Dunaevsky YE, Belozersky MA, Elpidina EN. The Set of Serine Peptidases of the Tenebrio molitor Beetle: Transcriptomic Analysis on Different Developmental Stages. Int J Mol Sci 2024; 25:5743. [PMID: 38891931 PMCID: PMC11172050 DOI: 10.3390/ijms25115743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Serine peptidases (SPs) of the chymotrypsin S1A subfamily are an extensive group of enzymes found in all animal organisms, including insects. Here, we provide analysis of SPs in the yellow mealworm Tenebrio molitor transcriptomes and genomes datasets and profile their expression patterns at various stages of ontogeny. A total of 269 SPs were identified, including 137 with conserved catalytic triad residues, while 125 others lacking conservation were proposed as non-active serine peptidase homologs (SPHs). Seven deduced sequences exhibit a complex domain organization with two or three peptidase units (domains), predicted both as active or non-active. The largest group of 84 SPs and 102 SPHs had no regulatory domains in the propeptide, and the majority of them were expressed only in the feeding life stages, larvae and adults, presumably playing an important role in digestion. The remaining 53 SPs and 23 SPHs had different regulatory domains, showed constitutive or upregulated expression at eggs or/and pupae stages, participating in regulation of various physiological processes. The majority of polypeptidases were mainly expressed at the pupal and adult stages. The data obtained expand our knowledge on SPs/SPHs and provide the basis for further studies of the functions of proteins from the S1A subfamily in T. molitor.
Collapse
Affiliation(s)
- Nikita I. Zhiganov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (N.I.Z.); (Y.E.D.); (M.A.B.)
| | - Konstantin S. Vinokurov
- Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budejovice, Czech Republic;
| | - Ruslan S. Salimgareev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia;
| | | | - Yakov E. Dunaevsky
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (N.I.Z.); (Y.E.D.); (M.A.B.)
| | - Mikhail A. Belozersky
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (N.I.Z.); (Y.E.D.); (M.A.B.)
| | - Elena N. Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (N.I.Z.); (Y.E.D.); (M.A.B.)
| |
Collapse
|
5
|
Kaur G, Quilici DR, Woolsey RJ, Petereit J, Nuss AB. Starvation-Induced Changes to the Midgut Proteome and Neuropeptides in Manduca sexta. INSECTS 2024; 15:325. [PMID: 38786882 PMCID: PMC11121805 DOI: 10.3390/insects15050325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Starvation is a complex physiological state that induces changes in protein expression to ensure survival. The insect midgut is sensitive to changes in dietary content as it is at the forefront of communicating information about incoming nutrients to the body via hormones. Therefore, a DIA proteomics approach was used to examine starvation physiology and, specifically, the role of midgut neuropeptide hormones in a representative lepidopteran, Manduca sexta. Proteomes were generated from midguts of M. sexta fourth-instar caterpillars, starved for 24 h and 48 h, and compared to fed controls. A total of 3047 proteins were identified, and 854 of these were significantly different in abundance. KEGG analysis revealed that metabolism pathways were less abundant in starved caterpillars, but oxidative phosphorylation proteins were more abundant. In addition, six neuropeptides or related signaling cascade proteins were detected. Particularly, neuropeptide F1 (NPF1) was significantly higher in abundance in starved larvae. A change in juvenile hormone-degrading enzymes was also detected during starvation. Overall, our results provide an exploration of the midgut response to starvation in M. sexta and validate DIA proteomics as a useful tool for quantifying insect midgut neuropeptide hormones.
Collapse
Affiliation(s)
- Gurlaz Kaur
- Cell and Molecular Biology Graduate Program, University of Nevada, Reno, NV 89557, USA;
| | - David R. Quilici
- Mick Hitchcock, Ph.D. Nevada Proteomics Center, University of Nevada, Reno, NV 89557, USA; (D.R.Q.); (R.J.W.)
| | - Rebekah J. Woolsey
- Mick Hitchcock, Ph.D. Nevada Proteomics Center, University of Nevada, Reno, NV 89557, USA; (D.R.Q.); (R.J.W.)
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno, NV 89557, USA;
| | - Andrew B. Nuss
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
6
|
Miao Z, Xiong C, Wang Y, Shan T, Jiang H. Identification of immunity-related genes distinctly regulated by Manduca sexta Spӓtzle-1/2 and Escherichia coli peptidoglycan. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 168:104108. [PMID: 38552808 PMCID: PMC11443596 DOI: 10.1016/j.ibmb.2024.104108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
The immune system of Manduca sexta has been well studied to understand molecular mechanisms of insect antimicrobial responses. While evidence supports the existence of major immune signaling pathways in this species, it is unclear how induced production of defense proteins is specifically regulated by the Toll and Imd pathways. Our previous studies suggested that diaminopimelic acid-type peptidoglycans (DAP-PG) from Gram-negative and some Gram-positive bacteria, more than Lys-type peptidoglycans (Lys-PG) from other Gram-positive bacteria, triggers both pathways through membrane-bound receptors orthologous to Drosophila Toll and PGRP-LC. In this study, we produced M. sexta proSpätzle-1 and proSpätzle-2 in Sf9 cells, identified their processing enzymes, and used prophenoloxidase activating protease-3 to activate the cytokine precursors. After Spätzle-1 and -2 were isolated from the reaction mixtures, we separately injected the purified cytokines into larval hemocoel to induce gene transcription in fat body through the Toll pathway solely. On the other hand, we treated a M. sexta cell line with E. coli DAP-PG to only induce the Imd pathway and target gene expression. RNA-Seq analysis of the fat body and cultured cells collected at 0, 6, and 24 h after treatment indicated that expression of diapausin-4, -10, -12, -13, cecropin-2, -4, -5, attacin-5, -11, and lebocin D is up-regulated predominantly via Toll signaling, whereas transcription of cecropin-6, gloverin, lysozyme-1, and gallerimycin-2 is mostly induced by DAP-PG via Imd signaling. Other antimicrobial peptides are expressed in response to both pathways. Transcripts of most Toll-specific genes (e.g., lebocin D) peaked at 6 h, contrasting the gradual increase and plateauing of drosomycin mRNA level at 24-48 h in Drosophila. We also used T (oll)-I (md) ratios to estimate relative contributions of the two pathways to transcriptional regulation of other components of the immune system. The differences in pathway specificity and time course of transcriptional regulation call for further investigations in M. sexta and other insects.
Collapse
Affiliation(s)
- Zelong Miao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Chao Xiong
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Tisheng Shan
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
7
|
Wang Q, Yang L, Tian T, Sun Y, Dong H, Gong J, Hou Y. Proteomic Analysis of the Midgut Contents of Silkworm in the Pupal Stage. INSECTS 2023; 14:953. [PMID: 38132625 PMCID: PMC10743435 DOI: 10.3390/insects14120953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The silkworm Bombyx mori, a lepidopteran insect, possesses an 8-10-day pupal stage, during which significant changes occur in the midgut, where it first condenses into the yellow body, and then undergoes decomposition. To gain insights into this transformation process, proteomics was performed on Bombyx mori midgut contents on day 2 and day 7 after pupation. The results revealed the identification of 771 proteins with more than one unique peptide. An analysis using AgriGO demonstrated that these proteins were predominantly associated with catalytic activity. Among the identified proteins, a considerable number were found to be involved in carbohydrate metabolism, amino acid metabolism, lipid metabolism, nucleic acid degradation, and energy support. Additionally, variations in the levels of certain proteases were observed between the midgut contents on day 2 and day 7 after pupation. An in-depth analysis of the two-dimensional electrophoresis of the midgut contents on day 7 after pupation led to the identification of twelve protein spots with potential gelatinolytic activity. Among these, six proteases were identified through mass spectrometry, including the p37k protease, vitellin-degrading protease, chymotrypsin-2, etc. These proteases may be responsible for the digestion of the yellow body during the later stages of pupal development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yong Hou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Q.W.); (L.Y.); (T.T.); (Y.S.); (H.D.); (J.G.)
| |
Collapse
|
8
|
Wang B, Huang D, Cao C, Gong Y. Insect α-Amylases and Their Application in Pest Management. Molecules 2023; 28:7888. [PMID: 38067617 PMCID: PMC10708458 DOI: 10.3390/molecules28237888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Amylase is an indispensable hydrolase in insect growth and development. Its varied enzymatic parameters cause insects to have strong stress resistance. Amylase gene replication is a very common phenomenon in insects, and different copies of amylase genes enable changes in its location and function. In addition, the classification, structure, and interaction between insect amylase inhibitors and amylases have also invoked the attention of researchers. Some plant-derived amylase inhibitors have inhibitory activities against insect amylases and even mammalian amylases. In recent years, an increasing number of studies have clarified the effects of pesticides on the amylase activity of target and non-target pests, which provides a theoretical basis for exploring safe and efficient pesticides, while the exact lethal mechanisms and safety in field applications remain unclear. Here, we summarize the most recent advances in insect amylase studies, including its sequence and characteristics and the regulation of amylase inhibitors (α-AIs). Importantly, the application of amylases as the nanocide trigger, RNAi, or other kinds of pesticide targets will be discussed. A comprehensive foundation will be provided for applying insect amylases to the development of new-generation insect management tools and improving the specificity, stability, and safety of pesticides.
Collapse
Affiliation(s)
| | | | - Chunxia Cao
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (B.W.)
| | - Yan Gong
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (B.W.)
| |
Collapse
|
9
|
Wu C, Li L, Wang Y, Wei S, Zhu J. Morphological, functional, compositional and transcriptional constraints shape the distinct venom profiles of the assassin bug Sycanus croceovittatus. Int J Biol Macromol 2023; 250:126162. [PMID: 37558034 DOI: 10.1016/j.ijbiomac.2023.126162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Predatory bugs employ a salivary venom apparatus to generate complex venoms for capturing and digesting prey. The venom apparatus consists of different glands for the production of distinct venom sets, but the underlying mechanisms behind this process remain poorly understood. Here we present a comprehensive analysis of the morphological, functional, compositional and transcriptional characteristics of venoms derived from posterior main gland (PMG), anterior main gland (AMG), and accessory gland (AG) of the assassin bug Sycanus croceovittatus. Structural observations revealed the intricate constructions of the venom apparatus, enabling the production and storage of three distinct venom sets in anatomically varied glands and allowing them to be modulated in a context-dependent manner upon utilization. There were remarkable differences in the biological activities exhibited by PMG, AMG, and AG venoms. Proteotranscriptomic analysis demonstrated that these venoms displayed compositional heterogeneity at both the quantity and variety levels of proteins. Transcriptional profiles of the identified venom proteins revealed gland-specific or biased expression patterns. These findings indicate that the divergence in venom profiles among different glands arises from morphological, functional, compositional and transcriptional constraints on the venom apparatus, reflecting remarkable morphogenesis and regulatory gene networks responsible for the compartmentalized production of venom proteins in different glands.
Collapse
Affiliation(s)
- Chaoyan Wu
- Key Laboeratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Lu Li
- Key Laboeratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Yuqin Wang
- Key Laboeratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Shujun Wei
- Key Laboeratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China; Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiaying Zhu
- Key Laboeratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China.
| |
Collapse
|
10
|
Liu J, Lin Y, Huang Y, Liu L, Cai X, Lin J, Shu B. The effects of carvacrol on development and gene expression profiles in Spodoptera frugiperda. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105539. [PMID: 37666589 DOI: 10.1016/j.pestbp.2023.105539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 09/06/2023]
Abstract
The fall armyworm, Spodoptera frugiperda, is a highly polyphagous agricultural pest that is widely distributed around the world and causes severe crop yield loss. Carvacrol showed adverse effects on many pests, such as larval death and growth inhibition. While the effects of carvacrol on S. frugiperda larvae are not yet known. In this study, the effects of carvacrol on S. frugiperda, including larval growth inhibition and mortality induction, were observed. The detoxification and digestive enzyme activities of larvae with 1.0 and 2.0 g/kg carvacrol treatments were analyzed. Carvacrol boosted the enzyme activities of carboxylesterase (CarE) and glutathione S-transferase (GST) while decreasing the activities of α-amylase (AMS), lipase (LIP), and trypsin. A total of 3422 differentially expressed genes were identified in the larvae treated with 2.0 g/kg carvacrol, of which the DEGs involved in xenobiotic detoxification, food digestion, and insecticidal targets were further examined. These results suggest that carvacrol could regulate growth and development by affecting the process of food digestion, and exert its toxicity on the larvae through interaction with a variety of insecticidal targets. While the altered expressions of detoxification enzymes might be related to the detoxification and metabolism of carvacrol. Our findings offer a theoretical foundation for the use of carvacrol for S. frugiperda control in the field.
Collapse
Affiliation(s)
- Jiafu Liu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yanzheng Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yuting Huang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Luyang Liu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xueming Cai
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
11
|
Zhang Z, Bao J, Chen Q, He J, Li X, Zhang J, Liu Z, Wu Y, Wang Y, Lu Y. The Chromosome-Level Genome Assembly of Bean Blossom Thrips ( Megalurothrips usitatus) Reveals an Expansion of Protein Digestion-Related Genes in Adaption to High-Protein Host Plants. Int J Mol Sci 2023; 24:11268. [PMID: 37511029 PMCID: PMC10379191 DOI: 10.3390/ijms241411268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Megalurothrips usitatus (Bagnall) is a destructive pest of legumes, such as cowpea. The biology, population dynamics and control strategies of this pest have been well studied. However, the lack of a high-quality reference genome for M. usitatus has hindered the understanding of key biological questions, such as the mechanism of adaptation to feed preferentially on high-protein host plants and the resistance to proteinase inhibitors (PIs). In this study, we generated a high-resolution chromosome-level reference genome assembly (247.82 Mb, 16 chromosomes) of M. usitatus by combining Oxford Nanopore Technologies (ONT) and Hi-C sequencing. The genome assembly showed higher proportions of GC and repeat content compared to other Thripinae species. Genome annotation revealed 18,624 protein-coding genes, including 4613 paralogs that were preferentially located in TE-rich regions. GO and KEGG enrichment analyses of the paralogs revealed significant enrichment in digestion-related genes. Genome-wide identification uncovered 506 putative digestion-related enzymes; of those, proteases, especially their subgroup serine proteases (SPs), are significantly enriched in paralogs. We hypothesized that the diversity and expansion of the digestion-related genes, especially SPs, could be driven by mobile elements (TEs), which promote the adaptive evolution of M. usitatus to high-protein host plants with high serine protease inhibitors (SPIs). The current study provides a valuable genomic resource for understanding the genetic variation among different pest species adapting to different plant hosts.
Collapse
Affiliation(s)
- Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiandong Bao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qizhang Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianyun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiahui Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410125, China
| | - Zhixing Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yixuan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yunsheng Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410125, China
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
12
|
Miao Z, Xiong C, Cao X, Shan T, Jin Q, Jiang H. Genome-wide identification, classification, and expression profiling of serine esterases and other esterase-related proteins in the tobacco hornworm, Manduca sexta. INSECT SCIENCE 2023; 30:338-350. [PMID: 36043911 PMCID: PMC11445795 DOI: 10.1111/1744-7917.13108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Serine esterases (SEs) are hydrolases that catalyze the conversion of carboxylic esters into acids and alcohols. Lipases and carboxylesterases constitute two major groups of SEs. Although over a hundred of insect genomes are known, systematic identification and classification of SEs are rarely performed, likely due to large size and complex composition of the gene family in each species. Considering their key roles in lipid metabolism and other physiological processes, we have categorized 144 M. sexta SEs and SE homologs (SEHs), 114 of which contain a motif of GXSXG. Multiple sequence alignment and phylogenetic tree analysis have revealed 39 neutral lipases (NLs), 3 neutral lipase homologs (NLHs), 11 acidic lipases (ALs), 3 acidic lipase homologs (ALHs), a lipase-3, a triglyceride lipase, a monoglyceride lipase, a hormone-sensitive lipase, and a GDSL lipase. Eighty-three carboxylesterase genes encode 29 α-esterases (AEs), 12 AEHs (e.g., SEH4-1-3), 20 feruloyl esterases (FEs), 2 FEHs, 2 β-esterases (BEs), 2 integument esterases (IEs), 1 IEH, 4 juvenile hormone esterases, 2 acetylcholinesterases, gliotactin, 6 neuroligins, neurotactin, and an uncharacteristic esterase homolog. In addition to these GXSXG proteins, we have identified 26 phospholipases and 13 thioesterases. Expression profiling of these genes in specific tissues and stages has provided insights into their functions including digestion, detoxification, hormone processing, neurotransmission, reproduction, and developmental regulation. In summary, we have established a framework of information on SEs and related proteins in M. sexta to stimulate their research in the model species and comparative investigations in agricultural pests or disease vectors.
Collapse
Affiliation(s)
- Zelong Miao
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Chao Xiong
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Tisheng Shan
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Qiao Jin
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| |
Collapse
|
13
|
Wen F, Wang J, Shang D, Yan H, Yuan X, Wang Y, Xia Q, Wang G. Non-classical digestive lipase BmTGL selected by gene amplification reduces the effects of mulberry inhibitor during silkworm domestication. Int J Biol Macromol 2023; 229:589-599. [PMID: 36587639 DOI: 10.1016/j.ijbiomac.2022.12.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/09/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
Efficient utilization of dietary lipids is crucial for Bombyx mori, also known as domesticated silkworms. However, the effects of domestication on the genes encoding lipases remain unknown. In this study, we investigated the expression difference of one triacylglycerol lipase (BmTGL) between B.mori and wild (ancestor) silkworm strains (Bombyx mandarina). An immunofluorescence localization analysis showed that BmTGL was present in all parts of the gut and was released into the intestinal lumen. BmTGL expression was significantly enhanced in different domesticated silkworm strains compared to that in the B. mandarina strains. The BmTGL copy numbers in the genomes of the domesticated silkworm strains were 2-to-3 folds that of the B. mandarina strains and accounted for the enhanced expression of BmTGL in the domesticated silkworm strains. The Ser144Asn substitution in the Ser-Asp-His catalytic triads of BmTGL resulted in relatively lower lipase activity and reduced sensitivity to the lipase inhibitor morachalcone A. Moreover, BmTGL overexpression significantly increased the weights of the B. mori silkworms compared to those of the non-transgenic controls. Thus, the selection of BmTGL by gene amplification may be a trade-off between maintaining high enzymatic activity and reducing the effects of mulberry inhibitors during silkworm domestication.
Collapse
Affiliation(s)
- Feng Wen
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Jing Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Deli Shang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Hao Yan
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Xingli Yuan
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Genhong Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
14
|
Shan T, Wang Y, Dittmer NT, Kanost MR, Jiang H. Serine Protease Networks Mediate Immune Responses in Extra-Embryonic Tissues of Eggs in the Tobacco Hornworm, Manduca sexta. J Innate Immun 2022; 15:365-379. [PMID: 36513034 PMCID: PMC10643904 DOI: 10.1159/000527974] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/01/2022] [Indexed: 12/15/2022] Open
Abstract
The melanization and Toll pathways, regulated by a network of serine proteases and noncatalytic serine protease homologs (SPHs), have been investigated mostly in adult and larval insects. However, how these innate immune reactions are regulated in insect eggs remains unclear. Here we present evidence from transcriptome and proteome analyses that extra-embryonic tissues (yolk and serosa) of early-stage Manduca sexta eggs are immune competent, with expression of immune effector genes including prophenoloxidase and antimicrobial peptides. We identified gene products of the melanization and Toll pathways in M. sexta eggs. Through in vitro reconstitution experiments, we demonstrated that constitutive and infection-induced serine protease cascade modules that stimulate immune responses exist in the extra-embryonic tissues of M. sexta eggs. The constitutive module (HP14b-SP144-GP6) may promote rapid early immune signaling by forming a cascade activating the cytokine Spätzle and regulating melanization by activating prophenoloxidase (proPO). The inducible module (HP14a-HP21-HP5) may trigger enhanced activation of Spätzle and proPO at a later phase of infection. Crosstalk between the two modules may occur in transition from the constitutive to the induced response in eggs inoculated with bacteria. Examination of data from two other well-studied insect species, Tribolium castaneum and Drosophila melanogaster, supports a role for a serosa-dependent constitutive protease cascade in protecting early embryos against invading pathogens.
Collapse
Affiliation(s)
- Tisheng Shan
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Neal T. Dittmer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Michael R. Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
15
|
Zeng T, Jaffar S, Xu Y, Qi Y. The Intestinal Immune Defense System in Insects. Int J Mol Sci 2022; 23:ijms232315132. [PMID: 36499457 PMCID: PMC9740067 DOI: 10.3390/ijms232315132] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Over a long period of evolution, insects have developed unique intestinal defenses against invasion by foreign microorganisms, including physical defenses and immune responses. The physical defenses of the insect gut consist mainly of the peritrophic matrix (PM) and mucus layer, which are the first barriers to pathogens. Gut microbes also prevent the colonization of pathogens. Importantly, the immune-deficiency (Imd) pathways produce antimicrobial peptides to eliminate pathogens; mechanisms related to reactive oxygen species are another important pathway for insect intestinal immunity. The janus kinase/STAT signaling pathway is involved in intestinal immunity by producing bactericidal substances and regulating tissue repair. Melanization can produce many bactericidal active substances into the intestine; meanwhile, there are multiple responses in the intestine to fight against viral and parasitic infections. Furthermore, intestinal stem cells (ISCs) are also indispensable in intestinal immunity. Only the coordinated combination of the intestinal immune defense system and intestinal tissue renewal can effectively defend against pathogenic microorganisms.
Collapse
|
16
|
Tonk-Rügen M, Vilcinskas A, Wagner AE. Insect Models in Nutrition Research. Biomolecules 2022; 12:1668. [PMID: 36421682 PMCID: PMC9687203 DOI: 10.3390/biom12111668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 09/08/2024] Open
Abstract
Insects are the most diverse organisms on earth, accounting for ~80% of all animals. They are valuable as model organisms, particularly in the context of genetics, development, behavior, neurobiology and evolutionary biology. Compared to other laboratory animals, insects are advantageous because they are inexpensive to house and breed in large numbers, making them suitable for high-throughput testing. They also have a short life cycle, facilitating the analysis of generational effects, and they fulfil the 3R principle (replacement, reduction and refinement). Many insect genomes have now been sequenced, highlighting their genetic and physiological similarities with humans. These factors also make insects favorable as whole-animal high-throughput models in nutritional research. In this review, we discuss the impact of insect models in nutritional science, focusing on studies investigating the role of nutrition in metabolic diseases and aging/longevity. We also consider food toxicology and the use of insects to study the gut microbiome. The benefits of insects as models to study the relationship between nutrition and biological markers of fitness and longevity can be exploited to improve human health.
Collapse
Affiliation(s)
- Miray Tonk-Rügen
- Institute of Nutritional Science, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Anika E. Wagner
- Institute of Nutritional Science, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
| |
Collapse
|
17
|
Shu B, Lin Y, Qian G, Cai X, Liu L, Lin J. Integrated miRNA and transcriptome profiling to explore the molecular mechanism of Spodoptera frugiperda larval midgut in response to azadirachtin exposure. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105192. [PMID: 36127051 DOI: 10.1016/j.pestbp.2022.105192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
As a destructive agricultural pest, Spodoptera frugiperda has spread worldwide in the past few years. Azadirachtin, an environmentally friendly and most promising compound, showed adverse effects, including mortality and growth inhibition, against S. frugiperda. While the effects of azadirachtin on the midgut of this pest remain to be determined. In this study, structural damage was observed in the larval midguts of S. frugiperda with azadirachtin exposure. RNA-seq on the larval midguts with different azadirachtin treatments was performed. Compared to the control group, a total of 3344 and 4759 differentially expressed genes (DEGs) were identified in the midguts with 0.1 and 0.5 μg/g azadirachtin exposure, respectively. Among them, the DEGs encoding detoxification enzymes/proteins, immune-related proteins, digestion and absorption-related proteins, and transcript factors were further analyzed. High-throughput sequencing was also used for the identification of differentially expressed microRNAs in different treatments. A total of 153 conserved miRNAs and 147 novel miRNAs were identified, of which 11 and 29 miRNAs were affected by 0.1 and 0.5 μg/g azadirachtin treatments, respectively. The integrated analysis found that 13 and 178 miRNA versus mRNA pairs were acquired in the samples with 0.1 and 0.5 μg/g azadirachtin treatments, respectively. The results of high-throughput sequencing were confirmed by real-time quantitative polymerase chain reaction (RT-qPCR). These results provide useful information for revealing the molecular mechanism of S. frugiperda larval midgut in response to azadirachtin.
Collapse
Affiliation(s)
- Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, PR China
| | - Yanzheng Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, PR China
| | - Guozhao Qian
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, PR China
| | - Xueming Cai
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, PR China
| | - Luyang Liu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, PR China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, PR China.
| |
Collapse
|
18
|
Jin Q, Wang Y, Hartson SD, Jiang H. Cleavage activation and functional comparison of Manduca sexta serine protease homologs SPH1a, SPH1b, SPH4, and SPH101 in conjunction with SPH2. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 144:103762. [PMID: 35395380 PMCID: PMC9328667 DOI: 10.1016/j.ibmb.2022.103762] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/17/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Phenoloxidase (PO) is a crucial component of the insect immune response against microbial infection. In the tobacco hornworm Manduca sexta, PO is generated from its precursor proPO by prophenoloxidase activating proteases (PAPs) in the presence of two noncatalytic serine protease homologs (SPHs). cDNA cloning and genome analysis indicate that SPH1a (formerly known as SPH1), SPH1b, SPH4, SPH101, and SPH2 contain a clip domain, a linker, and a protease-like domain (PLD). The first 22 residues of the SPH1b, SPH4, and SPH101 PLDs are identical, and differ from SPH1a only at position 4, Thr154 substituted with Asn154 in SPH1a. While the sequence from Edman degradation was used to establish PAP cofactor as a high Mr complex of SPH1a and SPH2, this assignment needed further validation, especially because SPH1b mRNA levels are much higher than SPH1a's and better correlate with SPH2 transcription. Thus, here we determined expression profiles of these SPH genes in different tissues from various developmental stages using highly specific primers. High levels of SPH1b and SPH2 proteins, low SPH4, and no SPH1a or SPH101 were detected in hemolymph from larvae in the feeding, wandering and bar stages, pupae, and adults by targeted LC-MS/MS analysis, based on unique peptides from the trypsin-treated SPHs. We expressed the five proSPHs in baculovirus-infected Sf9 cells for use as standards to identify and quantify their counterparts in plasma samples. Moreover, we tested their cleavage by PAP3 and efficacy of the SPH1a, 1b, 4, and 101 as SPH2 partners in PAP3-mediated proPO activation. PAP3 processed proSPH1b and 101 more readily than proSPH1a and 4; PAP3 activated proPO more efficiently in the presence of SPH2 with SPH101 or SPH1b than with SPH1a or SPH4. These results generally agree with their order of appearance or sequence similarity: SPH101 > SPH1b (98%) > SPH1a (90%) > SPH4 (83%). In other words, likely due to positive selection, products of the newly duplicated genes (SPH1b and SPH101) are more favorable substrates of PAP3 and better SPH2 partners in forming a high Mr cofactor than SPH1a or SPH4 is. Electrophoresis on native gel and immunoblot analysis further indicated that SPH101 or 1b form high Mr complexes more readily than SPH1a or 4 does. In comparison, SPH2 showed a small mobility decrease and then increase on native gel after PAP3 cleavage at the first site. Since the natural cofactor in bar-stage hemolymph is complexes of SPH1 and 2 with an average Mr of 790 kDa, PAP3-activated SPH2 may associate with the higher Mr SPH1b scaffolds to form super-complexes. Their structures and formation in relation to cleavage of SPH1b at different sites await further exploration.
Collapse
Affiliation(s)
- Qiao Jin
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Steven D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
19
|
The Genome of Rhyzopertha dominica (Fab.) (Coleoptera: Bostrichidae): Adaptation for Success. Genes (Basel) 2022; 13:genes13030446. [PMID: 35328000 PMCID: PMC8956072 DOI: 10.3390/genes13030446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
The lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), is a major global pest of cereal grains. Infestations are difficult to control as larvae feed inside grain kernels, and many populations are resistant to both contact insecticides and fumigants. We sequenced the genome of R. dominica to identify genes responsible for important biological functions and develop more targeted and efficacious management strategies. The genome was assembled from long read sequencing and long-range scaffolding technologies. The genome assembly is 479.1 Mb, close to the predicted genome size of 480.4 Mb by flow cytometry. This assembly is among the most contiguous beetle assemblies published to date, with 139 scaffolds, an N50 of 53.6 Mb, and L50 of 4, indicating chromosome-scale scaffolds. Predicted genes from biologically relevant groups were manually annotated using transcriptome data from adults and different larval tissues to guide annotation. The expansion of carbohydrase and serine peptidase genes suggest that they combine to enable efficient digestion of cereal proteins. A reduction in the copy number of several detoxification gene families relative to other coleopterans may reflect the low selective pressure on these genes in an insect that spends most of its life feeding internally. Chemoreceptor genes contain elevated numbers of pseudogenes for odorant receptors that also may be related to the recent ontogenetic shift of R. dominica to a diet consisting primarily of stored grains. Analysis of repetitive sequences will further define the evolution of bostrichid beetles compared to other species. The data overall contribute significantly to coleopteran genetic research.
Collapse
|
20
|
Ioannidis P, Buer B, Ilias A, Kaforou S, Aivaliotis M, Orfanoudaki G, Douris V, Geibel S, Vontas J, Denecke S. A spatiotemporal atlas of the lepidopteran pest Helicoverpa armigera midgut provides insights into nutrient processing and pH regulation. BMC Genomics 2022; 23:75. [PMID: 35073840 PMCID: PMC8785469 DOI: 10.1186/s12864-021-08274-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background Caterpillars from the insect order Lepidoptera are some of the most widespread and destructive agricultural pests. Most of their impact is at the larval stage, where the midgut epithelium mediates the digestion and absorption of an astonishing amount of food. Although this tissue has been the subject of frequent investigation in Lepidoptera, a comprehensive expression atlas has yet to be generated. Results Here, we perform RNA-sequencing and proteomics on the gut of the polyphagous pest Helicoverpa armigera across, life stages, diet types, and compartments of the anterior-posterior axis. A striking relationship between the structural homology and expression pattern of a group of sugar transporters was observed in the early larval stages. Further comparisons were made among the spatial compartments of the midgut, which suggested a putative role for vATPases and SLC9 transporters in the generation of alkaline conditions in the H. armigera midgut. Conclusions This comprehensive resource will aid the scientific community in understanding lepidopteran gut physiology in unprecedented resolution. It is hoped that this study advances the understanding of the lepidopteran midgut and also facilitates functional work in this field. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08274-x.
Collapse
|
21
|
Shen Y, Chen G, Zhao S, Wu X. Genome-wide identification of lipases in silkworm (Bombyx mori) and their spatio-temporal expression in larval midgut. Gene 2021; 813:146121. [PMID: 34915049 DOI: 10.1016/j.gene.2021.146121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/20/2021] [Accepted: 12/06/2021] [Indexed: 01/15/2023]
Abstract
Lipases play crucial roles in food digestion by degrading dietary lipids into free fatty acids and glycerols. The domesticated silkworm (Bombyx mori) has been widely used as an important Lepidopteran model for decades. However, little is known about the lipase gene family in the silkworm, especially their hydrolytic activities as digestive enzymes. In this study, a total of 38 lipase genes were identified in the silkworm genome. Phylogenetic analysis indicated that they were divided into three major groups. Twelve lipases were confirmed to be expressed in the midgut at both transcriptional and translational levels. They were grouped into the same gene cluster, suggesting that they could have similar physiological functions. Quantitative real-time PCR (qRT-PCR) analyses indicated that lipases were mainly expressed in anterior and middle midgut regions, and their expression levels varied greatly along the length of midgut. A majority of lipases were down-regulated in the midgut when larvae stopped feeding. However, a unique lipase gene (Bmlip10583) showed low expression level during feeding stage, but it was significantly up-regulated during the larvae-pupae transition. These results demonstrated that expression of silkworm lipases was spatially and temporally regulated in the midgut during larval development. Taken together, our results provide a fundamental research of the lipase gene family in the silkworm.
Collapse
Affiliation(s)
- Yunwang Shen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China
| | - Guanping Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China
| | - Shudi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
22
|
Cao X, Wang Y, Rogers J, Hartson S, Kanost MR, Jiang H. Changes in composition and levels of hemolymph proteins during metamorphosis of Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103489. [PMID: 33096211 PMCID: PMC7704632 DOI: 10.1016/j.ibmb.2020.103489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
The tobacco hornworm, Manduca sexta, is a lepidopteran model species widely used to study insect biochemical processes. Some of its larval hemolymph proteins are well studied, and a detailed proteomic analysis of larval plasma proteins became available in 2016, revealing features such as correlation with transcriptome data, formation of immune complexes, and constitution of an immune signaling system in hemolymph. It is unclear how the composition of these proteins may change in other developmental stages. In this paper, we report the proteomes of cell-free hemolymph from prepupae, pupae on day 4 and day 13, and young adults. Of the 1824 proteins identified, 907 have a signal peptide and 410 are related to immunity. Drastic changes in abundance of the storage proteins, lipophorins and vitellogenin, for instance, reflect physiological differences among prepupae, pupae, and adults. Considerably more proteins lacking signal peptide are present in the late pupae, suggesting that plasma contains relatively low concentrations of intracellular components released from remodeling tissues during metamorphosis. The defense proteins detected include 43 serine proteases and 11 serine protease homologs. Some of these proteins are members of the extracellular immune signaling network found in feeding larvae, and others may play additional roles and hence confer new features in the later life stages. In summary, the proteins and their levels revealed in this study, together with their transcriptome data, are expected to stimulate focused explorations of humoral immunity and other physiological systems in wandering larvae, pupae, and adults of M. sexta and shed light upon functional and comparative genomic research in other holometabolous insects.
Collapse
Affiliation(s)
- Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Janet Rogers
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Steve Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|