1
|
Tappi S, Nissen L, Pinheiro ACDAS, D’Elia F, Casciano F, Antonelli G, Chiarello E, Soglia F, Baldi G, Capelli F, Gianotti A, Bordoni A, Petracci M, Capozzi F, Dalla Rosa M, Rocculi P. Microbial and Quality Changes of Seabream Fillets Processed with Cold Plasma During Refrigerated Storage. Foods 2025; 14:1443. [PMID: 40361526 PMCID: PMC12071499 DOI: 10.3390/foods14091443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Cold plasma (CP) is a non-thermal technology, successfully used to decontaminate and extend the shelf-life of various foods. However, CP can cause quality deterioration in sensitive matrices, such as fish products. This research aimed to evaluate the effect of CP treatment obtained using different gas mixtures (80% Ar/20% O2, or 80% N2/20% O2) with a surface dielectric barrier discharge (SDBD) on the decontamination of spoilage microflora, the main quality indices and the sensory acceptability of seabream (Spaurus aurata L.) fillets during refrigerated storage. At the beginning and at the end of the shelf life, lipid and protein oxidation indices and the fatty acid profile were evaluated. Results showed that, despite a low initial microbial decontamination (0.2-0.3 Log CFU/g), an inhibition of the growth of the main spoilage bacteria was observed resulting in an increase of the microbiological shelf life of around 40% for both treatments. Although a slight increase in lipid and protein oxidation was observed (up to around 5 mg MDA/kg and 4 nmol/mg of protein for TBARs and carbonyl content respectively), the sensory acceptability was higher for plasma treated samples, while the fatty acid profile was not affected and only a slight variation in the surface colour was observed (L* value increase by 3 points), confirming that CP could represent an interesting strategy to extend the shelf life of seafood products with minimal impact on quality and nutritional value.
Collapse
Affiliation(s)
- Silvia Tappi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (S.T.); (L.N.); (F.D.); (F.C.); (G.A.); (E.C.); (F.S.); (G.B.); (A.G.); (A.B.); (M.P.); (F.C.); (M.D.R.); (P.R.)
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Lorenzo Nissen
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (S.T.); (L.N.); (F.D.); (F.C.); (G.A.); (E.C.); (F.S.); (G.B.); (A.G.); (A.B.); (M.P.); (F.C.); (M.D.R.); (P.R.)
| | - Ana Cristina De Aguiar Saldanha Pinheiro
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (S.T.); (L.N.); (F.D.); (F.C.); (G.A.); (E.C.); (F.S.); (G.B.); (A.G.); (A.B.); (M.P.); (F.C.); (M.D.R.); (P.R.)
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Fabio D’Elia
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (S.T.); (L.N.); (F.D.); (F.C.); (G.A.); (E.C.); (F.S.); (G.B.); (A.G.); (A.B.); (M.P.); (F.C.); (M.D.R.); (P.R.)
| | - Flavia Casciano
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (S.T.); (L.N.); (F.D.); (F.C.); (G.A.); (E.C.); (F.S.); (G.B.); (A.G.); (A.B.); (M.P.); (F.C.); (M.D.R.); (P.R.)
| | - Giorgia Antonelli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (S.T.); (L.N.); (F.D.); (F.C.); (G.A.); (E.C.); (F.S.); (G.B.); (A.G.); (A.B.); (M.P.); (F.C.); (M.D.R.); (P.R.)
| | - Elena Chiarello
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (S.T.); (L.N.); (F.D.); (F.C.); (G.A.); (E.C.); (F.S.); (G.B.); (A.G.); (A.B.); (M.P.); (F.C.); (M.D.R.); (P.R.)
| | - Francesca Soglia
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (S.T.); (L.N.); (F.D.); (F.C.); (G.A.); (E.C.); (F.S.); (G.B.); (A.G.); (A.B.); (M.P.); (F.C.); (M.D.R.); (P.R.)
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Giulia Baldi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (S.T.); (L.N.); (F.D.); (F.C.); (G.A.); (E.C.); (F.S.); (G.B.); (A.G.); (A.B.); (M.P.); (F.C.); (M.D.R.); (P.R.)
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Filippo Capelli
- Department of Industrial Engineering (DIN), Alma Mater Studiorum-Università di Bologna, Via Terracini 24, 40131 Bologna, Italy;
- Almaplasma s.r.l., Viale Giuseppe Fanin, 48, 40127 Bologna, Italy
| | - Andrea Gianotti
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (S.T.); (L.N.); (F.D.); (F.C.); (G.A.); (E.C.); (F.S.); (G.B.); (A.G.); (A.B.); (M.P.); (F.C.); (M.D.R.); (P.R.)
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Alessandra Bordoni
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (S.T.); (L.N.); (F.D.); (F.C.); (G.A.); (E.C.); (F.S.); (G.B.); (A.G.); (A.B.); (M.P.); (F.C.); (M.D.R.); (P.R.)
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (S.T.); (L.N.); (F.D.); (F.C.); (G.A.); (E.C.); (F.S.); (G.B.); (A.G.); (A.B.); (M.P.); (F.C.); (M.D.R.); (P.R.)
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Francesco Capozzi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (S.T.); (L.N.); (F.D.); (F.C.); (G.A.); (E.C.); (F.S.); (G.B.); (A.G.); (A.B.); (M.P.); (F.C.); (M.D.R.); (P.R.)
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Marco Dalla Rosa
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (S.T.); (L.N.); (F.D.); (F.C.); (G.A.); (E.C.); (F.S.); (G.B.); (A.G.); (A.B.); (M.P.); (F.C.); (M.D.R.); (P.R.)
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Pietro Rocculi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (S.T.); (L.N.); (F.D.); (F.C.); (G.A.); (E.C.); (F.S.); (G.B.); (A.G.); (A.B.); (M.P.); (F.C.); (M.D.R.); (P.R.)
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| |
Collapse
|
2
|
Mittal A, Benjakul S, Brunton N, Kadam D, Singh A. Combined Effect of Cold Atmospheric Plasma and Chitooligosaccharide-EGCG Conjugate on Quality and Shelf-Life of Depurated Asian Green Mussel. Foods 2025; 14:1399. [PMID: 40282801 PMCID: PMC12026644 DOI: 10.3390/foods14081399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
The combined effects of chitooligosaccharide-epigallocatechin gallate conjugate (CEC) at different concentrations (1, 2, and 3%, w/w) and cold atmospheric plasma (CAP) on the depurated Asian green mussel edible portion (AGM-EP) were investigated during refrigerated storage for 15 days. Among all the treatments, the microbial counts, total volatile bases (TMA-N and TVB-N), and lipid oxidation of AGM-EP-treated 3% CEC in conjunction with CAP (CEC-3-CAP) were lower than the other samples during 15-day storage (p < 0.05). Total viable bacteria (6.16 log CFU/g sample), psychrotrophic bacteria (3.24 log CFU/g sample), Vibrio spp. (2.47 log CFU/g sample), presumptive Pseudomonas (5.93 log CFU/g sample), and H2S-producing bacteria (5.05 log CFU/g sample) counts of the CEC-3-CAP were lower than samples treated with 1 and 2% (w/w) CEC on day 15, as well as samples solely treated using CAP during refrigerated storage, irrespective of storage time. Additionally, CEC-3-CAP had significantly lower lipid oxidation (PV: 8.36 mg cumene hydroperoxide/kg sample and TBARS: 2.65 mg MDA/kg sample) as compared to those without CEC added and other samples (p < 0.05). The incorporation of CEC effectively mitigated lipid oxidation as supported by lower reduction of PUFAs in AGM-EP. Moreover, on day 0, no significant differences were observed in cooking loss or textural parameters (firmness and toughness) among the treatments (p > 0.05). However, as storage progressed, cooking loss increased in the CEC-3-CAP sample, while a noticeable decline in firmness and toughness was recorded (p < 0.05). This further attributed to the lower likeness attained for CAP-3-CAP on day 12, but the score was higher than the acceptable limit (5.0). Therefore, CAP together with CEC is a promising technology to prolong the shelf-life of depurated AGM-EP by at least 9 days as compared to the control (3 days), but it certainly needs further studies for the retention of textural properties and sensorial attributes.
Collapse
Affiliation(s)
- Ajay Mittal
- UCD Institute of Food and Health, University College Dublin, Belfield Campus, D04 V1W8 Dublin, Ireland; (A.M.); (N.B.)
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Nigel Brunton
- UCD Institute of Food and Health, University College Dublin, Belfield Campus, D04 V1W8 Dublin, Ireland; (A.M.); (N.B.)
| | - Deepak Kadam
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
| |
Collapse
|
3
|
Hu J, Xie K, Zhu H, Giusti A, Li M, Zheng Y, Chen J, Armani A, Ying X, Deng S. Effects of atmospheric cold plasma treatment mode on muscle quality and bacterial community of red shrimp during cold storage. Food Res Int 2025; 207:116051. [PMID: 40086956 DOI: 10.1016/j.foodres.2025.116051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/10/2025] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
Atmospheric cold plasma (ACP), known for its safety, non-thermal processing, and energy efficiency, is especially effective for preserving perishable items such as seafood. However, excessive use of ACP may cause oxidation and sensory quality deterioration, which limits its application in the seafood industry. Thus, optimizing ACP treatment modes to balance sterilization efficiency with minimal oxidative effects is essential. This study aims to explore the impact of different ACP treatment modes (cyclical and one-time treatment) on the muscle quality and bacterial community of red shrimp during cold storage. The results indicated that on day 0 of storage, compared to the blank group and the one-time treatment group, the cyclical treatment significantly reduced the total viable count in red shrimp (p < 0.05). However, no significant differences were observed in centrifugal loss, cooking loss, textural properties, total sulfhydryl content, or Ca2+-ATPase activity (p > 0.05). By day 8, both ACP treatment modes significantly improved the protein quality of red shrimp. Compared with the one-time treatment, cyclical treatment reduced the abundance of Aliivibrio (57.24 %), Pseudoalteromonas (97.34 %), and Psychrobacter (59.07 %) in the bacterial community and delayed bacterial succession (especially Aliivibrio salmonicida, Psychrobacter cibarius, and Pseudoalteromonas nigrifaciens), slowing down the degradation of protein quality. Specifically, in the cyclical treatment group, cooking loss was reduced by 7.01 %, and improvements were observed in hardness, total sulfhydryl content, and Ca2+-ATPase activity, which increased by 8.93 %, 17.54 %, and 5.63 %, respectively. Overall, this study demonstrates that the ACP cyclical treatment mode has greater potential in preserving the freshness of seafood.
Collapse
Affiliation(s)
- Jiajie Hu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China; FishLab, Department of Veterinary Sciences, University of Pisa, Pisa, 56124, Italy
| | - Kai Xie
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Hangxin Zhu
- College of Agriculture, Food and Nature Resources, University of Missouri, Columbia, 65201, USA
| | - Alice Giusti
- FishLab, Department of Veterinary Sciences, University of Pisa, Pisa, 56124, Italy
| | - Mingao Li
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yan Zheng
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jing Chen
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Andrea Armani
- FishLab, Department of Veterinary Sciences, University of Pisa, Pisa, 56124, Italy.
| | - Xiaoguo Ying
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Shanggui Deng
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| |
Collapse
|
4
|
Sharma R, Nath PC, Rustagi S, Sharma M, Inbaraj BS, Dikkala PK, Nayak PK, Sridhar K. Cold Plasma-A Sustainable Energy-Efficient Low-Carbon Food Processing Technology: Physicochemical Characteristics, Microbial Inactivation, and Industrial Applications. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:4166141. [PMID: 40124845 PMCID: PMC11930388 DOI: 10.1155/ijfo/4166141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
Nonthermal technologies, mostly utilized for microbial inactivation and quality preservation in food, are attracting increased interest, particularly in nonthermal plasma. Cold plasma (CP) demonstrates favorable results, such as increased germination, enhanced functional and rheological characteristics, and the eradication of microorganisms. Consequently, CP is a novel technology in food processing that has significantly contributed to the prevention of food spoilage. This study highlights contemporary research on CP technology in food processing. This includes its use in microbial decontamination, shelf life extension, mycotoxin degradation, enzyme inactivation, and surface modification of food products. The CP generation techniques under low pressure, including glow discharge, radio frequency and microwave techniques, and atmospheric pressure, including dielectric barrier discharge (DBD), plasma jet, and corona discharge, are discussed. Additionally, the source for the generation of plasma-activated water (PAW) with its significant role in food processing is critically discussed. The CP is an effective method for the decontamination of several food materials like fruits, vegetables, meat, and low-moisture food products. Also, the review addressed the effects of CP on the physicochemical properties of foods and CP for pretreatment in various aspects of food processing, including drying of food, extraction of bioactive compounds, and oil hydrogenation. CP improved the drying kinetics of food, resulting in reduced processing time and improved product quality. Similarly, CP is effective in maintaining food safety and quality, removing the formation of biofilm, and also in reducing protein allergenicity. The review also underscored the importance of CP as a sterilizing agent for food packaging materials, emphasizing its role in enhancing the barrier characteristics of biopolymer-based food packaging materials. Therefore, it is concluded that CP is effective in the reduction of pathogenic microorganisms from food products. Moreover, it is effective in maintaining the nutritional and sensory properties of food products. Overall, it is effective for application in all aspects of food processing. There is a critical need for ongoing research on upscaling for commercial purposes.
Collapse
Affiliation(s)
- Ramesh Sharma
- Department of Food Technology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, India
| | - Pinku Chandra Nath
- Research and Development Cell, Manav Rachna International Institute of Research and Studies (Deemed to Be University), Faridabad, Haryana, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo, China
| | | | - Praveen Kumar Dikkala
- Department of Food Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, India
| |
Collapse
|
5
|
Zhang C, Luo Y, Deng Z, Du R, Han M, Wu J, Zhao W, Guo R, Hou Y, Wang S. Recent advances in cold plasma technology for enhancing the safety and quality of meat and meat products: A comprehensive review. Food Res Int 2025; 202:115701. [PMID: 39967157 DOI: 10.1016/j.foodres.2025.115701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 02/20/2025]
Abstract
Meat and meat products constitute an important component of the diet for several populations around the world and fulfill various nutritional requirements of the human body. However, owing to the inherent characteristics of meat - including its susceptibility to oxidation and contamination with foodborne pathogens - meat and meat products perish easily. In recent years, with improvements in living standards and increased focus on nutrition and health among consumers, non-thermal food processing technologies have received increasing attention. Among these strategies, cold plasma (CP) technology has emerged as a promising and novel processing technique with substantial potential in preserving meat and meat products. In this review, we discussed and analyzed the effects of CP on the nutritional value, sensory quality, and safety of meat and meat products, particularly, the potential toxicological hazards. Furthermore, we provided a detailed introduction to the mechanisms about how CP affects microorganisms, highlighting its role in inducing apoptosis and inhibiting quorum sensing. In the base of these theoretical foundations, this paper proposed several practical recommendations in order to optimize CP technology. Finally, we summarized the potential applications of CP in meat preservation, aiming to establish a theoretical framework for further research and application of this technology.
Collapse
Affiliation(s)
- Changyan Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Yulong Luo
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China.
| | - Ziyao Deng
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Rui Du
- Yinchuan Agricultural Product Quality Testing Center, Yinchuan Agriculture and Rural Bureau, Yinchuan 750021 PR China
| | - Mei Han
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Junqin Wu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Wenxiu Zhao
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Rong Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Yanru Hou
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Songlei Wang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| |
Collapse
|
6
|
Chen J, Ma H, Guo A, Lv M, Pan Q, Ya S, Wang H, Pan C, Jiang L. Influence of (ultra-)processing methods on aquatic proteins and product quality. J Food Sci 2024; 89:10239-10251. [PMID: 39503310 DOI: 10.1111/1750-3841.17437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 12/28/2024]
Abstract
Aquatic products are a high-quality source of protein for humans, and the changes in protein during aquatic product processing are crucial for nutritional value, product performance, and consumer health. With the advancement of science and technology, aquatic product processing methods have become increasingly diverse. In addition to traditional methods such as thermal processing (steaming, roasting, and frying) and pickling, emerging non-thermal processing technologies, such as high pressure, ultrasound, and irradiation, are also being applied. During (ultra-)processing, aquatic products undergo complex biochemical reactions, among which protein oxidation significantly affects the quality of aquatic products. Protein oxidation can alter the molecular structure of proteins, thereby changing their functional properties and ultimately impacting product quality. This paper primarily explored the effects of protein changes under different processing methods on aquatic product quality and human health, as well as techniques for controlling protein oxidation. It aims to provide a theoretical basis for selecting appropriate processing methods, improving aquatic product quality, and controlling protein oxidation in aquatic products, and to offer scientific guidance for practical production.
Collapse
Affiliation(s)
- Jingjing Chen
- Tourism and Health Vocational College, Zhoushan Islands New Area, Zhoushan, China
| | - Huawei Ma
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Ailing Guo
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Min Lv
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Qingyan Pan
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Shiya Ya
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Hui Wang
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Chuanyan Pan
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Linyuan Jiang
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| |
Collapse
|
7
|
Spanou A, Tzamarias AE, Ladakis D, Koutinas A, Tsironi T. In-package cold atmospheric plasma processing for shelf-life extension of gilthead seabream (Sparus aurata) fillets. J Food Sci 2024; 89:4714-4729. [PMID: 38922946 DOI: 10.1111/1750-3841.17179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
In-package cold atmospheric plasma (CAP) processing, which refers to the generation of CAP inside a sealed package, enables a local disinfecting reaction, allowing no post-process contamination and extending the shelf-life (SL) of perishable food products, such as fresh fish. In the present study, four in-package CAP treatments, differing in frequency and processing time, were applied on fresh gilthead seabream (Sparus aurata) fillets, prepacked in low-permeability pouches. Fish SL was evaluated during isothermal storage at 2°C, whereas untreated packaged fillets were used as control samples. The SL assessment of the fish fillets was based on microbial enumeration of total aerobic mesophilic count (TMC), total aerobic psychrotrophic count (TPC), Pseudomonas spp., Enterobacteriaceae, and lactic acid bacteria (LAB), pH measurement, determination of color and texture parameters, lipid oxidation, total volatile basic nitrogen (TVB-N) measurement, and sensory evaluation. All CAP treatments were effective against microbial inhibition in fish fillets, especially regarding TMC, TPC, and Pseudomonas spp., resulting in maximum reduction of 1.49, 1.24, and 1.43 log CFU/g, respectively, compared to the control samples after 16 days of storage. However, minor effect was observed against Enterobacteriaceae and no effect against LAB. CAP processing did not affect the color and texture parameters of fish fillets, and TVB-N production was slightly reduced in CAP-treated samples; however, lipid oxidation was accelerated, especially at the more intense processing conditions, by a maximum of 75.5%. The results of the study indicated that in-package CAP processing could be effectively applied for inhibiting spoilage during refrigerated storage and extending SL of fresh fish fillets. PRACTICAL APPLICATION: In-package cold atmospheric plasma (CAP) processing was tested on gilthead seabream fillets, a highly perishable product with high commercial potential if its shelf-life can be extended through minimal processing. The food industry could benefit from in-package CAP technology as it is a cost effective nonthermal processing method while preventing post-processing contamination of the products. Although in-package CAP processing has not been extensively tested on fish, this study examined the quality and shelf-life of a highly perishable fish species, and the results could be further used as a reference for processing optimization of the CAP treatments.
Collapse
Affiliation(s)
- Aikaterini Spanou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | | | - Dimitrios Ladakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Theofania Tsironi
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
8
|
Alaguthevar R, Packialakshmi JS, Murugesan B, Rhim JW, Thiyagamoorthy U. In-package cold plasma treatment to extend the shelf life of food. Compr Rev Food Sci Food Saf 2024; 23:e13318. [PMID: 38532699 DOI: 10.1111/1541-4337.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024]
Abstract
Conventional food preservation methods such as heat treatment, irradiation, chemical treatment, refrigeration, and coating have various disadvantages, like loss of food quality, nutrition, and cost-effectiveness. Accordingly, cold plasma is one of the new technologies for food processing and has played an important role in preventing food spoilage. Specifically, in-package cold plasma has become a modern trend to decontaminate, process, and package food simultaneously. This strategy has proven successful in processing various fresh food ingredients, including spinach, fruits, vegetables, and meat. In particular, cold plasma treatment within the package reduces the risk of post-processing contamination. Cryoplasm decontamination within packaging has been reported to reduce significantly the microbial load of many foods' spoilage-causing pathogens. However, studies are needed to focus more on the effects of in-package treatments on endogenous enzyme activity, pest control, and removal of toxic pesticide residues. In this review, we comprehensively evaluated the efficacy of in-package low-temperature plasma treatment to extend the shelf life of various foods. The mechanisms by which cold plasma interacts with food were investigated, emphasizing its effects on pathogen reduction, spoilage mitigation, and surface modification. The review also critically assessed the effects of the treatments on food quality, regulatory considerations, and their potential as viable technologies to improve food safety and packaging life. In-package cold plasma treatment could revolutionize food storage when combined with other sophisticated technologies such as nanotechnology.
Collapse
Affiliation(s)
- Ramalakshmi Alaguthevar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
- Department of Food Process Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Balakrishnan Murugesan
- Department of Food Process Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - UmaMaheshwari Thiyagamoorthy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
- Department of Soil Science and Agricultural Chemistry, ADAC & RI, Tamil Nadu Agricultural University, Trichy, Tamil Nadu, India
| |
Collapse
|
9
|
Sang X, Wang Y, Wang J, Cai Z, Zeng L, Deng W, Zhang J, Jiang Z. Effects of Gas Composition on the Lipid Oxidation and Fatty Acid Concentration of Tilapia Fillets Treated with In-Package Atmospheric Cold Plasma. Foods 2024; 13:165. [PMID: 38201193 PMCID: PMC10779136 DOI: 10.3390/foods13010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Cold plasma (CP) is a non-thermal preservation technology that has been successfully used to decontaminate and extend the shelf life of aquatic products. However, the preservation effect of CP treatment is determined by several factors, including voltage, time, and gas compositions. Therefore, this study aimed to investigate the effects of gas composition (GasA: 10% O2, 50% N2, 40% CO2; GasB: air; GasC: 30% O2, 30% N2, 40% CO2) on the lipid oxidation of tilapia fillets treated after CP treatment. Changes in the lipid oxidation values, the percentages of fatty acids, and sensory scores were studied during 8 d of refrigerator storage. The results showed that the CP treatment significantly increased all the primary and secondary lipid oxidation values measured in this study, as well as the percentages of saturated fatty acids, but decreased the percentages of unsaturated fatty acids, especially polyunsaturated fatty acids. The lipid oxidation values were significantly increased in the GasC-CP group. After 8 d, clearly increased percentages of saturated fatty acids, a low level of major polyunsaturated fatty acids (especially linoleic (C18:2n-6)), and a decrease in the percentages of eicosapentaenoic acid (C20:5n-3) and docosahexaenoic acid (C22:6n-3) were found in GasC-CP; that is, the serious oxidation of lipids was found in the high O2 concentration group. In addition, the sensory score was also lower than that of the hypoxia CP group. Therefore, high O2 concentrations can enhance lipid oxidation and the changes in the fatty acid concentration. Controlling the O2 concentration is reasonable to limit the degree to which lipids are oxidized in tilapia after the in-package CP treatment.
Collapse
Affiliation(s)
- Xiaohan Sang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.S.); (Y.W.); (Z.C.); (L.Z.); (W.D.)
| | - Yuanyuan Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.S.); (Y.W.); (Z.C.); (L.Z.); (W.D.)
| | - Jiamei Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.S.); (Y.W.); (Z.C.); (L.Z.); (W.D.)
| | - Zhicheng Cai
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.S.); (Y.W.); (Z.C.); (L.Z.); (W.D.)
| | - Lixian Zeng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.S.); (Y.W.); (Z.C.); (L.Z.); (W.D.)
| | - Wentao Deng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.S.); (Y.W.); (Z.C.); (L.Z.); (W.D.)
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210014, China;
| | - Zhumao Jiang
- College of Life Sciences, Yantai University, Yantai 264005, China;
| |
Collapse
|
10
|
Ying X, Li T, Deng S, Brennan C, Benjakul S, Liu H, Wang F, Xie X, Liu D, Li J, Xiao G, Ma L. Advancements in nonthermal physical field technologies for prefabricated aquatic food: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13290. [PMID: 38284591 DOI: 10.1111/1541-4337.13290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024]
Abstract
Aquatic foods are nutritious, enjoyable, and highly favored by consumers. In recent years, young consumers have shown a preference for prefabricated food due to its convenience, nutritional value, safety, and increasing market share. However, aquatic foods are prone to microbial spoilage due to their high moisture content, protein content, and unsaturated fatty acids. Furthermore, traditional processing methods of aquatic foods can lead to issues such as protein denaturation, lipid peroxidation, and other food safety and nutritional health problems. Therefore, there is a growing interest in exploring new technologies that can achieve a balance between antimicrobial efficiency and food quality. This review examines the mechanisms of cold plasma, high-pressure processing, photodynamic inactivation, pulsed electric field treatment, and ultraviolet irradiation. It also summarizes the research progress in nonthermal physical field technologies and their application combined with other technologies in prefabricated aquatic food. Additionally, the review discusses the current trends and developments in the field of prefabricated aquatic foods. The aim of this paper is to provide a theoretical basis for the development of new technologies and their implementation in the industrial production of prefabricated aquatic food.
Collapse
Affiliation(s)
- Xiaoguo Ying
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Taiyu Li
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Shanggui Deng
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Charles Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Australia
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand
| | - Huifan Liu
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Feng Wang
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xi Xie
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dongjie Liu
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jun Li
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gengsheng Xiao
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lukai Ma
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
11
|
Liu C, Wan J, Wang Y, Chen G. Effects of Cold Plasma Treatment Conditions on the Lipid Oxidation Kinetics of Tilapia Fillets. Foods 2023; 12:2845. [PMID: 37569114 PMCID: PMC10417625 DOI: 10.3390/foods12152845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
This study investigated the effects of different cold plasma treatment conditions on the lipid oxidation kinetics of tilapia fillets. The results indicated that increasing the voltage and prolonging the treatment time of cold plasma could cause an increase in the peroxide value and thiobarbituric acid-reactive substance values of the fillets. The changes in the primary and secondary oxidation rates of the lipids in the fillets under different treatment conditions were consistent with zero-order reaction kinetics. The analysis of the fitting of the Arrhenius equation showed that the effect of treatment voltage on the activation energy of lipid oxidation was higher than that of treatment time. When the voltage was higher than 64.71 kV, the activation energy of the primary oxidation of lipids was greater than that of secondary oxidation. Within 0-5 min, the activation energy of primary oxidation first increased then decreased, and was always greater than that of secondary oxidation. Therefore, the primary lipid oxidation of tilapia was more sensitive to the treatment conditions of cold plasma.
Collapse
Affiliation(s)
- Chencheng Liu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.L.); (Y.W.); (G.C.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jiamei Wan
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.L.); (Y.W.); (G.C.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yuanyuan Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.L.); (Y.W.); (G.C.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Gu Chen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.L.); (Y.W.); (G.C.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
12
|
Xu J, Sun Q, Dong X, Gao J, Wang Z, Liu S. Insight into the microorganisms, quality, and protein structure of golden pompano ( Trachinotus ovatus) treated with cold plasma at different voltages. Food Chem X 2023; 18:100695. [PMID: 37234402 PMCID: PMC10206424 DOI: 10.1016/j.fochx.2023.100695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Cold plasma (CP) is a non-thermal novel technology for the processing of heat-sensitive food products, but there is concern regarding its impact on food quality. Voltage is one of the most direct factors affecting the bacteriostatic effect of CP. Golden pompano (Trachinotus ovatus) was treated with CP at different voltages (10, 20, and 30 kV). The total viable count decreased as the CP voltage increased, reaching a maximum reduction of 1.54 lg CFU/g on golden pompano treated at 30 kV. No effects on water-holding capacity, pH, total volatile base nitrogen, and T2b relaxation time were observed, indicating that all CP treatments retained the freshness and bound water of the samples. However, as the CP voltage increased, peroxide value and thiobarbituric acid-reactive substances of golden pompano gradually increased, the protein tertiary structure unfolded, and α-helices converted to β-sheets, indicating inevitable lipid and protein oxidation caused by excessive CP voltage. Therefore, a suitable voltage of CP should be selected to inhibits the growth of microorganisms, which avoids deterioration of sea-foods quality.
Collapse
Affiliation(s)
- Jie Xu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Zefu Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
13
|
In-package cold plasma treatment for microbial inactivation in plastic-pouch packaged steamed rice cakes. Int J Food Microbiol 2023; 389:110108. [PMID: 36736172 DOI: 10.1016/j.ijfoodmicro.2023.110108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
In-package atmospheric cold plasma (ICP) treatment was investigated as a method to inactivate microorganisms in Korean steamed rice cakes (SRCs) packaged in plastic pouches. The effect against Escherichia coli O157:H7 increased with increasing ICP treatment power and time and using nylon-containing pouches. Moreover, E. coli O157:H7 growth was effectively inhibited at 4 and 25 °C when SRCs were in a pouch filled with an O2-CO2 (70 % and 30 %) gas. Under optimal treatment power (30 W), treatment time (4 min), and headspace-to-SRC volume ratio (7:1) conditions, ICP effectively inactivated E. coli O157:H7, Bacillus cereus spores, Penicillium chrysogenum, and indigenous aerobic bacteria, as well as yeast and molds in SRCs packaged with air in the nylon/low density polyethylene pouch by 2.2 ± 0.2 log CFU/g, 1.4 ± 0.2 log spores/g, 2.2 ± 0.3 log spores/g, 1.1 ± 0.2 log CFU/g, and 1.0 ± 0.1 log CFU/g, respectively. Furthermore, post-treatment storage was effective in preventing the growth of E. coli O157:H7 in SRCs at 4 °C and 25 °C when the pouch was filled with N2-CO2 (50 % and 50 %) or O2-CO2 (70 % and 30 %). Collectively, these findings indicate that ICP treatment effectively decontaminates SRCs and represents a potential non-thermal microbial decontamination technology for SRCs in pouch packaging.
Collapse
|
14
|
Roshanak S, Maleki M, Sani MA, Tavassoli M, Pirkhezranian Z, Shahidi F. The impact of cold plasma innovative technology on quality and safety of refrigerated hamburger: Analysis of microbial safety and physicochemical properties. Int J Food Microbiol 2023; 388:110066. [PMID: 36610235 DOI: 10.1016/j.ijfoodmicro.2022.110066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/15/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
Atmospheric cold plasma (ACP) is an innovative non-thermal decontamination technology that is considered a great alternative to conventional preservation methods. Most importantly, improving microbial safety along with maintaining the sensory and quality properties of the treated foods, especially for perishable products. Hence, this study aimed to investigate the antimicrobial effects of novel dielectric barrier discharge (DBD) and Jet cold plasma systems and their impact on the physicochemical, color, and sensory properties of refrigerated hamburger samples. In the current study, hamburger samples were inoculated with Staphylococcus aureus, Escherichia coli, Molds and Yeasts microbial suspension (~106 CFU/mL), and then were treated with argon (Ar), helium (He), nitrogen (N), and atmosphere (Atm) gases at different times (s) (0, 30, 60, 90, 180, 360). Similarly, uninoculated samples were considered for total viable count (TVC) testing. The results exhibited that plasma system type, gas type, and treatment time had a significant antimicrobial effect with a microbial reduction ranging from 0.01 to 2 log CFU/g and 0.04-1.5 log CFU/g for DBD and Jet plasma systems, respectively. Also, a treatment time longer than 90 s for DBD and 180 s for jet resulted in a significant reduction in microbial count. The ability of atmospheric cold plasma to inactivate tested foodborne pathogenic bacteria (E. coli and S. aureus) was stronger than other gases because the concentration of O3 and NO gases in atmospheric plasma is higher than other used plasma gases. Surface color measurements (L*, a* and b*) of samples in both methods (DBD and Jet) were not significantly affected. Moreover, samples treated with various plasma gases have indicated insignificant oxidation changes (Thiobarbituric acid assay). These outcomes can assist to reduce microbial contamination and oxidation of hamburgers as a high-consumption and perishable product using ACP technology. Owing to the non-thermal nature of ACP, samples treated with ACP have exhibited no or least effects on the physical, chemical, and sensory features of various food products. As a result, cold plasma innovative technology can be proposed and used as an efficient preservative method to increase the shelf life of food products.
Collapse
Affiliation(s)
- Sahar Roshanak
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Maleki
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Tavassoli
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zana Pirkhezranian
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fakhri Shahidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
15
|
Chanioti S, Giannoglou M, Stergiou P, Passaras D, Dimitrakellis P, Kokkoris G, Gogolides E, Katsaros G. Plasma-activated water for disinfection and quality retention of sea bream fillets: Kinetic evaluation and process optimization. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
16
|
Huang JB, Kong XW, Chen YY, Chen J. Assessment of flavor characteristics in snakehead ( Ophiocephalus argus Cantor) surimi gels affected by atmospheric cold plasma treatment using GC-IMS. Front Nutr 2023; 9:1086426. [PMID: 36712526 PMCID: PMC9875017 DOI: 10.3389/fnut.2022.1086426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/29/2022] [Indexed: 01/12/2023] Open
Abstract
The gel formation ability of freshwater surimi is weak, resulting in its poor flavor and quality. Atmospheric cold plasma (ACP), a widely developed non-thermal processing technology in the food industry, is considered to have potential applications in maintaining and improving the flavor characteristics of surimi gels. In this study, the effect of ACP on snakehead surimi gels flavor at different treatment times was investigated by sensory evaluation and gas chromatography-ion mobility spectrometry (GC-IMS) analysis. The results showed that ACP could better maintain and improve the original appearance and tissue state characteristics of surimi gels, scoring about 1-2 points higher than the ACP-untreated group. GC-IMS analysis demonstrated the obvious difference in the volatile organic compounds (VOCs) among the treatment groups. Specifically, the samples treated for 120 s with ACP exhibited the most unique aroma characteristics, which probably related to the highest thiobarbituric acid reactive substances values (73.28 μmol MDA/kg sample). Meanwhile, the reduced TCA-soluble peptides content indicated that ACP could inhibit protein degradation to maintaining the tissue state and flavor characteristics of the surimi gels. In conclusion, the advantages of ACP treatment, such as little damage to nutrients, and maximum retention of original sensory properties, provide new ideas for its application in the flavor characteristics of the snakehead surimi gels.
Collapse
Affiliation(s)
- Jia-bao Huang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xian-wang Kong
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, China
| | - Ying-yun Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Jing Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China,Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan, China,*Correspondence: Jing Chen,
| |
Collapse
|
17
|
Plasma activated water offers food security opportunities by increasing shelf life of freshwater fisheries products in South Africa. Food Secur 2023. [DOI: 10.1007/s12571-022-01334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Xie H, Zhang L, Chen Q, Hu J, Zhang P, Xiong H, Zhao Q. Combined effects of drying methods and limited enzymatic hydrolysis on the physicochemical and antioxidant properties of rice protein hydrolysates. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Paulsen P, Csadek I, Bauer A, Bak KH, Weidinger P, Schwaiger K, Nowotny N, Walsh J, Martines E, Smulders FJM. Treatment of Fresh Meat, Fish and Products Thereof with Cold Atmospheric Plasma to Inactivate Microbial Pathogens and Extend Shelf Life. Foods 2022; 11:3865. [PMID: 36496672 PMCID: PMC9740106 DOI: 10.3390/foods11233865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Assuring the safety of muscle foods and seafood is based on prerequisites and specific measures targeted against defined hazards. This concept is augmented by 'interventions', which are chemical or physical treatments, not genuinely part of the production process, but rather implemented in the framework of a safety assurance system. The present paper focuses on 'Cold Atmospheric pressure Plasma' (CAP) as an emerging non-thermal intervention for microbial decontamination. Over the past decade, a vast number of studies have explored the antimicrobial potential of different CAP systems against a plethora of different foodborne microorganisms. This contribution aims at providing a comprehensive reference and appraisal of the latest literature in the area, with a specific focus on the use of CAP for the treatment of fresh meat, fish and associated products to inactivate microbial pathogens and extend shelf life. Aspects such as changes to organoleptic and nutritional value alongside other matrix effects are considered, so as to provide the reader with a clear insight into the advantages and disadvantages of CAP-based decontamination strategies.
Collapse
Affiliation(s)
- Peter Paulsen
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Isabella Csadek
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | | | - Kathrine H. Bak
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Pia Weidinger
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Karin Schwaiger
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - James Walsh
- Centre for Plasma Microbiology, University of Liverpool, Liverpool L69 3BX, UK
| | - Emilio Martines
- Department of Physics “G. Occhialini”, University of Milano—Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - Frans J. M. Smulders
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
20
|
Mol S, Akan T, Kartal S, Coşansu S, Tosun ŞY, Alakavuk DÜ, Ulusoy Ş, Doğruyol H, Bostan K. Effects of Air and Helium Cold Plasma on Sensory Acceptability and Quality of Fresh Sea Bass (Dicentrarchus labrax). FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02950-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Evaluation of storage quality of vacuum-packaged silver Pomfret (Pampus argenteus) treated with combined ultrasound and plasma functionalized liquids hurdle technology. Food Chem 2022; 391:133237. [DOI: 10.1016/j.foodchem.2022.133237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/27/2022] [Accepted: 05/15/2022] [Indexed: 01/06/2023]
|
22
|
Cai Z, Wang J, Liu C, Chen G, Sang X, Zhang J. Effects of High Voltage Atmospheric Cold Plasma Treatment on the Number of Microorganisms and the Quality of Trachinotus ovatus during Refrigerator Storage. Foods 2022; 11:2706. [PMID: 36076891 PMCID: PMC9455416 DOI: 10.3390/foods11172706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
In order to investigate the effects of high voltage atmospheric cold plasma (HVACP) treatment on the number of microorganisms in and the quality of Trachinotus ovatus during refrigerator storage, fresh fish was packaged with gases CO2:O2:N2 (80%:10%:10%) and treated by HVACP at 75 kV for 3 min; then, the samples were stored at 4 ± 1 °C for nine days. The microbial numbers, water content, color value, texture, pH value, thiobarbituric acid reactive substance (TBARS), and total volatile base nitrogen (TVB-N) values of the fish were analyzed during storage. The results showed the growth of the total viable bacteria (TVB), psychrophilic bacteria, Pseudomonas spp., H2S-producing bacteria, yeast, and lactic acid bacteria in the treated samples was limited, and they were 1.11, 1.01, 1.04, 1.13, 0.77, and 0.80 log CFU/g-1 lower than those in the control group after nine days of storage, respectively. The hardness, springiness, and chewiness of the treated fish decreased slowly as the storage time extended, and no significant changes in either pH or water content were found. The lightness (L*) value increased and the yellowness (b*) value decreased after treatment, while no changes in the redness (a*) value were found. The TBARS and TVB-N of the treated samples increased to 0.79 mg/kg and 21.99 mg/100 g, respectively, after nine days of refrigerator storage. In conclusion, HVACP can limit the growth of the main microorganisms in fish samples effectively during nine days of refrigerator storage with no significant negative impact on their quality. Therefore, HVACP is a useful nonthermal technology to extend the refrigerator shelf-life of Trachinotus ovatus.
Collapse
Affiliation(s)
- Zhicheng Cai
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiamei Wang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Chencheng Liu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Gu Chen
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaohan Sang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
23
|
Characteristics of myoglobin degradation by cold plasma and its pro-oxidative activity on lipid in washed fish muscle. Food Chem 2022; 389:132972. [DOI: 10.1016/j.foodchem.2022.132972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/27/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022]
|
24
|
Wang J, Fu T, Wang Y, Zhang J. Effects of High-Voltage Atmospheric Cold Plasma Treatment on Microbiological and Quality Characters of Tilapia Fillets. Foods 2022; 11:2398. [PMID: 36010396 PMCID: PMC9407128 DOI: 10.3390/foods11162398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cold plasma (CP) has become an alternative to conventional thermal processing of food products. In this study, the effect of cold plasma treatment time on the inactivation and quality of tilapia fillets was investigated. The surfaces of tilapia fillets were inoculated with Salmonella enteritis (S. enteritis), Listeria monocytogenes (L. monocytogenes), and a mixture of both before being treated with cold plasma at 70 kV for 0, 60, 120, 180, 240, and 300 s. With the extension of treatment time, the number of colonies on the surface of the fillets decreased gradually; after 300 s of cold plasma treatment, S. enteritis and L. monocytogenes populations were reduced by 2.34 log CFU/g and 1.69 log CFU/g, respectively, and the a* value and immobile water content decreased significantly (p < 0.05), while the free water content increased significantly (p < 0.05). TBARS value increased significantly (p < 0.05) to 1.83 mg MDA/kg for 300 s treatment. The carbonyl value and sulfhydryl value of sarcoplasmic protein significantly (p < 0.05) increased and decreased, respectively, as treatment time extension, while no significant changes were found in myofibrillar protein. No significant differences were observed in pH, b* value, elasticity, chewiness, thiol value, and TVB-N value. The results showed that cold plasma had an inactivation effect on tilapia fillets and could preserve their original safety indicators. It was concluded that CP treatment could be used as an effective non-thermal method to maintain the quality of tilapia fillets and extend their shelf-life.
Collapse
Affiliation(s)
- Jiamei Wang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Tengfei Fu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Yuanyuan Wang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
25
|
Wang J, Fu T, Sang X, Liu Y. Effects of high voltage atmospheric cold plasma treatment on microbial diversity of tilapia (Oreochromis mossambicus) fillets treated during refrigeration. Int J Food Microbiol 2022; 375:109738. [DOI: 10.1016/j.ijfoodmicro.2022.109738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022]
|
26
|
Tagrida M, Benjakul S. Liposomes loaded with betel leaf (Piper betle L.) extract: Antibacterial activity and preservative effect in combination with hurdle technologies on tilapia slices. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Akhtar J, Abrha MG, Teklehaimanot K, Gebrekirstos G. Cold plasma technology: fundamentals and effect on quality of meat and its products. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2095987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Javeed Akhtar
- Department of Chemical Engineering, College of Engineering and Technology, Adigrat University, Adigrat, Ethiopia
| | - Mebrhit Gebremariam Abrha
- Department of Chemical Engineering, College of Engineering and Technology, Adigrat University, Adigrat, Ethiopia
| | - Kiros Teklehaimanot
- Department of Chemical Engineering, College of Engineering and Technology, Adigrat University, Adigrat, Ethiopia
| | - Gebremeskel Gebrekirstos
- Department of Chemical Engineering, College of Engineering and Technology, Adigrat University, Adigrat, Ethiopia
| |
Collapse
|
28
|
Decontamination of chicken meat using dielectric barrier discharge cold plasma technology: The effect on microbial quality, physicochemical properties, topographical structure, and sensory attributes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Hernández-Torres CJ, Reyes-Acosta YK, Chávez-González ML, Dávila-Medina MD, Kumar Verma D, Martínez-Hernández JL, Narro-Céspedes RI, Aguilar CN. Recent trends and technological development in plasma as an emerging and promising technology for food biosystems. Saudi J Biol Sci 2022; 29:1957-1980. [PMID: 35531194 PMCID: PMC9072910 DOI: 10.1016/j.sjbs.2021.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 01/18/2023] Open
Abstract
The rising need for wholesome, fresh, safe and “minimally-processed” foods has led to pioneering research activities in the emerging non-thermal technology of food processing. Cold plasma is such an innovative and promising technology that offers several potential applications in the food industry. It uses the highly reactive, energetic and charged gas molecules and species to decontaminate the food and package surfaces and preserve the foods without causing thermal damage to the nutritional and quality attributes of food. Cold plasma technology showed promising results about the inactivation of pathogens in the food industry without affecting the food quality. It is highly effective for surface decontamination of fruits and vegetables, but extensive research is required before its commercial utilization. Recent patents are focused on the applications of cold plasma in food processing and preservation. However, further studies are strongly needed to scale up this technology for future commercialization and understand plasma physics for getting better results and expand the applications and benefits. This review summarizes the emerging trends of cold plasma along with its recent applications in the food industry to extend shelf life and improve the quality of food. It also gives an overview of plasma generation and principles including mechanism of action. Further, the patents based on cold plasma technology have also been highlighted comprehensively for the first time.
Collapse
Affiliation(s)
- Catalina J. Hernández-Torres
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Yadira K. Reyes-Acosta
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - Mónica L. Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Miriam D. Dávila-Medina
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - José L. Martínez-Hernández
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Rosa I. Narro-Céspedes
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Cristóbal N. Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| |
Collapse
|
30
|
Huotari J, Tsitko I, Honkapää K, Alakomi HL. Characterization of Microbiological Quality of Whole and Gutted Baltic Herring. Foods 2022; 11:foods11040492. [PMID: 35205969 PMCID: PMC8871270 DOI: 10.3390/foods11040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022] Open
Abstract
There is growing interest in Baltic herring (Clupea harengus membras) and other undervalued, small-sized fish species for human consumption. Gutting or filleting of small-sized fish is impractical; hence, the aim of this study was to explore the suitability of the whole (ungutted) herring for food use. The microbiological quality of commercially fished whole and gutted herring was analysed with culture-dependent methods combined with identification of bacterial isolates with MALDI-TOF Mass Spectrometry and culture-independent 16S rRNA gene amplicon sequencing. Whole and gutted herring had between 2.8 and 5.3 log10 CFU g−1 aerobic mesophilic and psychrotrophic bacteria and between 2.2 and 5.6 log10 CFU g−1 H₂S-producing bacteria. Enterobacteria counts remained low in all the analysed herring batches. The herring microbiota largely comprised the phyla Proteobacteria, Firmicutes, and Actinobacteria (71.7% to 95.0%). Shewanella, Pseudomonas, and Aeromonas were the most frequently isolated genera among the viable population; however, with the culture-independent approach, Shewanella followed by Psychrobacter were the most abundant genera. In some samples, a high relative abundance of the phylum Epsilonbacteraeota, represented by the genus Arcobacter, was detected. This study reports the bacterial diversity present in Baltic herring and shows that the microbiological quality was acceptable in all the analysed fish batches.
Collapse
|
31
|
Zhou R, Rezaeimotlagh A, Zhou R, Zhang T, Wang P, Hong J, Soltani B, Mai-Prochnow A, Liao X, Ding T, Shao T, Thompson EW, Ostrikov K(K, Cullen PJ. In-package plasma: From reactive chemistry to innovative food preservation technologies. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Pei J, Mei J, Yu H, Qiu W, Xie J. Effect of Gum Tragacanth-Sodium Alginate Active Coatings Incorporated With Epigallocatechin Gallate and Lysozyme on the Quality of Large Yellow Croaker at Superchilling Condition. Front Nutr 2022; 8:812741. [PMID: 35118111 PMCID: PMC8804529 DOI: 10.3389/fnut.2021.812741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/08/2021] [Indexed: 01/05/2023] Open
Abstract
This research was done to investigate the synergistic interactions of the gum tragacanth (GT)–sodium alginate (SA) active coatings, incorporated with epigallocatechin gallate and lysozyme, on the quality of large yellow croaker (Larimichthys crocea) during superchilling storage at −3°C. Results showed that the GT-SA active coatings, containing epigallocatechin gallate [EGCG (E), 0.32% w/v], and lysozyme [LYS (L), 0.32% w/v] have reduced the total viable count, psychrophilic bacteria, and Pseudomonas spp. by about 1.55 log CFU/g, 0.49 log CFU/g, and 1.64 log CFU/g compared to the control at day 35. The GT-SA active coatings containing EGCG and LYS were effective in lowering the formations of off-odor compounds such as total volatile basic nitrogen (TVB-N), malondialdehyde (MDA), and off-favor amino acid (histidine). The solid phase microextraction gas chromatography-mass spectrometer (SPME-GC/MS) was applied to characterize and to quantify the volatile compounds of large yellow croaker samples during superchilling storage, while the relative content of the fishy flavor compounds (including 1-octen-3-ol and acetoin) was significantly reduced in the active coatings treated samples. Furthermore, the GT-SA active coatings containing EGCG and LYS treatments was found to be more effective in retarding the migration of water based on magnetic resonance imaging (MRI) results and in maintaining the organoleptic quality of large yellow croaker in superchilling storage at −3°C according to the sensory evaluation results. The results showed that the GT-SA active coating containing EGCG and LYS was effective to be used as a fish preservative to improve the quality and to prolong the shelf life of large yellow croaker in a superchilling storage for at least 7 days.
Collapse
Affiliation(s)
- Juxin Pei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
- *Correspondence: Jun Mei
| | - Huijie Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weiqiang Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
- Jing Xie
| |
Collapse
|
33
|
|
34
|
Singh AK, Malviya R, Rao GSNK. Locust Bean Gum: Processing, Properties and Food Applications. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2022; 13:93-102. [PMID: 36345241 DOI: 10.2174/2772574x14666221107104357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/29/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Locust bean gum is derived from the seed endosperm of the Ceratonia siliqua carob tree and is known as locust bean or carob gum. Food, medicines, paper, textile, oil drilling, and cosmetic sectors all use it as an ingredient. Hydrogen bonding with water molecules makes locust bean gum useful in industrial settings. In addition, its dietary fibre activity helps regulate numerous health issues, including diabetes, bowel motions, heart disease and colon cancer. Locust bean gum production, processing, composition, characteristics, culinary applications, and health advantages are the subject of this article.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | | |
Collapse
|
35
|
Abel N, Rotabakk BT, Lerfall J. Mild processing of seafood-A review. Compr Rev Food Sci Food Saf 2021; 21:340-370. [PMID: 34913247 DOI: 10.1111/1541-4337.12876] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022]
Abstract
Recent years have shown a tremendous increase in consumer demands for healthy, natural, high-quality convenience foods, especially within the fish and seafood sector. Traditional processing technologies such as drying or extensive heating can cause deterioration of nutrients and sensory quality uncompilable with these demands. This has led to development of many novel processing technologies, which include several mild technologies. The present review highlights the potential of mild thermal, and nonthermal physical, and chemical technologies, either used alone or in combination, to obtain safe seafood products with good shelf life and preference among consumers. Moreover, applications and limitations are discussed to provide a clear view of the potential for future development and applications. Some of the reviewed technologies, or combinations thereof, have shown great potential for non-seafood products, yet data are missing for fish and seafood in general. The present paper visualizes these knowledge gaps and the potential for new technology developments in the seafood sector. Among identified gaps, the combination of mild heating (e.g., sous vide or microwave) with more novel technologies such as pulsed electric field, pulsed light, soluble gas stabilization, cold plasma, or Ohmic heat must be highlighted. However, before industrial applications are available, more research is needed.
Collapse
Affiliation(s)
- Nanna Abel
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Jørgen Lerfall
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
36
|
Cao J, Liu W, Mei J, Xie J. Effect of Locust Bean Gum-Sodium Alginate Coatings Combined with High CO 2 Modified Atmosphere Packaging on the Quality of Turbot ( Scophthalmus maximus) during Refrigerated Storage. Polymers (Basel) 2021; 13:polym13244376. [PMID: 34960928 PMCID: PMC8707299 DOI: 10.3390/polym13244376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
This research was conducted to investigate the effect of active coatings composed of locust bean gum (LBG) and sodium alginate (SA) containing daphnetin emulsions (DEs) combined with modified atmosphere packaging (MAP) on the microbiological and physicochemical properties of turbot during 4 °C refrigerated storage for 32 days. The results revealed that LBG-SA-DE coatings together with high CO2 MAP (60% CO2/35% N2/5% O2) maintained the total viable count (TVC) of H2S-producing bacteria in 4–6 lg CFU/g, which is lower than the limit (7 lg CFU/g). In addition, LBG-SA-DE coatings together with high CO2 MAP (60% CO2/35% N2/5% O2) inhibited the production of odor compounds, including thiobarbituric acid (TBA), trimethylamine-nitrogen (TMA-N), K value, and total volatile basic nitrogen (TVB-N). The low-field NMR analysis (LF-NMR) and magnetic resonance imaging (MRI) indicated that LBG-SA-DE coatings together with high CO2 MAP (60% CO2/35% N2/5% O2) treatments could delay the release of water located in muscle fiber macromolecules or convert it into free water based on muscle fiber destruction, thus maintaining the water content and migration. The results of the sensory evaluation showed that turbot treated with LBG-SA-DE coatings together with MAP could maintain its freshness during refrigerated storage.
Collapse
Affiliation(s)
- Jie Cao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (W.L.)
| | - Wenru Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (W.L.)
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (W.L.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- Correspondence: (J.M.); (J.X.); Tel.: +86-21-61900349 (J.M.); +86-21-61900351 (J.X.)
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (W.L.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- Correspondence: (J.M.); (J.X.); Tel.: +86-21-61900349 (J.M.); +86-21-61900351 (J.X.)
| |
Collapse
|
37
|
Hu C, Xie J. The effect of multiple freeze–thaw cycles on protein oxidation and quality of
Trachurus murphyi. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Chunlin Hu
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
| | - Jing Xie
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
| |
Collapse
|
38
|
Speranza B, Racioppo A, Bevilacqua A, Buzzo V, Marigliano P, Mocerino E, Scognamiglio R, Corbo MR, Scognamiglio G, Sinigaglia M. Innovative Preservation Methods Improving the Quality and Safety of Fish Products: Beneficial Effects and Limits. Foods 2021; 10:2854. [PMID: 34829142 PMCID: PMC8622261 DOI: 10.3390/foods10112854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022] Open
Abstract
Fish products are highly perishable, requiring proper processing to maintain their quality and safety during the entire storage. Different from traditional methods used to extend the shelf-life of these products (smoking, salting, marinating, icing, chilling, freezing, drying, boiling, steaming, etc.), in recent years, some alternative methods have been proposed as innovative processing technologies able to guarantee the extension of their shelf-life while minimally affecting their organoleptic properties. The present review aims to describe the primary mechanisms of some of these innovative methods applied to preserve quality and safety of fish products; namely, non-thermal atmospheric plasma (NTAP), pulsed electric fields (PEF), pulsed light (PL), ultrasounds (US) and electrolyzed water (EW) are analysed, focusing on the main results of the studies published over the last 10 years. The limits and the benefits of each method are addressed in order to provide a global overview about these promising emerging technologies and to facilitate their greater use at industrial level. In general, all the innovative methods analysed in this review have shown a good effectiveness to control microbial growth in fish products maintaining their organoleptic, nutritional and sensory characteristics. Most of the technologies have also shown the great advantage to have a lower energy consumption and shorter production times. In contrast, not all the methods are in the same development stage; thus, we suggest further investigations to develop one (or more) hurdle-like non-thermal method able to meet both food production requirements and the modern consumers' demand.
Collapse
Affiliation(s)
- Barbara Speranza
- Department of Agriculture Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (B.S.); (A.R.); (A.B.); (M.R.C.)
| | - Angela Racioppo
- Department of Agriculture Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (B.S.); (A.R.); (A.B.); (M.R.C.)
| | - Antonio Bevilacqua
- Department of Agriculture Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (B.S.); (A.R.); (A.B.); (M.R.C.)
| | - Veronica Buzzo
- UNCI AGROALIMENTARE, Via San Sotero 32, 00165 Roma, Italy; (V.B.); (P.M.); (E.M.); (R.S.)
| | - Piera Marigliano
- UNCI AGROALIMENTARE, Via San Sotero 32, 00165 Roma, Italy; (V.B.); (P.M.); (E.M.); (R.S.)
| | - Ester Mocerino
- UNCI AGROALIMENTARE, Via San Sotero 32, 00165 Roma, Italy; (V.B.); (P.M.); (E.M.); (R.S.)
| | - Raffaella Scognamiglio
- UNCI AGROALIMENTARE, Via San Sotero 32, 00165 Roma, Italy; (V.B.); (P.M.); (E.M.); (R.S.)
| | - Maria Rosaria Corbo
- Department of Agriculture Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (B.S.); (A.R.); (A.B.); (M.R.C.)
| | - Gennaro Scognamiglio
- UNCI AGROALIMENTARE, Via San Sotero 32, 00165 Roma, Italy; (V.B.); (P.M.); (E.M.); (R.S.)
| | - Milena Sinigaglia
- Department of Agriculture Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (B.S.); (A.R.); (A.B.); (M.R.C.)
| |
Collapse
|
39
|
Tagrida M, Benjakul S, Zhang B. Use of betel leaf (Piper betle L.) ethanolic extract in combination with modified atmospheric packaging and nonthermal plasma for shelf-life extension of Nile tilapia (Oreochromis niloticus) fillets. J Food Sci 2021; 86:5226-5239. [PMID: 34766340 DOI: 10.1111/1750-3841.15960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022]
Abstract
Fish is perishable and has the short shelf-life. To maintain its quality, it is necessary to implement the appropriate technology, particularly nonthermal processing along with safe additive, especially from plant origin under the concept of "hurdle technology". The use of potential vesicle including liposome for loading the plant extract could be a means to enhance the stability and activities of the extract. The current study aimed to evaluate the effect of liposomes loaded with betel leaf ethanolic extract (L/BLEEs) or unencapsulated BLEE (U/BLEE) in conjunction with modified atmospheric packaging (MAP) and nonthermal plasma (NTP) on the quality changes and shelf-life of Nile tilapia fillets (TFs) stored under refrigerated condition (4°C). TFs treated with L/BLEE or U/BLEE at 400 ppm, packed under modified atmosphere (CO2 :Ar:O2 = 60:30:10) and subjected to NTP for 300 s (L/BLEE-400/MAP-NTP and U/BLEE-400/MAP-NTP, respectively) had the lowest microbial and chemical changes during storage, while the control showed the highest changes (p < 0.05). Lipid oxidation was lower in these samples, ascertained by more retained polyunsaturated fatty acids and lower lipid oxidation based on Fourier transform infrared (FT-IR) spectra. Overall likeness scores were similar (p > 0.05) between all the samples at day 0 of storage. Only L/BLEE-400/MAP-NTP and U/BLEE-400/MAP-NTP were still sensorially acceptable after 12 days at 4°C. Therefore, L/BLEE or U/BLEE combined with MAP/NTP treatment could be adopted as a potent hurdle for shelf-life extension of TFs. PRACTICAL APPLICATION: Natural additives and nonthermal processing technologies have gained increasing interest for preservation of fish. Liposomes loaded with betel leaf ethanolic extract (L/BLEE) rich in polyphenolics could be used together with modified atmospheric packaging (MAP) and nonthermal plasma (NTP) to retard bacterial growth and chemical deterioration in Nile tilapia fillets. These hurdles were proven to be able to maintain the qualities of tilapia fillets stored at 4°C up to 12 days, especially when L/BLEE was used at 400 ppm. Therefore, shelf-life extension of Nile tilapia fillets or other fish can be achieved by using the natural additive and nonthermal processing technologies.
Collapse
Affiliation(s)
- Mohamed Tagrida
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Bin Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
40
|
Rathod NB, Kulawik P, Ozogul Y, Ozogul F, Bekhit AEA. Recent developments in non‐thermal processing for seafood and seafood products: cold plasma, pulsed electric field and high hydrostatic pressure. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nikheel Bhojraj Rathod
- Department of Post Harvest management of Meat, Poultry and Fish Post Graduate Institute of Post‐Harvest Management Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth Roha, Raigad Maharashtra State 402116 India
| | - Piotr Kulawik
- Department of Animal Products Technology Faculty of Food Technology University of Agriculture Karakow Poland
| | - Yesim Ozogul
- Department of Seafood Processing Technology Faculty of Fisheries Cukurova University Adana 01330 Turkey
| | - Fatih Ozogul
- Department of Seafood Processing Technology Faculty of Fisheries Cukurova University Adana 01330 Turkey
| | | |
Collapse
|
41
|
Olatunde OO, Chantakun K, Benjakul S. Microbial, chemical qualities and shelf-life of blue swimming crab (Portunus armatus) lump meat as influenced by in-package high voltage cold plasma treatment. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
The Antioxidant Effect of Colombian Berry ( Vaccinium meridionale Sw.) Extracts to Prevent Lipid Oxidation during Pork Patties Shelf-Life. Antioxidants (Basel) 2021; 10:antiox10081290. [PMID: 34439538 PMCID: PMC8389266 DOI: 10.3390/antiox10081290] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
A scarce amount of knowledge about the use of Colombian berry (CB) in meat products is available in the literature. This work studies the impact of the addition of CB extracts (CBE) on pork patties at three different concentrations in the range 250–750 mg/kg. CBE were characterized in terms of their polyphenolic profile and antioxidant activity [1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity, half maximal inhibitory antioxidant concentration (IC50), 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power assay (FRAP) and oxygen radical absorbance capacity (ORAC) tests)]. After pork patties elaboration, instrumental and sensorial colour, as well as lipid oxidation measured as thiobarbituric acid reactive substances assay (TBARS) values, were evaluated for 10 days of refrigerated storage in a modified atmosphere (80% O2–20% CO2). The total anthocyanin composition represented 35% of the polyphenolic substances of the CBE, highlighting high contents in cyanidin derivatives. Additionally, other flavonoids (quercetin and kaempferol compounds) and phenolics acids, substances positively related to antioxidant activity, were identified and quantified. In addition, the incorporation of CBE resulted in improvements in colour and lipid stability of pork patties, especially for the highest concentration used. Our findings demonstrated that CBE could be added to pork patties without impairing their sensorial profile. Overall, our results indicate that the use of CBE as a source of natural antioxidant, natural colourant, or even as a functional ingredient could be promising, but more studies are necessary to confirm it.
Collapse
|
43
|
Rathod NB, Ranveer RC, Bhagwat PK, Ozogul F, Benjakul S, Pillai S, Annapure US. Cold plasma for the preservation of aquatic food products: An overview. Compr Rev Food Sci Food Saf 2021; 20:4407-4425. [PMID: 34355478 DOI: 10.1111/1541-4337.12815] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022]
Abstract
Cold plasma (CP) is an upcoming technology implemented for the preservation of highly perishable foods, especially aquatic food products (AFPs). The high moisture content, high-quality protein with all essential amino acids and unsaturated fatty acids makes AFP more susceptible to microbial spoilage and oxidation of lipids and proteins. Spoilage lowers the nutritive value and could generate toxic components, making it unsafe for consumption. In recent times, the rising demand for food products of aquatic origin with preserved quality and extended shelf-life has been recorded. In addition, minimally or nonthermally processed and preserved foods are gaining great attention. CP technology has demonstrated an excellent ability to inactivate microorganisms without promoting their resistance and triggering some deteriorative enzymes, which are typical factors responsible for the spoilage of AFP. Consequently, CP could be recommended as a minimal processing intervention for preserving the quality of AFP. This review focuses on different mechanisms of fish spoilage, that is, by microorganisms and oxidation, their inhibition via the application of CP, and the retention of quality and shelf-life extension of AFP.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli), Raigad, Maharashtra, India
| | - Rahul Chudaman Ranveer
- Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli), Raigad, Maharashtra, India
| | - Prashant Kishor Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Sottawat Benjakul
- International Center for Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Uday Shriramrao Annapure
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, India
| |
Collapse
|
44
|
Application of cold plasma technology in the food industry and its combination with other emerging technologies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Liu W, Wang Q, Mei J, Xie J. Shelf-Life Extension of Refrigerated Turbot ( Scophthalmus maximus) by Using Weakly Acidic Electrolyzed Water and Active Coatings Containing Daphnetin Emulsions. Front Nutr 2021; 8:696212. [PMID: 34336910 PMCID: PMC8319538 DOI: 10.3389/fnut.2021.696212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/16/2021] [Indexed: 02/01/2023] Open
Abstract
This research was to investigate the effect of weakly acidic electrolytic water (WAEW) treatments combining with the locust bean gum (LBG) and sodium alginate (SA) active coatings, containing daphnetin emulsions on microbiological, physicochemical, and sensory changes of turbot (Scophthalmus maximus) during refrigerated storage at 4°C for 24 days. Results showed that WAEW, together with LBG-SA coatings containing daphnetin emulsions treatments, could significantly lower the total viable count (TVC), H2S-producing bacteria, pseudomonas spp., and psychrotrophic bacteria counts, and inhibit the productions of off-flavor compounds, including the total volatile basic nitrogen (TVB-N), inosine (HxR), and hypoxanthine (Hx). Furthermore, the treatments also prevented textural deterioration, delayed water migration, and had higher organoleptic evaluation results. Therefore, WAEW, together with LBG-SA coatings, containing daphnetin emulsions treatments, had the potential to improve the quality of turbot during refrigerated storage.
Collapse
Affiliation(s)
- Wenru Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Center for Food Science and Engineering, National Experimental Teaching Demonstration, Shanghai Ocean University, Shanghai, China.,Center of Aquatic Product Processing and Preservation, Shanghai Engineering Research, Shanghai Ocean University, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
| | - Qi Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Center for Food Science and Engineering, National Experimental Teaching Demonstration, Shanghai Ocean University, Shanghai, China.,Center of Aquatic Product Processing and Preservation, Shanghai Engineering Research, Shanghai Ocean University, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Center for Food Science and Engineering, National Experimental Teaching Demonstration, Shanghai Ocean University, Shanghai, China.,Center of Aquatic Product Processing and Preservation, Shanghai Engineering Research, Shanghai Ocean University, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Center for Food Science and Engineering, National Experimental Teaching Demonstration, Shanghai Ocean University, Shanghai, China.,Center of Aquatic Product Processing and Preservation, Shanghai Engineering Research, Shanghai Ocean University, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
46
|
Pina-Pérez MC, Rodrigo D, Ellert C, Beyrer M. Surface Micro Discharge-Cold Atmospheric Pressure Plasma Processing of Common House Cricket Acheta domesticus Powder: Antimicrobial Potential and Lipid-Quality Preservation. Front Bioeng Biotechnol 2021; 9:644177. [PMID: 34277580 PMCID: PMC8283276 DOI: 10.3389/fbioe.2021.644177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
The growing world population and the need to reduce the environmental impact of food production drive the exploration of novel protein sources. Insects are being cultivated, harvested, and processed to be applied in animal and human nutrition. The inherent microbial contamination of insect matrices requires risk management and decontamination strategies. Thermal sterilization results in unfavorable cooking effects and oxidation of fatty acids. The present study demonstrates the risk management in Acheta domesticus (home cricket) powder with a low-energy (8.7-22.0 mW/cm2, 5 min) semi-direct surface micro discharge (SMD)-cold atmospheric pressure plasma (CAPP). At a plasma power density lower than 22 mW/cm2, no degradation of triglycerides (TG) or increased free fatty acids (FFA) content was detected. For mesophilic bacteria, 1.6 ± 0.1 log10 reductions were achieved, and for Enterobacteriaceae, there were close to 1.9 ± 0.2 log10 reductions in a layer of powder. Colonies of Bacillus cereus, Bacillus subtilis, and Bacillus megaterium were identified via the mass spectral fingerprint analyzed with matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS). The spores of these Bacillus strains resisted to a plasma power density of 22 mW/cm2. Additional inactivation effects at non-thermal, practically non-oxidative conditions are supposed for low-intensity plasma treatments combined with the powder's fluidization.
Collapse
Affiliation(s)
- Maria C Pina-Pérez
- Departamento de Microbiologia y Ecología, Universitat de València, Valencia, Spain.,School of Engineering, Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland (HES-SO VS), Sion, Switzerland
| | - Dolores Rodrigo
- Departamento de Conservación y Calidad, Instituto de Agroquimica y Tecnología de Alimentos (IATA-CSIC), Valencia, Spain
| | - Christoph Ellert
- School of Engineering, Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland (HES-SO VS), Sion, Switzerland
| | - Michael Beyrer
- School of Engineering, Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland (HES-SO VS), Sion, Switzerland
| |
Collapse
|
47
|
Biochemical and microbiological characteristics of some Mediterranean salted fish products. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2021. [DOI: 10.1007/s12210-021-00984-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Olatunde OO, Shiekh KA, Benjakul S. Pros and cons of cold plasma technology as an alternative non-thermal processing technology in seafood industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
49
|
Zhao X, Chen L, Wongmaneepratip W, He Y, Zhao L, Yang H. Effect of vacuum impregnated fish gelatin and grape seed extract on moisture state, microbiota composition, and quality of chilled seabass fillets. Food Chem 2021; 354:129581. [PMID: 33756319 DOI: 10.1016/j.foodchem.2021.129581] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/07/2021] [Accepted: 03/06/2021] [Indexed: 12/28/2022]
Abstract
The effect of fish gelatin (FG) and grape seed extract (GSE) on microbiota composition and moisture state of fish was unexplored. Herein, this study aimed to evaluate the single and combined (FGG) effects on seabass during storage (4 °C) with assistant of vacuum impregnation and to elucidate the underlying preservative mechanism. As suggested by low-field NMR and magnetic resonance imaging, FGG-treated seabass presented higher water holding capacity by controlling transformation from immobilised to free water. Moreover, the total viable count and spoilage bacteria were reduced by > 1 log CFU/g as compared to the control. Changes in microbial flora analysed using high throughput sequencing further indicated that GSE contributed to the notably suppressed growth of Pseudomonas. Also, the accumulation of biogenic amines especially putrescine was decreased (over 0.5-fold) under the combination treatment as compared to the control (P < 0.05). The results suggest that FGG is promising for seabass preservation.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Lin Chen
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore
| | - Wanwisa Wongmaneepratip
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore
| | - Yun He
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore
| | - Lin Zhao
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore
| | - Hongshun Yang
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
50
|
Wang X, Wang Z, Zhuang H, Nasiru MM, Yuan Y, Zhang J, Yan W. Changes in color, myoglobin, and lipid oxidation in beef patties treated by dielectric barrier discharge cold plasma during storage. Meat Sci 2021; 176:108456. [PMID: 33621829 DOI: 10.1016/j.meatsci.2021.108456] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/15/2020] [Accepted: 02/04/2021] [Indexed: 12/01/2022]
Abstract
The objective of this work was to investigate the changes in color, metmyoglobin reducing activity (MRA), and lipid oxidation (TBARS) and their relationships in beef patties treated by dielectric barrier discharge cold plasma (DBD-CP) at different voltages and frequencies during storage at 4 °C. DBD-CP treatment, including treatment voltages and frequencies, caused the decrease of a⁎ value and MRA (P < 0.05), promoted the accumulation of metmyoglobin (P < 0.05), and significantly increased TBARS values (P < 0.05). It was the first time revealed that the effect of treatment voltage on the quality of beef patty was greater than that of frequency. In addition, there were significant and strong positive correlations between a⁎ value and MRA and negative correlations between a⁎ value, metmyoglobin (MMb)% and TBARS. Taken together, Data demonstrated that DBD-CP treatment can significantly affect meat redness, Mb contents, MRA, and lipid oxidation in ground beef during storage, and accelerate discoloration and lipid oxidation of meat.
Collapse
Affiliation(s)
- Xiaoting Wang
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhaobin Wang
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hong Zhuang
- Quality and Safety Assessment Research Unit, U.S. National Poultry Research Center, USDA-ARS, 950 College Station Road, Athens, GA 30605, United States.
| | - Mustapha Muhammad Nasiru
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuan Yuan
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jianhao Zhang
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wenjing Yan
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|