1
|
Liu R, Liu Y, Qiu J, Ren Q, Wei C, Pan D, Shi J, Liu P, Wei D, Xiang T, Cheng N. Biochemical properties and substrate specificity of GOB-38 in Elizabethkingia anophelis. Sci Rep 2025; 15:351. [PMID: 39747310 PMCID: PMC11695579 DOI: 10.1038/s41598-024-82748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
The novel pathogen, Elizabethkingia anophelis, has gained attention due to its high mortality rates and drug resistance facilitated by its inherent metallo-β-lactamases (MBLs) genes. This study successfully identified and outlined the functions of the B3-Q MBLs variant, GOB-38, in a clinical sample of E. anophelis. The T7 expression system was employed to stimulate the expression of recombinant protein in Escherichia coli, followed by an analysis of the biochemical properties of purified GOB-38. Our findings indicate that the enzyme GOB-38 displays a wide range of substrates, including broad-spectrum penicillins, 1-4 generation cephalosporins, and carbapenems, potentially contributing to in vitro drug resistance in E. coli through a cloning mechanism. It is important to highlight that GOB-38 exhibits a distinct active site composition compared to GOB-1/18, featuring hydrophilic amino acids Thr51 and Glu141 at both ends of its active center instead of hydrophobic alanine, potentially indicating a preference for imipenem. Furthermore, the co-isolation of Acinetobacter baumannii and E. anophelis, two opportunistic pathogens, from a single lung infection is noteworthy. Our in vitro co-culture experiments suggest that E. anophelis, carrying two MBL genes, may have the ability to transfer carbapenem resistance to other bacterial species through co-infection.
Collapse
Affiliation(s)
- Ren Liu
- Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yang Liu
- Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330052, Jiangxi, China
- Departments of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- China-Japan Friendship Jiang Xi Hospital, National Regional Center for Respiratory Medicine, Nanchang, Jiangxi, China
| | - Jiehui Qiu
- Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qun Ren
- Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chunping Wei
- Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Dejin Pan
- Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jianglong Shi
- Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330052, Jiangxi, China
| | - Peng Liu
- Departments of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - DanDan Wei
- Departments of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- China-Japan Friendship Jiang Xi Hospital, National Regional Center for Respiratory Medicine, Nanchang, Jiangxi, China
| | - Tianxin Xiang
- Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330052, Jiangxi, China.
- China-Japan Friendship Jiang Xi Hospital, National Regional Center for Respiratory Medicine, Nanchang, Jiangxi, China.
- Departments of Hospital Infection Control, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Na Cheng
- Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330052, Jiangxi, China.
- Departments of Hospital Infection Control, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Aggarwal M, Patra A, Awasthi I, George A, Gagneja S, Gupta V, Capalash N, Sharma P. Drug repurposing against antibiotic resistant bacterial pathogens. Eur J Med Chem 2024; 279:116833. [PMID: 39243454 DOI: 10.1016/j.ejmech.2024.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
The growing prevalence of MDR and XDR bacterial pathogens is posing a critical threat to global health. Traditional antibiotic development paths have encountered significant challenges and are drying up thus necessitating innovative approaches. Drug repurposing, which involves identifying new therapeutic applications for existing drugs, offers a promising alternative to combat resistant pathogens. By leveraging pre-existing safety and efficacy data, drug repurposing accelerates the development of new antimicrobial therapy regimes. This review explores the potential of repurposing existing FDA approved drugs against the ESKAPE and other clinically relevant bacterial pathogens and delves into the identification of suitable drug candidates, their mechanisms of action, and the potential for combination therapies. It also describes clinical trials and patent protection of repurposed drugs, offering perspectives on this evolving realm of therapeutic interventions against drug resistance.
Collapse
Affiliation(s)
- Manya Aggarwal
- Departmen of Microbiology, Panjab University, Chandigarh, India
| | - Anushree Patra
- Departmen of Microbiology, Panjab University, Chandigarh, India
| | - Ishita Awasthi
- Departmen of Microbiology, Panjab University, Chandigarh, India
| | - Annu George
- Departmen of Microbiology, Panjab University, Chandigarh, India
| | - Simran Gagneja
- Departmen of Microbiology, Panjab University, Chandigarh, India
| | - Varsha Gupta
- Department of Microbiology, Government Multi-speciality hospital, Sector 16, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Prince Sharma
- Departmen of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
3
|
Hernández-Durán M, Colín-Castro CA, Fernández-Rodríguez D, Delgado G, Morales-Espinosa R, Martínez-Zavaleta MG, Shekhar C, Ortíz-Álvarez J, García-Contreras R, Franco-Cendejas R, López-Jácome LE. Inside-out, antimicrobial resistance mediated by efflux pumps in clinical strains of Acinetobacter baumannii isolated from burn wound infections. Braz J Microbiol 2024; 55:3629-3641. [PMID: 39044104 PMCID: PMC11711420 DOI: 10.1007/s42770-024-01461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
Acinetobacter baumannii belongs to the ESKAPE group. It is classified as a critical priority group by the World Health Organization and a global concern on account of its capacity to acquire and develop resistance mechanisms to multiple antibiotics. Data from the United States indicates 500 deaths annually. Resistance mechanisms of this bacterium include enzymatic pathways such as ß-lactamases, carbapenemases, and aminoglycoside-modifying enzymes, decreased permeability, and overexpression of efflux pumps. A. baumannii has been demonstrated to possess efflux pumps, which are classified as members of the MATE family, RND and MFS superfamilies, and SMR transporters. The aim of our work was to assess the distribution of efflux pumps and their regulatory gene expression in clinical strains of A. baumannii isolated from burned patients. METHODS: From the Clinical Microbiology Laboratory at the Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra collection in Mexico, 199 strains were selected. Antibiotics susceptibilities were performed by broth microdilutions to determine minimal inhibitory concentrations. Phenotypic assays with efflux pump inhibitors were conducted using carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and phenylalanine-arginine ß-naphthylamide (PAßN) in conjunction with amikacin, ceftazidime, imipenem, meropenem and levofloxacin. A search was conducted for structural genes that are linked to efflux pumps, and the relative expression of the adeR, adeS, and adeL genes was analyzed. RESULTS: Among a total of 199 strains, 186 exhibited multidrug resistance (MDR). Fluoroquinolones demonstrated the highest resistance rates, while minocycline and amikacin displayed comparatively reduced resistance rates (1.5 and 28.1, respectively). The efflux activity of fluorquinolones exhibited the highest phenotypic detection (from 85 to 100%), while IMP demonstrated the lowest activity of 27% with PAßN and 43.3% with CCCP. Overexpression was observed in adeS and adeL, with adeR exhibiting overexpression. Concluding that clinical strains of A. baumannii from our institution exhibited efflux pumps as one of the resistance mechanisms.
Collapse
Affiliation(s)
- Melissa Hernández-Durán
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Claudia Adriana Colín-Castro
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Diana Fernández-Rodríguez
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
- Plan de Estudios Combinados en Medicina (PECEM) MD/PhD, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela Delgado
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosario Morales-Espinosa
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Guadalupe Martínez-Zavaleta
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Chandra Shekhar
- College of Medicine, The University of Tennessee Health Science Center, Memphis, USA
| | - Jossue Ortíz-Álvarez
- Ciencias y Tecnologías (CONAHCYT), Programa "Investigadoras E Investigadores Por México". Consejo Nacional de Humanidades, Mexico City, Mexico
| | - Rodolfo García-Contreras
- Laboratorio de Bacteriología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rafael Franco-Cendejas
- Biomedical Research Subdirection, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Luis Esaú López-Jácome
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico.
- Departamento de Biología. Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
4
|
Li M, Ma F, Zhao H, Zhou D, Liang L, Lv R, Li J, Wang Y, Xu L, Liu C, Tian GB, Feng S, Xia Y. Outer membrane permeability of mcr-positive bacteria reveals potent synergy of colistin and macromolecular antibiotics against colistin-resistant Acinetobacter baumannii. Front Microbiol 2024; 15:1468682. [PMID: 39629205 PMCID: PMC11611826 DOI: 10.3389/fmicb.2024.1468682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Colistin (CT) is the last-resort of antibiotic against multidrug-resistance (MDR) Acinetobacter baumannii (A. baumannii) infection. However, colistin resistance is increasingly reported in A. baumannii isolates partially due to the global emergence and dissemination of plasmid-borne mobile colistin resistance (mcr) gene and is a threat to human health. Thus, available treatment strategies urgently required in the fight against colistin-resistant A. baumannii. Here, we showed that mcr confers damaged outer membrane (OM) permeability in A. baumannii, which could compromise the viability of A. baumannii. Consistently, A. baumannii with colistin resistance exhibits increased susceptibility to macromolecular antibiotics such as rifampicin (RIF) and erythromycin (ERY). Moreover, the combination therapy of colistin and rifampicin demonstrates efficacy against colistin-resistant A. baumannii, regardless of the presence of mcr. Altogether, our data suggest that the synergy of colistin in combination with macromolecular hydrophobic antibiotics poses a promising therapeutic alternative for colistin-resistant A. baumannii.
Collapse
Affiliation(s)
- Meisong Li
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Center for Provincial Clinical Research Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Furong Ma
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Center for Provincial Clinical Research Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hui Zhao
- School of Pharmacy, Guangzhou Xinhua University, Guangzhou, China
| | - Dianrong Zhou
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Lujie Liang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Runling Lv
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Center for Provincial Clinical Research Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiachen Li
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yaxuan Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Lin Xu
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Chenfei Liu
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Center for Provincial Clinical Research Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guo-Bao Tian
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Siyuan Feng
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yong Xia
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Center for Provincial Clinical Research Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Qi Q, Kuang L, Liao J, Wang X, Zhou Y, Guo L, Jiang Y. Crystal Structures of the Acinetobacter baumannii Macrolide Phosphotransferase E. ACS Infect Dis 2024; 10:3577-3585. [PMID: 39255460 DOI: 10.1021/acsinfecdis.4c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Acinetobacter baumannii (A. baumannii) challenges clinical infection treatment due to its resistance to various antibiotics. Multiple resistance genes in the core genome or mobile elements contribute to multidrug resistance in A. baumannii. Macrolide phosphotransferase gene mphE has been identified in A. baumannii, which is particularly relevant to macrolide antibiotics. Here, we determined the structure of MphE protein in three states: the apo state, the complex state with erythromycin and guanosine triphosphate (GTP), and the complex state with azithromycin and guanosine. Interestingly, GTP and two magnesium ions were observed in the erythromycin-bound MphE complex. This structure captured the active state of MphE, in which the magnesium ions stabilized the active site and assisted the transfer of phosphoryl groups. Based on these structures, we verified that the conserved residues Asp29, Asp194, His199, and Asp213 play an important role in the catalytic phosphorylation of MphE leading to drug resistance. Our work helps to understand the molecular basis of drug resistance and provides reference targets for optimizing macrolide antibiotics.
Collapse
Affiliation(s)
- Qianqian Qi
- Department of Laboratory Medicine, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Linghan Kuang
- Department of Laboratory Medicine, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Jing Liao
- Department of Laboratory Medicine, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiang Wang
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanxia Zhou
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Guo
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Dezaki FS, Narimani T, Ghanadian M, Bidram E, Poursina F. Antimicrobial and antibiofilm effects of cyclic dipeptide-rich fraction from Lactobacillus plantarum loaded on graphene oxide nanosheets. Front Microbiol 2024; 15:1391039. [PMID: 39286346 PMCID: PMC11402667 DOI: 10.3389/fmicb.2024.1391039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction One effective method to combat bacterial infections is by using bacteria itself as a weapon. Lactobacillus is a type of fermenting bacterium that has probiotic properties and has demonstrated antimicrobial benefits against other bacteria. Cyclodipeptides (CDPs), present in the supernatant of Lactobacillus, possess several antimicrobial properties. Methods In this study, the CDP fraction was isolated from the supernatant of Lactobacillus plantarum (L. plantarum). This fraction was then loaded onto graphene oxide nanosheets (GO NSs). The study assessed the substance's ability to inhibit bacterial growth by using the minimum inhibitory concentration (MIC) method on A. baumannii and S. aureus strains that were obtained from clinical samples. To determine the substance's impact on biofilm formation, the microtiter plate method was used. Moreover, the checkerboard technique was employed to explore the potential synergistic effects of these two substances. Results and discussion According to the study, the minimum inhibitory concentration (MIC) of the desired compound was found to be 1.25 mg/mL against S. aureus and 2.5 mg/mL against A. baumannii. Furthermore, at a concentration of 10 mg/mL, the compound prevented 81.6% (p < 0.01) of biofilm production in A. baumannii, while at a concentration of 1.25 mg/mL, it prevented 47.5% (p < 0.05) of biofilm production in S. aureus. The study also explored the synergistic properties of two compounds using the checkerboard method. Conclusion In general, we found that GO NSs possess antimicrobial properties and enhance cyclodipeptides' activity against S. aureus and A. baumannii.
Collapse
Affiliation(s)
- Farid Shirmardi Dezaki
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tahmineh Narimani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mustafa Ghanadian
- Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Bidram
- Biosensor Research Center (BRC), Department of Biomaterials, Nanotechnology, and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Farkhondeh Poursina
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Luo VC, Peczuh MW. Location, Location, Location: Establishing Design Principles for New Antibacterials from Ferric Siderophore Transport Systems. Molecules 2024; 29:3889. [PMID: 39202968 PMCID: PMC11357680 DOI: 10.3390/molecules29163889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
This review strives to assemble a set of molecular design principles that enables the delivery of antibiotic warheads to Gram-negative bacterial targets (ESKAPE pathogens) using iron-chelating siderophores, known as the Trojan Horse strategy for antibiotic development. Principles are derived along two main lines. First, archetypical siderophores and their conjugates are used as case studies for native iron transport. They enable the consideration of the correspondence of iron transport and antibacterial target location. The second line of study charts the rationale behind the clinical antibiotic cefiderocol. It illustrates the potential versatility for the design of new Trojan Horse-based antibiotics. Themes such as matching the warhead to a location where the siderophore delivers its cargo (i.e., periplasm vs. cytoplasm), whether or not a cleavable linker is required, and the relevance of cheaters to the effectiveness and selectivity of new conjugates will be explored. The effort to articulate rules has identified gaps in the current understanding of iron transport pathways and suggests directions for new investigations.
Collapse
Affiliation(s)
| | - Mark W. Peczuh
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, U3060, Storrs, CT 06269, USA;
| |
Collapse
|
8
|
Klenotic PA, Yu EW. Structural analysis of resistance-nodulation cell division transporters. Microbiol Mol Biol Rev 2024; 88:e0019823. [PMID: 38551344 PMCID: PMC11332337 DOI: 10.1128/mmbr.00198-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
SUMMARYInfectious bacteria have both intrinsic and acquired mechanisms to combat harmful biocides that enter the cell. Through adaptive pressures, many of these pathogens have become resistant to many, if not all, of the current antibiotics used today to treat these often deadly infections. One prominent mechanism is the upregulation of efflux systems, especially the resistance-nodulation-cell division class of exporters. These tripartite systems consist of an inner membrane transporter coupled with a periplasmic adaptor protein and an outer membrane channel to efficiently transport a diverse array of substrates from inside the cell to the extracellular space. Detailed mechanistic insight into how these inner membrane transporters recognize and shuttle their substrates can ultimately inform both new antibiotic and efflux pump inhibitor design. This review examines the structural basis of substrate recognition of these pumps and the molecular mechanisms underlying multidrug extrusion, which in turn mediate antimicrobial resistance in bacterial pathogens.
Collapse
Affiliation(s)
- Philip A. Klenotic
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Uskudar-Guclu A, Danyildiz S, Mirza HC, Akcil Ok M, Basustaoglu A. In vitro activity of cefiderocol against carbapenem-resistant Acinetobacter baumannii carrying various β-lactamase encoding genes. Eur J Clin Microbiol Infect Dis 2024; 43:1171-1179. [PMID: 38652417 PMCID: PMC11178621 DOI: 10.1007/s10096-024-04831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVES This study aimed to determine the in vitro efficacy of cefiderocol in carbapenem-resistant Acinetobacter baumannii (CRAB) isolates and evaluate the disk-diffusion (DD) method as an alternative method to broth-microdilution (BMD). METHODS Totally 89 CRAB isolates were included. Cluster analysis was determined by Pulsed-Field Gel Electrophoresis (PFGE). Resistance genes; blaOXA-51, blaOXA-23, blaOXA-24, blaOXA-58,blaPER-1, blaNDM, blaIMP and mcr-1 were screened. Cefiderocol susceptibility testing was performed by both DD and BMD. Interpretation was made according to EUCAST and CLSI. Categorical agreement (CA), minor errors (mEs), major errors (MEs), and very major errors (VMEs) were determined. RESULTS PFGE revealed 5 distinct pulsotypes; 86 of the isolates were extensively drug-resistant (XDR). All the isolates were negative for blaNDM, blaIMP, mcr-1, while positive for blaOXA-58 and blaOXA51. blaPER-1 was positive for 33.7%; blaOXA-23 for 74.2%; blaOXA-24 for 12.3%. According to CLSI, the MEs rate was 1.85%, mEs was 7.86% and there were no VMEs. According to EUCAST, MEs rate was 3.70%, there were no mEs and VMEs. CA was 91% for CLSI and 97.8% for EUCAST. MICs of cefiderocol against A. baumannii isolates ranged from 0.06 to > 128 mg/L, with MIC50 and MIC90 values of 0.5 and > 128 mg/L, respectively. CONCLUSIONS Cefiderocol susceptibility was 60.7% in CRAB isolates. MIC50, MIC90 of blaPER-1 positive and blaPER-1 negative groups were > 128/>128 and 0.25/>128 mg/L. A correlation between the presence of blaPER-1 and cefiderocol resistance was observed (p < 0.0001). Among colistin-resistant isolates, the presence of blaPER-1 was 47.1% and 75% of them were resistant to cefiderocol respectively.
Collapse
Affiliation(s)
- Aylin Uskudar-Guclu
- Department of Medical Microbiology, Baskent University Faculty of Medicine, Ankara, Türkiye.
| | - Salih Danyildiz
- Department of Medical Microbiology, Baskent University Faculty of Medicine, Ankara, Türkiye
| | - Hasan Cenk Mirza
- Department of Medical Microbiology, Baskent University Faculty of Medicine, Ankara, Türkiye
| | - Mehtap Akcil Ok
- Department of Nutrition and Dietetics, Baskent University Faculty of Health Sciences, Ankara, Türkiye
| | - Ahmet Basustaoglu
- Department of Medical Microbiology, Baskent University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
10
|
Celebi D, Celebi O, Taghizadehghalehjoughi A, Baser S, Aydın E, Calina D, Charvalos E, Docea AO, Tsatsakis A, Mezhuev Y, Yildirim S. Activity of zinc oxide and zinc borate nanoparticles against resistant bacteria in an experimental lung cancer model. Daru 2024; 32:197-206. [PMID: 38366078 PMCID: PMC11087447 DOI: 10.1007/s40199-024-00505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/23/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Recent research indicates a prevalence of typical lung infections, such as pneumonia, in lung cancer patients. Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii stand out as antibiotic-resistant pathogens. Given this, there is a growing interest in alternative therapeutic avenues. Boron and zinc derivatives exhibit antimicrobial, antiviral, and antifungal properties. OBJECTIVES This research aimed to establish the effectiveness of ZnO and ZB NPs in combating bacterial infections in lung cancer cell lines. METHODS Initially, this study determined the minimal inhibitory concentration (MIC) and fractional inhibitory concentration (FIC) of zinc oxide nanoparticles (ZnO NPs) and zinc borate (ZB) on chosen benchmark strains. Subsequent steps involved gauging treatment success through a lung cancer-bacteria combined culture and immunohistochemical analysis. RESULTS The inhibitory impact of ZnO NPs on bacteria was charted as follows: 0.97 µg/mL for K. pneumoniae 700603, 1.95 µg/mL for P. aeruginosa 27853, and 7.81 µg/mL for Acinetobacter baumannii 19,606. In comparison, the antibacterial influence of zinc borate was measured as 7.81 µg/mL for Klebsiella pneumoniae 700603 and 500 µg/mL for both P. aeruginosa 27853 and A.baumannii 19606. After 24 h, the cytotoxicity of ZnO NPs and ZB was analyzed using the MTT technique. The lowest cell viability was marked in the 500 µg/mL ZB NPs group, with a viability rate of 48.83% (P < 0.001). However, marked deviations appeared at ZB concentrations of 61.5 µg/mL (P < 0.05) and ZnO NPs at 125 µg/mL. CONCLUSION A synergistic microbial inhibitory effect was observed when ZnO NP and ZB were combined against the bacteria under investigation.
Collapse
Affiliation(s)
- Demet Celebi
- Faculty of Veterinary Medicine, Department of Microbiology, Ataturk University, Ataturk University Avenue, Erzurum, 25240, Turkey
- Vaccine Application and Development Center, Ataturk University, Ataturk University Avenue, Erzurum, 25240, Turkey
| | - Ozgur Celebi
- Faculty of Medicine, Department of Medical Microbiology, Ataturk University, Ataturk University Avenue, Erzurum, 25240, Turkey
| | - Ali Taghizadehghalehjoughi
- Faculty of Medicine, Department of Medical Pharmacology, Seyh Edebali University, 27 Fatih Sultan Mehmet Avenue, Bilecik, 11000, Turkey
| | - Sumeyye Baser
- Faculty of Medicine, Department of Medical Microbiology, Ataturk University, Ataturk University Avenue, Erzurum, 25240, Turkey
| | - Elif Aydın
- Tavsanli Vocational School of Health Services, Kutahya Health Sciences University, Sehit Ali Gaffar Okan Avenue, Kutahya, 430200, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, 200349, Romania
| | | | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, 200349, Romania
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion, 71003, Greece.
| | - Yaroslav Mezhuev
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow, 125047, Russia
- Laboratory of Heterochain Polymers, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova st, Moscow, 119991, Russia
| | - Serkan Yildirim
- Faculty of Veterinary Medicine, Department of Pathology, Ataturk University, Ataturk University Avenue, Erzurum, 25240, Turkey
| |
Collapse
|
11
|
Najafabadi MK, Soltani R. Carbapenem-resistant Acinetobacter baumannii and Ventilator-associated Pneumonia; Epidemiology, Risk Factors, and Current Therapeutic Approaches. J Res Pharm Pract 2024; 13:33-40. [PMID: 39830948 PMCID: PMC11737613 DOI: 10.4103/jrpp.jrpp_50_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/07/2024] [Accepted: 05/25/2024] [Indexed: 01/22/2025] Open
Abstract
Acinetobacter baumannii is one of the primary pathogens responsible for healthcare-associated infections. It is related to high rates of morbidity and mortality globally, mainly because of its high capacity to develop resistance to antimicrobials. Nowadays, carbapenem-resistant A. baumannii (CRAB) has increased and represents a significant concern among carbapenem-resistant organisms. It is also a key pathogen associated with ventilator-associated pneumonia. CRAB was placed on the critical group of the universal priority list of the World Health Organization for antibiotic-resistant bacteria, to mention the importance of research development and the urgency of new antibiotics. Patients with severe CRAB infections currently face significant treatment challenges. Some approaches have been taken to deal with CRAB, such as combination therapy and the synergistic effect of certain antibiotics, but the best antibiotic regimen is still unknown. In this narrative review, we attempt to clarify the issues, including epidemiology, risk factors, and current treatment options for CRAB.
Collapse
Affiliation(s)
- Malihe Kazemi Najafabadi
- Department of Clinical Pharmacy and Pharmacy Practice, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasool Soltani
- Department of Clinical Pharmacy and Pharmacy Practice, Isfahan University of Medical Sciences, Isfahan, Iran
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Wantanatavatod M, Wongkulab P. Clinical Efficacy of Sitafloxacin-Colistin-Meropenem and Colistin-Meropenem in Patients with Carbapenem-Resistant and Multidrug-Resistant Acinetobacter baumannii Hospital-Acquired Pneumonia (HAP)/Ventilator-Associated Pneumonia (VAP) in One Super-Tertiary Hospital in Bangkok, Thailand: A Randomized Controlled Trial. Antibiotics (Basel) 2024; 13:137. [PMID: 38391523 PMCID: PMC10886248 DOI: 10.3390/antibiotics13020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Carbapenem-resistant A. baumannii (CRAB) hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) is now a therapeutic problem worldwide. METHOD An open-label, randomized, superiority, single-blind trial was conducted in Rajavithi Hospital, a super-tertiary care facility in Bangkok, Thailand. CRAB HAP/VAP patients were randomly assigned to receive either sitafloxacin-colistin-meropenem or colistin-meropenem. Outcomes in the two groups were then assessed with respect to mortality, clinical response, and adverse effects. RESULT Between April 2021 and April 2022, 77 patients were treated with combinations of either sitafloxacin plus colistin plus meropenem (n = 40) or colistin plus meropenem (n = 37). There were no significant differences between the two groups with respect to all-cause mortality rates at 7 days and 14 days (respectively, 7.5% vs. 2.7%; p = 0.616, and 10% vs. 10%; p = 1). Patients who received sitafloxacin-colistin-meropenem showed improved clinical response compared with patients who received colistin-meropenem in terms of both intention-to-treat (87.5% vs. 62.2%; p = 0.016) and per-protocol analysis (87.2% vs. 67.7%; p = 0.049). There were no significant differences between the two groups with respect to adverse effects. CONCLUSIONS Adding sitafloxacin as a third agent to meropenem plus colistin could improve clinical outcomes in CRAB HAP/VAP with little or no impact on adverse effects. In short, sitafloxacin-meropenem-colistin could be another therapeutic option for combatting CRAB HAP/VAP.
Collapse
Affiliation(s)
- Manasawee Wantanatavatod
- Division of Infectious Disease, Department of Medicine, Rajavithi Hospital, Bangkok 10400, Thailand
| | - Panuwat Wongkulab
- Division of Infectious Disease, Department of Medicine, Rajavithi Hospital, Bangkok 10400, Thailand
| |
Collapse
|
13
|
Isogami H, Sugeno M, Imaizumi K, Fukuda T, Kamo N, Yasuda S, Yamaguchi A, Fujimori K. Maternal septic shock due to Acinetobacter lwoffii infection:a case report. Fukushima J Med Sci 2023; 69:191-196. [PMID: 37766560 PMCID: PMC10694513 DOI: 10.5387/fms.2022-43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The incidence of Acinetobacter infections has increased in recent years. Acinetobacter infections are resistant to most antibiotics and can be found in hospitalized patients. Pregnancies complicated by severe sepsis or septic shock are associated with a higher rate of preterm labor and delivery, fetal infection, and operative delivery. This case report describes septic shock due to Acinetobacter lwoffii infection in the 31st week of gestation. A 47-year-old woman, with a gestation of 31 weeks and one day, presented with a fever, and signs of bacterial infection on laboratory tests. Although the patient was started on tazobactam/piperacillin, she went into septic shock, and was transferred to our hospital. Cesarean section was performed at a gestation of 31 weeks and 4 days because of severe maternal pneumonia and non-reassuring fetal status. A. lwoffii was detected in blood cultures collected at the previous hospital, and susceptibility to piperacillin and meropenem to A. lwoffii was confirmed. The pneumonia responded to antibiotic treatment and there were no findings of infection in the neonate. Maternal sepsis is an infrequent but important complication, causing significant maternal and fetal morbidity and fetal and neonatal mortality; therefore, early antibiotic therapy is required to improve the clinical outcome.
Collapse
Affiliation(s)
- Hirotaka Isogami
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine
| | - Misa Sugeno
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine
| | - Karin Imaizumi
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine
| | - Toma Fukuda
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine
| | - Norihito Kamo
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine
| | - Shun Yasuda
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine
| | - Akiko Yamaguchi
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine
| | - Keiya Fujimori
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine
| |
Collapse
|
14
|
Tuo Y, Tang Y, Yang R, Zhao X, Luo M, Zhou X, Wang Y. Virtual screening and biological activity evaluation of novel efflux pump inhibitors targeting AdeB. Int J Biol Macromol 2023; 250:126109. [PMID: 37544561 DOI: 10.1016/j.ijbiomac.2023.126109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/16/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
The AdeABC efflux pump is an important mechanism causing multidrug resistance in Acinetobacter baumannii, and its main component AdeB can recognize carbapenems, aminoglycosides, and other multi-class antibiotics and efflux them intracellularly, which is an ideal target for the development of anti-multidrug resistant bacteria drugs. Here, we combined multiple computer-aided drug design methods to target AdeB to identify promising novel structural inhibitors. Virtual screening was performed by molecular docking and molecular dynamics simulation (MD) and 12 potential compounds were identified from the databases. Meanwhile, their biological activities were validated by in vitro activity assays, and ChemDiv L676-2179 (γ-IFN), ChemDiv L676-1461, and Chembridge 53717615 were confirmed to suppress efflux effects and restore antibiotic susceptibility of resistant bacteria, which are expected to be developed as adjuvant drugs for the treatment of multi-drug resistant Acinetobacter baumannii clinical infections.
Collapse
Affiliation(s)
- Yan Tuo
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yuelu Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Ran Yang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - XueMin Zhao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Minghe Luo
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xing Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China; Chongqing Key Laboratory of Target Based Drug Screening and Activity Evaluation, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
15
|
Amaral SC, Pruski BB, de Freitas SB, Dos Santos LM, Hartwig DD. Biofilm formation in drug-resistant Acinetobacter baumannii and Acinetobacter nosocomialis isolates obtained from a university hospital in Pelotas, RS, Brazil. Lett Appl Microbiol 2023; 76:ovad094. [PMID: 37563082 DOI: 10.1093/lambio/ovad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/29/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
This study aimed to investigate the antibiotic resistance and biofilm formation of Acinetobacter calcoaceticus-A. baumannii (ACB) complex isolates recovered from a university hospital in Pelotas, RS, Brazil. The species were confirmed using gyrB multiplex and blaOXA-51-like genes PCR. The presence of the bfmRS virulence gene was evaluated by the PCR, and the isolates were classified based on their biofilm-forming ability on polystyrene (PO) and glass surfaces (TM). Out of 50 ACB complex isolates evaluated, 41 were identified as A. baumannii and nine as A. nosocomialis. The bfmRS gene was detected in 97.6% (40/41) of A. baumannii and 33.3% (3/9) of A. nosocomialis species. Forty-nine isolates exhibited a multidrug-resistant (MDR) profile, while one A. nosocomialis isolate presented an extensively drug-resistant (XDR) profile. All isolates were able of forming biofilms on PO surfaces and 98% (49/50) on TM surfaces. A significant correlation was observed between biofilm production on PO and TM surfaces (P < 0.05). However, no correlation was found between biofilms forming and the presence of the bfmRS gene or displaying a certain antibiotic resistance profile. In conclusion, A. baumannii and A. nosocomialis are frequent species causing nosocomial infections in a hospital in Pelotas, RS, Brazil, and both are capable of forming biofilms.
Collapse
Affiliation(s)
- Suélen Cavalheiro Amaral
- Laboratory of Bacteriology and Bioassays (LaBBio), Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, Pelotas, 96010900, RS, Brazil
- Center of Technological Development, Biotechnology, Federal University of Pelotas, Pelotas, 96010900, RS, Brazil
| | - Beatriz Bohns Pruski
- Laboratory of Bacteriology and Bioassays (LaBBio), Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, Pelotas, 96010900, RS, Brazil
| | - Stella Buchhorn de Freitas
- Laboratory of Bacteriology and Bioassays (LaBBio), Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, Pelotas, 96010900, RS, Brazil
| | - Lucas Moreira Dos Santos
- Center of Technological Development, Biotechnology, Federal University of Pelotas, Pelotas, 96010900, RS, Brazil
| | - Daiane Drawanz Hartwig
- Laboratory of Bacteriology and Bioassays (LaBBio), Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, Pelotas, 96010900, RS, Brazil
| |
Collapse
|
16
|
De Gaetano GV, Lentini G, Famà A, Coppolino F, Beninati C. Antimicrobial Resistance: Two-Component Regulatory Systems and Multidrug Efflux Pumps. Antibiotics (Basel) 2023; 12:965. [PMID: 37370284 DOI: 10.3390/antibiotics12060965] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The number of multidrug-resistant bacteria is rapidly spreading worldwide. Among the various mechanisms determining resistance to antimicrobial agents, multidrug efflux pumps play a noteworthy role because they export extraneous and noxious substrates from the inside to the outside environment of the bacterial cell contributing to multidrug resistance (MDR) and, consequently, to the failure of anti-infective therapies. The expression of multidrug efflux pumps can be under the control of transcriptional regulators and two-component systems (TCS). TCS are a major mechanism by which microorganisms sense and reply to external and/or intramembrane stimuli by coordinating the expression of genes involved not only in pathogenic pathways but also in antibiotic resistance. In this review, we describe the influence of TCS on multidrug efflux pump expression and activity in some Gram-negative and Gram-positive bacteria. Taking into account the strict correlation between TCS and multidrug efflux pumps, the development of drugs targeting TCS, alone or together with already discovered efflux pump inhibitors, may represent a beneficial strategy to contribute to the fight against growing antibiotic resistance.
Collapse
Affiliation(s)
| | - Germana Lentini
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
| | - Agata Famà
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
| | - Francesco Coppolino
- Department of Biomedical, Dental and Imaging Sciences, University of Messina, 98124 Messina, Italy
| | - Concetta Beninati
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
- Scylla Biotech Srl, 98124 Messina, Italy
| |
Collapse
|
17
|
Mazzitelli M, Gregori D, Sasset L, Trevenzoli M, Scaglione V, Lo Menzo S, Marinello S, Mengato D, Venturini F, Tiberio I, Navalesi P, Cattelan A. Cefiderocol-Based versus Colistin-Based Regimens for Severe Carbapenem-Resistant Acinetobacter baumannii Infections: A Propensity Score-Weighted, Retrospective Cohort Study during the First Two Years of the COVID-19 Pandemic. Microorganisms 2023; 11:microorganisms11040984. [PMID: 37110408 PMCID: PMC10146662 DOI: 10.3390/microorganisms11040984] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND A large increase in multi-drug-resistant Acinetobacter baumannii, especially carbapenem-resistant strains, occurred during the first two years of the COVID-19 pandemic, posing important challenges in its treatment. Cefiderocol appeared to be a good option for the treatment of Carbapenem-resistant Acinetobacter baumannii (CR-Ab), but to date, the guidelines and evidence available are conflicting. METHODS We retrospectively included a group of patients with CR-Ab infections (treated with colistin- or cefiderocol-based regimens) at Padua University Hospital (August 2020-July 2022) and assessed predictors of 30-day mortality, and differences in microbiological and clinical treatment. To evaluate the difference in outcomes, accounting for the imbalance in antibiotic treatment allocation, a propensity score weighting (PSW) approach was adopted. RESULTS We included 111 patients, 68% males, with a median age of 69 years (IQR: 59-78). The median duration of antibiotic treatment was 13 days (IQR:11-16). In total, 60 (54.1%) and 51 (45.9%) patients received cefiderocol- and colistin-based therapy, respectively. Notably, 53 (47.7%) patients had bloodstream infections, while 58 (52.3%) had pneumonia. Colistin was combined in 96.1%, 80.4%, and 5.8% of cases with tigecycline, meropenem, and fosfomycin, respectively. Cefiderocol was combined in 13.3%, 30%, and 18.3% of cases with fosfomycin, tigecycline, and meropenem, respectively. At the baseline, the two treatment groups significantly differed in age (patients treated with colistin were significantly older), the prevalence of diabetes and obesity (more frequent in the group treated with colistin), length of stay (longer in the group receiving cefiderocol), and type of infection (BSI were more frequent in the group receiving cefiderocol). The proportion of patients who developed acute kidney injury was significantly higher in the colistin group. By using PSW, no statistically significant differences emerged for mortality or clinical and microbiological cure between the two groups. No independent predictors were detected for hospital mortality or clinical cure, while for the length of stay, the only selected predictor was age, with a non-linear effect (p-value 0.025 for non-linearity) on the prolongation of hospital stay of 0.25 days (95% CI 0.10-0.39) at increasing ages (calculated over the IQR). CONCLUSIONS Cefiderocol treatment did not differ in terms of main outcomes and safety profile from colistin-based regimens. More prospective studies with a larger number of patients are required to confirm our results.
Collapse
Affiliation(s)
- Maria Mazzitelli
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128 Padua, Italy
| | - Dario Gregori
- Unit of Biostatistics, Epidemiology and Public Health, DCTVPH, University of Padova, 35128 Padua, Italy
| | - Lolita Sasset
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128 Padua, Italy
| | - Marco Trevenzoli
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128 Padua, Italy
| | - Vincenzo Scaglione
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128 Padua, Italy
| | - Sara Lo Menzo
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128 Padua, Italy
| | - Serena Marinello
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128 Padua, Italy
| | - Daniele Mengato
- Hospital Pharmacy Unit, Padua University Hospital, 35128 Padua, Italy
| | | | - Ivo Tiberio
- Anesthesiology and Intensive Care Unit, Padua University Hospital, 35128 Padua, Italy
| | - Paolo Navalesi
- Department of Medicine (DIMED), Padua University Hospital, 35121 Padua, Italy
| | - Annamaria Cattelan
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128 Padua, Italy
| |
Collapse
|
18
|
Green KD, Thamban Chandrika N, Vu LY, Pang AH, Tsodikov OV, Garneau-Tsodikova S. Aromatic hydrazides: A potential solution for Acinetobacter baumannii infections. Eur J Med Chem 2023; 249:115165. [PMID: 36739749 PMCID: PMC9974912 DOI: 10.1016/j.ejmech.2023.115165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
The emergence of multidrug-resistant bacteria and the poor efficacy of available antibiotics against these infections have led to the urgent need for novel antibiotics. Acinetobacter baumannii is one of high-priority pathogens due to its ability to mount resistance to different classes of antibiotics. In an effort to provide novel agents in the fight against infections caused by A. baumannii, we synthesized a series of 46 aromatic hydrazides as potential treatments. In this series, 34 compounds were found to be low- to sub-μM inhibitors of A. baumannii growth, with MIC values in the range of 8 μg/mL to ≤0.125 μg/mL against a broad set of multidrug-resistant clinical isolates. These compounds were not highly active against other bacteria. We showed that one of the most potent compounds, 3e, was bacteriostatic and inhibitory to biofilm formation, although it did not disrupt the preformed biofilm. Additionally, we found that these compounds lacked mammalian cytotoxicity. The high antibacterial potency and the lack of mammalian cytotoxicity make these compounds a promising lead series for development of a novel selective anti-A. baumannii antibiotic.
Collapse
Affiliation(s)
- Keith D Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Loan Y Vu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Allan H Pang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA.
| |
Collapse
|
19
|
Deshwal PR, Fathima R, Aggarwal M, Reddy NS, Tiwari P. A systematic review and meta-analysis for risk factor profiles in patients with resistant Acinetobacter baumannii infection relative to control patients. INTERNATIONAL JOURNAL OF RISK & SAFETY IN MEDICINE 2023; 34:337-355. [PMID: 37154184 DOI: 10.3233/jrs-220037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Acinetobacter baumannii is a major cause of nosocomial infections and high mortality rates. Evaluation of risk factors for such resistant infections may aid surveillance and diagnostic initiatives, as well as, can be crucial in early and appropriate antibiotic therapy. OBJECTIVE To identify the risk factors in patients with resistant A. baumannii infection with respect to controls. METHODS Prospective or retrospective cohort and case-control studies reporting the risk factors for resistant A. baumannii infection were collected through two data sources, MEDLINE/PubMed and OVID/Embase. Studies published in the English language were included while animal studies were excluded. The Newcastle-Ottawa Scale was used to assess the quality of studies. The odds ratio of developing antibiotic resistance in patients with A. baumannii infection was pooled using a random-effect model. RESULTS The results are based on 38 studies with 60878 participants (6394 cases and 54484 controls). A total of 28, 14, 25, and 11 risk factors were identified for multi-drug resistant (MDRAB), extensive-drug resistant (XDRAB), carbapenem-resistant (CRAB) and imipenem resistant A. baumannii infection (IRAB), respectively. In the MDRAB infection group, exposure to carbapenem (OR 5.51; 95% CI: 3.88-7.81) and tracheostomy (OR 5.01; 95% CI: 2.12-11.84) were identified with maximal pool odd's ratio. While previous use of amikacin (OR 4.94; 95% CI: 1.89-12.90) and exposure to carbapenem (OR 4.91; 95% CI: 2.65-9.10) were the foremost factors associated with developing CRAB infection. Further analysis revealed, mechanical ventilation (OR 7.21; 95% CI: 3.79-13.71) and ICU stay (OR 5.88; 95% CI: 3.27-10.57) as the most significant factors for XDRAB infection. CONCLUSION The exposure of carbapenem, amikacin (previous) and mechanical ventilation were the most significant risk factors for multidrug, extensive-drug, and carbapenem resistance in patients with A. baumannii infection respectively. These findings may guide to control and prevent resistant infections by identifying the patients at higher risk of developing resistance.
Collapse
Affiliation(s)
- Prity Rani Deshwal
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Raisa Fathima
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Muskan Aggarwal
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Nalla Surender Reddy
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Pramil Tiwari
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| |
Collapse
|
20
|
Mohamed A, Raval YS, Gelston S, Tibbits G, Ay SU, Flurin L, Greenwood-Quaintance KE, Patel R, Beyenal H. Anti-Biofilm Activity of a Tunable Hypochlorous Acid-Generating Electrochemical Bandage Controlled By a Wearable Potentiostat. ADVANCED ENGINEERING MATERIALS 2023; 25:2200792. [PMID: 36817722 PMCID: PMC9937732 DOI: 10.1002/adem.202200792] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 05/07/2023]
Abstract
Chronic wound biofilm infections represent a major clinical challenge which results in a substantial burden to patients and healthcare systems. Treatment with topical antibiotics is oftentimes ineffective as a result of antibiotic-resistant microorganisms and biofilm-specific antibiotic tolerance. Use of biocides such as hypochlorous acid (HOCl) has gained increasing attention due to the lack of known resistance mechanisms. We designed an HOCl-generating electrochemical bandage (e-bandage) that delivers HOCl continuously at low concentrations targeting infected wound beds in a similar manner to adhesive antimicrobial wound dressings. We developed a battery-operated wearable potentiostat that controls the e-bandage electrodes at potentials suitable for HOCl generation. We demonstrated that e-bandage treatment was tunable by changing the applied potential. HOCl generation on electrode surfaces was verified using microelectrodes. The developed e-bandage showed time-dependent responses against in vitro Acinetobacter baumannii and Staphylococcus aureus biofilms, reducing viable cells to non-detectable levels within 6 and 12 hours of treatment, respectively. The developed e-bandage should be further evaluated as an alternative to topical antibiotics to treat wound biofilm infections.
Collapse
Affiliation(s)
- Abdelrhman Mohamed
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Pullman, WA, USA
| | - Yash S. Raval
- Division of Clinical Microbiology, Mayo Clinic, Rochester, MN, USA
| | - Suzanne Gelston
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Pullman, WA, USA
| | - Gretchen Tibbits
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Pullman, WA, USA
| | - Suat U. Ay
- Department of Electrical and Computer Engineering, University of Idaho, Moscow
| | - Laure Flurin
- Division of Clinical Microbiology, Mayo Clinic, Rochester, MN, USA
- Department of Intensive Care, University Hospital of Guadeloupe, Pointe-à-Pitre, France
| | | | - Robin Patel
- Division of Clinical Microbiology, Mayo Clinic, Rochester, MN, USA
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Pullman, WA, USA
| |
Collapse
|
21
|
Gupta A, Vijayan V, Pant P, Kaur P, Singh TP, Sharma P, Sharma S. Structure prediction and discovery of inhibitors against phosphopantothenoyl cysteine synthetase of Acinetobacter baumannii. J Biomol Struct Dyn 2022; 40:11405-11417. [PMID: 34348086 DOI: 10.1080/07391102.2021.1958699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acinetobacter baumannii is an extremely dangerous multidrug-resistant (MDR) gram-negative pathogen which poses a serious life-threatening risk in immunocompromised patients. Phosphopantothenoyl cysteine synthetase (PPCS) catalyzes the formation of an amide bond between L-cysteine and phosphopantothenic acid (PPA) to form 4'- Phosphopantothenoylcysteine during Coenzyme A (CoA) biosynthesis. CoA is a crucial cofactor for cellular survival and inhibiting its synthesis will result in cell death. Bacterial PPCS differs from eukaryotic PPCS in a number of ways like it exists as a C-terminal domain of a PPCDC/PPCS fusion protein whereas eukaryotic PPCS exists as an independent protein. This difference makes it an attractive drug target. For which a conventional iterative approach of SBDD (structure-based drug design) was used, which began with three-dimensional structure prediction of AbPPCS using PHYRE 2.0. A database of FDA-approved compounds (Drug Bank) was then screened against the target of interest by means of docking score and glide energy, leading to the identification of 6 prominent drug candidates. The shortlisted 6 molecules were further subjected to all-atom MD simulation studies in explicit-solvent conditions (using AMBER force field). The MD simulation studies revealed that the ligands DB65103, DB449108 and DB443210, maintained several H-bonds with intense van der Waals contacts at the active site of the protein with high binding free energies: -11.42 kcal/mol, -10.49 kcal/mol and -10.98 kcal/mol, respectively, calculated via MM-PBSA method. Overall, binding of these compounds at the active site was found to be the most stable and robust highlighting the potential of these compounds to serve as antibacterials.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akshita Gupta
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Viswanathan Vijayan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Pradeep Pant
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Tej P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
22
|
Zhao Y, Liu Y, Feng L, Xu M, Wen H, Yao Z, Shi S, Wu Q, Zhou C, Cao J, Zhou T. In vitro and in vivo synergistic effect of chrysin in combination with colistin against Acinetobacter baumannii. Front Microbiol 2022; 13:961498. [PMID: 36386691 PMCID: PMC9650306 DOI: 10.3389/fmicb.2022.961498] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/23/2022] [Indexed: 08/30/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen that is primarily associated with nosocomial infections. With the rise in cases of acquired drug resistance, A. baumannii is gaining resistance to conventional antimicrobial drugs and even to the last line of antibiotics, such as colistin. Hence, the application of the synergistic combination of an antibiotic and a non-antibacterial agent is being contemplated as a new alternative therapeutic approach. Chrysin is a component of honey with anti-inflammatory and antioxidant properties. In this study, we evaluated the antibacterial activity of chrysin in combination with colistin against A. baumannii both in vitro and in vivo, as well as the cytotoxicity of chrysin with or without colistin. Our results revealed that chrysin and colistin exerted synergistic effects against A. baumannii by damaging the extracellular membrane and modifying the bacterial membrane potential. The chrysin/colistin combination group demonstrated an inhibitory effect on biofilm formation. In conclusion, it is expected that the synergy between these drugs can allow the use of a lower concentration of colistin for the treatment of A. baumannii infections, thereby reducing dose-dependent side effects. Thus, a combination therapy of chrysin/colistin may provide a new therapeutic option for controlling A. baumannii infections.
Collapse
Affiliation(s)
- Yining Zhao
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Liu
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luozhu Feng
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Mengxin Xu
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hong Wen
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuocheng Yao
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Shiyi Shi
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Wu
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cui Zhou
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianming Cao
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Tieli Zhou
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
23
|
Sianturi J, Priegue P, Hu J, Yin J, Seeberger PH. Semi-Synthetic Glycoconjugate Vaccine Lead Against Acinetobacter baumannii 17978. Angew Chem Int Ed Engl 2022; 61:e202209556. [PMID: 35950629 PMCID: PMC9826233 DOI: 10.1002/anie.202209556] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 01/11/2023]
Abstract
Acinetobacter baumannii is a opportunistic bacterial pathogen responsible for serious nosocomial infections that is becoming increasingly resistant against antibiotics. Capsular polysaccharides (CPS) that cover A. baumannii are a major virulence factor that play an important role in pathogenesis, are used to assign serotypes and provide the basis for vaccine development. Synthetic oligosaccharides resembling the CPS of A. baumannii 17978 were printed onto microarray slides and used to screen sera from patients infected with A. baumannii as well as a monoclonal mouse antibody (mAb C8). A synthetic oligosaccharide emerged from glycan array screening as lead for the development of a vaccine against A. baumannii 17978. Tetrasaccharide 20 is a key epitope for recognition by an antibody and is a vaccine lead.
Collapse
Affiliation(s)
- Julinton Sianturi
- Department of Biomolecular SystemsMax-Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Patricia Priegue
- Department of Biomolecular SystemsMax-Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Jing Hu
- Wuxi School of MedicineJiangnan UniversityLihu Ave. 1800214122WuxiChina
| | - Jian Yin
- Wuxi School of MedicineJiangnan UniversityLihu Ave. 1800214122WuxiChina
| | - Peter H. Seeberger
- Department of Biomolecular SystemsMax-Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| |
Collapse
|
24
|
Deletion of a previously uncharacterized lipoprotein lirL confers resistance to an inhibitor of type II signal peptidase in Acinetobacter baumannii. Proc Natl Acad Sci U S A 2022; 119:e2123117119. [PMID: 36099298 PMCID: PMC9499571 DOI: 10.1073/pnas.2123117119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Inhibiting bacterial lipoprotein biosynthesis in Enterobacteriaceae is an attractive antibacterial strategy to target multidrug resistance, and mechanisms of resistance to prolipoprotein signal peptidase (LspA) inhibitors in Escherichia coli are relatively well understood. In contrast, it has been challenging to understand the mechanisms of resistance to LspA inhibitors in Acinetobacter baumannii due to the substantially lower inhibitor potencies and the lack of a homologous lpp gene. By increasing the antibacterial potency of the LspA inhibitor, globomycin, against wild-type A. baumannii, we were able to examine resistance to LspA inhibitors, resulting in the identification of a previously uncharacterized highly abundant lipoprotein, LspA inhibitor resistance lipoprotein. This study reveals insights into resistance mechanisms of A. baumannii against inhibitors of bacterial lipoprotein biosynthesis. Acinetobacter baumannii is a clinically important, predominantly health care–associated gram-negative bacterium with high rates of emerging resistance worldwide. Given the urgent need for novel antibacterial therapies against A. baumannii, we focused on inhibiting lipoprotein biosynthesis, a pathway that is essential for envelope biogenesis in gram-negative bacteria. The natural product globomycin, which inhibits the essential type II signal peptidase prolipoprotein signal peptidase (LspA), is ineffective against wild-type A. baumannii clinical isolates due to its poor penetration through the outer membrane. Here, we describe a globomycin analog, G5132, that is more potent against wild-type and clinical A. baumannii isolates. Mutations leading to G5132 resistance in A. baumannii map to the signal peptide of a single hypothetical gene, which we confirm encodes an alanine-rich lipoprotein and have renamed lirL (prolipoprotein signal peptidase inhibitor resistance lipoprotein). LirL is a highly abundant lipoprotein primarily localized to the inner membrane. Deletion of lirL leads to G5132 resistance, inefficient cell division, increased sensitivity to serum, and attenuated virulence. Signal peptide mutations that confer resistance to G5132 lead to the accumulation of diacylglyceryl-modified LirL prolipoprotein in untreated cells without significant loss in cell viability, suggesting that these mutations overcome a block in lipoprotein biosynthetic flux by decreasing LirL prolipoprotein substrate sensitivity to processing by LspA. This study characterizes a lipoprotein that plays a critical role in resistance to LspA inhibitors and validates lipoprotein biosynthesis as a antibacterial target in A. baumannii.
Collapse
|
25
|
Tian C, Xing M, Fu L, Zhao Y, Fan X, Wang S. Emergence of uncommon KL38-OCL6-ST220 carbapenem-resistant Acinetobacter pittii strain, co-producing chromosomal NDM-1 and OXA-820 carbapenemases. Front Cell Infect Microbiol 2022; 12:943735. [PMID: 36034705 PMCID: PMC9411868 DOI: 10.3389/fcimb.2022.943735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To characterize one KL38-OCL6-ST220 carbapenem-resistant Acinetobacter pittii strain, co-producing chromosomal NDM-1 and OXA-820 carbapenemases. Methods A. pittii TCM strain was isolated from a bloodstream infection (BSI). Antimicrobial susceptibility tests were conducted via disc diffusion and broth microdilution. Stability experiments of blaNDM-1 and blaOXA-820 carbapenemase genes were further performed. Whole-genome sequencing (WGS) was performed on the Illumina and Oxford Nanopore platforms. Multilocus sequence typing (MLST) was analyzed based on the Pasteur and Oxford schemes. Resistance genes, virulence factors, and insertion sequences (ISs) were identified with ABRicate based on ResFinder 4.0, virulence factor database (VFDB), and ISfinder. Capsular polysaccharide (KL), lipooligosaccharide outer core (OCL), and plasmid reconstruction were tested using Kaptive and PLACNETw. PHASTER was used to predict prophage regions. A comparative genomics analysis of all ST220 A. pittii strains from the public database was carried out. Point mutations, average nucleotide identity (ANI), DNA–DNA hybridization (DDH) distances, and pan-genome analysis were performed. Results A. pittii TCM was ST220Pas and ST1818Oxf with KL38 and OCL6, respectively. It was resistant to imipenem, meropenem, and ciprofloxacin but still susceptible to amikacin, colistin, and tigecycline. WGS revealed that A. pittii TCM contained one circular chromosome and four plasmids. The Tn125 composite transposon, including blaNDM-1, was located in the chromosome with 3-bp target site duplications (TSDs). Many virulence factors and the blaOXA-820 carbapenemase gene were also identified. The stability assays revealed that blaNDM-1 and blaOXA-820 were stabilized by passage in an antibiotic-free medium. Moreover, 12 prophage regions were identified in the chromosome. Phylogenetic analysis showed that there are 11 ST220 A. pittii strains, and one collected from Anhui, China was closely related. All ST220 A. pittii strains presented high ANI and DDH values; they ranged from 99.85% to 100% for ANI and from 97.4% to 99.9% for DDH. Pan-genome analysis revealed 3,200 core genes, 0 soft core genes, 1,571 shell genes, and 933 cloud genes among the 11 ST220 A. pittii strains. Conclusions The coexistence of chromosomal NDM-1 and OXA-820 carbapenemases in A. pittii presents a huge challenge in healthcare settings. Increased surveillance of this species in hospital and community settings is urgently needed.
Collapse
Affiliation(s)
- Chongmei Tian
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, China
| | - Mengyu Xing
- Department of Pharmacy, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liping Fu
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, China
| | - Yaping Zhao
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, China
| | - Xueyu Fan
- Department of Clinical Laboratory, Quzhou People’s Hospital, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Siwei Wang
- Core Facility, Quzhou People’s Hospital, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
- *Correspondence: Siwei Wang,
| |
Collapse
|
26
|
Seeberger PH, Sianturi J, Priegue P, Hu J, Yin J. Semi‐Synthetic Glycoconjugate Vaccine Lead Against Acinetobacter baumannii 17978. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Peter H. Seeberger
- Max Planck Institute of Colloids and Interfaces Biomolecular Systems Am Mühlenberg 1Research Campus Golm 14476 Potsdam GERMANY
| | - Julinton Sianturi
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung Biomolecular Systems Am Mühlenberg 1Research Campus golm 14476 Potsdam GERMANY
| | - Patricia Priegue
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung Biomolecular Systems Am Mühlenberg 1Research Campus Golm 14476 Potsdam GERMANY
| | - Jing Hu
- Jiangnan University School of Biotechnology Lihu Ave. 1800 214122 Wuxi CHINA
| | - Jian Yin
- Jiangnan University School of Biotechnology Lihu Ave. 1800 214122 Wuxi CHINA
| |
Collapse
|
27
|
Alrahmany D, Omar AF, Alreesi A, Harb G, Ghazi IM. Acinetobacter baumannii Infection-Related Mortality in Hospitalized Patients: Risk Factors and Potential Targets for Clinical and Antimicrobial Stewardship Interventions. Antibiotics (Basel) 2022; 11:antibiotics11081086. [PMID: 36009955 PMCID: PMC9405145 DOI: 10.3390/antibiotics11081086] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/30/2022] Open
Abstract
Due to resistance and scarcity of treatment options, nosocomial Acinetobacter baumannii infections are associated with significant fatality rates. We investigated the factors contributing to infection-related deaths to develop tailored stewardship interventions that could reduce these high mortality rates. We reviewed the medical records of adult inpatients with A. baumannii infections over two years. Patient demographics and clinical data were collected and statistically analyzed. The study included 321 patients with positive A. baumannii microbiological cultures, with respiratory infections accounting for 58.6%, soft tissues 29.3%, bacteremia 8.6%, urine 2.1%, and others 1.4%. The study population’s median (IQR) age was 62.6 (38.9−94.9) years, and hospital stay was 20 (9.5−40) days. Statistical analysis revealed that various risk factors contribute significantly to high in-hospital all-cause mortality (44%), as well as 14-day and 28-day mortality rates. Deaths increased by a factor of 1.04 with every additional year of age (p = 0.000), admission to the critical care unit (p = 0.000, OR: 2.86), and patients admitted with an infectious diagnosis had nearly three times the mortality rate as those admitted with other diagnoses (p = 0.000, OR: 3.12). Male gender (p < 0.001, OR: 2.14), any comorbid conditions (p = 0.000, OR: 5.29), prolonged hospitalization (>7 days) (p = 0.023, OR: 1.98), and hospital acquisition of infection (p = 0.027, OR: 1.68) were among the most significant predictors of mortality. All variables were investigated for their impact on all-cause, 14-day, and 28-day mortality rates. Improving multidisciplinary infection control practices, regular disinfection of patient care equipment, and optimal intubation practice that avoids unnecessary intubation are necessary interventions to reduce infection-related mortality rates. Better antibiotic selection and de-escalation, shorter hospital stays whenever possible, prompt medical stabilization of comorbid conditions, and fewer unnecessary admissions to critical care units will all lead to improved outcomes.
Collapse
Affiliation(s)
- Diaa Alrahmany
- Pharmaceutical Care Department, Directorate General of Medical Supplies, Ministry of Health, Muscat 3110, Oman
| | - Ahmed F. Omar
- General Medicine Department, Suhar Hospital, Suhar 8484, Oman
| | - Aisha Alreesi
- Pharmacy Department, Suhar Hospital, Suhar 8484, Oman
| | | | - Islam M. Ghazi
- Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, NY 11201, USA
- Correspondence: ; Tel.: + 1-215-268-8908
| |
Collapse
|
28
|
Lowe M, Singh-Moodley A, Ismail H, Thomas T, Chibabhai V, Nana T, Lowman W, Ismail A, Chan WY, Perovic O. Molecular characterisation of Acinetobacter baumannii isolates from bloodstream infections in a tertiary-level hospital in South Africa. Front Microbiol 2022; 13:863129. [PMID: 35992699 PMCID: PMC9391000 DOI: 10.3389/fmicb.2022.863129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/14/2022] [Indexed: 12/26/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen and causes various infections in patients. This study aimed to describe the clinical, epidemiological and molecular characteristics of A. baumannii isolated from BCs in patients at a tertiary-level hospital in South Africa. Ninety-six isolates from bloodstream infections were collected. Clinical characteristics of patients were recorded from patient files. Organism identification and AST was performed using automated systems. PCR screening for the mcr-1 to mcr-5 genes was done. To infer genetic relatedness, a dendrogram was constructed using MALDI-TOF MS. All colistin-resistant isolates (n = 9) were selected for WGS. The patients were divided into three groups, infants (<1 year; n = 54), paediatrics (1–18 years; n = 6) and adults (≥19 years; n = 36) with a median age of 13 days, 1 and 41 years respectively. Of the 96 A. baumannii bacteraemia cases, 96.9% (93/96) were healthcare-associated. The crude mortality rate at 30 days was 52.2% (48/92). The majority of the isolates were multidrug-resistant (MDR). All isolates were PCR-negative for the mcr-1 to mcr-5 genes. The majority of the isolates belonged to cluster 1 (62/96) according to the MALDI-TOF MS dendrogram. Colistin resistance was confirmed in nine A. baumannii isolates (9.4%). The colistin-resistant isolates belonged to sequence type (ST) 1 (5/6) and ST2 (1/6). The majority of ST1 isolates showed low SNP diversity (≤4 SNPs). All the colistin-resistant isolates were resistant to carbapenems, exhibited an XDR phenotype and harboured the blaOXA–23 gene. The blaNDM gene was only detected in ST1 colistin-resistant isolates (n = 5). The lpsB gene was detected in all colistin-resistant isolates as well as various efflux pump genes belonging to the RND, the MFS and the SMR families. The lipooligosaccharide OCL1 was detected in all colistin-resistant ST1 and ST2 isolates and the capsular polysaccharide KL3 and KL17 were detected in ST2 and ST1 respectively. This study demonstrated a 9.4% prevalence of colistin-resistant ST1 and ST2 A. baumannii in BC isolates. The detection of the lpsB gene indicates a potential threat and requires close prospective monitoring.
Collapse
Affiliation(s)
- Michelle Lowe
- Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Johannesburg, South Africa
- *Correspondence: Michelle Lowe,
| | - Ashika Singh-Moodley
- Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg, South Africa
| | - Husna Ismail
- Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Teena Thomas
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg, South Africa
- Infection Control Services Laboratory, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, South Africa
| | - Vindana Chibabhai
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg, South Africa
- Microbiology Laboratory, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, South Africa
| | - Trusha Nana
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg, South Africa
- Microbiology Laboratory, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, South Africa
| | - Warren Lowman
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg, South Africa
- Pathcare/Vermaak Pathologists, Johannesburg, South Africa
- Wits Donald Gordon Medical Centre, Johannesburg, South Africa
| | - Arshad Ismail
- Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Wai Yin Chan
- Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Olga Perovic
- Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
29
|
Immunoinformatics-guided designing of epitope-based subunit vaccine from Pilus assembly protein of Acinetobacter baumannii bacteria. J Immunol Methods 2022; 508:113325. [PMID: 35908655 DOI: 10.1016/j.jim.2022.113325] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/05/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022]
Abstract
Acinetobacter baumannii, a prominent pathogen responsible for chronic infections in the blood, urinary tract, and lungs, has a high mortality due to its virulence and limited preventive methods. The present study aims to characterize the pilus assembly protein of A. baumannii to offer leads for epitope-based vaccine development. FilF is the putative pilus assembly protein that reportedly plays a supreme character in the virulence of this WHO-listed ESKAPE bacterium. Implementing various bioinformatics tools, led to the recognition of many antigenic B and T cell epitopes. Most promising B and T-cell epitopes were selected based on their binding efficiency with commonly occurring MHC alleles. Finally, we stepped down to fourteen protective antigenic peptides. These epitopes were also revealed to be non-allergenic and non-toxic. As a result, a vaccine chimera was created by linking these epitopes with appropriate linkers and adjuvant such as β-defensins. Furthermore, homology modeling and validation were carried out, with the modeled structure being employed for molecular docking with the immunological receptor (TLR-4) found on lymphocyte cells. As a result of the molecular dynamics simulation, the interaction between human TLR-4 and the multi-epitope vaccine sequence was stable. Finally, in silico cloning and immune simulation were carried out to see the efficacy of the construct vaccine. This is the first study targeting the pilus assembly protein from A. baumannii to identify novel epitopes that hold potential for further experimental design of multi-peptide vaccine construct against the pathogen.
Collapse
|
30
|
Tate H, Ayers S, Nyirabahizi E, Li C, Borenstein S, Young S, Rice-Trujillo C, Saint Fleurant S, Bodeis-Jones S, Li X, Tobin-D’Angelo M, Volkova V, Hardy R, Mingle L, M’ikanatha NM, Ruesch L, Whitehouse CA, Tyson GH, Strain E, McDermott PF. Prevalence of Antimicrobial Resistance in Select Bacteria From Retail Seafood-United States, 2019. Front Microbiol 2022; 13:928509. [PMID: 35814688 PMCID: PMC9262255 DOI: 10.3389/fmicb.2022.928509] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
In 2019, the United States National Antimicrobial Resistance Monitoring System (NARMS) surveyed raw salmon, shrimp, and tilapia from retail grocery outlets in eight states to assess the prevalence of bacterial contamination and antimicrobial resistance (AMR) in the isolates. Prevalence of the targeted bacterial genera ranged among the commodities: Salmonella (0%-0.4%), Aeromonas (19%-26%), Vibrio (7%-43%), Pseudomonas aeruginosa (0.8%-2.3%), Staphylococcus (23%-30%), and Enterococcus (39%-66%). Shrimp had the highest odds (OR: 2.8, CI: 2.0-3.9) of being contaminated with at least one species of these bacteria, as were seafood sourced from Asia vs. North America (OR: 2.7; CI: 1.8-4.7) and Latin America and the Caribbean vs. North America (OR: 1.6; CI: 1.1-2.3) and seafood sold at the counter vs. sold frozen (OR: 2.1; CI: 1.6-2.9). Isolates exhibited pan-susceptibility (Salmonella and P. aeruginosa) or low prevalence of resistance (<10%) to most antimicrobials tested, with few exceptions. Seafood marketed as farm-raised had lower odds of contamination with antimicrobial resistant bacteria compared to wild-caught seafood (OR: 0.4, CI: 0.2-0.7). Antimicrobial resistance genes (ARGs) were detected for various classes of medically important antimicrobials. Clinically relevant ARGs included carbapenemases (bla IMI-2, bla NDM-1) and extended spectrum β-lactamases (ESBLs; bla CTX-M-55). This population-scale study of AMR in seafood sold in the United States provided the basis for NARMS seafood monitoring, which began in 2020.
Collapse
Affiliation(s)
- Heather Tate
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Sherry Ayers
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Epiphanie Nyirabahizi
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Cong Li
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Stacey Borenstein
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Shenia Young
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Crystal Rice-Trujillo
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Sanchez Saint Fleurant
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Sonya Bodeis-Jones
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Xunde Li
- School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Melissa Tobin-D’Angelo
- Acute Disease Epidemiology Section, Georgia Department of Public Health, Atlanta, GA, United States
| | - Victoriya Volkova
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Rachel Hardy
- Missouri State Public Health Laboratory, Jefferson City, MO, United States
| | - Lisa Mingle
- Wadsworth Center Division of Infectious Diseases, New York State Department of Health, Albany, NY, United States
| | - Nkuchia M. M’ikanatha
- Division of Infectious Disease Epidemiology, Pennsylvania Department of Health, Harrisburg, PA, United States
| | - Laura Ruesch
- Animal Disease Research and Diagnostic Laboratory, Veterinary and Biomedical Sciences Department, South Dakota State University, Brookings, SD, United States
| | - Chris A. Whitehouse
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Gregory H. Tyson
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Errol Strain
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Patrick F. McDermott
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, United States
| |
Collapse
|
31
|
Evasion of Antimicrobial Activity in Acinetobacter baumannii by Target Site Modifications: An Effective Resistance Mechanism. Int J Mol Sci 2022; 23:ijms23126582. [PMID: 35743027 PMCID: PMC9223528 DOI: 10.3390/ijms23126582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Acinetobacter baumannii is a Gram-negative bacillus that causes multiple infections that can become severe, mainly in hospitalized patients. Its high ability to persist on abiotic surfaces and to resist stressors, together with its high genomic plasticity, make it a remarkable pathogen. Currently, the isolation of strains with high antimicrobial resistance profiles has gained relevance, which complicates patient treatment and prognosis. This resistance capacity is generated by various mechanisms, including the modification of the target site where antimicrobial action is directed. This mechanism is mainly generated by genetic mutations and contributes to resistance against a wide variety of antimicrobials, such as β-lactams, macrolides, fluoroquinolones, aminoglycosides, among others, including polymyxin resistance, which includes colistin, a rescue antimicrobial used in the treatment of multidrug-resistant strains of A. baumannii and other Gram-negative bacteria. Therefore, the aim of this review is to provide a detailed and up-to-date description of antimicrobial resistance mediated by the target site modification in A. baumannii, as well as to detail the therapeutic options available to fight infections caused by this bacterium.
Collapse
|
32
|
Havenga B, Reyneke B, Waso-Reyneke M, Ndlovu T, Khan S, Khan W. Biological Control of Acinetobacter baumannii: In Vitro and In Vivo Activity, Limitations, and Combination Therapies. Microorganisms 2022; 10:microorganisms10051052. [PMID: 35630494 PMCID: PMC9147981 DOI: 10.3390/microorganisms10051052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
The survival, proliferation, and epidemic spread of Acinetobacter baumannii (A. baumannii) in hospital settings is associated with several characteristics, including resistance to many commercially available antibiotics as well as the expression of multiple virulence mechanisms. This severely limits therapeutic options, with increased mortality and morbidity rates recorded worldwide. The World Health Organisation, thus, recognises A. baumannii as one of the critical pathogens that need to be prioritised for the development of new antibiotics or treatment. The current review will thus provide a brief overview of the antibiotic resistance and virulence mechanisms associated with A. baumannii’s “persist and resist strategy”. Thereafter, the potential of biological control agents including secondary metabolites such as biosurfactants [lipopeptides (surfactin and serrawettin) and glycolipids (rhamnolipid)] as well as predatory bacteria (Bdellovibrio bacteriovorus) and bacteriophages to directly target A. baumannii, will be discussed in terms of their in vitro and in vivo activity. In addition, limitations and corresponding mitigations strategies will be outlined, including curtailing resistance development using combination therapies, product stabilisation, and large-scale (up-scaling) production.
Collapse
Affiliation(s)
- Benjamin Havenga
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa; (B.H.); (B.R.)
| | - Brandon Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa; (B.H.); (B.R.)
| | - Monique Waso-Reyneke
- Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa; (M.W.-R.); (S.K.)
| | - Thando Ndlovu
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag UB, Gaborone 0022, Botswana;
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa; (M.W.-R.); (S.K.)
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa; (B.H.); (B.R.)
- Correspondence: ; Tel.: +27-21-808-5804
| |
Collapse
|
33
|
Genetic Resistance Determinants in Clinical Acinetobacter pittii Genomes. Antibiotics (Basel) 2022; 11:antibiotics11050676. [PMID: 35625320 PMCID: PMC9137642 DOI: 10.3390/antibiotics11050676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial-resistant pathogenic bacteria are an increasing problem in public health, especially in the healthcare environment, where nosocomial infection microorganisms find their niche. Among these bacteria, the genus Acinetobacter which belongs to the ESKAPE pathogenic group harbors different multi-drug resistant (MDR) species that cause human nosocomial infections. Although A. baumannii has always attracted more interest, the close-related species A. pittii is the object of more study due to the increase in its isolation and MDR strains. In this work, we present the genomic analysis of five clinically isolated A. pittii strains from a Spanish hospital, with special attention to their genetic resistance determinants and plasmid structures. All the strains harbored different genes related to β-lactam resistance, as well as different MDR efflux pumps. We also found and described, for the first time in this species, point mutations that seem linked with colistin resistance, which highlights the relevance of this comparative analysis among the pathogenic species isolates.
Collapse
|
34
|
Srikanth D, Vinayak Joshi S, Ghouse Shaik M, Pawar G, Bujji S, Kanchupalli V, Chopra S, Nanduri S. A Comprehensive Review on Potential Therapeutic Inhibitors of Nosocomial Acinetobacter baumannii Superbugs. Bioorg Chem 2022; 124:105849. [DOI: 10.1016/j.bioorg.2022.105849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/20/2022]
|
35
|
Whole genome sequence of pan drug-resistant clinical isolate of Acinetobacter baumannii ST1890. PLoS One 2022; 17:e0264374. [PMID: 35263355 PMCID: PMC8906637 DOI: 10.1371/journal.pone.0264374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/09/2022] [Indexed: 11/24/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic gram-negative bacteria typically attributed to hospital-associated infection. It could also become multidrug-resistant (MDR), extensively drug-resistant (XDR), and pan drug-resistant (PDR) during a short period. Although A. baumannii has been documented extensively, complete knowledge on the antibiotic-resistant mechanisms and virulence factors responsible for pathogenesis has not been entirely elucidated. This study investigated the drug resistance pattern and characterized the genomic sequence by de novo assembly of PDR A. baumannii strain VJR422, which was isolated from a catheter-sputum specimen. The results showed that the VJR422 strain was resistant to any existing antibiotics. Based on de novo assembly, whole-genome sequences showed a total genome size of 3,924,675-bp. In silico and conventional MLST analysis of sequence type (ST) of this strain was new ST by Oxford MLST scheme and designated as ST1890. Moreover, we found 10,915 genes that could be classified into 45 categories by Gene Ontology (GO) analysis. There were 1,687 genes mapped to 34 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The statistics from Clusters of Orthologous Genes (COG) annotation identified 3,189 genes of the VJR422 strain. Regarding the existence of virulence factors, a total of 59 virulence factors were identified in the genome of the VJR422 strain by virulence factors of pathogenic bacteria databases (VFDB). The drug-resistant genes were investigated by searching in the Comprehensive Antibiotic Resistance Database (CARD). The strain harbored antibiotic-resistant genes responsible for aminoglycoside, β-lactam-ring-containing drugs, erythromycin, and streptogramin resistance. We also identified resistance-nodulation-cell division (RND) and the major facilitator superfamily (MFS) associated with the antibiotic efflux pump. Overall, this study focused on A. baumannii strain VJR422 at the genomic level data, i.e., GO, COG, and KEGG. The antibiotic-resistant genotype and phenotype as well as the presence of potential virulence associated factors were investigated.
Collapse
|
36
|
Bekka-Hadji F, Bombarda I, Djoudi F, Bakour S, Touati A. Chemical Composition and Synergistic Potential of Mentha pulegium L. and Artemisia herba alba Asso. Essential Oils and Antibiotic against Multi-Drug Resistant Bacteria. Molecules 2022; 27:1095. [PMID: 35164360 PMCID: PMC8839733 DOI: 10.3390/molecules27031095] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
The essential oils were obtained by hydrodistillation from aerial parts of Mentha pulegium L. (M. pulegium L.) and Artemisia herba alba (A. herba alba) Asso. and analyzed by gas chromatography-flame ionization detector chromatograpy (GC-FID) and gaz chromatography-mass spectrometry (GC-MS). The antibacterial activities of the oils were determined by the disk diffusion method and a microdilution broth assay against six bacteria stains. The combinations of these essential oils with antibiotics were evaluated against two multi-drug-resistant bacteria strains: imipenem-resistant Acinetobacter baumannii (IRAB S3310) and methicillin-resistant Staphylococcus aureus (MRSA S19). The chemical analysis of M. pulegium essential oil revealed the presence of pulegone (74.8%) and neoisomenthol (10.0%). A. herba alba essential oil was characterized by camphor (32.0%), α-thujone (13.7%), 1,8-cineole (9.8%), β-thujone (5.0%), bornéol (3.8%), camphene (3.6%), and p-cymene (2.1%). All strains tested except Pseudomonas aeruginosa were susceptible to these oils. The combinations of essential oils with antibiotics exerted synergism, antagonism, or indifferent effects. The best effect was observed with A. herba alba essential oil in association with cefoxitin (CX) against MRSA S19. However, for IRAB S3310, the strongest synergistic effect was observed with M. pulegium in association with amikacin (AK). This study demonstrated that M. pulegium and A. herba alba essential oils have antibacterial activities which could be potentiated by antibiotics especially in the case of IRAB S3310.
Collapse
Affiliation(s)
- Fahima Bekka-Hadji
- Département de Microbiologie Appliquée et Sciences Alimentaires, Faculté des Sciences de la Nature et de la Vie, Université de Jijel, Jijel 18000, Algeria;
- Laboratoire d’Ecologie Microbienne, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria; (F.D.); (A.T.)
| | - Isabelle Bombarda
- Aix Marseille Univ, Université Avignon, CNRS, IRD, IMBE, 13013 Marseille, France
| | - Ferhat Djoudi
- Laboratoire d’Ecologie Microbienne, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria; (F.D.); (A.T.)
| | - Sofiane Bakour
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13013 Marseille, France;
| | - Abdelaziz Touati
- Laboratoire d’Ecologie Microbienne, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria; (F.D.); (A.T.)
| |
Collapse
|
37
|
Preventative treatment with Fluorothiazinon suppressed Acinetobacter baumannii-associated septicemia in mice. J Antibiot (Tokyo) 2022; 75:155-163. [PMID: 35064243 PMCID: PMC8777177 DOI: 10.1038/s41429-022-00504-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/07/2021] [Accepted: 11/10/2021] [Indexed: 02/01/2023]
Abstract
The high prevalence of multidrug-resistant Acinetobacter baumannii has emerged as a serious problem in the treatment of nosocomial infections in the past three decades. Recently, we developed a new small-molecule inhibitor belonging to a class of 2,4-disubstituted-4H-[1,3,4]-thiadiazine-5-ones, Fluorothiazinon (FT, previously called CL-55). FT effectively suppressed the T3SS of Chlamydia spp., Pseudomonas aeruginosa, and Salmonella sp. without affecting bacterial growth in vitro. In this study, we describe that prophylactic use of FT for 4 days prior to challenge with resistant clinical isolates of A. baumannii (ABT-897-17 and 52TS19) suppressed septic infection in mice, resulting in improved survival, limited bacteraemia and decreased bacterial load in the organs of the mice. We show that FT had an inhibitory effect on A. baumannii biofilm formation in vitro and, to a greater extent, on biofilm maturation. In addition, FT inhibited Acinetobacter isolate-induced death of HeLa cells, which morphologically manifested as apoptosis. The mechanism of FT action on A. baumannii is currently being studied. FT may be a promising candidate for the development of a broad-spectrum anti-virulence drug to use in the prevention of nosocomial infections.
Collapse
|
38
|
Treatment, clinical outcomes, and predictors of mortality among a national cohort of admitted patients with
Acinetobacter baumannii
infection. Antimicrob Agents Chemother 2022; 66:e0197521. [DOI: 10.1128/aac.01975-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objectives:
To analyze treatment, clinical outcomes, and predictors of mortality in hospitalized patients with
Acinetobacter baumannii
infection.
Methods:
Retrospective cohort study of inpatients with
A. baumannii
cultures and treatment from 2010-2019. Patients who died during admission were compared to those who survived to identify predictors of inpatient mortality, using multivariable unconditional logistic regression models.
Results:
We identified 4,599 inpatients with
A. baumannii
infection; 13.6% died during admission. Fluoroquinolones (26.8%), piperacillin/tazobactam (24%) and carbapenems (15.6%) were used for treatment. Tigecycline (3%) and polymyxins (3.7%) were not used often. Predictors of inpatient mortality included current acute respiratory failure (adjusted odds ratio [aOR] 3.94), shock (aOR 3.05), and acute renal failure (aOR 2.01); blood (aOR 1.94) and respiratory (aOR 1.64) infectious source; multidrug-resistant
A. baumannii
(MDRAB) infection (aOR 1.66); liver disease (aOR 2.15); and inadequate initial treatment (aOR 1.30). Inpatient mortality was higher in those with MDRAB vs. non-MDRAB (aOR 1.61) and in those with CRAB vs. non-CRAB infection (aOR 1.68). Length of stay >10 days was higher among those with MDRAB vs. non-MDRAB (aOR 1.25) and in those with CRAB vs. non-CRAB infection (aOR 1.31).
Conclusions:
In our national cohort of inpatients with
A. baumannii
infection, clinical outcomes were worse among those with MDRAB and/or CRAB infection. Predictors of inpatient mortality included several current conditions associated with severity, infectious source, underlying illness, and inappropriate treatment. Our study may assist healthcare providers in the early identification of admitted patients with
A. baumannii
infection who are at higher risk of death.
Collapse
|
39
|
Tiku V. Acinetobacter baumannii: Virulence Strategies and Host Defense Mechanisms. DNA Cell Biol 2022; 41:43-48. [PMID: 34941456 PMCID: PMC8787692 DOI: 10.1089/dna.2021.0588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/17/2021] [Accepted: 11/01/2021] [Indexed: 01/20/2023] Open
Abstract
Acinetobacter baumannii is a highly antibiotic-resistant bacterial pathogen known to cause severe life-threatening infections, including pneumonia, meningitis, and sepsis. Recent emergence of this bacterium as a serious nosocomial pathogen has led to categorization of A. baumannii as a "high-priority" pathogen by the World Health Organization (WHO), for which research efforts are urgently required to develop therapeutic interventions. Some of the properties that make A. baumannii a serious pathogen include its capacity to tolerate high levels of stress and enhanced expression of efflux pumps that enable high degrees of antibiotic resistance. Virulence mechanisms employed by A. baumannii to establish successful infection and host responses elicited against A. baumannii to counter the infection are discussed in detail in this article.
Collapse
Affiliation(s)
- Varnesh Tiku
- Vir Biotechnology, San Francisco, California, USA
| |
Collapse
|
40
|
A four-year follow-up survey of antimicrobial resistance among Acinetobacter baumannii complex from inpatients in Southern Brazil. Am J Infect Control 2021; 49:1503-1505. [PMID: 34324917 DOI: 10.1016/j.ajic.2021.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVES To determine the trends of antimicrobial resistance for Acinetobacter baumannii complex isolates recovered from inpatients over a 4-year follow-up survey. METHODS A total of 659 A baumannii complex isolates were recovered from hospitalized patients in Porto Alegre and its metropolitan area, Southern Brazil, from 2017 to 2020. Susceptibility profile was determined for ampicillin/sulbactam, amikacin, gentamicin, imipenem, meropenem, minocycline, polymyxin B and tigecycline. RESULTS Overall, PMB was the most active agent against the set of A baumannii isolates over the period. Although stable, a high resistance rate was observed. CONCLUSIONS Our results shown the presence of an extensively-drug resistant A baumannii complex isolates over the past four years. Polymyxin B has been the only antimicrobial agent that remain with a good in vitro activity. Strict surveillance and infection control measures are mandatory.
Collapse
|
41
|
Naghipour Erami A, Rasooli I, Jahangiri A, Darvish Alipour Astaneh S. Anti-Omp34 antibodies protect against Acinetobacter baumannii in a murine sepsis model. Microb Pathog 2021; 161:105291. [PMID: 34798280 DOI: 10.1016/j.micpath.2021.105291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/29/2022]
Abstract
Acinetobacter baumannii, an opportunistic extracellular pathogen is one of the major causes of nosocomial infections. Omp34, also known as Omp33-36, is a bacterial porin protein involved in the virulence and fitness of this pathogen by adhesion to the host cell. This antigen nominated as an appropriate candidate for immunization against A. baumannii. In this study, the expression of the recombinant Omp34 (rOmp34) was carried out in E. coli BL21 (DE3). The immunogenicity of the rOmp34 in A. baumannii was studied in a murine sepsis model. Antibody response in mice injected with the recombinant protein was assessed using indirect ELISA. Bactericidal activity of rOmp34-immunized mice sera (1:10 dilution) against A. baumannii ATCC 19606 after 0, 1, 2, 4, and 8 h of incubation at 37 °C was assessed. In addition to survival rate, load of bacteria in liver and spleen of the infected mice were evaluated. A high titer of specific antibody equivalent to optical density of 1.54 ± 0.06 against rOmp34 was elicited in the immunized mice sera. Viability of the A. baumannii incubated 8 h with immunized mice sera was 64%. Homogenized liver and spleen samples of the control mice challenged with A. baumannii were loaded with 8 × 103 and 9 × 103 CFU per gram tissue respectively 48 h post-challenge as against complete clearance of A. baumannii in the immunized group. The protective immunity was achieved by challenging the mice groups with 5 × LD50 of live A. baumannii. Omp34 can be nominated as an immunogen that can bring about protection against Acinetobacter baumannii.
Collapse
Affiliation(s)
| | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran-Qom Express Way, Iran; Molecular Microbiology Research Center, Shahed University, Tehran-Qom Express Way, Iran.
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
42
|
Javkar K, Rand H, Hoffmann M, Luo Y, Sarria S, Thirunavukkarasu N, Pillai CA, McGann P, Johnson JK, Strain E, Pop M. Whole-Genome Assessment of Clinical Acinetobacter baumannii Isolates Uncovers Potentially Novel Factors Influencing Carbapenem Resistance. Front Microbiol 2021; 12:714284. [PMID: 34659144 PMCID: PMC8518998 DOI: 10.3389/fmicb.2021.714284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
Carbapenems-one of the important last-line antibiotics for the treatment of gram-negative infections-are becoming ineffective for treating Acinetobacter baumannii infections. Studies have identified multiple genes (and mechanisms) responsible for carbapenem resistance. In some A. baumannii strains, the presence/absence of putative resistance genes is not consistent with their resistance phenotype-indicating the genomic factors underlying carbapenem resistance in A. baumannii are not fully understood. Here, we describe a large-scale whole-genome genotype-phenotype association study with 349 A. baumannii isolates that extends beyond the presence/absence of individual antimicrobial resistance genes and includes the genomic positions and pairwise interactions of genes. Ten known resistance genes exhibited statistically significant associations with resistance to imipenem, a type of carbapenem: blaOXA-23, qacEdelta1, sul1, mphE, msrE, ant(3")-II, aacC1, yafP, aphA6, and xerD. A review of the strains without any of these 10 genes uncovered a clade of isolates with diverse imipenem resistance phenotypes. Finer resolution evaluation of this clade revealed the presence of a 38.6 kbp conserved chromosomal region found exclusively in imipenem-susceptible isolates. This region appears to host several HTH-type DNA binding transcriptional regulators and transporter genes. Imipenem-susceptible isolates from this clade also carried two mutually exclusive plasmids that contain genes previously known to be specific to imipenem-susceptible isolates. Our analysis demonstrates the utility of using whole genomes for genotype-phenotype correlations in the context of antibiotic resistance and provides several new hypotheses for future research.
Collapse
Affiliation(s)
- Kiran Javkar
- Department of Computer Science, University of Maryland, College Park, MD, United States.,Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, MD, United States
| | - Hugh Rand
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Health and Human Services, College Park, MD, United States
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Health and Human Services, College Park, MD, United States
| | - Yan Luo
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Health and Human Services, College Park, MD, United States
| | - Saul Sarria
- Center for Veterinary Medicine, United States Food and Drug Administration, Department of Health and Human Services, Laurel, MD, United States
| | - Nagarajan Thirunavukkarasu
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Health and Human Services, College Park, MD, United States
| | - Christine A Pillai
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Health and Human Services, College Park, MD, United States
| | - Patrick McGann
- Multidrug Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - J Kristie Johnson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Errol Strain
- Center for Veterinary Medicine, United States Food and Drug Administration, Department of Health and Human Services, Laurel, MD, United States
| | - Mihai Pop
- Department of Computer Science, University of Maryland, College Park, MD, United States
| |
Collapse
|
43
|
Mohammed MA, Salim MTA, Anwer BE, Aboshanab KM, Aboulwafa MM. Impact of target site mutations and plasmid associated resistance genes acquisition on resistance of Acinetobacter baumannii to fluoroquinolones. Sci Rep 2021; 11:20136. [PMID: 34635692 PMCID: PMC8505613 DOI: 10.1038/s41598-021-99230-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/21/2021] [Indexed: 01/16/2023] Open
Abstract
Among bacterial species implicated in hospital-acquired infections are the emerging Pan-Drug Resistant (PDR) and Extensively Drug-Resistant (XDR) Acinetobacter (A.) baumannii strains as they are difficult to eradicate. From 1600 clinical specimens, only 100 A. baumannii isolates could be recovered. A high prevalence of ≥ 78% resistant isolates was recorded for the recovered isolates against a total of 19 tested antimicrobial agents. These isolates could be divided into 12 profiles according to the number of antimicrobial agents to which they were resistant. The isolates were assorted as XDR (68; 68%), Multi-Drug Resistant (MDR: 30; 30%), and PDR (2; 2%). Genotypically, the isolates showed three major clusters with similarities ranging from 10.5 to 97.8% as revealed by ERIC-PCR technique. As a resistance mechanism to fluoroquinolones (FQs), target site mutation analyses in gyrA and parC genes amplified from twelve selected A. baumannii isolates and subjected to sequencing showed 12 profiles. The selected isolates included two CIP-susceptible ones, these showed the wild-type profile of being have no mutations. For the ten selected CIP-resistant isolates, 9 of them (9/10; 90%) had 1 gyrA/1 parC mutations (Ser 81 → Leu mutation for gyrA gene and Ser 84 → Leu mutation for parC gene). The remaining CIP-resistant isolate (1/10; 10%) had 0 gyrA/1 parC mutation (Ser 84 → Leu mutation for parC gene). Detection of plasmid-associated resistance genes revealed that the 86 ciprofloxacin-resistant isolates carry qnrA (66.27%; 57/86), qnrS (70.93%; 61/86), aac (6')-Ib-cr (52.32%; 45/86), oqxA (73.25%; 63/86) and oqxB (39.53%; 34/86), while qepA and qnrB were undetected in these isolates. Different isolates were selected from profiles 1, 2, and 3 and qnrS, acc(6,)-ib-cr, oqxA, and oqxB genes harbored by these isolates were amplified and sequenced. The BLAST results revealed that the oqxA and oqxB sequences were not identified previously in A. baumannii but they were identified in Klebsiella aerogenes strain NCTC9793 and Klebsiella pneumoniae, respectively. On the other hand, the sequence of qnrS, and acc(6,)-ib-cr showed homology to those of A. baumannii. MDR, XDR, and PDR A. baumannii isolates are becoming prevalent in certain hospitals. Chromosomal mutations in the sequences of GyrA and ParC encoding genes and acquisition of PAFQR encoding genes (up to five genes per isolate) are demonstrated to be resistance mechanisms exhibited by fluoroquinolones resistant A. baumannii isolates. It is advisable to monitor the antimicrobial resistance profiles of pathogens causing nosocomial infections and properly apply and update antibiotic stewardship in hospitals and outpatients to control infectious diseases and prevent development of the microbial resistance to antimicrobial agents.
Collapse
Affiliation(s)
- Mostafa Ahmed Mohammed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Assiut, 71526, Egypt
| | - Mohammed T A Salim
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Assiut, 71526, Egypt
| | - Bahaa E Anwer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Assiut, 71526, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Al Khalifa Al Ma'moun St., Abbassia, Cairo, Egypt
| | - Mohammad M Aboulwafa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Al Khalifa Al Ma'moun St., Abbassia, Cairo, Egypt.
- Faculty of Pharmacy, King Salman International University, Ras Sedr, South Sinai, Egypt.
| |
Collapse
|
44
|
Gedefie A, Demsis W, Ashagrie M, Kassa Y, Tesfaye M, Tilahun M, Bisetegn H, Sahle Z. Acinetobacter baumannii Biofilm Formation and Its Role in Disease Pathogenesis: A Review. Infect Drug Resist 2021; 14:3711-3719. [PMID: 34531666 PMCID: PMC8439624 DOI: 10.2147/idr.s332051] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
Acinetobacter species, particularly Acinetobacter baumannii, is the first pathogen on the critical priority list of pathogens for novel antibiotics to become a "red-alert" human pathogen. Acinetobacter baumannii is an emerging global antibiotic-resistant gram-negative bacteria that most typically causes biofilm-associated infections such as ventilator-associated pneumonia and catheter-related infection, both of which are resistant to antibiotic therapy. A. baumannii's capacity to develop antibiotic resistance mechanisms allows the organism to thrive in hospital settings, facilitating the global spread of multidrug-resistant strains. Although Acinetobacter infections are quickly expanding throughout hospital environments around the world, the highest concentration of infections occurs in intensive care units (ICUs). Biofilms are populations of bacteria on biotic or abiotic surfaces that are encased in the extracellular matrix and play a crucial role in pathogenesis, making treatment options more difficult. Even though a variety of biological and environmental elements are involved in the production of A. baumannii biofilms, glucose is the most important component. Biofilm-mediated A. baumannii infections are the most common type of A. baumannii infection associated with medical equipment, and they are extremely difficult to treat. As a result, health care workers (HCWs) should focus on infection prevention and safety actions to avoid A. baumannii biofilm-related infections caused by medical devices, and they should be very selective when using treatments in combination with anti-biofilms. Therefore, this review discusses biofilm formation in A. baumannii, its role in disease pathogenesis, and its antimicrobial resistance mechanism.
Collapse
Affiliation(s)
- Alemu Gedefie
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Wondmagegn Demsis
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Melaku Ashagrie
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Yeshimebet Kassa
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Melkam Tesfaye
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Mihret Tilahun
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Habtye Bisetegn
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Zenawork Sahle
- Department of Medical Laboratory Sciences, Debre Birhan Health Science College, Debre Birhan, Ethiopia
| |
Collapse
|
45
|
Na SH, Jeon H, Oh MH, Kim YJ, Lee JC. Screening of small molecules attenuating biofilm formation of Acinetobacter baumannii by inhibition of ompA promoter activity. J Microbiol 2021; 59:871-878. [PMID: 34449059 DOI: 10.1007/s12275-021-1394-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 12/31/2022]
Abstract
Anti-virulence therapeutic strategies are promising alternatives against drug-resistant pathogens. Outer membrane protein A (OmpA) plays a versatile role in the pathogenesis and antimicrobial resistance of Acinetobacter baumannii. Therefore, OmpA is an innovative target for anti-virulence therapy against A. baumannii. This study aimed to develop a high-throughput screening (HTS) system to discover small molecules inhibiting the ompA promoter activity of A. baumannii and screen chemical compounds using the bacterial growth-based HTS system. The ompA promoter and open reading frame of nptI fusion plasmids that controlled the expression of nptI encoding resistance to kanamycin by the ompA promoter were constructed and then transformed into A. baumannii ATCC 17978. This reporter strain was applied to screen small molecules inhibiting the ompA promoter activity in a chemical library. Of the 7,520 chemical compounds, 15 exhibited ≥ 70% growth inhibition of the report strain cultured in media containing kanamycin. Three compounds inhibited the expression of ompA and OmpA in the outer membrane of A. baumannii ATCC 17978, which subsequently reduced biofilm formation. In conclusion, our reporter strain is useful for large-scale screening of small molecules inhibiting the ompA expression in A. baumannii. Hit compounds identified by the HTS system are promising scaffolds to develop novel therapeutics against A. baumannii.
Collapse
Affiliation(s)
- Seok Hyeon Na
- Division of Antimicrobial Resistance Research, Center for Infectious Diseases Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, 28159, Republic of Korea
| | - Hyejin Jeon
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Man Hwan Oh
- Department of Microbiology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Yoo Jeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
46
|
Antimicrobial Resistance Determinants in Genomes and Plasmids from Acinetobacter baumannii Clinical Isolates. Antibiotics (Basel) 2021; 10:antibiotics10070753. [PMID: 34206348 PMCID: PMC8300758 DOI: 10.3390/antibiotics10070753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/13/2021] [Indexed: 12/30/2022] Open
Abstract
Acinetobacter baumannii is a Gram-negative coccoid rod species, clinically relevant as a human pathogen, included in the ESKAPE group. Carbapenem-resistant A. baumannii (CRAB) are considered by the World Health Organization (WHO) as a critical priority pathogen for the research and development of new antibiotics. Some of the most relevant features of this pathogen are its intrinsic multidrug resistance and its ability to acquire rapid and effective new resistant determinants against last-resort clinical antibiotics, mostly from other ESKAPE species. The presence of plasmids and mobile genetic elements in their genomes contributes to the acquisition of new antimicrobial resistance determinants. However, although A. baumannii has arisen as an important human pathogen, information about these elements is still not well understood. Current genomic analysis availability has increased our ability to understand the microevolution of bacterial pathogens, including point mutations, genetic dissemination, genomic stability, and pan- and core-genome compositions. In this work, we deeply studied the genomes of four clinical strains from our hospital, and the reference strain ATCC®19606TM, which have shown a remarkable ability to survive and maintain their effective capacity when subjected to long-term stress conditions. With that, our aim was presenting a detailed analysis of their genomes, including antibiotic resistance determinants and plasmid composition.
Collapse
|
47
|
Kim DY, Kim HJ. Function of Fimsbactin B as an Acinetobacter-Selective Antibiotic Delivery Vehicle. Org Lett 2021; 23:5256-5260. [PMID: 34133175 DOI: 10.1021/acs.orglett.1c01786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability of fimsbactin B, a natural siderophore of Acinetobacter baumannii, to function as an antibiotic delivery vehicle was investigated by synthesizing three structurally diversified fimsbactin B-cefaclor conjugates. Their antimicrobial activities were Acinetobacter-selective and up to 128-fold more potent than that of cefaclor alone. This activity enhancement originated from the fimsbactin-B-dependent active uptake of cefaclor. Thus, fimsbactin-B-based antibiotic delivery can be an effective approach in combating antibiotic-resistant Acinetobacter infections.
Collapse
Affiliation(s)
- Do Young Kim
- Department of Chemistry and Center for ProteoGenomics Research, Korea University, Seoul 02841, Republic of Korea
| | - Hak Joong Kim
- Department of Chemistry and Center for ProteoGenomics Research, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
48
|
Mabayoje DA, NicFhogartaigh C, Cherian BP, Tan MGM, Wareham DW. Compassionate use of cefiderocol for carbapenem-resistant Acinetobacter baumannii prosthetic joint infection. JAC Antimicrob Resist 2021; 3:i21-i24. [PMID: 34223152 PMCID: PMC8251250 DOI: 10.1093/jacamr/dlab055] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Cefiderocol is a recently licensed novel siderophore-conjugated cephalosporin stable to hydrolysis by serine and MBLs. It has been successfully used to treat Enterobacterales infections and is approved for the treatment of infections due to aerobic Gram-negative organisms in adults with limited treatment options. Objectives To describe the compassionate use of cefiderocol and clinical outcome in a case of prosthetic joint infection due to MDR Acinetobacter baumannii. Patients and methods This case study follows a 66-year-old woman who sustained an open fracture of the left distal humerus in Pakistan. She underwent open reduction and internal fixation and on return to the UK presented to hospital with a discharging surgical wound. Results Debridement of her wound cultured NDM carbapenemase-producing A. baumannii susceptible to colistin, tobramycin and tigecycline only. She developed vomiting with acute kidney injury with colistin and tigecycline. Antimicrobial efficacy of cefiderocol was predicted from in vitro and in vivo susceptibility tests. A successful request was made to Shionogi for compassionate use of cefiderocol, which was added to tigecycline. Cefiderocol was well tolerated with no toxicity and improved renal function. In total she received 25 days of cefiderocol and continued on tigecycline for a further 6 weeks in the community. She has well-healed wounds and good range of elbow movement. Conclusions Cefiderocol’s novel mode of cell entry is effective against MDR Gram-negative bacteria with reduced toxicity compared with other last line antibiotics. Our case demonstrates that cefiderocol may be useful as therapy for patients with limited treatment options due to antimicrobial resistance. The prescribing information for cefiderocol is available at: https://shionogi-eu-content.com/gb/fetcroja/pi.
Collapse
Affiliation(s)
| | | | | | - Mei Gie Meiqi Tan
- Antimicrobial Research Group, Blizard Institute, Queen Mary University of London, London, UK
| | - David W Wareham
- Division of Infection, Barts Health NHS Trust, London, UK.,Antimicrobial Research Group, Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
49
|
Cryo-EM Determination of Eravacycline-Bound Structures of the Ribosome and the Multidrug Efflux Pump AdeJ of Acinetobacter baumannii. mBio 2021; 12:e0103121. [PMID: 34044590 PMCID: PMC8263017 DOI: 10.1128/mbio.01031-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic-resistant strains of the Gram-negative pathogen Acinetobacter baumannii have emerged as a significant global health threat. One successful therapeutic option to treat bacterial infections has been to target the bacterial ribosome. However, in many cases, multidrug efflux pumps within the bacterium recognize and extrude these clinically important antibiotics designed to inhibit the protein synthesis function of the bacterial ribosome. Thus, multidrug efflux within A. baumannii and other highly drug-resistant strains is a major cause of failure of drug-based treatments of infectious diseases. We here report the first structures of the Acinetobacterdrug efflux (Ade)J pump in the presence of the antibiotic eravacycline, using single-particle cryo-electron microscopy (cryo-EM). We also describe cryo-EM structures of the eravacycline-bound forms of the A. baumannii ribosome, including the 70S, 50S, and 30S forms. Our data indicate that the AdeJ pump primarily uses hydrophobic interactions to bind eravacycline, while the 70S ribosome utilizes electrostatic interactions to bind this drug. Our work here highlights how an antibiotic can bind multiple bacterial targets through different mechanisms and potentially enables drug optimization by taking advantage of these different modes of ligand binding.
Collapse
|
50
|
Jun SH, Lee DE, Hwang HR, Kim N, Kim HJ, Lee YC, Kim YK, Lee JC. Clonal change of carbapenem-resistant Acinetobacter baumannii isolates in a Korean hospital. INFECTION GENETICS AND EVOLUTION 2021; 93:104935. [PMID: 34029723 DOI: 10.1016/j.meegid.2021.104935] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022]
Abstract
The expansion of specific carbapenem-resistant Acinetobacter baumannii (CRAB) clones is a global concern due to its therapeutic difficulty and epidemicity. To understand the prevalence of CRAB isolates in a Korean hospital, we investigated the epidemiological characteristics of 96 CRAB isolates between 2016 and 2018, including the sequence types (STs), antimicrobial susceptibility, and genetic background of resistance to carbapenems and aminoglycosides. Six STs were identified using the Oxford multilocus sequence typing scheme; ST191 (n = 8), ST208 (n = 12), ST229 (n = 11), and ST369 (n = 21) were previously identified clones in the study hospital, whereas gpi variants of ST208, ST451 (n = 34) and ST784 (n = 10), were emerging clones. ST208 isolates exhibited higher resistance rates to minocycline than other ST isolates, whereas ST369 isolates exhibited lower resistance rates to aminoglycosides and trimethoprim/sulfamethoxazole than other ST isolates. All CRAB isolates previously isolated in the study hospital carried ISAbaI-blaOXA-23 for carbapenem resistance, but 10 ST229 isolates carried only ISAbaI-blaOXA-51. The carriage of armA was lower in ST369 isolates (38%) than in other ST isolates (≥83%). The frequency and diversity of aminoglycoside-modifying enzyme genes were decreased among the CRAB isolates between 2016 and 2018 compared with CRAB isolates between 2013 and 2015 at the study hospital. In conclusion, clonal complex 208 CRAB isolates are predominant in the study hospital. This study demonstrates the evolutionary change of CRAB isolates in the study hospital in relation to the emergence of new STs and selection of resistant genes.
Collapse
Affiliation(s)
- So Hyun Jun
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Da Eun Lee
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, South Korea
| | - Hye Ryeong Hwang
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, South Korea
| | - Nayeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hyo Jeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Yoo Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea; Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, South Korea
| | - Yu Kyung Kim
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, South Korea; Department of Clinical Pathology, School of Medicine, Kyungpook National University, Daegu, South Korea.
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea; Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, South Korea.
| |
Collapse
|