1
|
Arojojoye AS, Awuah SG. Functional utility of gold complexes with phosphorus donor ligands in biological systems. Coord Chem Rev 2025; 522:216208. [PMID: 39552640 PMCID: PMC11563041 DOI: 10.1016/j.ccr.2024.216208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Metallo-phosphines are ubiquitous in organometallic chemistry with widespread applications as catalysts in various chemical transformations, precursors for organic electronics, and chemotherapeutic agents or chemical probes. Here, we provide a comprehensive review of the exploration of the current biological applications of Au complexes bearing phosphine donor ligands. The goal is to deepen our understanding of the synthetic utility and reactivity of Au-phosphine complexes to provide insights that could lead to the design of new molecules and enhance the cross-application or repurposing of these complexes.
Collapse
Affiliation(s)
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington KY 40506
- Center for Pharmaceutical Research and Innovation and Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky, Lexington KY 40536
- Markey Cancer Centre, University of Kentucky, Lexington KY, 40536
- University of Kentucky Bioelectronics and Nanomedicine Research Center, Lexington, Kentucky 40506, United States
| |
Collapse
|
2
|
Gookin JL, Papich MG, Meier EK, Enders J, Stauffer SH, Wassack EE, Davidson GS. Auranofin is lethal against feline Tritrichomonas foetus in vitro but ineffective in cats with naturally occurring infection. Vet Parasitol 2024; 331:110295. [PMID: 39222580 DOI: 10.1016/j.vetpar.2024.110295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Protozoal diarrhea caused by Tritrichomonas foetus (blagburni) is a prevalent, lifelong, and globally distributed burden in domestic cats. Treatment is limited to the use of 5-nitroimidazoles and treatment failure is common. The repurposed gold salt compound auranofin has killing activity against diverse protozoa in vitro but evidence of efficacy in naturally occurring protozoal infections is lacking. This exploratory study investigated the efficacy and safety of auranofin for treatment of cats with naturally occurring, 5-nitroimidazole-resistant, T. foetus infection. The minimum lethal concentration (MLC) of auranofin against 5 isolates of feline T. foetus was determined under aerobic conditions in vitro. Healthy cats and cats with T. foetus infection were treated with immediate release auranofin (range, 0.5-3 mg/cat for 7 days) or guar gum-coated auranofin capsules (0.5 or 3 mg/cat for 7 days). Adverse effects were monitored by clinical signs and clinicopathologic testing. Efficacy was determined by fecal consistency score, bowel movement frequency, and single-tube nested PCR of feces for T. foetus rDNA. Fecal samples were assayed for concentrations of auranofin, known and predicted metabolites of auranofin, gold containing molecules, and total gold content using HPLC, LC-MS, ion mobility-MS, and ICP-MS, respectively. Auranofin was effective at killing isolates of feline T. foetus at MLC ≥ 1 μg/ml. Treatment of cats with T. foetus infection with either immediate release auranofin or a colon-targeted guar gum-coated tablet of auranofin did not eradicate infection. Treatment failure occurred despite fecal concentrations of gold that met or exceeded the equivalent MLC of auranofin. Neither auranofin, known or predicted metabolites of auranofin, nor any gold-containing molecules >100 Da could be detected in fecal samples of treated cats. Adverse effects associated with auranofin treatment were common but minor. These studies identify that in vitro susceptibility test results of auranofin may not translate to treatment effectiveness in vivo even when achieving gold concentrations equivalent to the MLC of auranofin in the target environment. These studies further establish the absence of any predicted or unpredicted gold containing metabolites in feces after oral administration of auranofin.
Collapse
Affiliation(s)
- Jody L Gookin
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.
| | - Mark G Papich
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.
| | - Elisa K Meier
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Jeffrey Enders
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, United States.
| | - Stephen H Stauffer
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Erica E Wassack
- Veterinary Hospital Pharmacy, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States; Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States.
| | - Gigi S Davidson
- Veterinary Hospital Pharmacy, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
3
|
Ma CI, Tirtorahardjo JA, Schweizer SS, Zhang J, Fang Z, Xing L, Xu M, Herman DA, Kleinman MT, McCullough BS, Barrios AM, Andrade RM. Gold(I) ion and the phosphine ligand are necessary for the anti- Toxoplasma gondii activity of auranofin. Microbiol Spectr 2024; 12:e0296823. [PMID: 38206030 PMCID: PMC10845965 DOI: 10.1128/spectrum.02968-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Auranofin, an FDA-approved drug for rheumatoid arthritis, has emerged as a promising antiparasitic medication in recent years. The gold(I) ion in auranofin is postulated to be responsible for its antiparasitic activity. Notably, aurothiomalate and aurothioglucose also contain gold(I), and, like auranofin, they were previously used to treat rheumatoid arthritis. Whether they have antiparasitic activity remains to be elucidated. Herein, we demonstrated that auranofin and similar derivatives, but not aurothiomalate and aurothioglucose, inhibited the growth of Toxoplasma gondii in vitro. We found that auranofin affected the T. gondii biological cycle (lytic cycle) by inhibiting T. gondii's invasion and triggering its egress from the host cell. However, auranofin could not prevent parasite replication once T. gondii resided within the host. Auranofin treatment induced apoptosis in T. gondii parasites, as demonstrated by its reduced size and elevated phosphatidylserine externalization (PS). Notably, the gold from auranofin enters the cytoplasm of T. gondii, as demonstrated by scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS).IMPORTANCEToxoplasmosis, caused by Toxoplasma gondii, is a devastating disease affecting the brain and the eyes, frequently affecting immunocompromised individuals. Approximately 60 million people in the United States are already infected with T. gondii, representing a population at-risk of developing toxoplasmosis. Recent advances in treating cancer, autoimmune diseases, and organ transplants have contributed to this at-risk population's exponential growth. Paradoxically, treatments for toxoplasmosis have remained the same for more than 60 years, relying on medications well-known for their bone marrow toxicity and allergic reactions. Discovering new therapies is a priority, and repurposing FDA-approved drugs is an alternative approach to speed up drug discovery. Herein, we report the effect of auranofin, an FDA-approved drug, on the biological cycle of T. gondii and how both the phosphine ligand and the gold molecule determine the anti-parasitic activity of auranofin and other gold compounds. Our studies would contribute to the pipeline of candidate anti-T. gondii agents.
Collapse
Affiliation(s)
- C. I. Ma
- Department of Medicine, Division of Infectious Diseases, University of California at Irvine, Irvine, California, USA
| | - J. A. Tirtorahardjo
- Department of Microbiology and Molecular Genetics, University of California at Irvine, Irvine, California, USA
| | - S. S. Schweizer
- School of Biological Sciences; University of California at Irvine, Irvine, California, USA
| | - J. Zhang
- School of Biological Sciences; University of California at Irvine, Irvine, California, USA
| | - Z. Fang
- School of Biological Sciences; University of California at Irvine, Irvine, California, USA
| | - L. Xing
- Irvine Materials Research Institute; University of California at Irvine, Irvine, California, USA
| | - M. Xu
- Irvine Materials Research Institute; University of California at Irvine, Irvine, California, USA
| | - D. A. Herman
- Department of Medicine, Occupational and Environmental Medicine, University of California at Irvine, Irvine, California, USA
| | - M. T. Kleinman
- Department of Medicine, Occupational and Environmental Medicine, University of California at Irvine, Irvine, California, USA
| | - B. S. McCullough
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, Utah, USA
| | - A. M. Barrios
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, Utah, USA
| | - R. M. Andrade
- Department of Medicine, Division of Infectious Diseases, University of California at Irvine, Irvine, California, USA
- Department of Microbiology and Molecular Genetics, University of California at Irvine, Irvine, California, USA
| |
Collapse
|
4
|
Barbosa TN, Silva MTDO, Sena-Lopes Â, Kremer FS, Sousa FSS, Seixas FK, Collares TV, de Pereira CMP, Borsuk S. Bioprospection of the trichomonacidal activity of lipid extracts derived from marine macroalgae Gigartina skottsbergii. PLoS One 2023; 18:e0285426. [PMID: 37155662 PMCID: PMC10166524 DOI: 10.1371/journal.pone.0285426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Algal extracts are sources of bioactive substances with applications in the development of novel alternative drugs against several diseases, including trichomoniasis sexually transmitted infection caused by Trichomonas vaginalis. Factors such as clinical failures and resistant strains limit the success of the existing drugs available for treating this disease. Therefore, searching for viable alternatives to these drugs is essential for the treatment of this disease. The present study was conducted for, in vitro and in silico characterization of extracts obtained from marine macroalgae Gigartina skottsbergii at stages gametophidic, cystocarpic, and tetrasporophidic. In addition, antiparasitic activity of these extracts against the ATCC 30236 isolate of T. vaginalis, their cytotoxicity, and gene expression of trophozoites after treatment were evaluated. The minimum inhibitory concentration and 50% inhibition concentration were determined for each extract. Results: In vitro analysis of the extracts' anti-T. vaginalis activity revealed an inhibitory effect of 100%, 89.61%, and 86.95% for Gigartina skottsbergii at stages gametophidic, cystocarpic, and tetrasporophidic, respectively, at 100 μg/mL. In silico analysis revealed the interactions between constituents of the extracts and enzymes from T. vaginalis, with significant free energy values obtained for the binding. None of the extract concentrations exhibited cytotoxic effects on VERO cell line compared to control, while cytotoxicity on HMVII vaginal epithelial cells line was observed at 100 μg/mL (30% inhibition). Gene expression analysis revealed differences in the expression profile of T. vaginalis enzymes between the extract-treated and control groups. According to these results, Gigartina skottsbergii extracts exhibited satisfactory antiparasitic activity.
Collapse
Affiliation(s)
- Tallyson Nogueira Barbosa
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, Rio Grande do Sul, Brasil
| | - Mara Thais de Oliveira Silva
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, Rio Grande do Sul, Brasil
| | - Ângela Sena-Lopes
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, Rio Grande do Sul, Brasil
| | - Frederico Schmitt Kremer
- Laboratório de Lipidômica e Bio-orgânica, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, UFPel, Pelotas, Rio Grande do Sul, Brasil
| | - Fernanda Severo Sabedra Sousa
- Laboratório de Bioinformática e Proteômica, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, Rio Grande do Sul, Brasil
| | - Fabiana Kommling Seixas
- Laboratório de Bioinformática e Proteômica, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, Rio Grande do Sul, Brasil
| | - Tiago Veiras Collares
- Laboratório de Bioinformática e Proteômica, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, Rio Grande do Sul, Brasil
| | - Cláudio Martin Pereira de Pereira
- Laboratório de Biotecnologia do Câncer, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, Rio Grande do Sul, Brasil
| | - Sibele Borsuk
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, Rio Grande do Sul, Brasil
| |
Collapse
|
5
|
A Broad Spectrum Antiparasitic Activity of Organotin (IV) Derivatives and Its Untargeted Proteomic Profiling Using Leishmania donovani. Pathogens 2022; 11:pathogens11121424. [PMID: 36558759 PMCID: PMC9785441 DOI: 10.3390/pathogens11121424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Metals have been used in medicine since ancient times for the treatment of different ailments with various elements such as iron, gold and arsenic. Metal complexes have also been reported to show antibiotic and antiparasitic activity. In this context, we tested the antiparasitic potential of 10 organotin (IV) derivatives from 4-(4-methoxyphenylamino)-4 oxobutanoic acid (MS26) against seven eukaryotic pathogens of medical importance: Leishmania donovani, Trypanosoma cruzi, Trypanosoma brucei, Entamoeba histolytica, Giardia lamblia, Naegleria fowleri and Schistosoma mansoni. Among the compounds with and without antiparasitic activity, compound MS26Et3 stood out with a 50% effective concentration (EC50) of 0.21 and 0.19 µM against promastigotes and intracellular amastigotes of L. donovani, respectively, 0.24 µM against intracellular amastigotes of T. cruzi, 0.09 µM against T. brucei, 1.4 µM against N. fowleri and impaired adult S. mansoni viability at 1.25 µM. In terms of host/pathogen selectivity, MS26Et3 demonstrated relatively mild cytotoxicity toward host cells with a 50% viability concentration of 4.87 µM against B10R cells (mouse monocyte cell line), 2.79 µM against C2C12 cells (mouse myoblast cell line) and 1.24 µM against HEK923 cells (human embryonic kidney cell line). The selectivity index supports this molecule as a therapeutic starting point for a broad spectrum antiparasitic alternative. Proteomic analysis of host cells infected with L. donovani after exposure to MS26Et3 showed a reduced expression of Rab7, which may affect the fusion of the endosome with the lysosome, and, consequently, impairing the differentiation of L. donovani to the amastigote form. Future studies to investigate the molecular target(s) and mechanism of action of MS26Et3 will support its chemical optimization.
Collapse
|
6
|
Alves MSD, Sena-Lopes Â, das Neves RN, Casaril AM, Domingues M, Birmann PT, da Silva ET, de Souza MVN, Savegnago L, Borsuk S. In vitro and in silico trichomonacidal activity of 2,8-bis(trifluoromethyl) quinoline analogs against Trichomonas vaginalis. Parasitol Res 2022; 121:2697-2711. [PMID: 35857093 DOI: 10.1007/s00436-022-07598-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/09/2022] [Indexed: 11/29/2022]
Abstract
Trichomoniasis is a great public health burden worldwide and the increase in treatment failures has led to a need for finding alternative molecules to treat this disease. In this study, we present in vitro and in silico analyses of two 2,8-bis(trifluoromethyl) quinolines (QDA-1 and QDA-2) against Trichomonas vaginalis. For in vitro trichomonacidal activity, up to seven different concentrations of these drugs were tested. Molecular docking, biochemical, and cytotoxicity analyses were performed to evaluate the selectivity profile. QDA-1 displayed a significant effect, completely reducing trophozoites viability at 160 µM, with an IC50 of 113.8 µM, while QDA-2 at the highest concentration reduced viability by 76.9%. QDA-1 completely inhibited T. vaginalis growth and increased reactive oxygen species production and lipid peroxidation after 24 h of treatment, but nitric oxide accumulation was not observed. In addition, molecular docking studies showed that QDA-1 has a favorable binding mode in the active site of the T. vaginalis enzymes purine nucleoside phosphorylase, lactate dehydrogenase, triosephosphate isomerase, and thioredoxin reductase. Moreover, QDA-1 presented a level of cytotoxicity by reducing 36.7% of Vero cells' viability at 200 µM with a CC50 of 247.4 µM and a modest selectivity index. In summary, the results revealed that QDA-1 had a significant anti-T. vaginalis activity. Although QDA-1 had detectable cytotoxicity, the concentration needed to eliminate T. vaginalis trophozoites is lower than the CC50 encouraging further studies of this compound as a trichomonacidal agent.
Collapse
Affiliation(s)
- Mirna Samara Dié Alves
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Ângela Sena-Lopes
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Raquel Nascimento das Neves
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Angela Maria Casaril
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Micaela Domingues
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Paloma Taborda Birmann
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Emerson Teixeira da Silva
- Instituto de Tecnologia em Fármacos - Far-Manguinhos, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, 21041-250, Brazil
| | - Marcus Vinicius Nora de Souza
- Instituto de Tecnologia em Fármacos - Far-Manguinhos, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, 21041-250, Brazil.,Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21945-970, Brazil
| | - Lucielli Savegnago
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Sibele Borsuk
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
7
|
Local cytokine/chemokine profiles in BALB/c and C57BL/6 mice in response to T. vaginalis infection. Exp Parasitol 2022; 239:108287. [PMID: 35660531 DOI: 10.1016/j.exppara.2022.108287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 02/27/2022] [Accepted: 05/30/2022] [Indexed: 11/19/2022]
Abstract
Trichomonas vaginalis is the causative agent of Trichomoniasis (a sexually transmitted infection). Recent reports have shown that stimulation of cellular immunity can reduce trichomoniasis infection. Animal studies are essential to understanding the pathogenesis of infection and developing new potential drugs and vaccines to treat the infection. Therefore, we have tried to understand the pathogenesis of T. vaginalis infection by investigating the differences in the expression of chemokine/cytokine levels in vaginal and cervical tissues of BALB/c and C57BL/6 mice. Different pathological symptoms, like desquamation, neutrophil infiltration, and hemorrhage, were recorded in BALB/c and C57BL/6 in response to T. vaginalis infection. Vaginal and cervical tissues of BALB/c showed these symptoms on 2nd dpi, which became severe on 7th dpi and turned to mild or normal till 14th dpi compared to C57BL/6 strain. Immunohistochemistry in the vagina and cervical tissues of BALB/c and C57BL/6 mice was done to assess cytokines at different time intervals post-infection. Significant expression of Interleukin-1β (IL-1β) (a pro-inflammatory cytokine) was found in BALB/c compared to the C57BL/6 mice, on 7th dpi and 2nd dpi in vaginal and cervical tissues, respectively. Higher expression of MIP-2 (neutrophil chemoattractant) was observed in the vaginal tissues of BALB/c mice on 7th dpi compared to the C57BL/6 group. In addition, higher expression of TGF-β (immune-suppressor) was observed on 7th dpi in the vaginal tissue of BALB/c mice. The present study demonstrates that more pathological signs of T. vaginalis infection developed in BALB/c mice than C57BL/6 mice. Also, significant levels of IL-1β and MIP-2 were measured in BALB/c mice in response to T. vaginalis compared to C57BL/6.
Collapse
|
8
|
Köhsler M, Leitsch D, Loufouma Mbouaka A, Wekerle M, Walochnik J. Transcriptional changes of proteins of the thioredoxin and glutathione systems in Acanthamoeba spp. under oxidative stress - an RNA approach. Parasite 2022; 29:24. [PMID: 35532265 PMCID: PMC9083255 DOI: 10.1051/parasite/2022025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
The thioredoxin (Trx) and the glutathione (GSH) systems represent important antioxidant systems in cells and in particular thioredoxin reductase (TrxR) has been shown to constitute a promising drug target in parasites. For the facultative protozoal pathogen Acanthamoeba, it was demonstrated that a bacterial TrxR as well as a TrxR, characteristic of higher eukaryotes, mammals and humans is expressed on the protein level. However, only bacterial TrxR is strongly induced by oxidative stress in Acanthamoeba castellanii. In this study, the impact of oxidative stress on key enzymes involved in the thioredoxin and the glutathione system of A. castellanii under different culture conditions and of clinical Acanthamoeba isolates was evaluated on the RNA level employing RT-qPCR. Additionally, the effect of auranofin, a thioredoxin reductase inhibitor, already established as a potential drug in other parasites, on target enzymes in A. castellanii was investigated. Oxidative stress induced by hydrogen peroxide led to significant stimulation of bacterial TrxR and thioredoxin, while diamide had a strong impact on all investigated enzymes. Different strains displayed distinct transcriptional responses, rather correlating to sensitivity against the respective stressor than to respective pathogenic potential. Culture conditions appear to have a major effect on transcriptional changes in A. castellanii. Treatment with auranofin led to transcriptional activation of the GSH system, indicating its role as a potential backup for the Trx system. Altogether, our data provide more profound insights into the complex redox system of Acanthamoeba, preparing the ground for further investigations on this topic.
Collapse
Affiliation(s)
- Martina Köhsler
-
Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna 1090 Vienna Austria
| | - David Leitsch
-
Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna 1090 Vienna Austria
| | - Alvie Loufouma Mbouaka
-
Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna 1090 Vienna Austria
| | - Maximilian Wekerle
-
Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna 1090 Vienna Austria
| | - Julia Walochnik
-
Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna 1090 Vienna Austria
| |
Collapse
|
9
|
Hemmingsen LM, Škalko-Basnet N, Jøraholmen MW. The Expanded Role of Chitosan in Localized Antimicrobial Therapy. Mar Drugs 2021; 19:697. [PMID: 34940696 PMCID: PMC8704789 DOI: 10.3390/md19120697] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Chitosan is one of the most studied natural origin polymers for biomedical applications. This review focuses on the potential of chitosan in localized antimicrobial therapy to address the challenges of current rising antimicrobial resistance. Due to its mucoadhesiveness, chitosan offers the opportunity to prolong the formulation residence time at mucosal sites; its wound healing properties open possibilities to utilize chitosan as wound dressings with multitargeted activities and more. We provide an unbiased overview of the state-of-the-art chitosan-based delivery systems categorized by the administration site, addressing the site-related challenges and evaluating the representative formulations. Specifically, we offer an in-depth analysis of the current challenges of the chitosan-based novel delivery systems for skin and vaginal infections, including its formulations optimizations and limitations. A brief overview of chitosan's potential in treating ocular, buccal and dental, and nasal infections is included. We close the review with remarks on toxicity issues and remaining challenges and perspectives.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| | | | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| |
Collapse
|
10
|
Shaulov Y, Sarid L, Trebicz-Geffen M, Ankri S. Entamoeba histolytica Adaption to Auranofin: A Phenotypic and Multi-Omics Characterization. Antioxidants (Basel) 2021; 10:antiox10081240. [PMID: 34439488 PMCID: PMC8389260 DOI: 10.3390/antiox10081240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/25/2021] [Accepted: 07/30/2021] [Indexed: 12/01/2022] Open
Abstract
Auranofin (AF), an antirheumatic agent, targets mammalian thioredoxin reductase (TrxR), an important enzyme controlling redox homeostasis. AF is also highly effective against a diversity of pathogenic bacteria and protozoan parasites. Here, we report on the resistance of the parasite Entamoeba histolytica to 2 µM of AF that was acquired by gradual exposure of the parasite to an increasing amount of the drug. AF-adapted E. histolytica trophozoites (AFAT) have impaired growth and cytopathic activity, and are more sensitive to oxidative stress (OS), nitrosative stress (NS), and metronidazole (MNZ) than wild type (WT) trophozoites. Integrated transcriptomics and redoxomics analyses showed that many upregulated genes in AFAT, including genes encoding for dehydrogenase and cytoskeletal proteins, have their product oxidized in wild type trophozoites exposed to AF (acute AF trophozoites) but not in AFAT. We also showed that the level of reactive oxygen species (ROS) and oxidized proteins (OXs) in AFAT is lower than that in acute AF trophozoites. Overexpression of E. histolytica TrxR (EhTrxR) did not protect the parasite against AF, which suggests that EhTrxR is not central to the mechanism of adaptation to AF.
Collapse
|
11
|
Miyamoto Y, Aggarwal S, Celaje JJA, Ihara S, Ang J, Eremin DB, Land KM, Wrischnik LA, Zhang L, Fokin VV, Eckmann L. Gold(I) Phosphine Derivatives with Improved Selectivity as Topically Active Drug Leads to Overcome 5-Nitroheterocyclic Drug Resistance in Trichomonas vaginalis. J Med Chem 2021; 64:6608-6620. [PMID: 33974434 DOI: 10.1021/acs.jmedchem.0c01926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trichomonas vaginalis causes the most common, nonviral sexually transmitted infection. Only metronidazole (Mz) and tinidazole are approved for treating trichomoniasis, yet resistance is a clinical problem. The gold(I) complex, auranofin, is active against T. vaginalis and other protozoa but has significant human toxicity. In a systematic structure-activity exploration, we show here that diversification of gold(I) complexes, particularly as halides with simple C1-C3 trialkyl phosphines or as bistrialkyl phosphine complexes, can markedly improve potency against T. vaginalis and selectivity over human cells compared to that of the existing antirheumatic gold(I) drugs. All gold(I) complexes inhibited the two most abundant isoforms of the presumed target enzyme, thioredoxin reductase, but a subset of compounds were markedly more active against live T. vaginalis than the enzyme, suggesting that alternative targets exist. Furthermore, all tested gold(I) complexes acted independently of Mz and were able to overcome Mz resistance, making them candidates for the treatment of Mz-refractory trichomoniasis.
Collapse
Affiliation(s)
- Yukiko Miyamoto
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Shubhangi Aggarwal
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Jeff Joseph A Celaje
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Sozaburo Ihara
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jonathan Ang
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Dmitry B Eremin
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211, United States
| | - Lisa A Wrischnik
- Department of Biological Sciences, University of the Pacific, Stockton, California 95211, United States
| | - Liangfang Zhang
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Valery V Fokin
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
12
|
Leitsch D, Mbouaka AL, Köhsler M, Müller N, Walochnik J. An unusual thioredoxin system in the facultative parasite Acanthamoeba castellanii. Cell Mol Life Sci 2021; 78:3673-3689. [PMID: 33599799 PMCID: PMC8038987 DOI: 10.1007/s00018-021-03786-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/08/2021] [Accepted: 02/02/2021] [Indexed: 01/25/2023]
Abstract
The free-living amoeba Acanthamoeba castellanii occurs worldwide in soil and water and feeds on bacteria and other microorganisms. It is, however, also a facultative parasite and can cause serious infections in humans. The annotated genome of A. castellanii (strain Neff) suggests the presence of two different thioredoxin reductases (TrxR), of which one is of the small bacterial type and the other of the large vertebrate type. This combination is highly unusual. Similar to vertebrate TrxRases, the gene coding for the large TrxR in A. castellanii contains a UGA stop codon at the C-terminal active site, suggesting the presence of selenocysteine. We characterized the thioredoxin system in A. castellanii in conjunction with glutathione reductase (GR), to obtain a more complete understanding of the redox system in A. castellanii and the roles of its components in the response to oxidative stress. Both TrxRases localize to the cytoplasm, whereas GR localizes to the cytoplasm and the large organelle fraction. We could only identify one thioredoxin (Trx-1) to be indeed reduced by one of the TrxRases, i.e., by the small TrxR. This thioredoxin, in turn, could reduce one of the two peroxiredoxins tested and also methionine sulfoxide reductase A (MsrA). Upon exposure to hydrogen peroxide and diamide, only the small TrxR was upregulated in expression at the mRNA and protein levels, but not the large TrxR. Our results show that the small TrxR is involved in the A. castellanii's response to oxidative stress. The role of the large TrxR, however, remains elusive.
Collapse
Affiliation(s)
- David Leitsch
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria.
| | - Alvie Loufouma Mbouaka
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Martina Köhsler
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Norbert Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| |
Collapse
|
13
|
Ma CI, Tirtorahardjo JA, Jan S, Schweizer SS, Rosario SAC, Du Y, Zhang JJ, Morrissette NS, Andrade RM. Auranofin Resistance in Toxoplasma gondii Decreases the Accumulation of Reactive Oxygen Species but Does Not Target Parasite Thioredoxin Reductase. Front Cell Infect Microbiol 2021; 11:618994. [PMID: 33816332 PMCID: PMC8017268 DOI: 10.3389/fcimb.2021.618994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Auranofin, a reprofiled FDA-approved drug originally designed to treat rheumatoid arthritis, has emerged as a promising anti-parasitic drug. It induces the accumulation of reactive oxygen species (ROS) in parasites, including Toxoplasma gondii. We generated auranofin resistant T. gondii lines through chemical mutagenesis to identify the molecular target of this drug. Resistant clones were confirmed with a competition assay using wild-type T. gondii expressing yellow fluorescence protein (YFP) as a reference strain. The predicted auranofin target, thioredoxin reductase, was not mutated in any of our resistant lines. Subsequent whole genomic sequencing analysis (WGS) did not reveal a consensus resistance locus, although many have point mutations in genes encoding redox-relevant proteins such as superoxide dismutase (TgSOD2) and ribonucleotide reductase. We investigated the SOD2 L201P mutation and found that it was not sufficient to confer resistance when introduced into wild-type parasites. Resistant clones accumulated less ROS than their wild type counterparts. Our results demonstrate that resistance to auranofin in T. gondii enhances its ability to abate oxidative stress through diverse mechanisms. This evidence supports a hypothesized mechanism of auranofin anti-parasitic activity as disruption of redox homeostasis.
Collapse
Affiliation(s)
- Christopher I. Ma
- Division of Infectious Diseases, Department of Medicine, University of California Irvine, Irvine, CA, United States
| | - James A. Tirtorahardjo
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, United States
| | - Sharon Jan
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, United States
| | - Sakura S. Schweizer
- Division of Infectious Diseases, Department of Medicine, University of California Irvine, Irvine, CA, United States
- School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| | - Shawn A. C. Rosario
- School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| | - Yanmiao Du
- School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| | - Jerry J. Zhang
- Division of Infectious Diseases, Department of Medicine, University of California Irvine, Irvine, CA, United States
| | - Naomi S. Morrissette
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, United States
| | - Rosa M. Andrade
- Division of Infectious Diseases, Department of Medicine, University of California Irvine, Irvine, CA, United States
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
14
|
Abstract
Trichomonas vaginalis is an anaerobic/microaerophilic protist parasite which causes trichomoniasis, one of the most prevalent sexually transmitted diseases worldwide. T. vaginalis not only is important as a human pathogen but also is of great biological interest because of its peculiar cell biology and metabolism, in earlier times fostering the erroneous notion that this microorganism is at the root of eukaryotic evolution. This review summarizes the major advances in the last five years in the T. vaginalis field with regard to genetics, molecular biology, ecology, and pathogenicity of the parasite.
Collapse
Affiliation(s)
- David Leitsch
- Department of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Mustfa SA, Maurizi E, McGrath J, Chiappini C. Nanomedicine Approaches to Negotiate Local Biobarriers for Topical Drug Delivery. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Salman Ahmad Mustfa
- Centre for Craniofacial and Regenerative Biology King's College London London SE1 9RT UK
| | - Eleonora Maurizi
- Dipartimento di Medicina e Chirurgia Università di Parma Parma 43121 Italy
| | - John McGrath
- St John's Institute of Dermatology King's College London London SE1 9RT UK
| | - Ciro Chiappini
- Centre for Craniofacial and Regenerative Biology King's College London London SE1 9RT UK
- London Centre for Nanotechnology King's College London London WC2R 2LS UK
| |
Collapse
|
16
|
Joardar N, Guevara-Flores A, Martínez-González JDJ, Sinha Babu SP. Thiol antioxidant thioredoxin reductase: A prospective biochemical crossroads between anticancer and antiparasitic treatments of the modern era. Int J Biol Macromol 2020; 165:249-267. [DOI: 10.1016/j.ijbiomac.2020.09.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023]
|
17
|
Friedman M, Tam CC, Cheng LW, Land KM. Anti-trichomonad activities of different compounds from foods, marine products, and medicinal plants: a review. BMC Complement Med Ther 2020; 20:271. [PMID: 32907567 PMCID: PMC7479404 DOI: 10.1186/s12906-020-03061-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Human trichomoniasis, caused by the pathogenic parasitic protozoan Trichomonas vaginalis, is the most common non-viral sexually transmitted disease that contributes to reproductive morbidity in affected women and possibly to prostate cancer in men. Tritrichomonas foetus strains cause the disease trichomoniasis in farm animals (cattle, bulls, pigs) and diarrhea in domestic animals (cats and dogs). Because some T. vaginalis strains have become resistant to the widely used drug metronidazole, there is a need to develop alternative treatments, based on safe natural products that have the potential to replace and/or enhance the activity of lower doses of metronidazole. To help meet this need, this overview collates and interprets worldwide reported studies on the efficacy of structurally different classes of food, marine, and medicinal plant extracts and some of their bioactive pure compounds against T. vaginalis and T. foetus in vitro and in infected mice and women. Active food extracts include potato peels and their glycoalkaloids α-chaconine and α-solanine, caffeic and chlorogenic acids, and quercetin; the tomato glycoalkaloid α-tomatine; theaflavin-rich black tea extracts and bioactive theaflavins; plant essential oils and their compounds (+)-α-bisabolol and eugenol; the grape skin compound resveratrol; the kidney bean lectin, marine extracts from algae, seaweeds, and fungi and compounds that are derived from fungi; medicinal extracts and about 30 isolated pure compounds. Also covered are the inactivation of drug-resistant T. vaginalis and T. foetus strains by sensitized light; anti-trichomonad effects in mice and women; beneficial effects of probiotics in women; and mechanisms that govern cell death. The summarized findings will hopefully stimulate additional research, including molecular-mechanism-guided inactivations and human clinical studies, that will help ameliorate adverse effects of pathogenic protozoa.
Collapse
Affiliation(s)
- Mendel Friedman
- United States Department of Agriculture, Healthy Processed Foods Research Unit, Agricultural Research Service, Albany, CA, 94710, USA.
| | - Christina C Tam
- United States Department of Agriculture, Foodborne Toxins Detection and Prevention Research Unit, Agricultural Research Service, Albany, California, 94710, USA
| | - Luisa W Cheng
- United States Department of Agriculture, Foodborne Toxins Detection and Prevention Research Unit, Agricultural Research Service, Albany, California, 94710, USA
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA, 95211, USA
| |
Collapse
|
18
|
Escrig JI, Hahn HJ, Debnath A. Activity of Auranofin against Multiple Genotypes of Naegleria fowleri and Its Synergistic Effect with Amphotericin B In Vitro. ACS Chem Neurosci 2020; 11:2464-2471. [PMID: 32392039 DOI: 10.1021/acschemneuro.0c00165] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Primary amebic meningoencephalitis, caused by brain infection with a free-living ameba, Naegleria fowleri, leads to extensive inflammation of the brain and death within 3-7 days after symptoms begin. Treatment of primary amebic meningoencephalitis relies on amphotericin B in combination with other drugs, but use of amphotericin B is associated with severe adverse effects. Despite a fatality rate of over 97%, economic incentive to invest in development of antiamebic drugs by the pharmaceutical industry is lacking. Development of safe and rapidly acting drugs remains a critical unmet need to avert future deaths. Since FDA-approved anti-inflammatory and antiarthritic drug auranofin is a known inhibitor of selenoprotein synthesis and thioredoxin reductase and the genome of N. fowleri encodes genes for both selenocysteine biosynthesis and thioredoxin reductases, we tested the effect of auranofin against N. fowleri strains of different genotypes from the USA, Europe, and Australia. Auranofin was equipotent against all tested strains with an EC50 of 1-2 μM. Our growth inhibition study at different time points demonstrated that auranofin is fast-acting, and ∼90% growth inhibition was achieved within 16 h of drug exposure. A short exposure of N. fowleri to auranofin led to the accumulation of intracellular reactive oxygen species. This is consistent with auranofin's role in inhibiting antioxidant pathways. Further, combination of auranofin and amphotericin B led to 95% of growth inhibition with 2-9-fold dose reduction for amphotericin B and 3-20-fold dose reduction for auranofin. Auranofin has the potential to be repurposed for the treatment of primary amebic meningoencephalitis.
Collapse
Affiliation(s)
- Jose Ignacio Escrig
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0756, United States
| | - Hye Jee Hahn
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0756, United States
| | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0756, United States
| |
Collapse
|
19
|
Kangussu-Marcolino MM, Ehrenkaufer GM, Chen E, Debnath A, Singh U. Identification of plicamycin, TG02, panobinostat, lestaurtinib, and GDC-0084 as promising compounds for the treatment of central nervous system infections caused by the free-living amebae Naegleria, Acanthamoeba and Balamuthia. Int J Parasitol Drugs Drug Resist 2019; 11:80-94. [PMID: 31707263 PMCID: PMC6849155 DOI: 10.1016/j.ijpddr.2019.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/18/2019] [Accepted: 10/17/2019] [Indexed: 01/11/2023]
Abstract
The free-living amebae Naegleria, Acanthamoeba, and Balamuthia cause rare but life-threatening infections. All three parasites can cause meningoencephalitis. Acanthamoeba can also cause chronic keratitis and both Balamuthia and Acanthamoeba can cause skin and systemic infections. There are minimal drug development pipelines for these pathogens despite a lack of available treatment regimens and high fatality rates. To identify anti-amebic drugs, we screened 159 compounds from a high-value repurposed library against trophozoites of the three amebae. Our efforts identified 38 compounds with activity against at least one ameba. Multiple drugs that bind the ATP-binding pocket of mTOR and PI3K are active, highlighting these compounds as important inhibitors of these parasites. Importantly, 24 active compounds have progressed at least to phase II clinical studies and overall 15 compounds were active against all three amebae. Based on central nervous system (CNS) penetration or exceptional potency against one amebic species, we identified sixteen priority compounds for the treatment of meningoencephalitis caused by these pathogens. The top five compounds are (i) plicamycin, active against all three free-living amebae and previously U.S. Food and Drug Administration (FDA) approved, (ii) TG02, active against all three amebae, (iii and iv) FDA-approved panobinostat and FDA orphan drug lestaurtinib, both highly potent against Naegleria, and (v) GDC-0084, a CNS penetrant mTOR inhibitor, active against at least two of the three amebae. These results set the stage for further investigation of these clinically advanced compounds for treatment of infections caused by the free-living amebae, including treatment of the highly fatal meningoencephalitis.
Collapse
Affiliation(s)
- Monica M Kangussu-Marcolino
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University, Grant Building, S-143, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Gretchen M Ehrenkaufer
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University, Grant Building, S-143, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Emily Chen
- uHTS Laboratory Rm 101, 11119 N Torrey Pines Rd. Calibr, A Division of the Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Upinder Singh
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University, Grant Building, S-143, 300 Pasteur Drive, Stanford, CA, 94305, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
20
|
Zhang Y, Miyamoto Y, Ihara S, Yang JZ, Zuill DE, Angsantikul P, Zhang Q, Gao W, Zhang L, Eckmann L. Composite thermoresponsive hydrogel with auranofin-loaded nanoparticles for topical treatment of vaginal trichomonad infection. ADVANCED THERAPEUTICS 2019; 2:1900157. [PMID: 32377561 PMCID: PMC7202563 DOI: 10.1002/adtp.201900157] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Indexed: 12/17/2022]
Abstract
Trichomonas vaginalis is responsible for the most common non-viral sexually-transmitted disease worldwide. Standard treatment is with oral nitro-heterocyclic compounds, metronidazole or tinidazole, but resistance to these drugs is emerging and adverse effects can be problematic. Topical treatment offers potential benefits for increasing local drug concentrations and efficacy, while reducing systemic drug exposure, but no topical strategies are currently approved for trichomoniasis. The anti-rheumatic drug, auranofin (AF), was recently discovered to have significant trichomonacidal activity, but has a long plasma half-life and significant adverse effects. Here, we used this drug as a model to develop a novel topical formulation composed of AF-loaded nanoparticles (NP) embedded in a thermoresponsive hydrogel for intravaginal administration. The AF-NP composite gel showed sustained drug release for at least 12 h, and underwent sol-gel transition with increased viscoelasticity within a minute. Intravaginal administration in mice showed excellent NP retention for >6 h and markedly increased local AF levels, but reduced plasma and liver levels compared to oral treatment with a much higher dose. Furthermore, intravaginal AF-NP gel greatly outperformed oral AF in eliminating vaginal trichomonad infection in mice, while causing no systemic or local toxicity. These results show the potential of the AF-NP hydrogel formulation for effective topical therapy of vaginal infections.
Collapse
Affiliation(s)
- Yue Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Yukiko Miyamoto
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Sozaburo Ihara
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Justin Z Yang
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Douglas E Zuill
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Pavimol Angsantikul
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Qiangzhe Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Lars Eckmann
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
21
|
Mi-ichi F, Ishikawa T, Tam VK, Deloer S, Hamano S, Hamada T, Yoshida H. Characterization of Entamoeba histolytica adenosine 5'-phosphosulfate (APS) kinase; validation as a target and provision of leads for the development of new drugs against amoebiasis. PLoS Negl Trop Dis 2019; 13:e0007633. [PMID: 31425516 PMCID: PMC6715247 DOI: 10.1371/journal.pntd.0007633] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 08/29/2019] [Accepted: 07/15/2019] [Indexed: 12/18/2022] Open
Abstract
Background Amoebiasis, caused by Entamoeba histolytica infection, is a global public health problem. However, available drugs to treat amoebiasis are currently limited, and no effective vaccine exists. Therefore, development of new preventive measures against amoebiasis is urgently needed. Methodology/Principal findings Here, to develop new drugs against amoebiasis, we focused on E. histolytica adenosine 5′-phosphosulfate kinase (EhAPSK), an essential enzyme in Entamoeba sulfolipid metabolism. Fatty alcohol disulfates and cholesteryl sulfate, sulfolipids synthesized in Entamoeba, play important roles in trophozoite proliferation and cyst formation. These processes are closely associated with clinical manifestation and severe pathogenesis of amoebiasis and with disease transmission, respectively. We validated a combination approach of in silico molecular docking analysis and an in vitro enzyme activity assay for large scale screening. Docking simulation ranked the binding free energy between a homology modeling structure of EhAPSK and 400 compounds. The 400 compounds were also screened by a 96-well plate-based in vitro APSK activity assay. Among fifteen compounds identified as EhAPSK inhibitors by the in vitro system, six were ranked by the in silico analysis as having high affinity toward EhAPSK. Furthermore, 2-(3-fluorophenoxy)-N-[4-(2-pyridyl)thiazol-2-yl]-acetamide, 3-phenyl-N-[4-(2-pyridyl)thiazol-2-yl]-imidazole-4-carboxamide, and auranofin, which were identified as EhAPSK inhibitors by both in silico and in vitro analyses, halted not only Entamoeba trophozoite proliferation but also cyst formation. These three compounds also dose-dependently impaired the synthesis of sulfolipids in E. histolytica. Conclusions/Significance Hence, the combined approach of in silico and in vitro-based EhAPSK analyses identified compounds that can be evaluated for their effects on Entamoeba. This can provide leads for the development of new anti-amoebic and amoebiasis transmission-blocking drugs. This strategy can also be applied to identify specific APSK inhibitors, which will benefit research into sulfur metabolism and the ubiquitous pathway terminally synthesizing essential sulfur-containing biomolecules. Amoebiasis is a parasitic disease caused by Entamoeba histolytica that is an important health problem worldwide because of high morbidity and mortality rates. However, clinical options are inadequate; therefore, developing new preventive measures, such as anti-amoebic drugs, is urgently needed. In general, for the development of new drugs, the identification of appropriate leads and targets is a prerequisite. Here, to develop new drugs against amoebiasis, we focused on E. histolytica adenosine 5′-phosphosulfate kinase (EhAPSK), an essential enzyme in sulfur metabolism. An EhAPSK-based combination approach of computer-based in silico and laboratory-based in vitro analyses enabled us to screen 400 chemicals, from which we identified 15 that inhibit EhAPSK activity. Furthermore, among them, three compounds halted biological processes in Entamoeba that are closely associated with the clinical manifestation and pathogenesis of amoebiasis and with disease transmission. Hence, this study provides leads as well as a target for the development of new drugs against amoebiasis. This study also provides a basis to identify inhibitors for use in the study of sulfur metabolism, an important topic in general biochemistry and physiology.
Collapse
Affiliation(s)
- Fumika Mi-ichi
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Nabeshima, Saga, Japan
- * E-mail:
| | - Takeshi Ishikawa
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Vo Kha Tam
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Nabeshima, Saga, Japan
| | - Sharmina Deloer
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Nabeshima, Saga, Japan
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Tsuyoshi Hamada
- Nagasaki Advanced Computing Center, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Nabeshima, Saga, Japan
| |
Collapse
|
22
|
Potential impact of the antirheumatic agent auranofin on proviral HIV-1 DNA in individuals under intensified antiretroviral therapy: Results from a randomised clinical trial. Int J Antimicrob Agents 2019; 54:592-600. [PMID: 31394172 DOI: 10.1016/j.ijantimicag.2019.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/17/2019] [Accepted: 08/01/2019] [Indexed: 11/24/2022]
Abstract
Antiretroviral therapy (ART) is typically composed of a combination of three antiretroviral drugs and is the treatment of choice for people with human immunodeficiency virus type 1/acquired immune deficiency syndrome (HIV-1/AIDS). However, it is unable to impact on viral reservoirs, which harbour latent HIV-1 genomes that are able to reignite the infection upon treatment suspension. The aim of this study was to provide an estimate of the safety of the disease-modifying antirheumatic agent auranofin and its impact on the HIV-1 reservoir in humans under intensified ART. For this purpose, an interim analysis was conducted of three of the six arms of the NCT02961829 clinical trial (five patients each) with: no intervention, i.e. continuation of first-line ART; intensified ART (ART + dolutegravir and maraviroc); and intensified ART plus auranofin. Auranofin treatment was found to be well tolerated. No major adverse events were detected apart from a transient decrease in CD4+ T-cell counts at Weeks 8 and 12. Auranofin decreased total viral DNA in peripheral blood mononuclear cells compared with ART-only regimens at Week 20 (P = 0.036) and induced a decrease in integrated viral DNA as quantified by Alu PCR. Despite the limited number of patient-derived sequences available in this study, phylogenetic analyses of nef sequences support the idea that auranofin may impact on the viral reservoir. [ClinicalTrials.gov ID: NCT02961829].
Collapse
|
23
|
Küng E, Fürnkranz U, Walochnik J. Chemotherapeutic options for the treatment of human trichomoniasis. Int J Antimicrob Agents 2018; 53:116-127. [PMID: 30612993 DOI: 10.1016/j.ijantimicag.2018.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/11/2018] [Accepted: 10/20/2018] [Indexed: 01/08/2023]
Abstract
Trichomonas vaginalis is the causative agent of the most common non-viral sexually transmitted disease worldwide. The infection may be associated with severe complications, including infertility, preterm labour, cancer and an increased risk of human immunodeficiency virus (HIV) transmission. Treatment remains almost exclusively based on 5-nitroimidazoles, but resistance is on the rise. This article provides an overview of clinically evaluated systemic and topical treatment options for human trichomoniasis and summarises the current state of knowledge on various herbal, semisynthetic and synthetic compounds evaluated for their anti-Trichomonas efficacy in vitro.
Collapse
Affiliation(s)
- Erik Küng
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - Ursula Fürnkranz
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria.
| |
Collapse
|
24
|
Anti-Trichomonas vaginalis activity of 1,10-phenanthroline-5,6-dione-based metallodrugs and synergistic effect with metronidazole. Parasitology 2018; 146:1179-1183. [DOI: 10.1017/s003118201800152x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractTrichomonas vaginalis is responsible for the most common non-viral, sexually transmitted infection, human trichomoniasis, and is associated with an increased susceptibility to HIV. An escalation in resistance (2.5–10%) to the clinical drug, metronidazole (MTZ), has been detected and this compound also has adverse side-effects. Therefore, new treatment options are urgently required. Herein, we investigate the possible anti-T. vaginalis activity of 1,10-phenanthroline-5,6-dione (phendione) and its metal complexes, [Ag(phendione)2]ClO4 and [Cu(phendione)3](ClO4)2·4H2O. Minimum inhibitory concentration (MIC) against T. vaginalis ATCC 30236 and three fresh clinical isolates and mammalian cells were performed using serial dilution generating IC50 and CC50 values. Drugs combinations with MTZ were evaluated by chequerboard assay. A strong anti-T. vaginalis activity was found for all test compounds. IC50 values obtained for [Cu(phendione)3](ClO4)2·4H2O were similar or lower than those obtained for MTZ. In vitro assays with normal cells showed low cytotoxicity and [Cu(phendione)3](ClO4)2·4H2O presented a high selectivity index (SI) for fibroblasts (SI = 11.39) and erythrocytes (SI > 57.47). Chequerboard assay demonstrated that the combination of [Cu(phendione)3](ClO4)2·4H2O with MTZ leads to synergistic interaction, which suggests distinct mechanisms of action of the copper–phendione complex and avoiding the MTZ resistance pathways. Our results highlight the importance of phendione-based drugs as potential molecules of pharmaceutical interest.
Collapse
|
25
|
Leitsch D, Williams CF, Hrdý I. Redox Pathways as Drug Targets in Microaerophilic Parasites. Trends Parasitol 2018; 34:576-589. [PMID: 29807758 DOI: 10.1016/j.pt.2018.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 01/06/2023]
Abstract
The microaerophilic parasites Entamoeba histolytica, Trichomonas vaginalis, and Giardia lamblia jointly cause hundreds of millions of infections in humans every year. Other microaerophilic parasites such as Tritrichomonas foetus and Spironucleus spp. pose a relevant health problem in veterinary medicine. Unfortunately, vaccines against these pathogens are unavailable, but their microaerophilic lifestyle opens opportunities for specifically developed chemotherapeutics. In particular, their high sensitivity towards oxygen can be exploited by targeting redox enzymes. This review focusses on the redox pathways of microaerophilic parasites and on drugs, either already in use or currently in the state of development, which target these pathways.
Collapse
Affiliation(s)
- David Leitsch
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Austria.
| | - Catrin F Williams
- School of Engineering, Cardiff University, Cardiff, Wales, United Kingdom
| | - Ivan Hrdý
- Department of Parasitology, Charles University, Faculty of Science, Prague, Czech Republic
| |
Collapse
|
26
|
Alvarez-Sánchez ME, Quintas-Granados LI, Vázquez-Carrillo LI, Puente-Rivera J, Villalobos-Osnaya A, Ponce-Regalado MD, Camacho-Nuez M. Proteomic profile approach of effect of putrescine depletion over Trichomonas vaginalis. Parasitol Res 2018. [PMID: 29516214 DOI: 10.1007/s00436-018-5821-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infection with Trichomonas vaginalis produces a malodorous seropurulent vaginal discharge due to several chemicals, including polyamines. The presence of 1,4-diamino-2-butanone (DAB) reduces the amount of intracellular putrescine by 90%, preventing the cotransport of exogenous spermine. DAB-treated parasites present morphological changes, which are restored by adding exogenous putrescine into the culture medium. However, the effect of polyamines over the trichomonad proteomic profile is unknown. In this study, we used a proteomic approach to analyze the polyamine-depletion and restoration effect by exogenous putrescine on T. vaginalis proteome. In the presence of inhibitor DAB, we obtained 369 spots in polyamine-depleted condition and observed 499 spots in the normal culture media. With DAB treatment, the intensity of 43 spots was increased but was found to be reduced in 39 spots, as compared to normal conditions. Interestingly, in DAB-treated parasites restored with a medium with added exogenous putrescine, 472 spots were found, of which 33 were upregulated and 63 were downregulated in protein intensity. Some of these downregulated proteins in DAB-treated parasites are involved in several cellular pathways such as glycolysis, glycolytic fermentation, arginine dihydrolase pathway, redox homeostasis, host cell binding mediated by carbohydrate, chaperone function, and cytoskeletal remodeling. Interestingly, the intensity of some of the proteins was restored by adding exogenous putrescine. In conclusion, the presence of DAB altered the proteomic profile of T. vaginalis, resulting in a decrease in the intensity of 130 proteins and an increase in the intensity of 43 proteins that was restored by the addition of putrescine.
Collapse
Affiliation(s)
- María Elizbeth Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, 03100, Mexico City, Mexico.
| | - Laura Itzel Quintas-Granados
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, 03100, Mexico City, Mexico
| | - Laura Isabel Vázquez-Carrillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, 03100, Mexico City, Mexico
| | - Jonathan Puente-Rivera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, 03100, Mexico City, Mexico
| | - Alma Villalobos-Osnaya
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, 03100, Mexico City, Mexico
| | - María Dolores Ponce-Regalado
- Departamento de Clínicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, Mexico
| | - Minerva Camacho-Nuez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, 03100, Mexico City, Mexico
| |
Collapse
|
27
|
May HC, Yu JJ, Guentzel MN, Chambers JP, Cap AP, Arulanandam BP. Repurposing Auranofin, Ebselen, and PX-12 as Antimicrobial Agents Targeting the Thioredoxin System. Front Microbiol 2018; 9:336. [PMID: 29556223 PMCID: PMC5844926 DOI: 10.3389/fmicb.2018.00336] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/12/2018] [Indexed: 01/23/2023] Open
Abstract
As microbial resistance to drugs continues to rise at an alarming rate, finding new ways to combat pathogens is an issue of utmost importance. Development of novel and specific antimicrobial drugs is a time-consuming and expensive process. However, the re-purposing of previously tested and/or approved drugs could be a feasible way to circumvent this long and costly process. In this review, we evaluate the U.S. Food and Drug Administration tested drugs auranofin, ebselen, and PX-12 as antimicrobial agents targeting the thioredoxin system. These drugs have been shown to act on bacterial, fungal, protozoan, and helminth pathogens without significant toxicity to the host. We propose that the thioredoxin system could serve as a useful therapeutic target with broad spectrum antimicrobial activity.
Collapse
Affiliation(s)
- Holly C. May
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - M. N. Guentzel
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - James P. Chambers
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - Andrew P. Cap
- United States Army Institute for Surgical Research, San Antonio Military Medical Center, San Antonio, TX, United States
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
28
|
Leitsch D. Drug susceptibility testing in microaerophilic parasites: Cysteine strongly affects the effectivities of metronidazole and auranofin, a novel and promising antimicrobial. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:321-327. [PMID: 28910741 PMCID: PMC5595233 DOI: 10.1016/j.ijpddr.2017.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 12/18/2022]
Abstract
The microaerophilic parasites Entamoeba histolytica, Trichomonas vaginalis, and Giardia lamblia annually cause hundreds of millions of human infections which are treated with antiparasitic drugs. Metronidazole is the most often prescribed drug but also other drugs are in use, and novel drugs with improved characteristics are constantly being developed. One of these novel drugs is auranofin, originally an antirheumatic which has been relabelled for the treatment of parasitic infections. Drug effectivity is arguably the most important criterion for its applicability and is commonly assessed in susceptibility assays using in vitro cultures of a given pathogen. However, drug susceptibility assays can be strongly affected by certain compounds in the growth media. In the case of microaerophilic parasites, cysteine which is added in large amounts as an antioxidant is an obvious candidate because it is highly reactive and known to modulate the toxicity of metronidazole in several microaerophilic parasites. In this study, it was attempted to reduce cysteine concentrations as far as possible without affecting parasite viability by performing drug susceptibility assays under strictly anaerobic conditions in an anaerobic cabinet. Indeed, T. vaginalis and E. histolytica could be grown without any cysteine added and the cysteine concentration necessary to maintain G. lamblia could be reduced to 20%. Susceptibilities to metronidazole were found to be clearly reduced in the presence of cysteine. With auranofin the protective effect of cysteine was extreme, providing protection to concentrations up to 100-fold higher as observed in the absence of cysteine. With three other drugs tested, albendazole, furazolidone and nitazoxanide, all in use against G. lamblia, the effect of cysteine was less pronounced. Oxygen was found to have a less marked impact on metronidazole and auranofin than cysteine but bovine bile which is standardly used in growth media for G. lamblia, displayed a marked synergistic effect with metronidazole. T. vaginalis and E. histolytica can grow anaerobically without cysteine. T. vaginalis and G. lamblia are more susceptible to metronidazole without cysteine. T. vaginalis is 100-fold more susceptible to auranofin without cysteine. G. lamblia is 12-fold more susceptible to auranofin with low cysteine. Bovine bile renders G. lamblia more susceptible to metronidazole.
Collapse
Affiliation(s)
- David Leitsch
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria.
| |
Collapse
|