1
|
Xia W, Chen S, Yun Y, Cui L, Wang Z, Hou J, Tang M, Bu C, Gao S, Shao R, Tao X. A general and rapid LC-MS/MS method for simultaneous determination of voriconazole, posaconazole, fluconazole, itraconazole and hydroxyitraconazole in IFI patients. J Pharmacol Toxicol Methods 2024; 130:107565. [PMID: 39321943 DOI: 10.1016/j.vascn.2024.107565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/29/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE To establish a rapid and universal quantitative liquid chromatography tandem mass spectrometry (LC-MS/MS) method for measuring the exposure levels of five triazole antifungal drugs in human plasma, including voriconazole, fluconazole, posaconazole, itraconazole, and hydroxyitraconazole. METHODS A triple quadrupole mass spectrometer operating in positive ionization mode was used to detect the analyte, and multiple reaction monitoring mode was employed to gather data. The mobile phase included 0.05 % formic acid in water (phase A) and acetonitrile (phase B). The analytes were separated on an Agilent EclipsePlusC18 RRHD column (30 × 50 mm, 1.8 μm) using gradient elution. The flow rate was 0.3 mL/min with the column temperature set at 35 °C. The acetonitrile was used to pretreat the plasma sample, and the itraconazole-D5 and hydroxyitraconazole-D5 were utilized as the internal standards. RESULTS The calibration range was from 100 to 10,000 ng/mL for posaconazole, itraconazole, and hydroxyitraconazole, from 200 to 20,000 ng/mL for fluconazole and from 50 to 5000 ng/mL for voriconazole, with linear correlation coefficients more than 0.99 for all regression curves. The intra- and inter-day accuracy and precision of the method were within ±15 %. The mean extraction recovery of all the analytes ranged from 74.32 % to 117.83 %, and the matrix effect was from 72.54 % to 111.2 %. The results of stability fell into the scope of ±15 % deviation. CONCLUSION This newly developed method is sensitive, simple, and robust, and successfully applied in determining triazole antifungal drugs in plasma from 66 IFI patients to provide reference for safe and effective drug administration in clinical practice.
Collapse
Affiliation(s)
- Wenwen Xia
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming City, Yunnan Province 650500, China; Department of Pharmacy, Second Affiliated Hospital of Naval Medical University(Shanghai Changzheng Hospital), Shanghai 200003, China
| | - Shun Chen
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University(Shanghai Changzheng Hospital), Shanghai 200003, China
| | - Yunlei Yun
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University(Shanghai Changzheng Hospital), Shanghai 200003, China
| | - Lili Cui
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University(Shanghai Changzheng Hospital), Shanghai 200003, China
| | - Zhipeng Wang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University(Shanghai Changzheng Hospital), Shanghai 200003, China
| | - Juanjuan Hou
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming City, Yunnan Province 650500, China; Department of Pharmacy, Second Affiliated Hospital of Naval Medical University(Shanghai Changzheng Hospital), Shanghai 200003, China
| | - Mao Tang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University(Shanghai Changzheng Hospital), Shanghai 200003, China
| | - Chen Bu
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University(Shanghai Changzheng Hospital), Shanghai 200003, China
| | - Shouhong Gao
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming City, Yunnan Province 650500, China; Department of Pharmacy, Second Affiliated Hospital of Naval Medical University(Shanghai Changzheng Hospital), Shanghai 200003, China.
| | - Rongzi Shao
- The 960th Hospital of PLA Joint Logistics Support Force, Jinan 250014, China.
| | - Xia Tao
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming City, Yunnan Province 650500, China; Department of Pharmacy, Second Affiliated Hospital of Naval Medical University(Shanghai Changzheng Hospital), Shanghai 200003, China.
| |
Collapse
|
2
|
Huang SJ, Lv G, Song YH, Zhao JT, Liu JY, Wang LL, Xiang MJ. Antifungal susceptibility, molecular epidemiology, and clinical risk factors of Candida glabrata in intensive care unit in a Chinese Tertiary Hospital. Front Cell Infect Microbiol 2024; 14:1455145. [PMID: 39435186 PMCID: PMC11491434 DOI: 10.3389/fcimb.2024.1455145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
Background The increasing incidence and high mortality rate of Candida glabrata infection in ICU patients is an important issue. Therefore, it is imperative to investigate the antifungal susceptibility profiles and epidemiological characteristics in local regions. Methods Herein, antifungal susceptibility testing was conducted to determine the minimum inhibitory concentrations (MICs) of eight antifungal drugs. Multilocus sequence typing (MLST) was used to study the strain genotype, geographical distribution, and susceptibility to antifungal agents among C. glabrata isolates. The mechanism of echinocandin resistance was explored by sequencing the FKS1 and FKS2 genes (encoding 1,3-β-D-glucan synthases) of echinocandin-resistant C. glabrata strains. Moreover, we further investigated the clinical manifestations and the various risk factors of patients infected with C. glabrata in the ICU. Results We selected 234 C. glabrata isolates from 234 patients in the ICU randomly for the follow-up study. Cross-resistance was found among the ICU C. glabrata isolates. Analysis using MLST showed that the genetic diversity among the C. glabrata isolates was low. Furthermore, sequence type showed no correlation with the antifungal resistance profiles, but was associated with geographical distribution. We also revealed novel mutations in FKS1 (S629P) and FKS2 (W1497stop) that mediated high-level echinocandin resistance (MIC >8 µg/mL). More than 14 days' stay in ICU (P=0.007), Acute Physiology and Chronic Health Evaluation II (APACHE-II) score (P=0.024), prior antifungal exposure (P=0.039) and lung disease (P=0.036) were significantly associated with antifungal resistant/non-wild-type C. glabrata infection. Conclusion Our study shed light on the antifungal susceptibility, molecular epidemiology, and clinical risk factors of C. glabrata in the ICU of a Chinese Tertiary Hospital. Importantly, we revealed the molecular mechanism of echinocandin resistance. These results highlight the significance of continued surveillance in ICUs and provide data support for the treatment of C. glabrata in clinics.
Collapse
Affiliation(s)
- Si-Jia Huang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Geng Lv
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Hui Song
- The Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Tao Zhao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin-Yan Liu
- Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu-Ling Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Jie Xiang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Bays DJ, Jenkins EN, Lyman M, Chiller T, Strong N, Ostrosky-Zeichner L, Hoenigl M, Pappas PG, Thompson III GR. Epidemiology of Invasive Candidiasis. Clin Epidemiol 2024; 16:549-566. [PMID: 39219747 PMCID: PMC11366240 DOI: 10.2147/clep.s459600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/15/2024] [Indexed: 09/04/2024] Open
Abstract
Invasive candidiasis (IC) is an increasingly prevalent, costly, and potentially fatal infection brought on by the opportunistic yeast, Candida. Previously, IC has predominantly been caused by C. albicans which is often drug susceptible. There has been a global trend towards decreasing rates of infection secondary to C. albicans and a rise in non-albicans species with a corresponding increase in drug resistance creating treatment challenges. With advances in management of malignancies, there has also been an increase in the population at risk from IC along with a corresponding increase in incidence of breakthrough IC infections. Additionally, the emergence of C. auris creates many challenges in management and prevention due to drug resistance and the organism's ability to transmit rapidly in the healthcare setting. While the development of novel antifungals is encouraging for future management, understanding the changing epidemiology of IC is a vital step in future management and prevention.
Collapse
Affiliation(s)
- Derek J Bays
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Emily N Jenkins
- ASRT, Inc, Atlanta, GA, USA
- Mycotic Disease Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Meghan Lyman
- Mycotic Disease Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tom Chiller
- Mycotic Disease Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nora Strong
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Luis Ostrosky-Zeichner
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Clinical and Translational Fungal Working Group, University of California San Diego, La Jolla, CA, USA
| | - Peter G Pappas
- Division of Infectious Diseases, Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - George R Thompson III
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California Davis, Sacramento, CA, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, CA, USA
| |
Collapse
|
4
|
Khilnani GC, Tiwari P, Mittal S, Kulkarni AP, Chaudhry D, Zirpe KG, Todi SK, Mohan A, Hegde A, Jagiasi BG, Krishna B, Rodrigues C, Govil D, Pal D, Divatia JV, Sengar M, Gupta M, Desai M, Rungta N, Prayag PS, Bhattacharya PK, Samavedam S, Dixit SB, Sharma S, Bandopadhyay S, Kola VR, Deswal V, Mehta Y, Singh YP, Myatra SN. Guidelines for Antibiotics Prescription in Critically Ill Patients. Indian J Crit Care Med 2024; 28:S104-S216. [PMID: 39234229 PMCID: PMC11369928 DOI: 10.5005/jp-journals-10071-24677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/20/2024] [Indexed: 09/06/2024] Open
Abstract
How to cite this article: Khilnani GC, Tiwari P, Mittal S, Kulkarni AP, Chaudhry D, Zirpe KG, et al. Guidelines for Antibiotics Prescription in Critically Ill Patients. Indian J Crit Care Med 2024;28(S2):S104-S216.
Collapse
Affiliation(s)
- Gopi C Khilnani
- Department of Pulmonary, Critical Care and Sleep Medicine, PSRI Hospital, New Delhi, India
| | - Pawan Tiwari
- Department of Pulmonary, Critical Care and Sleep Medicine, AIIMS, New Delhi, India
| | - Saurabh Mittal
- Department of Pulmonary, Critical Care and Sleep Medicine, AIIMS, New Delhi, India
| | - Atul P Kulkarni
- Division of Critical Care Medicine, Department of Anaesthesia, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Dhruva Chaudhry
- Department of Pulmonary and Critical Care Medicine, University of Health Sciences, Rohtak, Haryana, India
| | - Kapil G Zirpe
- Department of Neuro Trauma Unit, Grant Medical Foundation, Pune, Maharashtra, India
| | - Subhash K Todi
- Department of Critical Care, AMRI Hospital, Kolkata, West Bengal, India
| | - Anant Mohan
- Department of Pulmonary, Critical Care and Sleep Medicine, AIIMS, New Delhi, India
| | - Ashit Hegde
- Department of Medicine & Critical Care, P D Hinduja National Hospital, Mumbai, India
| | - Bharat G Jagiasi
- Department of Critical Care, Kokilaben Dhirubhai Ambani Hospital, Navi Mumbai, Maharashtra, India
| | - Bhuvana Krishna
- Department of Critical Care Medicine, St John's Medical College and Hospital, Bengaluru, India
| | - Camila Rodrigues
- Department of Microbiology, P D Hinduja National Hospital, Mumbai, India
| | - Deepak Govil
- Department of Critical Care and Anesthesia, Medanta – The Medicity, GuruGram, Haryana, India
| | - Divya Pal
- Department of Critical Care and Anesthesia, Medanta – The Medicity, GuruGram, Haryana, India
| | - Jigeeshu V Divatia
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Manju Sengar
- Department of Medical Oncology, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Mansi Gupta
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Mukesh Desai
- Department of Immunology, Pediatric Hematology and Oncology Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Narendra Rungta
- Department of Critical Care & Anaesthesiology, Rajasthan Hospital, Jaipur, India
| | - Parikshit S Prayag
- Department of Transplant Infectious Diseases, Deenanath Mangeshkar Hospital, Pune, Maharashtra, India
| | - Pradip K Bhattacharya
- Department of Critical Care Medicine, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Srinivas Samavedam
- Department of Critical Care, Ramdev Rao Hospital, Hyderabad, Telangana, India
| | - Subhal B Dixit
- Department of Critical Care, Sanjeevan and MJM Hospital, Pune, Maharashtra, India
| | - Sudivya Sharma
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Susruta Bandopadhyay
- Department of Critical Care, AMRI Hospitals Salt Lake, Kolkata, West Bengal, India
| | - Venkat R Kola
- Department of Critical Care Medicine, Yashoda Hospitals, Hyderabad, Telangana, India
| | - Vikas Deswal
- Consultant, Infectious Diseases, Medanta - The Medicity, Gurugram, Haryana, India
| | - Yatin Mehta
- Department of Critical Care and Anesthesia, Medanta – The Medicity, GuruGram, Haryana, India
| | - Yogendra P Singh
- Department of Critical Care, Max Super Speciality Hospital, Patparganj, New Delhi, India
| | - Sheila N Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
5
|
Yu J, Yang W, Fan X, Cui E, Min R, Yuan H, Hu Y, Wang H, Zhang G, Zhao Y, Xu Y, Guo L. Emerging trends of invasive yeast infections and azole resistance in Beijing intensive care units. J Hosp Infect 2024; 149:46-55. [PMID: 38740299 DOI: 10.1016/j.jhin.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Invasive fungal infections pose a substantial threat to patients in healthcare settings globally. Recent changes in the prevalence of fungal species and challenges in conducting reference antifungal susceptibility testing emphasize the importance of monitoring fungi and their antifungal resistance. METHODS A two-phase surveillance project was conducted in Beijing, China, involving 37 centres across 12 districts, from January 2012 to December 2013 and from January 2016 to December 2017. FINDINGS We found that the proportion of Candida albicans in intensive care units (ICUs) during 2016-2017 exhibited a significant decline compared with the 2012-2013 period, although it remained the most predominant pathogen. In contrast, the prevalence of Nakaseomyces glabratus (formerly Candida glabrata) and Candida tropicalis notably increased during the two-phase surveillance. The high prevalence of C. tropicalis and its resistance to azole drugs posed a serious threat to patients in ICUs. The pathogens causing invasive fungal infections in Beijing were relatively sensitive to echinocandins. While C. albicans continued to exhibit susceptibility to azoles, the resistance and growth rates of C. tropicalis towards azoles were particularly prominent. Concerns were raised due to the emergence of multiple, short-term isolates of Clavispora lusitaniae and Candida parapsilosis complex in neonatal ICUs, given their similarity in antifungal susceptibilities. Such occurrences point towards the potential for transmission and persisting presence of these pathogens within the ICU environment. CONCLUSIONS Our study complements existing data on the epidemiology of invasive fungal infections. It is imperative to exercise cautious medication management for ICU patients in Beijing, paying particular attention to azole resistance in C. tropicalis.
Collapse
Affiliation(s)
- J Yu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - W Yang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - X Fan
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - E Cui
- Clinical Laboratory Medical Center, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - R Min
- Department of Clinical Laboratory, Beijing Xuanwu Hospital, Capital Medical University, Beijing, China
| | - H Yuan
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Y Hu
- Department of Clinical Laboratory, Beijing Hospital, Beijing, China
| | - H Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - G Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Y Zhao
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Y Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - L Guo
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China.
| |
Collapse
|
6
|
Caulier T, Senneville E, Sobocinski J, Leroy O, Patoz P, Blondiaux N, Georges H, Pierre-Yves D, d'Elia P, Robineau O. Burden of Candida-related vascular graft infection: a nested-case control study. Infection 2024; 52:1153-1158. [PMID: 38329687 DOI: 10.1007/s15010-023-02172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/29/2023] [Indexed: 02/09/2024]
Abstract
PURPOSE We aimed to assess risk factors of candida-related Vascular Graft Infections (VGIs). METHODS We did a case-control study (1:4) matched by age and year of infection, nested in a cohort of patient with a history of VGIs. Cases were defined by a positive culture for Candida spp. in biological samples and controls were defined by a positive culture for bacterial strains only in biological samples. Risk factors for Candida-related VGIs were investigated using multivariate logistic regression. Mortality were compared using survival analysis. RESULTS 16 Candida-related VGIs were matched to 64 bacterial-related VGIs. The two groups were comparable regarding medical history and clinical presentation. Candida-related VGIs were associated with bacterial strains in 88% (14/16). Gas/fluid-containing collection on abdominal CT scan and the presence of an aortic endoprosthesis were risk factors for Candida spp.-related VGIs [RRa 10.43 [1.81-60.21] p = 0.009 RRa and 6.46 [1.17-35.73] p = 0.03, respectively]. Candida-related VGIs were associated with a higher mortality when compared to bacterial-related VGIs (p = 0.002). CONCLUSIONS Candida-related VGIs are severe. Early markers of Candida spp. infection are needed to improve their outcome. The suspicion of aortic endoprosthesis infection may necessitate probabilistic treatment with antifungal agents.
Collapse
Affiliation(s)
| | - Eric Senneville
- Service Universitaire Des Maladies Infectieuses Et du Voyageur, Centre Hospitalier Gustave Dron, 59210, Tourcoing, France
- University of Lille, CHU Lille, ULR 2694, METRICS, Évaluation Des Technologies de Santé Et Des Pratiques Médicales, 59000, Lille, France
| | | | | | | | - Nicolas Blondiaux
- Service de Biologie, CH de Tourcoing, France
- University of Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019, UMR9017 Center for Infection and Immunity of Lille, Lille, France
| | | | | | | | - Olivier Robineau
- Service Universitaire Des Maladies Infectieuses Et du Voyageur, Centre Hospitalier Gustave Dron, 59210, Tourcoing, France.
- University of Lille, CHU Lille, ULR 2694, METRICS, Évaluation Des Technologies de Santé Et Des Pratiques Médicales, 59000, Lille, France.
- INSERM u1136, Institut Pierre Louis de Santé Publique, Paris, France.
| |
Collapse
|
7
|
Silva PA, Souza AA, de Oliveira GM, Ramada MHS, Hernández NV, Mora-Montes HM, Bueno RV, Martins-de-Sa D, de Freitas SM, Felipe MSS, Barbosa JARG. An improved expression and purification protocol enables the structural characterization of Mnt1, an antifungal target from Candida albicans. Fungal Biol Biotechnol 2024; 11:5. [PMID: 38715132 PMCID: PMC11077754 DOI: 10.1186/s40694-024-00174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Candida albicans is one of the most prevalent fungi causing infections in the world. Mnt1 is a mannosyltransferase that participates in both the cell wall biogenesis and biofilm growth of C. albicans. While the cell wall performs crucial functions in pathogenesis, biofilm growth is correlated with sequestration of drugs by the extracellular matrix. Therefore, antifungals targeting CaMnt1 can compromise fungal development and potentially also render Candida susceptible to drug therapy. Despite its importance, CaMnt1 has not yet been purified to high standards and its biophysical properties are lacking. RESULTS We describe a new protocol to obtain high yield of recombinant CaMnt1 in Komagataella phaffii using methanol induction. The purified protein's identity was confirmed by MALDI-TOF/TOF mass spectroscopy. The Far-UV circular dichroism (CD) spectra demonstrate that the secondary structure of CaMnt1 is compatible with a protein formed by α-helices and β-sheets at pH 7.0. The fluorescence spectroscopy results show that the tertiary structure of CaMnt1 is pH-dependent, with a greater intensity of fluorescence emission at pH 7.0. Using our molecular modeling protocol, we depict for the first time the ternary complex of CaMnt1 bound to its two substrates, which has enabled the identification of residues involved in substrate specificity and catalytic reaction. Our results corroborate the hypothesis that Tyr209 stabilizes the formation of an oxocarbenium ion-like intermediate during nucleophilic attack of the acceptor sugar, opposing the double displacement mechanism proposed by other reports. CONCLUSIONS The methodology presented here can substantially improve the yield of recombinant CaMnt1 expressed in flask-grown yeasts. In addition, the structural characterization of the fungal mannosyltransferase presents novelties that can be exploited for new antifungal drug's development.
Collapse
Affiliation(s)
- Patrícia Alves Silva
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, 70910-900, Brazil
| | - Amanda Araújo Souza
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, 70910-900, Brazil
| | - Gideane Mendes de Oliveira
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, 70910-900, Brazil
| | - Marcelo Henrique Soller Ramada
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, 70790-160, Brazil
| | - Nahúm Valente Hernández
- Departmento de Biologia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, 36050, Mexico
| | - Héctor Manuel Mora-Montes
- Departmento de Biologia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, 36050, Mexico
| | - Renata Vieira Bueno
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, 70910-900, Brazil
| | - Diogo Martins-de-Sa
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, 70910-900, Brazil
- Genesilico Biotech, Brasília, DF, Brazil
| | - Sonia Maria de Freitas
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, 70910-900, Brazil
| | - Maria Sueli Soares Felipe
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, 70790-160, Brazil
| | | |
Collapse
|
8
|
Bassetti M, Giacobbe DR, Agvald-Ohman C, Akova M, Alastruey-Izquierdo A, Arikan-Akdagli S, Azoulay E, Blot S, Cornely OA, Cuenca-Estrella M, de Lange DW, De Rosa FG, De Waele JJ, Dimopoulos G, Garnacho-Montero J, Hoenigl M, Kanj SS, Koehler P, Kullberg BJ, Lamoth F, Lass-Flörl C, Maertens J, Martin-Loeches I, Muñoz P, Poulakou G, Rello J, Sanguinetti M, Taccone FS, Timsit JF, Torres A, Vazquez JA, Wauters J, Asperges E, Cortegiani A, Grecchi C, Karaiskos I, Le Bihan C, Mercier T, Mortensen KL, Peghin M, Rebuffi C, Tejada S, Vena A, Zuccaro V, Scudeller L, Calandra T. Invasive Fungal Diseases in Adult Patients in Intensive Care Unit (FUNDICU): 2024 consensus definitions from ESGCIP, EFISG, ESICM, ECMM, MSGERC, ISAC, and ISHAM. Intensive Care Med 2024; 50:502-515. [PMID: 38512399 PMCID: PMC11018656 DOI: 10.1007/s00134-024-07341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE The aim of this document was to develop standardized research definitions of invasive fungal diseases (IFD) in non-neutropenic, adult patients without classical host factors for IFD, admitted to intensive care units (ICUs). METHODS After a systematic assessment of the diagnostic performance for IFD in the target population of already existing definitions and laboratory tests, consensus definitions were developed by a panel of experts using the RAND/UCLA appropriateness method. RESULTS Standardized research definitions were developed for proven invasive candidiasis, probable deep-seated candidiasis, proven invasive aspergillosis, probable invasive pulmonary aspergillosis, and probable tracheobronchial aspergillosis. The limited evidence on the performance of existing definitions and laboratory tests for the diagnosis of IFD other than candidiasis and aspergillosis precluded the development of dedicated definitions, at least pending further data. The standardized definitions provided in the present document are aimed to speed-up the design, and increase the feasibility, of future comparative research studies.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy.
| | - Daniele R Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Christina Agvald-Ohman
- Anaesthesiology and Intensive Care, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Murat Akova
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas-CIBERINFEC, Madrid, Spain
| | - Sevtap Arikan-Akdagli
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Elie Azoulay
- Université de Paris, Paris, France
- Service de Médecine Intensive Et Réanimation, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Stijn Blot
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Oliver A Cornely
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Manuel Cuenca-Estrella
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Dylan W de Lange
- Department of Intensive Care Medicine, University Medical Center, University Utrecht, Utrecht, The Netherlands
| | - Francesco G De Rosa
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | - Jan J De Waele
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - George Dimopoulos
- Department of Critical Care, University Hospital Attikon, Attikon Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
- Translational Mycology Working Group, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria
| | - Souha S Kanj
- Division of Infectious Diseases, and Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Philipp Koehler
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Medical Faculty and University Hospital Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Bart J Kullberg
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frédéric Lamoth
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of Immunology and Allergy and Center of Human Immunology Lausanne, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James' Hospital, Dublin, Ireland
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
- Medicine Department, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Garyphallia Poulakou
- Third Department of Internal Medicine, School of Medicine, Sotiria General Hospital, National and Kapodistrian University, Athens, Greece
| | - Jordi Rello
- Clinical Research/Epidemiology in Pneumonia and Sepsis (CRIPS), Vall d'Hebron Institut of Research (VHIR), Barcelona, Spain
- Clinical Research in the ICU, CHU Nimes, Universite de Nimes-Montpellier, Nimes, France
- Medicine Department, Universitat Internacional de Catalunya (UIC), Sant Cugat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio E Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fabio S Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jean-François Timsit
- Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Claude Bernard University Hospital, Paris, France
- IAME UMR 1137, Université Paris-Cité, Paris, France
| | - Antoni Torres
- Department of Pneumology, Hospital Clinic of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centres in Respiratory Diseases (CIBERES), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jose A Vazquez
- Department of Medicine/Division of Infectious Disease, Medical College of Georgia/Augusta University, Augusta, GA, USA
| | - Joost Wauters
- Medical Intensive Care Unit, University Hospitals Leuven, Louvain, Belgium
| | - Erika Asperges
- Infectious Diseases Unit, IRCCS San Matteo, Pavia, Italy
| | - Andrea Cortegiani
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
- Department of Anesthesia Intensive Care and Emergency, University Hospital Policlinico Paolo Giaccone, Palermo, Italy
| | - Cecilia Grecchi
- Malattie Infettive, Azienda Socio Sanitaria Territoriale (ASST) di Lodi, Lodi, Italy
| | - Ilias Karaiskos
- 1st Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Clément Le Bihan
- Saint Eloi Department of Anesthesiology and Critical Care Medicine, Montpellier University Health Care Center, Montpellier, France
| | - Toine Mercier
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Louvain, Belgium
- Department of Hematology, University Hospitals Leuven, Louvain, Belgium
| | - Klaus L Mortensen
- Department of Medicine, Regional Hospital West Jutland, Herning, Denmark
| | - Maddalena Peghin
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy
| | - Chiara Rebuffi
- Scientific Direction, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Sofia Tejada
- Clinical Research/Epidemiology in Pneumonia and Sepsis (CRIPS), Vall d'Hebron Institut of Research (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | | | - Luigia Scudeller
- Research and Innovation Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Thierry Calandra
- Service of Immunology and Allergy and Center of Human Immunology Lausanne, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Li MWT, Hon KL, Yan Leung KK, Hui WF, Lung DC, Ha SY. Invasive Fungal Infections in the Paediatric Intensive Care Unit: A Hong Kong Study. Curr Pediatr Rev 2024; 20:540-547. [PMID: 37608678 DOI: 10.2174/1573396320666230811092915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023]
Abstract
INTRODUCTION Invasive fungal infections (IFI) cause significant mortality and morbidity in the Paediatric Intensive Care Unit (PICU). Early recognition and prompt treatment of invasive fungal infections are important. This article reviewed the mortality and morbidity of IFIs in the PICU of Hong Kong Children's Hospital. METHODS A retrospective review of all PICU admissions from April 2019 to May 2021 was performed. The following data were retrieved: age, gender, diagnosis, comorbidity, clinical manifestation, type of fungus, duration of stay at PICU, absolute neutrophil count, use of immunosuppressive therapy, presence of central venous catheter and use of total parental nutrition. The primary outcomes were the incidence and mortality of IFIs among PICU patients. The secondary outcomes were risk factors for developing IFI in PICU and clinical course of IFIs. Numerical variables were compared between groups by Mann-Whitney U test and categorical variables by Fisher's exact test. RESULTS There were 692 PICU admissions over the study period from April 2019 to May 2021. The crude mortality was 3% (n=24 death cases) in the PICU. Fourteen patients (2%) fulfilling the criteria for IFIs were identified using hospital electronic record system and according to PICU documentation. Eight of these 14 patients (57%) had hematological malignancy, 2 (17%) had solid tumours and 4 had non-oncological conditions. Eight (57%) patients were neutropenic with absolute neutrophil count less than 1x 109 at diagnosis of IFI. Ten (71%) had received immunosuppressive therapy including steroid, cyclosporin A, Mycophenolate mofetil (MMF), Sirolimus or tacrolimus. 12 (86%) had had central venous catheter. Eight (57%) were on parenteral nutrition. IFIs due to Rhizopus or Aspergillus infection (5/14), or in post-haematopoietic stem cell transplant patients (5/14) were associated with non-survival (p = 0.031). CONCLUSION All patients with IFIs managed in the PICU had haemato-oncology diseases or were recipients of stem cell transplantation. IFIs with Rhizopus or Aspergillus as a group were associated with high mortality in the PICU. Awareness of this pathology with prompt diagnosis and treatment may improve the outcome of these infections and reduce the mortality.
Collapse
Affiliation(s)
- Mario Wai Tung Li
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, China
| | - Kam Lun Hon
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, China
| | - Karen Ka Yan Leung
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, China
| | - Wun Fung Hui
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, China
| | - David Christopher Lung
- Department of Pathology, Queen Elizabeth Hospital/The Hong Kong Children's Hospital, Hong Kong, China
| | - Shau Yin Ha
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, China
| |
Collapse
|
10
|
Noppè E, Eloff JRP, Keane S, Martin-Loeches I. A Narrative Review of Invasive Candidiasis in the Intensive Care Unit. THERAPEUTIC ADVANCES IN PULMONARY AND CRITICAL CARE MEDICINE 2024; 19:29768675241304684. [PMID: 39748830 PMCID: PMC11693998 DOI: 10.1177/29768675241304684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/15/2024] [Indexed: 01/04/2025]
Abstract
Candida species is the most common cause of invasive fungal infection in the critically ill population admitted to the intensive care unit (ICU). Numerous risk factors for developing invasive candidiasis (IC) have been identified, and some, like the breach of protective barriers, abound within the ICU. Given that IC carries a significant mortality, morbidity, and healthcare cost burden, early diagnosis and treatment have become an essential topic of discussion. Several expert panels and task forces have been established to provide clear guidance on the management of IC. Unfortunately, IC remains a diagnostic and therapeutic challenge attributable to the changing fungal ecology of Candida species and the emergence of multidrug-resistant strains. This narrative review will focus on the following: (1) the incidence, outcomes, and changing epidemiology of IC globally; (2) the risk factors for developing IC; (3) IC risk stratification tools and their appropriate use; (4) diagnosis of IC; and (5) therapeutic agents and regimens.
Collapse
Affiliation(s)
- Elnè Noppè
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization, (MICRO), St James' Hospital, Dublin, Ireland
| | | | - Sean Keane
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization, (MICRO), St James' Hospital, Dublin, Ireland
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization, (MICRO), St James' Hospital, Dublin, Ireland
| |
Collapse
|
11
|
Dos Santos Freire FM, Marques LC, da Silva NC, Cunha KS, Conde DC, Milagres A, Gonçalves LS, Junior AS. Oral candidiasis in patients hospitalised in the intensive care unit: Diagnosis through clinical and cytopathological examinations. Cytopathology 2023; 34:353-360. [PMID: 37114365 DOI: 10.1111/cyt.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/24/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
OBJECTIVE To evaluate the prevalence and clinical aspects of oral candidiasis in patients hospitalised in the intensive care unit. METHODS This is a longitudinal and prospective study that included 48 participants hospitalised in the intensive care unit. Sociodemographic data, presence of systemic disorders, use of medications, laboratory tests, cause of hospital admission, type of breathing, and length of hospital stay were obtained from medical records. Oral clinical inspection and cytopathological examinations were performed on all participants. The diagnosis of clinical candidiasis was based on the presence of clinical alterations together with positive cytopathological examination results. The diagnosis of subclinical candidiasis was based on the absence of clinical lesions and a positive cytopathological examination. The absence of oral candidiasis was considered when the participant did not present oral lesions and had a negative cytopathological examination. RESULTS Clinical candidiasis was present in 18.8% of the 48 participants, and 45.8% of them had the subclinical form. Levels of urea (P = 0.005), creatinine (P = 0.009), haemoglobin (P = 0.009), haematocrit (P = 0.011), bands (P = 0.024), international normalised ratio (INR; P = 0.034), types of breathing (P = 0.017), length of hospital stay (P = 0.037), and outcome (P = 0.014) demonstrated statistically significant differences between the groups with and without oral candidiasis. CONCLUSIONS Clinical and subclinical forms of oral candidiasis are frequent in intensive care unit patients. Levels of urea, creatinine, haemoglobin, haematocrit, bands, INR, type of breathing, length of hospital stay, and outcome can be associated with the presence of candidiasis.
Collapse
Affiliation(s)
| | - Letícia Côgo Marques
- Postgraduate Program in Pathology, School of Medicine, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Natasha Camargo da Silva
- Postgraduate Program in Pathology, School of Medicine, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Karin Soares Cunha
- Postgraduate Program in Pathology, School of Medicine, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Danielle Castex Conde
- Postgraduate Program in Pathology, School of Medicine, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Adrianna Milagres
- Department of Pathology, School of Medicine, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Lúcio Souza Gonçalves
- Postgraduation Program in Dentistry, Faculty of Dentistry, Universidade Estácio de Sá, Rio de Janeiro, Brazil
| | - Arley Silva Junior
- Postgraduate Program in Pathology, School of Medicine, Universidade Federal Fluminense (UFF), Niterói, Brazil
| |
Collapse
|
12
|
Pan L, Fan X, Jia A, Li Y, Zhao Y, Liu Y, Wang A, Ma Y. High-throughput identification and determination of antifungal triazoles in human plasma using UPLC-QDa. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1226:123774. [PMID: 37329778 DOI: 10.1016/j.jchromb.2023.123774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/14/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
Triazoles are common agents for invasive fungal infections, while therapeutic drug monitoring is needed to improve antifungal efficacy and reduce toxicity. This study aimed to exploit a simple and reliable liquid chromatography-mass spectrometry method for high-throughput monitoring of antifungal triazoles in human plasma using UPLC-QDa. Triazoles in plasma were separated by chromatography on a Waters BEH C18 column and detected using positive ions electrospray ionization fitted with single ion recording. M+ for fluconazole (m/z 307.11) and voriconazole (m/z 350.12), M2+ for posaconazole (m/z 351.17), itraconazole (m/z 353.13) and ketoconazole (m/z 266.08, IS) were selected as representative ions in single ion recording mode. The standard curves in plasma showed acceptable linearities over 1.25-40 μg/mL for fluconazole, 0.47-15 μg/mL for posaconazole and 0.39-12.5 μg/mL for voriconazole and itraconazole. The selectivity, specificity, accuracy, precision, recovery, matrix effect, and stability met acceptable practice standards under Food and Drug Administration method validation guidelines. This method was successfully applied to the therapeutic monitoring of triazoles in patients with invasive fungal infections, thereby guiding clinical medication.
Collapse
Affiliation(s)
- Lulu Pan
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Central China Fuwai Hospital, Zhengzhou Key Laboratory of Molecular Detection and Individualized Drug Therapy for Cardiovascular Diseases, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China.
| | - Xiaxia Fan
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Central China Fuwai Hospital, Zhengzhou Key Laboratory of Molecular Detection and Individualized Drug Therapy for Cardiovascular Diseases, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Ao Jia
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Central China Fuwai Hospital, Zhengzhou Key Laboratory of Molecular Detection and Individualized Drug Therapy for Cardiovascular Diseases, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Yafei Li
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Central China Fuwai Hospital, Zhengzhou Key Laboratory of Molecular Detection and Individualized Drug Therapy for Cardiovascular Diseases, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Yidan Zhao
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Central China Fuwai Hospital, Zhengzhou Key Laboratory of Molecular Detection and Individualized Drug Therapy for Cardiovascular Diseases, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Ying Liu
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Central China Fuwai Hospital, Zhengzhou Key Laboratory of Molecular Detection and Individualized Drug Therapy for Cardiovascular Diseases, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Aifeng Wang
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Central China Fuwai Hospital, Zhengzhou Key Laboratory of Molecular Detection and Individualized Drug Therapy for Cardiovascular Diseases, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China.
| | - Yongcheng Ma
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Central China Fuwai Hospital, Zhengzhou Key Laboratory of Molecular Detection and Individualized Drug Therapy for Cardiovascular Diseases, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
13
|
Hua Y, Hu F, Ren X, Xiong Y, Hu J, Su F, Tang X, Wen Y. A novel aptamer-G-quadruplex/hemin self-assembling color system: rapid visual diagnosis of invasive fungal infections. Ann Clin Microbiol Antimicrob 2023; 22:35. [PMID: 37170137 PMCID: PMC10176924 DOI: 10.1186/s12941-023-00570-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/24/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND The clinical symptoms of invasive fungal infections (IFI) are nonspecific, and early clinical diagnosis is challenging, resulting in high mortality rates. This study reports the development of a novel aptamer-G-quadruplex/hemin self-assembling color system (AGSCS) based on (1 → 3)-β-D-glucans' detection for rapid, specific and visual diagnosis of IFI. METHODS We screened high affinity and specificity ssDNA aptamers binding to (1 → 3)-β-D-glucans, the main components of cell wall from Candida albicans via Systematic Evolution of Ligands by EXponential enrichment. Next, a comparison of diagnostic efficiency of AGSCS and the (1 → 3)-β-D-glucans assay ("G test") with regard to predicting IFI in 198 clinical serum samples was done. RESULTS Water-soluble (1 → 3)-β-D-glucans were successfully isolated from C. albicans ATCC 10,231 strain, and these low degree of polymerization glucans (< 1.7 kD) were targeted for aptamer screening with the complementary sequences of G-quadruplex. Six high affinity single stranded DNA aptamers (A1, A2, A3, A4, A5 and A6) were found. The linear detection range for (1 → 3)-β-D-glucans stretched from 1.6 pg/mL to 400 pg/mL on a microplate reader, and the detection limit was 3.125 pg/mL using naked eye observation. Using a microplate reader, the sensitivity and specificity of AGSCS for the diagnosis of IFI were 92.68% and 89.65%, respectively, which was higher than that of the G test. CONCLUSION This newly developed visual diagnostic method for detecting IFI showed promising results and is expected to be developed as a point-of-care testing kit to enable quick and cost effective diagnosis of IFI in the future.
Collapse
Affiliation(s)
- Ying Hua
- School of Nursing, Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Feng Hu
- Department of Blood Transfusion, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, Anhui, China
| | - Xia Ren
- School of Public Health, Wannan Medical College, No.22, Wenchang Xi Road, Wuhu, 241002, Anhui, China
| | - Yueling Xiong
- Centre of Translational Medicine and Vascular Disease Research Center, The Second Affiliated Hospital of Wannan Medical College, Kangfu Road 10#, Jinghu District, Wuhu, 241000, Anhui, China
| | - Jian Hu
- School of Public Health, Wannan Medical College, No.22, Wenchang Xi Road, Wuhu, 241002, Anhui, China
| | - Fan Su
- School of Public Health, Wannan Medical College, No.22, Wenchang Xi Road, Wuhu, 241002, Anhui, China
| | - Xiaolei Tang
- Centre of Translational Medicine and Vascular Disease Research Center, The Second Affiliated Hospital of Wannan Medical College, Kangfu Road 10#, Jinghu District, Wuhu, 241000, Anhui, China.
| | - Yufeng Wen
- School of Public Health, Wannan Medical College, No.22, Wenchang Xi Road, Wuhu, 241002, Anhui, China.
| |
Collapse
|
14
|
Jenks JD, Aneke CI, Al-Obaidi MM, Egger M, Garcia L, Gaines T, Hoenigl M, Thompson GR. Race and ethnicity: Risk factors for fungal infections? PLoS Pathog 2023; 19:e1011025. [PMID: 36602962 DOI: 10.1371/journal.ppat.1011025] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Racial and ethnic identities, largely understood as social rather than biologic constructs, may impact risk for acquiring infectious diseases, including fungal infections. Risk factors may include genetic and immunologic differences such as aberrations in host immune response, host polymorphisms, and epigenomic factors stemming from environmental exposures and underlying social determinants of health. In addition, certain racial and ethnic groups may be predisposed to diseases that increase risk for fungal infections, as well as disparities in healthcare access and health insurance. In this review, we analyzed racial and ethnic identities as risk factors for acquiring fungal infections, as well as race and ethnicity as they relate to risk for severe disease from fungal infections. Risk factors for invasive mold infections such as aspergillosis largely appear related to environmental differences and underlying social determinants of health, although immunologic aberrations and genetic polymorphisms may contribute in some circumstances. Although black and African American individuals appear to be at high risk for superficial and invasive Candida infections and cryptococcosis, the reasons for this are unclear and may be related to underling social determinants of health, disparities in access to healthcare, and other socioeconomic disparities. Risk factors for all the endemic fungi are likely largely related to underlying social determinants of health, socioeconomic, and health disparities, although immunologic mechanisms likely play a role as well, particularly in disseminated coccidioidomycosis.
Collapse
Affiliation(s)
- Jeffrey D Jenks
- Durham County Department of Public Health, Durham, North Carolina, United States of America
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Chioma Inyang Aneke
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Mohanad M Al-Obaidi
- Division of Infectious Diseases, Department of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Matthias Egger
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
| | - Lorena Garcia
- Department of Public Health Sciences, UC Davis School of Medicine, Davis, California, United States of America
| | - Tommi Gaines
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California, San Diego, California, United States of America
| | - Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California, San Diego, California, United States of America
| | - George R Thompson
- University of California Davis Center for Valley Fever, Sacramento, California, United States of America
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, California, United States of America
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
15
|
Liu A, Li Z, Su G, Li Y, Zhang Y, Liang J, Cheng X, Wang X, Li Y, Ye F. Mycotic infection as a risk factor for COVID-19: A meta-analysis. Front Public Health 2022; 10:943234. [PMID: 36159283 PMCID: PMC9489839 DOI: 10.3389/fpubh.2022.943234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/11/2022] [Indexed: 01/21/2023] Open
Abstract
More than 405 million people have contracted coronavirus disease 2019 (COVID-19) worldwide, and mycotic infection may be related to COVID-19 development. There are a large number of reports showing that COVID-19 patients with mycotic infection have an increased risk of mortality. However, whether mycotic infection can be considered a risk factor for COVID-19 remains unknown. We searched the PubMed and Web of Science databases for studies published from inception to December 27, 2021. Pooled effect sizes were calculated according to a random-effects model or fixed-effect model, depending on heterogeneity. We also performed subgroup analyses to identify differences in mortality rates between continents and fungal species. A total of 20 articles were included in this study. Compared with the controls, patients with mycotic infection had an odds ratio (OR) of 2.69 [95% confidence interval (CI): 2.22-3.26] for mortality and an OR of 2.28 (95% CI: 1.65-3.16) for renal replacement therapy (RRT). We also conducted two subgroup analyses based on continent and fungal species, and we found that Europe and Asia had the highest ORs, while Candida was the most dangerous strain of fungi. We performed Egger's test and Begg's test to evaluate the publication bias of the included articles, and the p-value was 0.423, which indicated no significant bias. Mycotic infection can be regarded as a risk factor for COVID-19, and decision makers should be made aware of this risk.
Collapse
Affiliation(s)
- Anlin Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Nanshan School of Guangzhou Medical University, Guangzhou, China
| | - Zhengtu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guansheng Su
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ya Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Nanshan School of Guangzhou Medical University, Guangzhou, China
| | - Yuzhuo Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Nanshan School of Guangzhou Medical University, Guangzhou, China
| | - Jinkai Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Nanshan School of Guangzhou Medical University, Guangzhou, China
| | - Xiaoxue Cheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Nanshan School of Guangzhou Medical University, Guangzhou, China
| | - Xidong Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongming Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feng Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,*Correspondence: Feng Ye ;
| |
Collapse
|
16
|
Giacobbe DR, Asperges E, Cortegiani A, Grecchi C, Rebuffi C, Zuccaro V, Scudeller L, Bassetti M. Performance of existing clinical scores and laboratory tests for the diagnosis of invasive candidiasis in critically ill, nonneutropenic, adult patients: a systematic review with qualitative evidence synthesis. Mycoses 2022; 65:1073-1111. [PMID: 35938455 DOI: 10.1111/myc.13515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND The Fungal Infections Definitions in Intensive Care Unit (ICU) patients (FUNDICU) project aims to provide standard sets of definitions for invasive fungal diseases in critically ill, adult patients. OBJECTIVES To summarize the available evidence on the diagnostic performance of clinical scores and laboratory tests for invasive candidiasis (IC) in nonneutropenic, adult critically ill patients. METHODS A systematic review was performed to evaluate studies assessing the diagnostic performance for IC of clinical scores and/or laboratory tests vs. a reference standard or a reference definition in critically ill, nonneutropenic, adult patients in ICU. RESULTS Clinical scores, despite the heterogeneity of study populations and IC prevalences, constantly showed a high negative predictive value (NPV) and a low positive predictive value (PPV) for the diagnosis of IC in the target population. Fungal antigen-based biomarkers (with most studies assessing serum beta-D-glucan) retained a high NPV similar to that of clinical scores, with a higher PPV, although the latter showed important heterogeneity across studies, possibly reflecting the targeted or untargeted use of these tests in patients with a consistent clinical picture and risk factors for IC. CONCLUSIONS Both clinical scores and laboratory tests showed high NPV for the diagnosis of IC in nonneutropenic critically ill patients. The PPV of laboratory tests varies significantly according to the baseline patients' risk of IC. This qualitative synthesis will provide the FUNDICU panel with baseline evidence to be considered during the development of definitions of IC in critically ill, nonneutropenic adult patients in ICU.
Collapse
Affiliation(s)
- Daniele Roberto Giacobbe
- Department of Health Sciences, University of Genoa, Genoa, Italy.,Clinica Malattie Infettive, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
| | - Erika Asperges
- Infectious Diseases Unit, IRCCS San Matteo, Pavia, Italy
| | - Andrea Cortegiani
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.), University of Palermo, Palermo, Italy.,Department of Anesthesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, Palermo, Italy
| | | | - Chiara Rebuffi
- Scientific Direction, IRCCS Istituto Giannina Gaslini, Scientific Direction, Italy
| | | | - Luigia Scudeller
- Research and Innovation Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Bassetti
- Department of Health Sciences, University of Genoa, Genoa, Italy.,Clinica Malattie Infettive, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
| | | |
Collapse
|
17
|
Howell M, Loera S, Kirkland-Kyhn H. Cutaneous Anomalies of the Critically Ill Patient. AACN Adv Crit Care 2022; 33:165-172. [PMID: 35657760 DOI: 10.4037/aacnacc2022402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Critically ill patients are at high risk for organ failure, including that of the integumentary system. Nurses working in intensive care are adept at performing comprehensive assessments that include the skin. Although pressure injury is a well-known complication associated with critical illness, patients may also have debilitating and life-threatening dermatoses. Conditions such as skin failure and medical adhesive-related skin damage are commonly seen in the critically ill. Infectious processes, such as Fournier gangrene, invasive candidiasis, mucormycosis, and herpetic lesions, can result in severe or superimposed critical illness and elude detection. Similarly, cutaneous manifestations of COVID-19 may develop prior to commonly recognized symptoms of infection. Nurses and providers caring for critically ill patients should be aware of common, but less widely known, skin conditions to facilitate early detection and treatment.
Collapse
Affiliation(s)
- Melania Howell
- Melania Howell is Wound Ostomy Continence Specialist, Emanuel Medical Center, 825 Delbon Avenue, Turlock, CA 95382
| | - Salomé Loera
- Salomé Loera is Clinical Nurse Specialist, Adult Critical Care Services, Inova Fairfax Medical Campus, Falls Church, Virginia
| | - Holly Kirkland-Kyhn
- Holly Kirkland-Kyhn is Director of Wound Care, University of California, Davis Medical Center, Sacramento, California
| |
Collapse
|
18
|
Wen SR, Yang ZH, Dong TX, Li YY, Cao YK, Kuang YQ, Li HB. Deep Fungal Infections Among General Hospital Inpatients in Southwestern China: A 5-Year Retrospective Study. Front Public Health 2022; 10:842434. [PMID: 35419337 PMCID: PMC8995797 DOI: 10.3389/fpubh.2022.842434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Deep fungal infection is a type of life-threatening opportunistic infection. Its incidence has been increasing in recent years. This infection can affect the prognosis of patients, prolong hospital stays and raise costs for patients and their families. Objective We aimed to understand the current situation of deep fungal infections in the First Affiliated Hospital of Kunming Medical University and to provide a basis for the clinical diagnosis and treatment of deep fungal infections. Methods This was a retrospective analysis of 528,743 cases in the hospital from 2015 to 2019, including the epidemiological characteristics, treatment and prognosis of deep fungal infections. Results A total of 274 cases (0.05%) with deep fungal infections were identified, accounting for 0.05% of the total number of hospitalizations. The incidence of deep fungal infections in the hospital showed an increasing trend from 2015 to 2019. The most commonly infected site was the respiratory tract (93.07%). Among patients with deep fungal infections, 266 specimens were positive for fungal culture, by which 161 cultured Candida albicans (C. albicans), accounting for 60.53%, the main pathogen causing deep fungal infection. From 2015 to 2019, the percentage of C. albicans cases showed a downward trend, while that of non-C. albicans showed an opposite trend. Antibiotics were the most common predisposing factor for deep fungal infections (97.45%). Among the underlying diseases of patients with deep fungal infections, infectious diseases (59.49%) were the most common. Those with underlying diseases such as renal insufficiency and neurological diseases had a worse prognosis. Indwelling catheters, nervous system disease and tumors were risk factors for a poor prognosis. Conclusions We report for the first time the epidemiological data of deep fungal infections in a general hospital in southwestern China from 2015 to 2019. In the past 5 years, the number of patients with deep fungal infections in the First Affiliated Hospital of Kunming Medical University has been increasing. Although the clinical data are limited, these results can provide references for the diagnosis and treatment of deep fungal infections.
Collapse
Affiliation(s)
- Shu-Ran Wen
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zheng-Hui Yang
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tian-Xiang Dong
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yu-Ye Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China.,NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Ying-Kui Cao
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hong-Bin Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
19
|
The Caspofungin Paradoxical Effect is a Tolerant "Eagle Effect" in the Filamentous Fungal Pathogen Aspergillus fumigatus. mBio 2022; 13:e0044722. [PMID: 35420487 PMCID: PMC9239232 DOI: 10.1128/mbio.00447-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell responses against antifungals other than resistance have rarely been studied in filamentous fungi, while terms such as tolerance and persistence are well-described for bacteria and increasingly examined in yeast-like organisms. Aspergillus fumigatus is a filamentous fungal pathogen that causes a disease named aspergillosis, for which caspofungin (CAS), a fungistatic drug, is used as a second-line therapy. Some A. fumigatus clinical isolates can survive and grow in CAS concentrations above the minimum effective concentration (MEC), a phenomenon known as "caspofungin paradoxical effect" (CPE). Here, we evaluated the CPE in 67 A. fumigatus clinical isolates by calculating recovery rate (RR) values, where isolates with an RR of ≥0.1 were considered CPE+ while isolates with an RR of <0.1 were classified as CPE-. Conidia produced by three CPE+ clinical isolates, CEA17 (RR = 0.42), Af293 (0.59), and CM7555 (0.38), all showed the ability to grow in high levels of CAS, while all conidia produced by the CPE- isolate IFM61407 (RR = 0.00) showed no evidence of paradoxical growth. Given the importance of the calcium/calcineurin/transcription factor-CrzA pathway in CPE regulation, we also demonstrated that all ΔcrzACEA17 (CPE+) conidia exhibited CPE while 100% of ΔcrzAAf293 (CPE-) did not exhibit CPE. Because all spores derived from an individual strain were phenotypically indistinct with respect to CPE, it is likely that CPE is a genetically encoded adaptive trait that should be considered an antifungal-tolerant phenotype. Because the RR parameter showed that the strength of the CPE was not uniform between strains, we propose that the mechanisms which govern this phenomenon are multifactorial. IMPORTANCE The "Eagle effect," initially described for bacterial species, which reflects the capacity of some strains to growth above the minimum inhibitory concentration (MIC) of specific antimicrobial agents, has been known for more than 70 years. However, its underlying mechanism of action in fungi is not fully understood and its connection with other phenomena such as tolerance or persistence is not clear yet. Here, based on the characterization of the "caspofungin paradoxical effect" in several Aspergillus fumigatus clinical isolates, we demonstrate that all conidia from A. fumigatus CPE+ strains are able to grow in high levels of the drug while all conidia produced by CPE- strains show no evidence of paradoxical growth. This work fills a gap in the understanding of this multifactorial phenomenon by proposing that CPE in A. fumigatus should be considered a tolerant but not persistent phenotype.
Collapse
|
20
|
O'Flynn R, Zhou YP, Waskin H, Leong R, Straus W. Hepatic safety of the antifungal triazole agent posaconazole: characterization of adverse event reports in a manufacturer's safety database. Expert Opin Drug Saf 2022; 21:1113-1120. [PMID: 35232318 DOI: 10.1080/14740338.2022.2047177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Second-generation triazoles including posaconazole are efficacious for prophylaxis and salvage treatment of life-threatening invasive fungal diseases but have been associated with hepatic adverse events (AEs). This report evaluated hepatic AEs in posaconazole-treated patients. RESEARCH DESIGN AND METHODS Hepatobiliary AEs with posaconazole exposure in the company's global safety database were analyzed to characterize underlying medical conditions and concomitant drug exposure. RESULTS As of October 2019, 516 cases (168 from clinical trials, 348 from postmarketing use) containing 618 hepatobiliary AEs were reported regardless of causality. Frequently reported terms were hyperbilirubinemia, hepatic failure, and hepatic function abnormal (clinical trials reports) and hepatotoxicity, hepatocellular injury, and hepatic function abnormal (postmarketing reports). Cases reporting concurrent medications associated with drug-induced liver injury (DILI) included 8% with verified severe DILI (vMost-DILI) concern, 24% with verified mild to moderate DILI (vLess-DILI) concern, and 37% received both vMost-DILI and vLess-DILI-concern medications in the DILIrank data set. CONCLUSIONS Use of concomitant medications with known risks for hepatic injury appears to be an important contributor for the development of hepatotoxicity in patients treated with posaconazole.
Collapse
|
21
|
Colabardini AC, Wang F, Dong Z, Pardeshi L, Rocha MC, Costa JH, dos Reis TF, Brown A, Jaber QZ, Fridman M, Fill T, Rokas A, Malavazi I, Wong KH, Goldman GH. Heterogeneity in the transcriptional response of the human pathogen Aspergillus fumigatus to the antifungal agent caspofungin. Genetics 2022; 220:iyab183. [PMID: 34718550 PMCID: PMC8733440 DOI: 10.1093/genetics/iyab183] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/07/2021] [Indexed: 01/11/2023] Open
Abstract
Aspergillus fumigatus is the main causative agent of invasive pulmonary aspergillosis (IPA), a severe disease that affects immunosuppressed patients worldwide. The fungistatic drug caspofungin (CSP) is the second line of therapy against IPA but has increasingly been used against clinical strains that are resistant to azoles, the first line antifungal therapy. In high concentrations, CSP induces a tolerance phenotype with partial reestablishment of fungal growth called CSP paradoxical effect (CPE), resulting from a change in the composition of the cell wall. An increasing number of studies has shown that different isolates of A. fumigatus exhibit phenotypic heterogeneity, including heterogeneity in their CPE response. To gain insights into the underlying molecular mechanisms of CPE response heterogeneity, we analyzed the transcriptomes of two A. fumigatus reference strains, Af293 and CEA17, exposed to low and high CSP concentrations. We found that there is a core transcriptional response that involves genes related to cell wall remodeling processes, mitochondrial function, transmembrane transport, and amino acid and ergosterol metabolism, and a variable response related to secondary metabolite (SM) biosynthesis and iron homeostasis. Specifically, we show here that the overexpression of a SM pathway that works as an iron chelator extinguishes the CPE in both backgrounds, whereas iron depletion is detrimental for the CPE in Af293 but not in CEA17. We next investigated the function of the transcription factor CrzA, whose deletion was previously shown to result in heterogeneity in the CPE response of the Af293 and CEA17 strains. We found that CrzA constitutively binds to and modulates the expression of several genes related to processes involved in CSP tolerance and that crzA deletion differentially impacts the SM production and growth of Af293 and CEA17. As opposed to the ΔcrzACEA17 mutant, the ΔcrzAAf293 mutant fails to activate cell wall remodeling genes upon CSP exposure, which most likely severely affects its macrostructure and extinguishes its CPE. This study describes how heterogeneity in the response to an antifungal agent between A. fumigatus strains stems from heterogeneity in the function of a transcription factor and its downstream target genes.
Collapse
Affiliation(s)
- Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo CEP 14040-903, Brazil
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Fang Wang
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Zhiqiang Dong
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Lakhansing Pardeshi
- Faculty of Health Sciences, University of Macau, Macau 999078, China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau, 999078, China
| | - Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos CEP 13565-905, Brazil
| | - Jonas Henrique Costa
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo CEP 13083-970, Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo CEP 14040-903, Brazil
| | - Alec Brown
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Qais Z Jaber
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Micha Fridman
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Taicia Fill
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo CEP 13083-970, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos CEP 13565-905, Brazil
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau 999078, China
- Faculty of Health Sciences, Institute of Translational Medicine, University of Macau, Macau 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo CEP 14040-903, Brazil
| |
Collapse
|
22
|
Kluge S, Strauß R, Kochanek M, Weigand MA, Rohde H, Lahmer T. Aspergillosis: Emerging risk groups in critically ill patients. Med Mycol 2021; 60:6408468. [PMID: 34677613 DOI: 10.1093/mmy/myab064] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Information on invasive aspergillosis (IA) and other invasive filamentous fungal infections is limited in non-neutropenic patients admitted to the intensive care unit (ICU) and presenting with no classic IA risk factors. This review is based on the critical appraisal of relevant literature, on the authors' own experience and on discussions that took place at a consensus conference. It aims to review risk factors favoring aspergillosis in ICU patients, with a special emphasis on often overlooked or neglected conditions. In the ICU patients, corticosteroid use to treat underlying conditions such as chronic obstructive pulmonary disease (COPD), sepsis, or severe COVID-19, represents a cardinal risk factor for IA. Important additional host risk factors are COPD, decompensated cirrhosis, liver failure, and severe viral pneumonia (influenza, COVID-19). Clinical observations indicate that patients admitted to the ICU because of sepsis or acute respiratory distress syndrome are more likely to develop probable or proven IA, suggesting that sepsis could also be a possible direct risk factor for IA, as could small molecule inhibitors used in oncology. There are no recommendations for prophylaxis in ICU patients; posaconazole mold-active primary prophylaxis is used in some centers according to guidelines for other patient populations and IA treatment in critically ill patients is basically the same as in other patient populations. A combined evaluation of clinical signs and imaging, classical biomarkers such as the GM assay, and fungal cultures examination, remain the best option to assess response to treatment. LAY SUMMARY The use of corticosteroids and the presence of co-morbidities such as chronic obstructive pulmonary disease, acute or chronic advanced liver disease, or severe viral pneumonia caused by influenza or Covid-19, may increase the risk of invasive aspergillosis in intensive care unit patients.
Collapse
Affiliation(s)
- Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg - Eppendorf, Hamburg, D-20246, Germany
| | - Richard Strauß
- Department of Medicine 1, Medizinische Klinik 1, University Hospital Erlangen, Erlangen, D-91054, Germany
| | - Matthias Kochanek
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, D-50937, Germany
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, D-69120, Germany
| | - Holger Rohde
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, D-20246, Germany
| | - Tobias Lahmer
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar der Technischen Universität Munich, Munich, D-81675, Germany
| |
Collapse
|
23
|
Wang B, He X, Lu F, Li Y, Wang Y, Zhang M, Huang Y, Xia J. Candida Isolates From Blood and Other Normally Sterile Foci From ICU Patients: Determination of Epidemiology, Antifungal Susceptibility Profile and Evaluation of Associated Risk Factors. Front Public Health 2021; 9:779590. [PMID: 34858938 PMCID: PMC8632017 DOI: 10.3389/fpubh.2021.779590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 10/19/2021] [Indexed: 12/29/2022] Open
Abstract
Background: The clinical diagnosis and therapy for ICU patients with invasive candidiasis are challenged by the changes of Candida community composition and antimicrobial resistance. The epidemiology and drug sensitivity of candidiasis in ICU as well as its risk factors and drug resistance mechanism were investigated. Methods: In the present study, 115 patients in ICU were recruited from June 2019 through July 2020. Among them, 83 Candida isolates were identified with MALDI-TOF mass spectrometry. The susceptibility to antifungals was measured by microdilution method. The molecular mechanisms of azole-resistant Candida tropicalis were explored by sequencing, and their outcomes were explicitly documented. Results: Candida glabrata and C. tropicalis were the predominant non-C. albicans Candida. The specimen sources were mainly urine, bronchoalveolar lavage fluid and blood. The age, length of hospitalization, tracheotomy, diabetes and concomitant bacterial infection were the main risk factors for candidiasis. The majority of Candida species exhibited susceptibility to antifungals. However, certain C. tropicalis were frequently resistant to azoles. The polymorphism of the ERG11 in C. tropicalis was likely associated with azole resistance. Conclusion: The multiple risk factors for candidiasis in ICU patients need to be considered. Certain C. tropicalis exhibit resistance to azoles likely due to the ERG11 gene polymorphism.
Collapse
Affiliation(s)
- Bo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinlong He
- Department of Pathogen Biology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Feng Lu
- Department of Pathogen Biology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Yajuan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuerong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinxing Xia
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
24
|
Sakita KM, Capoci IRG, Conrado PCV, Rodrigues-Vendramini FAV, Faria DR, Arita GS, Becker TCA, Bonfim-Mendonça PDS, Svidzinski TIE, Kioshima ES. Efficacy of Ebselen Against Invasive Aspergillosis in a Murine Model. Front Cell Infect Microbiol 2021; 11:684525. [PMID: 34249777 PMCID: PMC8260993 DOI: 10.3389/fcimb.2021.684525] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Invasive aspergillosis is one of the major causes of morbidity and mortality among invasive fungal infections. The search for new antifungal drugs becomes imperative when existing drugs are not able to efficiently treat these infections. Ebselen, is an organoselenium compound, already successfully approved in clinical trials as a repositioned drug for the treatment of bipolar disorder and prevention of noise-induced hearing loss. In this study, we aimed to reposition ebselen for the treatment of invasive aspergillosis by showing ebselen effectiveness in a murine model. For this, BALB/c mice were immunosuppressed and infected systemically with Aspergillus fumigatus. Animals were divided and treated with ebselen, voriconazole, or drug-free control, for four days. The kidneys were used for CFU count and, histopathological and cytokine analysis. Ebselen was able to significantly reduce the fungal burden in the kidneys of infected mice with efficacy comparable with voriconazole treatment as both had reductions to the same extent. The absence of hyphae and intact kidney tissue structure observed in the histopathological sections analyzed from treated groups corroborate with the downregulation of IL-6 and TNF. In summary, this study brings for the first time in vivo evidence of ebselen efficacy against invasive aspergillosis. Despite these promising results, more animal studies are warranted to evaluate the potential role of ebselen as an alternative option for the management of invasive aspergillosis in humans.
Collapse
Affiliation(s)
- Karina Mayumi Sakita
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | - Isis Regina Grenier Capoci
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | | | | | - Daniella Renata Faria
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | - Glaucia Sayuri Arita
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | | | | | | | - Erika Seki Kioshima
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| |
Collapse
|
25
|
Bassetti M, Azoulay E, Kullberg BJ, Ruhnke M, Shoham S, Vazquez J, Giacobbe DR, Calandra T. EORTC/MSGERC Definitions of Invasive Fungal Diseases: Summary of Activities of the Intensive Care Unit Working Group. Clin Infect Dis 2021; 72:S121-S127. [PMID: 33709127 DOI: 10.1093/cid/ciaa1751] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The EORTC/MSGERC recently revised and updated the consensus definitions of invasive fungal disease (IFD). These definitions primarily focus on patients with cancer and stem cell or solid-organ transplant patients. They may therefore not be suitable for intensive care unit (ICU) patients. More in detail, while the definition of proven IFD applies to a broad range of hosts, the categories of probable and possible IFD were primarily designed for classical immunocompromised hosts and may therefore not be ideal for other populations. Moreover, the scope of the possible category of IFD has been diminished in the recently revised definitions for classically immunocompromised hosts. Diagnosis of IFD in the ICU presents many challenges, which are different for invasive candidiasis and for invasive aspergillosis. The aim of this article is to review progresses made in recent years and difficulties remaining in the development of definitions applicable in the ICU setting.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, Ospedale Policlinico San Martino-IRCCS, Genoa, Italy.,Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Elie Azoulay
- Medical ICU, APHP, Saint-Louis Hospital, Paris, France.,Université de Paris, Paris, France
| | - Bart-Jan Kullberg
- Department of Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Markus Ruhnke
- Division of Hematology, Oncology and Palliative Care, Department of Internal Medicine, Helios Klinikum Aue, Aue, Germany
| | - Shmuel Shoham
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jose Vazquez
- Department of Medicine, Division of Infectious Diseases, Medical College of Georgia/Augusta University, Augusta, Georgia, USA
| | | | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
26
|
Onken AM, VanderLaan PA, Rosenbaum MW. Critical values in cytology. J Am Soc Cytopathol 2021; 10:341-348. [PMID: 34034996 DOI: 10.1016/j.jasc.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022]
Abstract
The timely reporting of critical values, or values that may be life-threatening if immediate action is not taken, is essential to patient care and safety. Although some guidelines exist for critical diagnoses in cytology, not all laboratories have a specific list of diagnoses that should be considered critical, and the very existence of cytology "critical values" has been called into question. Here we propose a pragmatic system for determining cytology critical values and report our laboratory's critical value list, formulated based on a review of the medical literature regarding clinical urgency and other institutions' cytology critical value lists.
Collapse
Affiliation(s)
- Allison M Onken
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Paul A VanderLaan
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Matthew W Rosenbaum
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts.
| |
Collapse
|
27
|
Wu Z, Wang L, Tan L, Wu J, Chen Z, Hu M. Diagnostic value of galactomannan in serum and bronchoalveolar lavage fluid for invasive pulmonary aspergillosis in non-neutropenic patients. Diagn Microbiol Infect Dis 2020; 99:115274. [PMID: 33453546 DOI: 10.1016/j.diagmicrobio.2020.115274] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To evaluate the diagnostic performance of galactomannan (GM) detection in serum and bronchoalveolar lavage fluid (BALF) for invasive pulmonary aspergillosis (IPA) in non-neutropenic patients. METHODS A total of 291 non-neutropenic patients in the Second Xiangya Hospital of Central South University were included. According to the 2019 EORTC/MSG guidelines, all cases were divided into an IPA group (n = 24) and a non-IPA group (n = 267). Receiver operating characteristic (ROC) curves were drawn to compare the diagnostic efficiency of GM detection in BALF and serum. RESULTS According to the receiver operating characteristic curves of BALF and serum GM, the areas under the curve were 0.961 and 0.699, respectively. The optimal BALF GM detection was found when the cutoff value was set to 0.87, whereas the sensitivity and specificity were 91.7% and 92.5%, respectively. CONCLUSIONS BALF GM detection is more sensitive than serum GM detection for diagnosing IPA, and the optimal cutoff value for BALF GM is 0.87.
Collapse
Affiliation(s)
- Ziwei Wu
- The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ling Wang
- The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Li Tan
- The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiali Wu
- The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiyang Chen
- The Second Xiangya Hospital of Central South University, Changsha, China
| | - Min Hu
- The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
28
|
Li Y, Gao Y, Niu X, Wu Y, Du Y, Yang Y, Qi R, Chen H, Gao X, Song B, Guan X. A 5-Year Review of Invasive Fungal Infection at an Academic Medical Center. Front Cell Infect Microbiol 2020; 10:553648. [PMID: 33194796 PMCID: PMC7642834 DOI: 10.3389/fcimb.2020.553648] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/17/2020] [Indexed: 12/29/2022] Open
Abstract
Background: Invasive fungal infection (IFI) is one of the most common nosocomial infections. However, data on the epidemiology of IFI and susceptibility to antifungal agents in China are quite limited, and in particular, no current data exist on the microbiological, and clinical characteristics of IFI patients in Northeast China. Objectives: The purpose of this study was to provide a retrospective review of the clinical characteristics, laboratory test results, and risk factor predictions of inpatients diagnosed with IFI. Multivariate regression analysis was used to assess prognostic factors associated with the mortality of these patients. Methods: We retrospectively analyzed the results from 509 patients with IFI extracted from the First Hospital of China Medical University from January 2013 to January 2018. Results: Neutrophil numbers, total bilirubin, length of stay in the ICU, renal failure, use of immunosuppressants within the past 30 days, stomach tube placement and septic shock were risk factors for death from IFI. Recent surgery (within 2 weeks) and drainage tube placement did not increase mortality in these IFI patients. Increased serum levels of PCT (AUC 0.601, 95% CI 0.536–0.665, P = 0.003) and CRP (AUC 0.578, 95% CI 0.512–0.644, P = 0.020) provided effective predictors of 30-day mortality rates. Conclusions: We report for the first time epidemiological data on invasive fungal infections in Northeast China over the past 5 years. Despite the limited available clinical data, these findings will greatly aid clinical health care workers with regard to the identification, prevention, and treatment of IFI in hospitalized patients.
Collapse
Affiliation(s)
- Yaling Li
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National Health Commission Key Laboratory of Immunodermatology, China Medical University, Shenyang, China
| | - Yali Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National Health Commission Key Laboratory of Immunodermatology, China Medical University, Shenyang, China
| | - Xueli Niu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National Health Commission Key Laboratory of Immunodermatology, China Medical University, Shenyang, China
| | - Yutong Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National Health Commission Key Laboratory of Immunodermatology, China Medical University, Shenyang, China
| | - Yimei Du
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National Health Commission Key Laboratory of Immunodermatology, China Medical University, Shenyang, China
| | - Ying Yang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ruiqun Qi
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National Health Commission Key Laboratory of Immunodermatology, China Medical University, Shenyang, China
| | - Hongduo Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National Health Commission Key Laboratory of Immunodermatology, China Medical University, Shenyang, China
| | - Xinghua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National Health Commission Key Laboratory of Immunodermatology, China Medical University, Shenyang, China
| | - Bing Song
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Xiuhao Guan
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National Health Commission Key Laboratory of Immunodermatology, China Medical University, Shenyang, China
| |
Collapse
|
29
|
Pan-Echinocandin-Resistant Candida glabrata Bloodstream Infection Complicating COVID-19: A Fatal Case Report. J Fungi (Basel) 2020; 6:jof6030163. [PMID: 32899996 PMCID: PMC7559523 DOI: 10.3390/jof6030163] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
Coinfections with bacteria or fungi may be a frequent complication of COVID-19, but coinfections with Candida species in COVID-19 patients remain rare. We report the 53-day clinical course of a complicated type-2 diabetes patient diagnosed with COVID-19, who developed bloodstream infections initially due to methicillin-resistant Staphylococcus aureus, secondly due to multidrug-resistant Gram-negative bacteria, and lastly due to a possibly fatal Candida glabrata. The development of FKS-associated pan-echinocandin resistance in the C. glabrata isolated from the patient after 13 days of caspofungin treatment aggravated the situation. The patient died of septic shock shortly before the prospect of receiving potentially effective antifungal therapy. This case emphasizes the importance of early diagnosis and monitoring for antimicrobial drug-resistant coinfections to reduce their unfavorable outcomes in COVID-19 patients.
Collapse
|
30
|
Dai J, Chen Y, Jiang F. Allicin reduces inflammation by regulating ROS/NLRP3 and autophagy in the context of A. fumigatus infection in mice. Gene 2020; 762:145042. [PMID: 32777529 DOI: 10.1016/j.gene.2020.145042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/26/2020] [Accepted: 08/05/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Inhibitory effect of allicin with broad-spectrum antimicrobial activity on A. fumigatus and the regulation mechanism of inflammation and autophagy in vitro and in vivo. METHODS The corresponding concentration of allicin was prepared according to the needs of the experiment. In vitro, 2 ml 5 × 104 of fungal spores suspension was added to the 6-well plate per hole, and different final concentrations of allicin (1 μl/ml, 2.5 μl/ml, 5 μl/ml, 10 μl/ml, 20 μl/ml, 30 μl/ml) were added. The fungal spores were stained by fluorescent dye SYTO 9 (green) every day, and the spore germination inhibition was detected by flow cytometry in different PH. RAW264.7 cells were cultured and stimulated by A. fumigatus spores for 3 h, then allicin solution was added. Then some cells were stained with ROS probe (green) and hochest33342 (blue). The effect of allicin on ROS was observed by fluorescence microscope. The other part of cells extracted protein from cell lysate and detected the effect of allicin on inflammatory factors and autophagy by Western-blotting. The green and red spots of RAW264.7 cells stably transfected with GFP-RFP-LC3 were observed by fluorescence microscopy. In vivo, A. fumigatus spore was injected intratracheally into mice, then allicin was injected intravenously at a concentration of 5 mg/kg/day for 7 consecutive days. The survival status, pulmonary fungal load and weight of mice was recorded continuously for 30 days and detected the changes of lung by pathological examination and immunohistochemistry. RESULTS In vitro, allicin significantly inhibited the spore germination of A. fumigatus within 24 h in a dose-dependent manner and it had a stable inhibition on the spore germination of A. fumigatus in acidic environment. Cell experiments showed that allicin inhibited intracellular spore germination by inhibiting ROS production, inflammation and autophagy. In the animal experiment, the survival rate and body weight of allicin injection group were higher than that of non injection group, while the spore load of lung was lower than that of non injection group (P < 0.05). CONCLUSIONS These results support that allicin reduces inflammation and autophagy resistance to A. fumigatus infection, It also provides a possible treatment for Aspergillus infectious diseases, i.e. early anti-inflammation, antibiotics or drugs that inhibit excessive autophagy.
Collapse
Affiliation(s)
- Jingjing Dai
- Department of Medical Laboratory, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Ying Chen
- Department of Medical Laboratory, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China.
| | - Feng Jiang
- Department of Stomatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China.
| |
Collapse
|
31
|
Peng L, Wang Y, Zhao L, Chen T, Huang A. Severe pneumonia in Chinese patients with systemic lupus erythematosus. Lupus 2020; 29:735-742. [PMID: 32403979 DOI: 10.1177/0961203320922609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective This study aimed to investigate the clinical characteristics and risk factors associated with severe pneumonia in systemic lupus erythematosus (SLE) patients from China. Method We performed a retrospective study in 112 hospitalized SLE patients who had had pneumonia for 8 years. The primary outcome was severe pneumonia, followed by descriptive analysis, group comparison and bivariate analysis. Results A total of 28 SLE patients were diagnosed with severe pneumonia, with a ratio of 5:23 between men and women. The mean age at diagnosis was 44.36 ± 12.389 years. The median disease duration was 72 months, and the median SLE Disease Activity Index 2000 (SLEDAI 2K) score was 8. The haematological system was the most affected, with an incidence of anaemia in 85.7% of cases and thrombocytopenia in 75% of cases, followed by lupus nephritis in 50% of cases and central nervous system involvement in 10.71% of cases. Cultured sputum specimens were positive in 17 (68%) SLE patients with severe pneumonia, of whom nine (36%) were cases of fungal infection, five (20%) were cases of bacterial infection and three (12%) were cases of mixed infection. Using multivariate logistic regression analysis, we concluded that a daily dosage of prednisone (>10 mg; odds ratio (OR) = 3.193, p = 0.005), a low percentage of CD4+ T lymphocytes (OR = 0.909, p = 0.000), a high SLEDAI 2K score (OR = 1.182, p = 0.001) and anaemia (OR = 1.182, p = 0.001) were all independent risk factors for pneumonia in SLE patients, while a low percentage of CD4+ T lymphocytes (OR = 0.908, p = 0.033), a daily dose of prednisone of >10 mg (OR = 35.67, p = 0.001) were independent risk factors for severe pneumonia in SLE patients. Conclusion Severe pneumonia is not rare in lupus, and is associated with high mortality and poor prognosis. Monitoring CD4+ T-cell counts and giving a small dose of glucocorticoids can reduce the occurrence of severe pneumonia and improve the prognosis of patients with lupus.
Collapse
Affiliation(s)
- Lingli Peng
- Department of Rheumatology, Union Hospital, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yaling Wang
- Wuhan Institution for Tuberculosis Control, Wuhan Pulmonary Hospital, Wuhan, PR China
| | - Lin Zhao
- Department of Rheumatology, Union Hospital, Huazhong University of Science and Technology, Wuhan, PR China
| | - Ting Chen
- Department of Rheumatology, Union Hospital, Huazhong University of Science and Technology, Wuhan, PR China
| | - Anbin Huang
- Department of Rheumatology, Union Hospital, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
32
|
Pharmacokinetics of Micafungin in Critically Ill Patients Receiving Continuous Venovenous Hemodialysis With High Cutoff Membranes. Ther Drug Monit 2020; 41:376-382. [PMID: 30633087 DOI: 10.1097/ftd.0000000000000595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND An optimal antifungal therapy for invasive candidiasis in critically ill patients is essential to reduce the high mortality rates. Acute kidney injury is common, and continuous renal replacement therapies are frequently used. Previous studies have demonstrated a lack of effect from different continuous renal replacement techniques on micafungin clearance. However, the use of high cutoff pore size membranes could potentially allow for the loss of albumin and alter micafungin pharmacokinetics. The objective was to explore the pharmacokinetics of micafungin in critically ill patients undergoing continuous venovenous high cutoff membrane hemodialysis (CVVHD-HCO). METHODS Prospective observational study performed in critically ill patients treated with 100 mg/d of micafungin and undergoing CVVHD-HCO. CVVHD-HCO sessions were performed using Prisma-Flex monitors and dialyzers with a membrane of polyarylethersulfone of 1.1-m surface area and 45-kDa pore size. Blood samples were collected from arterial prefilter, venous postfilter, and the drainage line ports at 0 (predose), 1, 4, 12, 24 hours after dose, and micafungin concentrations were determined using HPLC-UV. RESULTS Nine patients (55.6% male; age: 28-80 years) were included. Median (range) of micafungin concentrations in the effluent were <0.2 (<0.2-0.4) mg/L at low (predose) and 0.4 (<0.2-0.7) mg/L at high (1 h) concentrations. The extraction ratio was <12% at each time point. A 2-compartment model best described the time course of plasma concentrations, and body weight was the only covariate that improved the model. CONCLUSIONS This is the first study demonstrating that CVVHD-HCO does not alter the pharmacokinetics of micafungin, and that standard doses of this antifungal can be used.
Collapse
|
33
|
New Antifungal Susceptibility Test Based on Chitin Detection by Image Cytometry. Antimicrob Agents Chemother 2019; 64:AAC.01101-19. [PMID: 31658964 DOI: 10.1128/aac.01101-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/11/2019] [Indexed: 12/16/2022] Open
Abstract
The antifungal susceptibility tests used in clinical laboratories have several limitations. We developed a new test, SensiFONG, based on the detection of chitin levels after exposure to antifungal drugs. The optimal culture conditions were 30°C for 6 h for yeast strains and 26°C for 16 h for molds. The strains were exposed to a range of echinocandin or azole concentrations. Chitin was stained with calcofluor white. The percentage of fungal cells with high chitin levels was determined with an automatic epifluorescence microscope. The SensiFONG results were compared to those with the EUCAST method. Image acquisition and analysis were performed with ScanR software. Fifty-nine strains (28 Candida albicans, 17 Candida glabrata, and 14 Aspergillus fumigatus) were analyzed. Thresholds for the classification of strains as resistant or susceptible were determined for each fungal species. The strains displaying an increase in chitin content of ≥32% for C. albicans, ≥6% for C. glabrata, and ≥17% for A. fumigatus were considered susceptible. The application of these thresholds to all 59 strains resulted in a sensitivity of 0.87, 0.93, and 1.00 and a specificity of 0.93, 0.84, and 0.82 for C. albicans, C. glabrata, and A. fumigatus, respectively. The correlation between the results obtained in the SensiFONG and EUCAST assays was excellent. We developed a new test, SensiFONG, based on a new concept. While current assays assess growth inhibition, our test detects changes in chitin levels after exposure to antifungal drugs. Here, we present preliminary results and we propose a proof of concept of this methodology.
Collapse
|
34
|
Ferreira EG, Yatsuda F, Pini M, Jarros IC, Veiga FF, de Oliveira AG, Negri M, Svidzinski TIE. Implications of the presence of yeasts in tracheobronchial secretions of critically ill intubated patients. EXCLI JOURNAL 2019; 18:801-811. [PMID: 31645841 PMCID: PMC6806203 DOI: 10.17179/excli2019-1631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/03/2019] [Indexed: 12/28/2022]
Abstract
The presence of some microorganisms in the respiratory tract is a known risk factor for the infection of air passages; however, it is not clear whether this holds true for Candida spp. Thus, our objective was to determine the frequency of yeast colonization in the tracheobronchial secretions of critically ill intubated patients and to assess the presence of these yeasts in the infra-cuff region of the endotracheal tube (ET). Patients aged 18 years or older who had been using an endotracheal tube for 48 hours were recruited. Tracheal secretions were collected; after extubation, the ETs were cut into two fragments in the infra-cuff region. One of these fragments was placed in a solution containing antibiotics and sent to the lab for culture and identification of yeasts. The remaining fragment was fixed and subjected to scanning electron microscopy (SEM). In total, 20 patients with an average age of 73.3 years (± 13.1) participated in this study. These patients remained under endotracheal intubation and invasive mechanical ventilation for an average of 6.4 (± 1.8) and 13.5 days (± 15), respectively. Of these patients, 45 % showed respiratory tract colonization by yeasts of the Candida genus, with C. albicans being the most frequently isolated species (66.7 %). Moreover, in almost 90 % of these patients, blastoconidia of the same yeast were found in the infra-cuff portion of the ET, as evidenced by SEM, strongly fixed on the ET surface. Yeasts isolated from both the infra-cuff region and the tracheobronchial secretions were susceptible to amphotericin B and fluconazole. In conclusion, our results show that the frequency of colonization by yeasts of the Candida genus in the tracheobronchial secretions of intubated patients within 48 hours is high, and that these species can also be found as a biofilm on the ET surface.
Collapse
Affiliation(s)
- Elenice Gomes Ferreira
- Graduate Programme in Health Sciences, Universidade Estadual de Maringá (UEM), Maringá, PR, Brazil.,Department of Physiotherapy UniCesumar, Maringá, PR, Brazil
| | - Fabrício Yatsuda
- Department of Physiotherapy UniCesumar, Maringá, PR, Brazil.,PIC/UniCesumar/ICETI (Instituto Cesumar de Ciência, Tecnologia e Inovação)
| | - Marcio Pini
- Department of Physiotherapy UniCesumar, Maringá, PR, Brazil.,PIC/UniCesumar/ICETI (Instituto Cesumar de Ciência, Tecnologia e Inovação)
| | - Isabele Carrilho Jarros
- Graduate Programme in Health Sciences, Universidade Estadual de Maringá (UEM), Maringá, PR, Brazil
| | - Flávia Franco Veiga
- Graduate Programme in Health Sciences, Universidade Estadual de Maringá (UEM), Maringá, PR, Brazil
| | | | - Melyssa Negri
- Division of Medical Mycology, Teaching and Research Laboratory in Clinical Analyses, Department of Clinical Analysis of State University of Maringa, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - Terezinha Inez Estivalet Svidzinski
- Division of Medical Mycology, Teaching and Research Laboratory in Clinical Analyses, Department of Clinical Analysis of State University of Maringa, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
35
|
Bienvenu AL, Leboucher G, Picot S. Comparison of fks gene mutations and minimum inhibitory concentrations for the detection of Candida glabrata resistance to micafungin: A systematic review and meta-analysis. Mycoses 2019; 62:835-846. [PMID: 31077631 DOI: 10.1111/myc.12929] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/06/2023]
Abstract
Candida resistance to antifungals impaired invasive candidiasis outcome. In a context of echinocandin resistance development, we aimed to evaluate the association between phenotypic resistance to micafungin and fks mutations of Candida glabrata. For this systematic review and meta-analysis, we searched MEDLINE, Scopus and Web of Science for reports published up to December 2017. Studies of C glabrata candidiasis with minimum inhibitory concentrations (MIC) determination of micafungin and fks genotyping were included. Reviews, studies not using reference methods, non-glabrata Candida, experimental isolates and undetailed mutations were excluded. Two authors independently assessed the eligibility of articles and extracted data. The main outcome was the diagnostic accuracy of fks mutations compared to micafungin MIC for C glabrata, measured as fixed-effect odd ratio. Heterogeneity was calculated with the I2 statistic. This study is registered with PROSPERO (CRD42018082023). Twenty-four studies were included in the meta-analysis. Pooled analysis found that S663P (OR 7.25, 95% CI 3.50-15.00; P < 0.00001), S629P (OR 3.70, 1.64-8.33; P = 0.002) and F659del (OR 5.66, 1.22-26.18; P = 0.03) were associated with increased risk of having a resistant isolate according to authors' interpretation of MICs. In sensitivity analysis based on new CLSI clinical breakpoints, the ORs for S663P and S629P remained significant. Genotyping of isolates of C glabrata for S663P and S629P mutations is an effective alternative to micafungin susceptibility tests. Relevant molecular markers of drug resistance will significantly improve the management of C glabrata infections.
Collapse
Affiliation(s)
- Anne-Lise Bienvenu
- Groupement Hospitalier Nord, Service Pharmacie, Hospices Civils de Lyon, Lyon, France.,ICBMS CNRS 5246, SMITh, Malaria Research Unit, Université de Lyon, Villeurbanne, France.,Groupement Hospitalier Nord, Service Hématologie, Hospices Civils de Lyon, Lyon, France
| | - Gilles Leboucher
- Groupement Hospitalier Nord, Service Pharmacie, Hospices Civils de Lyon, Lyon, France
| | - Stephane Picot
- ICBMS CNRS 5246, SMITh, Malaria Research Unit, Université de Lyon, Villeurbanne, France.,Groupement Hospitalier Nord, Institut de Parasitologie et Mycologie Médicale, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
36
|
Korkmaz D, Demirtürk N, Keşli R, Konya P. Hospitalize kandidürili hastalarda risk faktörlerinin araştırılması. ACTA MEDICA ALANYA 2019. [DOI: 10.30565/medalanya.519111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
Toxoflavin Produced by Burkholderia gladioli from Lycoris aurea Is a New Broad-Spectrum Fungicide. Appl Environ Microbiol 2019; 85:AEM.00106-19. [PMID: 30824447 DOI: 10.1128/aem.00106-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/16/2019] [Indexed: 01/10/2023] Open
Abstract
Fungal infections not only cause extensive agricultural damage but also result in serious diseases in the immunodeficient populations of human beings. Moreover, the increasing emergence of drug resistance has led to a decrease in the efficacy of current antifungals. Thus, screening of new antifungal agents is imperative in the fight against antifungal drug resistance. In this study, we show that an endophytic bacterium, Burkholderia gladioli HDXY-02, isolated from the medicinal plant Lycoris aurea, showed broad-spectrum antifungal activity against plant and human fungal pathogens. An antifungal ability assay indicated that the bioactive component was produced from strain HDXY-02 having an extracellular secreted component with a molecular weight lower than 1,000 Da. In addition, we found that this new antifungal could be produced effectively by liquid fermentation of HDXY-02. Furthermore, the purified component contributing to the antifungal activity was identified to be toxoflavin, a yellow compound possessing a pyrimido[5,4-e][1,2,4]triazine ring. In vitro bioactivity studies demonstrated that purified toxoflavin from B. gladioli HDXY-02 cultures had a significant antifungal activity against the human fungal pathogen Aspergillus fumigatus, resulting in abolished germination of conidia. More importantly, the growth inhibition by toxoflavin was observed in both wild-type and drug-resistant mutants (cyp51A and non-cyp51A) of A. fumigatus Finally, an optimized protocol for the large-scale production of toxoflavin (1,533 mg/liter) has been developed. Taken together, our findings provide a promising biosynthetic resource for producing a new antifungal reagent, toxoflavin, from isolates of the endophytic bacterium B. gladioli IMPORTANCE Human fungal infections are a growing problem associated with increased morbidity and mortality. Moreover, a growing number of antifungal-resistant fungal isolates have been reported over the past decade. Thus, the need for novel antifungal agents is imperative. In this study, we show that an endophytic bacterium, Burkholderia gladioli, isolated from the medicinal plant Lycoris aurea, is able to abundantly secrete a compound, toxoflavin, which has a strong fungicidal activity not only against plant fungal pathogens but also against human fungal pathogens Aspergillus fumigatus and Candida albicans, Cryptococcus neoformans, and the model filamentous fungus Aspergillus nidulans More importantly, toxoflavin also displays an efficacious inhibitory effect against azole antifungal-resistant mutants of A. fumigatus Consequently, our findings provide a promising approach to abundantly produce toxoflavin, which has novel broad-spectrum antifungal activity, especially against those currently problematic drug-resistant isolates.
Collapse
|
38
|
Richardson M, Bowyer P, Sabino R. The human lung and Aspergillus: You are what you breathe in? Med Mycol 2019; 57:S145-S154. [PMID: 30816978 PMCID: PMC6394755 DOI: 10.1093/mmy/myy149] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/01/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022] Open
Abstract
The diversity of fungal species comprising the lung mycobiome is a reflection of exposure to environmental and endogenous filamentous fungi and yeasts. Most lung mycobiome studies have been culture-based. A few have utilized next generation sequencing (NGS). Despite the low number of published NGS studies, several themes emerge from the literature: (1) moulds and yeasts are present in the human respiratory tract, even during health; (2) the fungi present in the respiratory tract are highly variable between individuals; and (3) many diseases are accompanied by decreased diversity of fungi in the lungs. Even in patients with the same disease, different patients have been shown to harbor distinct fungal communities. Those fungal species present in any one individual may represent a patient's unique environmental exposure(s), either to species restricted to the indoor environment, for example, Penicillium, or species found in the outdoor environment such as Aspergillus, wood and vegetation colonizing fungi and plant pathogens. In addition to causing clinical fungal infections, the lung mycobiome may have inflammatory effects that can cause or worsen lung disease. Most respiratory diseases that have been studied, have been associated with decreases in fungal diversity. However, none of these diversity studies distinguish between accidental, transient fungal colonizers and true residents of the respiratory tract. Where does Aspergillus feature in the mycobiomes of the respiratory tract? Do these mycobiomes reflect the diversity of fungi in outdoor and internal environments? These intriguing questions are explored here.
Collapse
Affiliation(s)
- Malcolm Richardson
- Mycology Reference Centre Manchester, ECMM Centre of Excellence, Manchester University NHS Foundation Trust, Manchester, UK.,Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul Bowyer
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Raquel Sabino
- Nacional Institute of Health Dr. Ricardo Jorge - URSZ- Infectious Diseases Department, Lisbon, Portugal
| |
Collapse
|
39
|
Acidic Mammalian Chitinase Negatively Affects Immune Responses during Acute and Chronic Aspergillus fumigatus Exposure. Infect Immun 2018; 86:IAI.00944-17. [PMID: 29712728 DOI: 10.1128/iai.00944-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
Chitin is a polysaccharide that provides structure and rigidity to the cell walls of fungi and insects. Mammals possess multiple chitinases, which function to degrade chitin, thereby supporting a role for chitinases in immune defense. However, chitin degradation has been implicated in the pathogenesis of asthma. Here, we determined the impact of acidic mammalian chitinase (AMCase) (Chia) deficiency on host defense during acute exposure to the fungal pathogen Aspergillus fumigatus as well as its contribution to A. fumigatus-associated allergic asthma. We demonstrate that chitin in the fungal cell wall was detected at low levels in A. fumigatus conidia, which emerged at the highest level during hyphal transition. In response to acute A. fumigatus challenge, Chia-/- mice unexpectedly demonstrated lower A. fumigatus lung burdens at 2 days postchallenge. The lower fungal burden correlated with decreased lung interleukin-33 (IL-33) levels yet increased IL-1β and prostaglandin E2 (PGE2) production, a phenotype that we reported previously to promote the induction of IL-17A and IL-22. During chronic A. fumigatus exposure, AMCase deficiency resulted in lower dynamic and airway lung resistance than in wild-type mice. Improved lung physiology correlated with attenuated levels of the proallergic chemokines CCL17 and CCL22. Surprisingly, examination of inflammatory responses during chronic exposure revealed attenuated IL-17A and IL-22 responses, but not type 2 responses, in the absence of AMCase. Collectively, these data suggest that AMCase functions as a negative regulator of immune responses during acute fungal exposure and is a contributor to fungal asthma severity, putatively via the induction of proinflammatory responses.
Collapse
|
40
|
Pharmacodynamics of a Long-Acting Echinocandin, CD101, in a Neutropenic Invasive-Candidiasis Murine Model Using an Extended-Interval Dosing Design. Antimicrob Agents Chemother 2018; 62:AAC.02154-17. [PMID: 29203480 DOI: 10.1128/aac.02154-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/27/2017] [Indexed: 12/18/2022] Open
Abstract
Echinocandins are important in the prevention and treatment of invasive candidiasis but limited by current dosing regimens that include daily intravenous administration. The novel echinocandin CD101 has a prolonged half-life of approximately 130 h in humans, making it possible to design once-weekly dosing strategies. The present study examined the pharmacodynamic activity of CD101 using the neutropenic invasive candidiasis mouse model against select Candida albicans (n = 4), C. glabrata (n = 3), and C. parapsilosis (n = 3) strains. The CD101 MIC ranged from 0.03 to 1 mg/liter. Plasma pharmacokinetic measurements were performed using uninfected mice after intraperitoneal administration of 1, 4, 16, and 64 mg/kg. The elimination half-life was prolonged at 28 to 41 h. Neutropenic mice were infected with each strain by lateral tail vein injection, treated with a single dose of CD101, and monitored for 7 days, at which time the organism burden was enumerated from the kidneys. Dose-dependent activity was observed for each organism. The pharmacokinetic/pharmacodynamic (PK/PD) index of the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC index) correlated well with efficacy (R2, 0.74 to 0.93). The median stasis 24-h free-drug AUC/MIC targets were as follows: for C. albicans, 2.92; for C. glabrata, 0.07; and for C. parapsilosis, 2.61. The PK/PD targets for 1-log10 kill endpoint were 2- to 4-fold higher. Interestingly, the aforementioned PK/PD targets of CD101 were numerically lower for all three species than those of other echinocandins. In summary, CD101 is a promising, novel echinocandin with advantageous pharmacokinetic properties and potent in vivo pharmacodynamic activity.
Collapse
|