1
|
Bakshi S, Kanetkar P, Bunkar DS, Browne C, Paswan VK. Chlorella sp. as a promising protein source: insight to novel extraction techniques, nutritional and techno-functional attributes of derived proteins. Crit Rev Food Sci Nutr 2025:1-29. [PMID: 40244156 DOI: 10.1080/10408398.2025.2491646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Amidst the mounting environmental crises and ever-increasing global population, the quest for sustainable food production and resource utilization solutions has taken center stage. Microalgae, with Chlorella species at the forefront, present a promising avenue. They serve as a bountiful protein source and can be conveniently grown in waste streams, thereby tackling food security, environmental sustainability, and economic feasibility. This article embarks on a comprehensive journey through recent research on Chlorella by shedding light on its unique characteristics, its market value, cultivation techniques, and harvesting methods. It also delves into traditional and innovative extraction methods, underscoring the hurdles and breakthroughs in achieving high protein yields from the Chlorella biomass. Moreover, exploration of the protein's nutritional properties, bioactive peptides, and techno-functional attributes, enhance its potential for food applications. Further, this review also examines current market trends in consumer acceptance of this alternative protein and discusses strategies for reducing greenhouse gas emissions in their production. By providing invaluable insights into the current status and future prospects of Chlorella protein, it aspires to make a significant contribution to the ongoing dialogue on sustainable food production and resource management.
Collapse
Affiliation(s)
- Shiva Bakshi
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Prajasattak Kanetkar
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Durga Shankar Bunkar
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | - Vinod Kumar Paswan
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
2
|
Miranda Júnior JR, da Silva CAS, de Moura Guimarães L, Rocha DN, Alhaji AM, de Oliveira EB, Martins MA, Dos Reis Coimbra JS. Cell rupture of Tetradesmus obliquus using high-pressure homogenization at the pilot scale and recovery of pigments and lipids. Food Res Int 2024; 196:115113. [PMID: 39614578 DOI: 10.1016/j.foodres.2024.115113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
Microalgae are promising sources of intracellular metabolites such as proteins, polysaccharides, pigments, and lipids. Thus, this study applied high-pressure homogenization (HPH) techniques on a pilot scale to disrupt the cells of Tetradesmus obliquus. The effects of pressure (P; 150, 250, and 350 bar), suspension concentration (Cs; 1.0, 1.5, and 2.0 % w/v), and number of cycles (Nc; 5, 15, and 25) were evaluated in HPH via a Box-Behnken experimental design. Response surface methodology was applied to optimize the recovery rate (dTr) of pigments and lipids. The specific energy consumption (SEC) and color change gradient (ΔE) of the biomass during HPH were also assessed. The optimal HPH conditions for pigment extraction with 1.5 % Cs (w/v) were as follows: P = 312 bar and Nc = 22 for chlorophyll-a (0.83 g/100 g; dTr = 69 %; SEC = 47.50 kJ/g dry matter); P = 345 bar and Nc = 24 for chlorophyll-b (0.63 g/100 g; dTr = 80 %; SEC = 57.30 kJ/g dry matter); P = 345 bar and Nc = 24 for total carotenoids (0.53 g/100 g; dTr = 79 %; SEC = 54.12 kJ/g dry matter); and P = 350 bar and Nc = 25 for β-carotene (299 µg/g; dTr = 58 %; SEC = 62.08 kJ/g dry matter). The optimal HPH conditions for lipid extraction were P = 350 bar and Nc = 23, with a lipid recovery rate of ≥28 %. Cell disruption during HPH caused a change in the color of the biomass (ΔE) due to the release of intracellular biocompounds. Increasing P and Nc led to higher SECs, ΔE gradients, and pigment and lipid contents. Thus, the levels of recovered pigments and lipids can be indicators of cell disruption in T. obliquus.
Collapse
Affiliation(s)
- José Roberto Miranda Júnior
- Universidade Federal de Viçosa, Department of Food Technology, Campus Universitário S/N, Centro, 36570-900 Viçosa, MG, Brazil.
| | - César Augusto Sodré da Silva
- Universidade Federal de Viçosa, Department of Food Technology, Campus Universitário S/N, Centro, 36570-900 Viçosa, MG, Brazil
| | - Luciano de Moura Guimarães
- Universidade Federal de Viçosa, Department of Physics, Campus Universitário S/N, Centro, 36570-900 Viçosa, MG, Brazil
| | - Dilson Novais Rocha
- Universidade Federal de Viçosa, Department of Agricultural Engineering, Campus Universitário S/N, Centro, 36570-900 Viçosa, MG, Brazil
| | - Adamu Muhammad Alhaji
- Universidade Federal de Viçosa, Department of Food Technology, Campus Universitário S/N, Centro, 36570-900 Viçosa, MG, Brazil; Kano University of Science and Technology, Institute of Food Science and Technology, Wudil, Kano, Nigeria
| | - Eduardo Basílio de Oliveira
- Universidade Federal de Viçosa, Department of Food Technology, Campus Universitário S/N, Centro, 36570-900 Viçosa, MG, Brazil
| | - Marcio Arêdes Martins
- Universidade Federal de Viçosa, Department of Agricultural Engineering, Campus Universitário S/N, Centro, 36570-900 Viçosa, MG, Brazil
| | - Jane Sélia Dos Reis Coimbra
- Universidade Federal de Viçosa, Department of Food Technology, Campus Universitário S/N, Centro, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
3
|
Zhou J, Wang M, Grimi N, Dar BN, Calvo-Lerma J, Barba FJ. Research progress in microalgae nutrients: emerging extraction and purification technologies, digestive behavior, and potential effects on human gut. Crit Rev Food Sci Nutr 2024; 64:11375-11395. [PMID: 37489924 DOI: 10.1080/10408398.2023.2237586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Microalgae contain a diverse range of high-value compounds that can be utilized directly or fractionated to obtain components with even greater value-added potential. With the use of microalgae for food and medical purposes, there is a growing interest in their digestive properties and impact on human gut health. The extraction, separation, and purification of these components are key processes in the industrial application of microalgae. Innovative technologies used to extract and purify microalgal high-added-value compounds are key for their efficient utilization and evaluation. This review's comprehensive literature review was performed to highlight the main high-added-value microalgal components. The technologies for obtaining bioactive compounds from microalgae are being developed rapidly, various innovative, efficient, green separation and purification technologies are emerging, thus helping in the scaling-up and subsequent commercialization of microalgae products. Finally, the digestive behavior of microalgae nutrients and their health effects on the human gut microbiota were discussed. Microalgal nutrients exhibit favorable digestive properties and certain components have been shown to benefit gut microbes. The reality that must be faced is that multiple processes are still required for microalgae raw materials to final usable products, involving energy, time consumption and loss of ingredients, which still face challenges.
Collapse
Affiliation(s)
- Jianjun Zhou
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, València, Spain
| | - Min Wang
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, València, Spain
| | - Nabil Grimi
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, Compiègne, France
| | - Basharat N Dar
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, Kashmir, India
| | - Joaquim Calvo-Lerma
- Instituto Universitario de Ingeniería para el Desarrollo (IU-IAD), Universitat Politècnica de València, Valencia, Spain
| | - Francisco J Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| |
Collapse
|
4
|
Marín-Sánchez J, Berzosa A, Álvarez I, Sánchez-Gimeno C, Raso J. Pulsed Electric Fields Effects on Proteins: Extraction, Structural Modification, and Enhancing Enzymatic Activity. Bioelectricity 2024; 6:154-166. [PMID: 39372091 PMCID: PMC11447477 DOI: 10.1089/bioe.2024.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Pulsed electric field (PEF) is an innovative physical method for food processing characterized by low energy consumption and short processing time. This technology represents a sustainable procedure to extend food shelf-life, enhance mass transfer, or modify food structure. The main mechanism of action of PEF for food processing is the increment of the permeability of the cell membranes by electroporation. However, it has also been shown that PEF may modify the technological and functional properties of proteins. Generating a high-intensity electric field necessitates the flow of an electric current that may have side effects such as electrochemical reactions and temperature increments due to the Joule effect that may affect food components such as proteins. This article presents a critical review of the knowledge on the extraction of proteins assisted by PEF and the impact of these treatments on protein composition, structure, and functionality. The required research for understanding what happens to a protein when it is under the action of a high-intensity electric field and to know if the mechanism of action of PEF on proteins is different from thermal or electrochemical effects is underlying.
Collapse
Affiliation(s)
- J. Marín-Sánchez
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - A. Berzosa
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - I. Álvarez
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - C. Sánchez-Gimeno
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - J. Raso
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| |
Collapse
|
5
|
Tietel Z, Hammann S, Meckelmann SW, Ziv C, Pauling JK, Wölk M, Würf V, Alves E, Neves B, Domingues MR. An overview of food lipids toward food lipidomics. Compr Rev Food Sci Food Saf 2023; 22:4302-4354. [PMID: 37616018 DOI: 10.1111/1541-4337.13225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Increasing evidence regarding lipids' beneficial effects on human health has changed the common perception of consumers and dietary officials about the role(s) of food lipids in a healthy diet. However, lipids are a wide group of molecules with specific nutritional and bioactive properties. To understand their true nutritional and functional value, robust methods are needed for accurate identification and quantification. Specific analytical strategies are crucial to target specific classes, especially the ones present in trace amounts. Finding a unique and comprehensive methodology to cover the full lipidome of each foodstuff is still a challenge. This review presents an overview of the lipids nutritionally relevant in foods and new trends in food lipid analysis for each type/class of lipids. Food lipid classes are described following the LipidMaps classification, fatty acids, endocannabinoids, waxes, C8 compounds, glycerophospholipids, glycerolipids (i.e., glycolipids, betaine lipids, and triglycerides), sphingolipids, sterols, sercosterols (vitamin D), isoprenoids (i.e., carotenoids and retinoids (vitamin A)), quinones (i.e., coenzyme Q, vitamin K, and vitamin E), terpenes, oxidized lipids, and oxylipin are highlighted. The uniqueness of each food group: oil-, protein-, and starch-rich, as well as marine foods, fruits, and vegetables (water-rich) regarding its lipid composition, is included. The effect of cooking, food processing, and storage, in addition to the importance of lipidomics in food quality and authenticity, are also discussed. A critical review of challenges and future trends of the analytical approaches and computational methods in global food lipidomics as the basis to increase consumer awareness of the significant role of lipids in food quality and food security worldwide is presented.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev, Israel
| | - Simon Hammann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Michele Wölk
- Lipid Metabolism: Analysis and Integration; Center of Membrane Biochemistry and Lipid Research; Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Vivian Würf
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
6
|
Axelrod RD, Baumgartner J, Beyrer M, Mathys A. Experimental and simulation-based investigation of the interplay between factor gradients following pulsed electric field treatments triggering whey protein aggregation. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Wang M, Zhou J, Castagnini JM, Berrada H, Barba FJ. Pulsed electric field (PEF) recovery of biomolecules from Chlorella: Extract efficiency, nutrient relative value, and algae morphology analysis. Food Chem 2023; 404:134615. [DOI: 10.1016/j.foodchem.2022.134615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/23/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022]
|
8
|
Patel AK, Tambat VS, Chen CW, Chauhan AS, Kumar P, Vadrale AP, Huang CY, Dong CD, Singhania RR. Recent advancements in astaxanthin production from microalgae: A review. BIORESOURCE TECHNOLOGY 2022; 364:128030. [PMID: 36174899 DOI: 10.1016/j.biortech.2022.128030] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Microalgae have emerged as the best source of high-value astaxanthin producers. Algal astaxanthin possesses numerous bioactivities hence the rising demand for several health applications and is broadly used in pharmaceuticals, aquaculture, health foods, cosmetics, etc. Among several low-priced synthetic astaxanthin, natural astaxanthin is still irreplaceable for human consumption and food-additive uses. This review highlights the recent development in production enhancement and cost-effective extraction techniques that may apply to large-scale astaxanthin biorefinery. Primarily, the biosynthetic pathway of astaxanthin is elaborated with the key enzymes involved in the metabolic process. Moreover, discussed the latest astaxanthin enhancement strategies mainly including chemicals as product inducers and byproducts inhibitors. Later, various physical, chemical, and biological cell disruption methods are compared for cell disruption efficiency, and astaxanthin extractability. The aim of this review is to provide a comprehensive review of advancements in astaxanthin research covering scalable upstream and downstream astaxanthin bioproduction aspects.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Vaibhav Sunil Tambat
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ajeet Singh Chauhan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Prashant Kumar
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Akash Pralhad Vadrale
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chun-Yung Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Reeta Rani Singhania
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India; Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| |
Collapse
|
9
|
Genovese J, Stručić M, Serša I, Novickij V, Rocculi P, Miklavčič D, Mahnič-Kalamiza S, Kranjc M. PEF treatment effect on plant tissues of heterogeneous structure no longer an enigma: MRI insights beyond the naked eye. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Knappert J, Nolte J, Friese N, Yang Y, Lindenberger C, Rauh C, McHardy C. Decay of Trichomes of Arthrospira platensis After Permeabilization Through Pulsed Electric Fields (PEFs) Causes the Release of Phycocyanin. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.934552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cyanobacterium Arthrospira platensis is a promising source of edible proteins and other highly valuable substances such as the blue pigment-protein complex phycocyanin. Pulsed electric field (PEF) technology has recently been studied as a way of permeabilizing the cell membrane, thereby enhancing the mass transfer of water-soluble cell metabolites. Unfortunately, the question of the release mechanism is not sufficiently clarified in published literature. In this study, the degree of cell permeabilization (cell disintegration index) was directly measured by means of a new method using fluorescent dye propidium iodide (PI). The method allows for conclusions to be drawn about the effects of treatment time, electric field strength, and treatment temperature. Using a self-developed algorithm for image segmentation, disintegration of trichomes was observed over a period of 3 h. This revealed a direct correlation between cell disintegration index and decay of trichomes. This decay, in turn, could be brought into a direct temporal relationship with the release of phycocyanin. For the first time, this study reveals the relationship between permeabilization and the kinetics of particle decay and phycocyanin extraction, thus contributing to a deeper understanding of the release of cell metabolites in response to PEF. The results will facilitate the design of downstream processes to produce sustainable products from Arthrospira platensis.
Collapse
|
11
|
Editorial to the IFSET special issue on the 34rd EFFoST International Conference. INNOV FOOD SCI EMERG 2022; 79:103031. [PMID: 36276609 PMCID: PMC9574788 DOI: 10.1016/j.ifset.2022.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Rahman MM, Hosano N, Hosano H. Recovering Microalgal Bioresources: A Review of Cell Disruption Methods and Extraction Technologies. Molecules 2022; 27:2786. [PMID: 35566139 PMCID: PMC9104913 DOI: 10.3390/molecules27092786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Microalgae have evolved into a promising sustainable source of a wide range of compounds, including protein, carbohydrates, biomass, vitamins, animal feed, and cosmetic products. The process of extraction of intracellular composites in the microalgae industry is largely determined by the microalgal species, cultivation methods, cell wall disruption techniques, and extraction strategies. Various techniques have been applied to disrupt the cell wall and recover the intracellular molecules from microalgae, including non-mechanical, mechanical, and combined methods. A comprehensive understanding of the cell disruption processes in each method is essential to improve the efficiency of current technologies and further development of new methods in this field. In this review, an overview of microalgal cell disruption techniques and an analysis of their performance and challenges are provided. A number of studies on cell disruption and microalgae extraction are examined in order to highlight the key challenges facing the field of microalgae and their future prospects. In addition, the amount of product recovery for each species of microalgae and the important parameters for each technique are discussed. Finally, pulsed electric field (PEF)-assisted treatments, which are becoming an attractive option due to their simplicity and effectiveness in extracting microalgae compounds, are discussed in detail.
Collapse
Affiliation(s)
- Md. Mijanur Rahman
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Nushin Hosano
- Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Hamid Hosano
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
- Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan;
| |
Collapse
|
13
|
Konar N, Durmaz Y, Genc Polat D, Mert B. Optimization of Spray Drying for
Chlorella vulgaris
by Using
RSM
Methodology and Maltodextrin. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nevzat Konar
- Eskisehir Osmangazi University Agriculture Faculty Food Engineering Department, Eskisehir Turkey
| | - Yaşar Durmaz
- Ege University Faculty of Fisheries, Aquaculture Department Izmir Turkey
| | | | - Behic Mert
- Middle East Technical University Engineering Faculty, Food Engineering Department Ankara Turkey
| |
Collapse
|
14
|
Canelli G, Tevere S, Jaquenod L, Dionisi F, Rohfritsch Z, Bolten CJ, Neutsch L, Mathys A. A novel strategy to simultaneously enhance bioaccessible lipids and antioxidants in hetero/mixotrophic Chlorella vulgaris as functional ingredient. BIORESOURCE TECHNOLOGY 2022; 347:126744. [PMID: 35074464 DOI: 10.1016/j.biortech.2022.126744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Microalgae are a promising source of polyunsaturated fatty acids as well as bioactive antioxidant compounds such as carotenoids, phenolics and tocopherols. However, the accumulation of these biomolecules is often promoted by conflicting growth conditions. In this study, a phased bioprocessing strategy was developed to simultaneously enhance the lipid and antioxidant amounts by tailoring nitrogen content in the cultivation medium and applying light stress. This approach increased the overall contents of total fatty acids, carotenoids, phenolics, and α-tocopherol in Chlorella vulgaris by 2.2-, 2.2-, 1.5-, and 2.1-fold, respectively. Additionally, the bioaccessibility of the lipids and bioactives from the obtained biomasses improved after pulsed electric field (5 μs, 20 kV cm-1, 31.8 kJ kg-1sus) treatment (up to +12%) and high-pressure homogenization (100 MPa, 5-6 passes) (+41-76%). This work represents a step towards the generation of more efficient algae biorefineries, thus expanding the alternative resources available for essential nutrients.
Collapse
Affiliation(s)
- Greta Canelli
- ETH Zürich, Laboratory of Sustainable Food Processing, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Sabrina Tevere
- Institute of Chemistry and Biotechnology, ZHAW, Campus Grüental, 8820, Wädenswil, Switzerland
| | - Luc Jaquenod
- ETH Zürich, Laboratory of Sustainable Food Processing, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Fabiola Dionisi
- Nestlé Research, Route du Jorat 57, 1000 Lausanne, Switzerland
| | - Zhen Rohfritsch
- Nestlé Research, Route du Jorat 57, 1000 Lausanne, Switzerland
| | | | - Lukas Neutsch
- Institute of Chemistry and Biotechnology, ZHAW, Campus Grüental, 8820, Wädenswil, Switzerland
| | - Alexander Mathys
- ETH Zürich, Laboratory of Sustainable Food Processing, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| |
Collapse
|