1
|
Garcias B, Monteith W, Vidal A, Aguirre L, Pascoe B, Kobras CM, Hitchings MD, Sheppard SK, Martin M, Darwich L. Characterization of antibiotic determinants and heavy metal resistance genes in Escherichia coli from pigs in Catalonia. Microb Genom 2025; 11:001371. [PMID: 40131333 PMCID: PMC11937225 DOI: 10.1099/mgen.0.001371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/13/2025] [Indexed: 03/26/2025] Open
Abstract
More antibiotics are administered to livestock animals than to treat human infections. Industrialization, large animal densities and early weaning mean pigs are exposed to more antibiotics than any other livestock animal. Consequently, antimicrobial resistance (AMR) is common among commensal and pathogenic bacteria. Heavy metals (HMs) are also often used as feed additives for growth promotion and infection prevention alongside antimicrobials, and increased exposure to copper, zinc and cadmium can further encourage AMR through co-selection. In this study, we sequenced an archived collection of 112 Escherichia coli isolates from pigs in Catalonia using short- and long-read sequencing methods to detect AMR and HM tolerance genes. The most common AMR genes were mdfA (84.8%), aph(3″)-Ib (52.7%), bla TEM-1B (45.6%) and aph(6)-Id (45.6%). Genes relevant to public health, such as the extended-spectrum β-lactamases (15.4%), bla CTX-M type or bla SHV, or mobile colistin resistance (mcr) genes (13.4%), such as mcr-1, were also found. HM tolerance genes were present in almost every genome but were rarely located in plasmids, and, in most cases, AMR and HM tolerance genes were not located on the same plasmids. Of the genes predicted to increase tolerance to HMs, only those with activity to mercury were co-located on plasmids alongside other AMR determinants. However, mercury is rarely used in pig farming and does not support a scenario where AMR and HM genes are co-selected. Finally, we identified the exclusive association between mcr-4 and ColE10 plasmid, which may help target interventions to curtail its spread among pig Escherichia coli.
Collapse
Affiliation(s)
- Biel Garcias
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, CP 08193, Spain
| | - William Monteith
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Anna Vidal
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, CP 08193, Spain
| | - Laia Aguirre
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, CP 08193, Spain
| | - Ben Pascoe
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Carolin M. Kobras
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | | - Samuel K. Sheppard
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Marga Martin
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, CP 08193, Spain
| | - Laila Darwich
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, CP 08193, Spain
| |
Collapse
|
2
|
Ransirini AM, Elżbieta MS, Joanna G, Bartosz K, Wojciech T, Agnieszka B, Magdalena U. Fertilizing drug resistance: Dissemination of antibiotic resistance genes in soil and plant bacteria under bovine and swine slurry fertilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174476. [PMID: 38969119 DOI: 10.1016/j.scitotenv.2024.174476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The increasing global demand for food production emphasizes the use of organic animal fertilizers, such as manure and slurry, to support sustainable agricultural practices. However, recent studies highlight concerns about antibiotic resistance determinants in animal excrements, posing a potential risk of spreading antibiotic resistance genes (ARGs) in agricultural soil and, consequently, in food products. This study examines the dissemination of ARGs within the soil and plant-associated microbiomes in cherry radish following the application of swine and bovine slurry. In a 45-day pot experiment, slurry-amended soil, rhizospheric bacteria, and endophytic bacteria in radish roots and leaves were sampled and analyzed for 21 ARGs belonging to 7 Antibiotic Resistance Phenotypes (ARPs). The study also assessed slurry's impact on soil microbiome functional diversity, enzymatic activity, physicochemical soil parameters, and the concentration of 22 selected antimicrobials in soil and plant tissues. Tetracyclines and β-lactams were the most frequently identified ARGs in bovine and swine slurry, aligning with similar studies worldwide. Swine slurry showed a higher prevalence of ARGs in soil and plant-associated bacteria, particularly TET genes, reflecting pig antibiotic treatments. The persistent dominance of TET genes across slurry, soil, and plant microbiomes highlights significant influence of slurry application on gene occurrence in plant bacteria. The presence of ARGs in edible plant parts underscores health risks associated with raw vegetable consumption. Time-dependent dynamics of ARG occurrence highlighted their persistent presence throughout the experiment duration, influenced by the environmental factors and antibiotic residuals. Notably, ciprofloxacin, which was the only one antimicrobial detected in fertilized soil, significantly impacted bovine-amended variants. Soil salinity modifications induced by slurry application correlated with changes in ARG occurrence. Overall, the research underscores the complex relationships between agricultural practices, microbial activity, and antibiotic resistance dissemination, emphasizing the need for a more sustainable and health-conscious farming approaches.
Collapse
Affiliation(s)
- Attanayake Mudiyanselage Ransirini
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Mierzejewska-Sinner Elżbieta
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Giebułtowicz Joanna
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Banacha 1, 02-097 Warsaw, Poland
| | - Kózka Bartosz
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Banacha 1, 02-097 Warsaw, Poland
| | - Tołoczko Wojciech
- Department of Physical Geography, Faculty of Geography, University of Lodz, Prez. Gabriela Narutowicza 88, 90-139, Lodz, Poland
| | - Bednarek Agnieszka
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Urbaniak Magdalena
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland.
| |
Collapse
|
3
|
Niharika J, Deb R, Parihar R, Thakur PK, Anjaria P, Sengar GS, Chaudhary P, Pegu SR, Attupurum N, Antony N, Rajkhowa S, Gupta VK. Isolation and Characterization of Extended-Spectrum β-Lactamase Producing Escherichia coli from Pig Farms and Slaughterhouse. Indian J Microbiol 2024; 64:950-956. [PMID: 39282198 PMCID: PMC11399545 DOI: 10.1007/s12088-023-01151-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/16/2023] [Indexed: 09/18/2024] Open
Abstract
Extended-spectrum β-lactamase (ESBL) producing Escherichia coli represents a formidable challenge in the field of microbiology and public health due to its resistance to commonly used antibiotics. These strains pose a serious threat to human and animal health, underscoring the urgency of comprehensive research and surveillance. The ongoing investigation seeks ESBL producing E. coli strains from pig farms and slaughterhouses in West Bengal and Assam, India. A total of 309 samples were collected: nasal swabs (25), rectal swabs (25) from healthy pigs, pig pen soil (45), faeces (55), slaughterhouse effluents (115), and cleaning water (44). In these samples, 154 tested positive for E. coli, indicating a 49.8% prevalence. Among 154 E. coli isolates, 23 (14.9%) produced ESBLs, sourced from pig rectal swabs (7.1%), faeces (10.7%), slaughterhouse effluents (26.1%), and cleaning water (11.7%). Significantly, 4 ESBL E. coli isolates (6.6%) exclusively emerged from pig slaughterhouse effluents, displaying imipenem-resistant properties. The majority of ESBL E. coli primarily produced CTX-M and CMY, with consistent genetic markers bla CTX-M (100%) and bla CMY (82.6%). Remarkably, 2 (8.6%) of 17 ESBL E. coli isolates from pig slaughterhouse effluents carried the genetic marker bla NDM1. These findings stress implementing thorough surveillance in pig farms and local slaughterhouses. This proactive approach is crucial to identify ESBL E. coli strains, enhancing public health protection.
Collapse
Affiliation(s)
- Jagana Niharika
- ICAR-National Research Centre on Pig, Guwahati, Assam India
- All India Institute of Hygiene and Public Health, Kolkata, West Bengal India
| | - Rajib Deb
- ICAR-National Research Centre on Pig, Guwahati, Assam India
| | - Ranjeet Parihar
- ICAR-National Research Centre on Pig, Guwahati, Assam India
- All India Institute of Hygiene and Public Health, Kolkata, West Bengal India
| | - Priyanka Kumari Thakur
- ICAR-National Research Centre on Pig, Guwahati, Assam India
- All India Institute of Hygiene and Public Health, Kolkata, West Bengal India
| | - Pranav Anjaria
- College of Veterinary Science and Animal Husbandry, Kamdhenu University, Anand, Gujarat India
| | | | - Parul Chaudhary
- ICAR-National Dairy Research Institute, Karnal, Haryana India
| | | | | | - Naveena Antony
- Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh India
| | | | | |
Collapse
|
4
|
Sun L, Meng N, Wang H, Wang Z, Jiao X, Wang J. Occurrence and characteristics of bla OXA-181-carrying Klebsiella aerogenes from swine in China. J Glob Antimicrob Resist 2024; 38:35-41. [PMID: 38763331 DOI: 10.1016/j.jgar.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/09/2023] [Accepted: 04/19/2024] [Indexed: 05/21/2024] Open
Abstract
OBJECTIVES Klebsiella aerogenes is a largely understudied opportunistic pathogen that can cause sepsis and lead to high mortality rates. In this study, we reported the occurrence of carbapenem-resistant blaOXA-181-carrying Klebsiella aerogenes from swine in China and elucidate their genomic characteristics. METHODS A total of 126 samples, including 109 swine fecal swabs, 14 environmental samples, and three feed samples were collected from a pig farm in China. The samples were enriched with LB broth culture and then inoculated into MacConkey agar plates for bacterial isolation. After PCR detection of carbapenemases genes, the blaOXA-181-carrying isolates were subjected to antimicrobial susceptibility testing, and whole-genome sequence analysis. RESULTS Four Klebsiella aerogenes isolates carrying the blaOXA-181 gene were obtained from swine faecal samples. All the 4 strains were belonged to ST438. The blaOXA-181 genes were located in IncX3-ColKP3 hybrid plasmids with the core genetic structure of IS26-ΔIS3000-ΔISEcp1-blaOXA-181-ΔlysR-ΔereA-ΔrepA-ISKpn19-tinR-qnrS1-ΔIS2-IS26, which suggests the potential for horizontal transfer and further dissemination of this resistance gene among Enterobacteriaceae and other sources. CONCLUSIONS This study represents the first instance of OXA-181-producing K. aerogenes being identified from swine faeces in China. It is crucial to maintain continuous monitoring and ongoing attention to the detection of K. aerogenes carrying blaOXA-181 and other resistance genes in pigs.
Collapse
Affiliation(s)
- Lin Sun
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Nan Meng
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hanyun Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhenyu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.
| | - Jing Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
5
|
The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2021-2022. EFSA J 2024; 22:e8583. [PMID: 38419967 PMCID: PMC10900121 DOI: 10.2903/j.efsa.2024.8583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
This report by the European Food Safety Authority and the European Centre for Disease prevention and Control, provides an overview of the main findings of the 2021-2022 harmonised Antimicrobial Resistance (AMR) monitoring in Salmonella spp., Campylobacter jejuni and C. coli from humans and food-producing animals (broilers, laying hens and fattening turkeys, fattening pigs and cattle under one year of age) and relevant meat thereof. For animals and meat thereof, AMR data on indicator commensal Escherichia coli, presumptive extended-spectrum beta-lactamases (ESBL)-/AmpC beta-lactamases (AmpC)-/carbapenemase (CP)-producing E. coli, and the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) are also analysed. Generally, resistance levels differed greatly between reporting countries and antimicrobials. Resistance to commonly used antimicrobials was frequently found in Salmonella and Campylobacter isolates from humans and animals. In humans, increasing trends in resistance to one of two critically antimicrobials (CIA) for treatment was observed in poultry-associated Salmonella serovars and Campylobacter, in at least half of the reporting countries. Combined resistance to CIA was however observed at low levels except in some Salmonella serovars and in C. coli from humans and animals in some countries. While CP-producing Salmonella isolates were not detected in animals in 2021-2022, nor in 2021 for human cases, in 2022 five human cases of CP-producing Salmonella were reported (four harbouring bla OXA-48 or bla OXA-48-like genes). The reporting of a number of CP-producing E. coli isolates (harbouring bla OXA-48, bla OXA-181, bla NDM-5 and bla VIM-1 genes) in fattening pigs, cattle under 1 year of age, poultry and meat thereof by a limited number of MSs (5) in 2021 and 2022, requires a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC-producers in E. coli) showed an encouraging progress in reducing AMR in food-producing animals in several EU MSs over the last 7 years.
Collapse
|
6
|
Garofalo C, Cesaro C, Milanović V, Belleggia L, Matricardi T, Osimani A, Aquilanti L, Cardinali F, Rampanti G, Simoni S, Vignaroli C, Brenciani A, Pasquini M, Trombetta MF. Search for carbapenem-resistant bacteria and carbapenem resistance genes along swine food chains in Central Italy. PLoS One 2024; 19:e0296098. [PMID: 38181018 PMCID: PMC10769077 DOI: 10.1371/journal.pone.0296098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
The presence of carbapenem-resistant bacteria and carbapenem resistance genes (CRGs) in livestock is increasing. To evaluate the presence of carbapenemase-producing Enterobacteriaceae (CPE) and the main CRGs along swine food chains of the Marche Region (Central Italy), samples of faeces, feed, and animal-food derived products were collected from seven small/medium, medium, and large-scale pig farms. A total of 191 samples were analysed using a culture-dependent method, with the aim of isolating CPE. Isolates were analysed for their resistance to carbapenems using a modified Hodge test and the microdilution method for the minimum inhibitory concentration (MIC) determination. Moreover, the extraction of microbial DNA from each sample was performed to directly detect selected CRGs via qPCR. Among the 164 presumptive resistant isolates, only one strain from a liver sample, identified as Aeromonas veronii, had an ertapenem MIC of 256 μg/mL and carried a carbapenemase- (cphA) and a β-lactamase- (blaOXA-12) encoding genes. A low incidence of CRGs was found; only nine and four faecal samples tested positive for blaNDM-1 and blaOXA-48, respectively. Overall, the importance of monitoring CPE and CRGs in livestock and their food chains should be stressed to control all potential non-human CPE and CRGs reservoirs and to determine safety levels for human health.
Collapse
Affiliation(s)
- Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali (D3A), Università Politecnica delle Marche, Ancona, Italy
| | - Cristiana Cesaro
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali (D3A), Università Politecnica delle Marche, Ancona, Italy
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali (D3A), Università Politecnica delle Marche, Ancona, Italy
| | - Luca Belleggia
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali (D3A), Università Politecnica delle Marche, Ancona, Italy
| | - Tullia Matricardi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali (D3A), Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali (D3A), Università Politecnica delle Marche, Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali (D3A), Università Politecnica delle Marche, Ancona, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali (D3A), Università Politecnica delle Marche, Ancona, Italy
| | - Giorgia Rampanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali (D3A), Università Politecnica delle Marche, Ancona, Italy
| | - Serena Simoni
- Dipartimento di Scienze della Vita e dell’Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - Carla Vignaroli
- Dipartimento di Scienze della Vita e dell’Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Brenciani
- Dipartimento di Scienze Biomediche e Sanità Pubblica (DSBSP), Università Politecnica delle Marche, Ancona, Italy
| | - Marina Pasquini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali (D3A), Università Politecnica delle Marche, Ancona, Italy
| | - Maria Federica Trombetta
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali (D3A), Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
7
|
Mohamed HS, Galal L, Hayer J, Benavides JA, Bañuls AL, Dupont C, Conquet G, Carrière C, Dumont Y, Didelot MN, Michon AL, Jean-Pierre H, Aboubaker MH, Godreuil S. Genomic epidemiology of carbapenemase-producing Gram-negative bacteria at the human-animal-environment interface in Djibouti city, Djibouti. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167160. [PMID: 37730061 DOI: 10.1016/j.scitotenv.2023.167160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
The emergence of carbapenem resistance is a major public health threat in sub-Saharan Africa but remains poorly understood, particularly at the human-animal-environment interface. This study provides the first One Health-based study on the epidemiology of Carbapenemase-Producing Gram-Negative Bacteria (CP-GNB) in Djibouti City, Djibouti, East Africa. In total, 800 community urine samples and 500 hospital specimens from humans, 270 livestock fecal samples, 60 fish samples, and 20 water samples were collected and tested for carbapenem resistance. The overall estimated CP-GNB prevalence was 1.9 % (32/1650 samples) and specifically concerned 0.3 % of community urine samples, 2.8 % of clinical specimens, 2.6 % of livestock fecal samples, 11.7 % of fish samples, and 10 % of water samples. The 32 CP-GNB included 19 Escherichia coli, seven Acinetobacter baumannii, five Klebsiella pneumoniae, and one Proteus mirabilis isolate. Short-read (Illumina) and long-read (Nanopore) genome sequencing revealed that carbapenem resistance was mainly associated with chromosomal carriage of blaNDM-1, blaOXA-23, blaOXA-48, blaOXA-66, and blaOXA-69 in A. baumannii, and with plasmid carriage in Enterobacterales (blaNDM-1 and blaOXA-181 in E. coli, blaNDM-1, blaNDM-5 and blaOXA-48 in K. pneumoniae, and blaNDM-1 in P. mirabilis). Moreover, 17/32 CP-GNB isolates belonged to three epidemic clones: (1) A. baumannii sequence type (ST) 1697,2535 that showed a distribution pattern consistent with intra- and inter-hospital dissemination; (2) E. coli ST10 that circulated at the human-animal-environment interface; and (3) K. pneumoniae ST147 that circulated at the human-environment interface. Horizontal exchanges probably contributed to carbapenem resistance dissemination in the city, especially the blaOXA-181-carrying ColKP3-IncX3 hybrid plasmid that was found in E. coli isolates belonging to different STs. Our study highlights that despite a relatively low CP-GNB prevalence in Djibouti City, plasmids harboring carbapenem resistance circulate in humans, animals and environment. Our findings stress the need to implement preventive and control measures for reducing the circulation of this potentially emerging public health threat.
Collapse
Affiliation(s)
- Hasna Saïd Mohamed
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France; Hôpital Général Peltier de Djibouti, Djibouti ville, Djibouti; Laboratoire de Biologie Médicale de la Mer Rouge, Djibouti City, Djibouti
| | - Lokman Galal
- UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France.
| | - Juliette Hayer
- UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Julio A Benavides
- UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France; Doctorado en Medicina de la Conservación y Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 440, Santiago, Chile
| | - Anne-Laure Bañuls
- UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France; LMI DRISA, Montpellier, France
| | - Chloé Dupont
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Guilhem Conquet
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Christian Carrière
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Yann Dumont
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Marie-Noëlle Didelot
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Anne-Laure Michon
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Hélène Jean-Pierre
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Mohamed Houmed Aboubaker
- Laboratoire de Biologie Médicale de la Mer Rouge, Djibouti City, Djibouti; Laboratoire de la Caisse Nationale de Sécurité Sociale, Djibouti City 696, Djibouti
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France; Jeune Equipe Associée à l'IRD (JEAI), FASORAM, Montpellier, France
| |
Collapse
|
8
|
Biswas U, Das S, Barik M, Mallick A. Situation Report on mcr-Carrying Colistin-Resistant Clones of Enterobacterales: A Global Update Through Human-Animal-Environment Interfaces. Curr Microbiol 2023; 81:12. [PMID: 37989899 DOI: 10.1007/s00284-023-03521-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 11/23/2023]
Abstract
In the twenty-first century, antibiotic resistance (ABR) is one of the acute medical emergencies around the globe, overwhelming human-animal-environmental interfaces. Hit-or-mis use of antibiotics exacerbates the crisis of ABR, dispersing transferable resistance traits and challenging treatment regimens based on life-saving drugs such as colistin. Colistin is the highest priority critically important antimicrobials for human medicine, but its long use as a growth promoter in animal husbandry reduces clinical efficacy. Since 2015, the emergence and spread of mobile colistin resistance (mcr)-carrying colistin-resistant clones of Enterobacterales have been markedly sustained in both humans and animals, especially in developing countries. Hospital and community transmissions of mcr clones pose a high risk for infection prevention and outbreaks at the national and international levels. Several public health and limited one health studies have highlighted the genomic insights of mcr clones, clarifying the chromosomal sequence types (STs) and plasmid incompatibility (Inc) types. But this information is segregated into humans and animals, and rarely are environmental sectors complicating the understanding of possibly intercontinental and sectoral transmission of these clones. India is the hotspot for superbugs, including mcr-carrying colistin-resistant isolates that threaten cross-border transmission. The current review provided an up-to-date worldwide scenario of mcr-carrying STs and plasmid Inc types among the Gram-negative bacilli of Enterobacterales across human-animal-environmental interfaces and correlated with the available information from India.
Collapse
Affiliation(s)
- Urmy Biswas
- Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Surojit Das
- Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India.
| | - Mili Barik
- Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Abhi Mallick
- Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India
| |
Collapse
|
9
|
Ramkisson T, Rip D. Carbapenem resistance in Enterobacterales from agricultural, environmental and clinical origins: South Africa in a global context. AIMS Microbiol 2023; 9:668-691. [PMID: 38173973 PMCID: PMC10758576 DOI: 10.3934/microbiol.2023034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 01/05/2024] Open
Abstract
Carbapenem agents are regarded as last-resort antibiotics, however, bacterial resistance towards carbapenems has been reported in both clinical and agricultural settings worldwide. Carbapenem resistance, defined as the resistance of a bacteria towards one or more carbapenem drugs, can be mediated in either of, or a combination of, three mechanisms-although, the mechanism mediated through the production of carbapenemases (β-lactamases that are able to enzymatically degrade carbapenems) is of most significance. Of particular concern is the occurrence of carbapenemase producing Enterobacterales (CPE), with literature describing a dramatic increase in resistance globally. In South Africa, increases of carbapenemase activity occurring in Enterobacter species, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa have recently been reported. CPE can also be found in agricultural environments, as global studies have documented numerous instances of CPE presence in various animals such as pigs, cattle, seafood, horses and dogs. However, most reports of CPE occurrence in agricultural settings come from Northern America, Europe and some parts of Asia, where more extensive research has been conducted to understand the CPE phenomenon. In comparison to clinical data, there are limited studies investigating the spread of CPE in agricultural settings in Africa, highlighting the importance of monitoring CPE in livestock environments and the food chain. Further research is necessary to uncover the true extent of CPE dissemination in South Africa. This review will discuss the phenomenon of bacterial antibiotic resistance (ABR), the applications of the carbapenem drug and the occurrence of carbapenem resistance globally.
Collapse
Affiliation(s)
- Taish Ramkisson
- Department of Food Science, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Diane Rip
- Department of Food Science, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
10
|
Ramírez-Castillo FY, Guerrero-Barrera AL, Avelar-González FJ. An overview of carbapenem-resistant organisms from food-producing animals, seafood, aquaculture, companion animals, and wildlife. Front Vet Sci 2023; 10:1158588. [PMID: 37397005 PMCID: PMC10311504 DOI: 10.3389/fvets.2023.1158588] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Carbapenem resistance (CR) is a major global health concern. CR is a growing challenge in clinical settings due to its rapid dissemination and low treatment options. The characterization of its molecular mechanisms and epidemiology are highly studied. Nevertheless, little is known about the spread of CR in food-producing animals, seafood, aquaculture, wildlife, their environment, or the health risks associated with CR in humans. In this review, we discuss the detection of carbapenem-resistant organisms and their mechanisms of action in pigs, cattle, poultry, seafood products, companion animals, and wildlife. We also pointed out the One Health approach as a strategy to attempt the emergency and dispersion of carbapenem-resistance in this sector and to determine the role of carbapenem-producing bacteria in animals among human public health risk. A higher occurrence of carbapenem enzymes in poultry and swine has been previously reported. Studies related to poultry have highlighted P. mirabilis, E. coli, and K. pneumoniae as NDM-5- and NDM-1-producing bacteria, which lead to carbapenem resistance. OXA-181, IMP-27, and VIM-1 have also been detected in pigs. Carbapenem resistance is rare in cattle. However, OXA- and NDM-producing bacteria, mainly E. coli and A. baumannii, are cattle's leading causes of carbapenem resistance. A high prevalence of carbapenem enzymes has been reported in wildlife and companion animals, suggesting their role in the cross-species transmission of carbapenem-resistant genes. Antibiotic-resistant organisms in aquatic environments should be considered because they may act as reservoirs for carbapenem-resistant genes. It is urgent to implement the One Health approach worldwide to make an effort to contain the dissemination of carbapenem resistance.
Collapse
Affiliation(s)
- Flor Y. Ramírez-Castillo
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, Mexico
| | - Alma L. Guerrero-Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, Mexico
| | - Francisco J. Avelar-González
- Laboratorio de Estudios Ambientales, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, Mexico
| |
Collapse
|
11
|
Grudlewska-Buda K, Bauza-Kaszewska J, Wiktorczyk-Kapischke N, Budzyńska A, Gospodarek-Komkowska E, Skowron K. Antibiotic Resistance in Selected Emerging Bacterial Foodborne Pathogens-An Issue of Concern? Antibiotics (Basel) 2023; 12:antibiotics12050880. [PMID: 37237783 DOI: 10.3390/antibiotics12050880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Antibiotic resistance (AR) and multidrug resistance (MDR) have been confirmed for all major foodborne pathogens: Campylobacter spp., Salmonella spp., Escherichia coli and Listeria monocytogenes. Of great concern to scientists and physicians are also reports of antibiotic-resistant emerging food pathogens-microorganisms that have not previously been linked to food contamination or were considered epidemiologically insignificant. Since the properties of foodborne pathogens are not always sufficiently recognized, the consequences of the infections are often not easily predictable, and the control of their activity is difficult. The bacteria most commonly identified as emerging foodborne pathogens include Aliarcobacter spp., Aeromonas spp., Cronobacter spp., Vibrio spp., Clostridioides difficile, Escherichia coli, Mycobacterium paratuberculosis, Salmonella enterica, Streptocccus suis, Campylobacter jejuni, Helicobacter pylori, Listeria monocytogenes and Yersinia enterocolitica. The results of our analysis confirm antibiotic resistance and multidrug resistance among the mentioned species. Among the antibiotics whose effectiveness is steadily declining due to expanding resistance among bacteria isolated from food are β-lactams, sulfonamides, tetracyclines and fluoroquinolones. Continuous and thorough monitoring of strains isolated from food is necessary to characterize the existing mechanisms of resistance. In our opinion, this review shows the scale of the problem of microbes related to health, which should not be underestimated.
Collapse
Affiliation(s)
- Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Justyna Bauza-Kaszewska
- Department of Microbiology and Food Technology, Bydgoszcz University of Science and Technology, 85-029 Bydgoszcz, Poland
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Anna Budzyńska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| |
Collapse
|
12
|
The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. EFSA J 2023; 21:e07867. [PMID: 36891283 PMCID: PMC9987209 DOI: 10.2903/j.efsa.2023.7867] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Antimicrobial resistance (AMR) data on zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs) and reporting countries, jointly analysed by EFSA and ECDC and presented in a yearly EU Summary Report. This report provides an overview of the main findings of the 2020-2021 harmonised AMR monitoring in Salmonella spp., Campylobacter jejuni and C. coli in humans and food-producing animals (broilers, laying hens and turkeys, fattening pigs and bovines under 1 year of age) and relevant meat thereof. For animals and meat thereof, indicator E. coli data on the occurrence of AMR and presumptive Extended spectrum β-lactamases (ESBL)-/AmpC β-lactamases (AmpC)-/carbapenemases (CP)-producers, as well as the occurrence of methicillin-resistant Staphylococcus aureus are also analysed. In 2021, MSs submitted for the first time AMR data on E. coli isolates from meat sampled at border control posts. Where available, monitoring data from humans, food-producing animals and meat thereof were combined and compared at the EU level, with emphasis on multidrug resistance, complete susceptibility and combined resistance patterns to selected and critically important antimicrobials, as well as Salmonella and E. coli isolates exhibiting ESBL-/AmpC-/carbapenemase phenotypes. Resistance was frequently found to commonly used antimicrobials in Salmonella spp. and Campylobacter isolates from humans and animals. Combined resistance to critically important antimicrobials was mainly observed at low levels except in some Salmonella serotypes and in C. coli in some countries. The reporting of a number of CP-producing E. coli isolates (harbouring bla OXA-48, bla OXA-181, and bla NDM-5 genes) in pigs, bovines and meat thereof by a limited number of MSs (4) in 2021, requests a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC- producers) showed that encouraging progress have been registered in reducing AMR in food-producing animals in several EU MSs over the last years.
Collapse
|
13
|
Caneschi A, Bardhi A, Barbarossa A, Zaghini A. The Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine, a Complex Phenomenon: A Narrative Review. Antibiotics (Basel) 2023; 12:antibiotics12030487. [PMID: 36978354 PMCID: PMC10044628 DOI: 10.3390/antibiotics12030487] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
As warned by Sir Alexander Fleming in his Nobel Prize address: “the use of antimicrobials can, and will, lead to resistance”. Antimicrobial resistance (AMR) has recently increased due to the overuse and misuse of antibiotics, and their use in animals (food-producing and companion) has also resulted in the selection and transmission of resistant bacteria. The epidemiology of resistance is complex, and factors other than the overall quantity of antibiotics consumed may influence it. Nowadays, AMR has a serious impact on society, both economically and in terms of healthcare. This narrative review aimed to provide a scenario of the state of the AMR phenomenon in veterinary medicine related to the use of antibiotics in different animal species; the impact that it can have on animals, as well as humans and the environment, was considered. Providing some particular instances, the authors tried to explain the vastness of the phenomenon of AMR in veterinary medicine due to many and diverse aspects that cannot always be controlled. The veterinarian is the main reference point here and has a high responsibility towards the human–animal–environment triad. Sharing such a burden with human medicine and cooperating together for the same purpose (fighting and containing AMR) represents an effective example of the application of the One Health approach.
Collapse
Affiliation(s)
| | - Anisa Bardhi
- Correspondence: (A.B.); (A.B.); Tel.: +39-051-2097-500 (Andrea Barbarossa)
| | - Andrea Barbarossa
- Correspondence: (A.B.); (A.B.); Tel.: +39-051-2097-500 (Andrea Barbarossa)
| | | |
Collapse
|
14
|
Carfora V, Diaconu EL, Ianzano A, Di Matteo P, Amoruso R, Dell'Aira E, Sorbara L, Bottoni F, Guarneri F, Campana L, Franco A, Alba P, Battisti A. The hazard of carbapenemase (OXA-181)-producing Escherichia coli spreading in pig and veal calf holdings in Italy in the genomics era: Risk of spill over and spill back between humans and animals. Front Microbiol 2022; 13:1016895. [PMID: 36466661 PMCID: PMC9712188 DOI: 10.3389/fmicb.2022.1016895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/10/2022] [Indexed: 08/26/2023] Open
Abstract
Carbapenemase-producing Enterobacterales (CPE) are considered a major public health issue. In the frame of the EU Harmonized AMR Monitoring program conducted in Italy in 2021, 21 epidemiological units of fattening pigs (6.98%; 95% CI 4.37-10.47%; 21/301) and four epidemiological units of bovines <12 months (1.29%; 95% CI 0.35-3.27%, 4/310) resulted positive to OXA-48-like-producing E. coli (n = 24 OXA-181, n = 1 OXA-48). Whole Genome Sequencing (WGS) for in-depth characterization, genomics and cluster analysis of OXA-181-(and one OXA-48) producing E. coli isolated, was performed. Tracing-back activities at: (a) the fattening holding of origin of one positive slaughter batch, (b) the breeding holding, and (c) one epidemiologically related dairy cattle holding, allowed detection of OXA-48-like-producing E. coli in different units and comparison of further human isolates from fecal samples of farm workers. The OXA-181-producing isolates were multidrug resistant (MDR), belonged to different Sequence Types (STs), harbored the IncX and IncF plasmid replicons and multiple virulence genes. Bioinformatics analysis of combined Oxford Nanopore Technologies (ONT) long reads and Illumina short reads identified bla OXA-181 as part of a transposon in IncX1, IncX3, and IncFII fully resolved plasmids from 16 selected E. coli, mostly belonging to ST5229, isolated during the survey at slaughter and tracing-back activities. Although human source could be the most likely cause for the introduction of the bla OXA-181-carrying IncX1 plasmid in the breeding holding, concerns arise from carbapenemase OXA-48-like-producing E. coli spreading in 2021 in Italian fattening pigs and, to a lesser extent, in veal calf holdings.
Collapse
Affiliation(s)
- Virginia Carfora
- Department of General Diagnostics, National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, Rome, Italy
| | - Elena Lavinia Diaconu
- Department of General Diagnostics, National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, Rome, Italy
| | - Angela Ianzano
- Department of General Diagnostics, National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, Rome, Italy
| | - Paola Di Matteo
- Department of General Diagnostics, National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, Rome, Italy
| | - Roberta Amoruso
- Department of General Diagnostics, National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, Rome, Italy
| | - Elena Dell'Aira
- Department of General Diagnostics, National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, Rome, Italy
| | - Luigi Sorbara
- Department of General Diagnostics, National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, Rome, Italy
| | - Francesco Bottoni
- Department of General Diagnostics, National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, Rome, Italy
| | - Flavia Guarneri
- Sede Territoriale di Brescia, Laboratorio Diagnostica Generale, Istituto Zooprofilattico Sperimentale Della Lombardia e Dell’Emilia-Romagna “Bruno Ubertini”, Brescia, Italy
| | | | - Alessia Franco
- Department of General Diagnostics, National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, Rome, Italy
| | - Patricia Alba
- Department of General Diagnostics, National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, Rome, Italy
| | - Antonio Battisti
- Department of General Diagnostics, National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e Della Toscana “M. Aleandri”, Rome, Italy
| |
Collapse
|
15
|
Ge H, Qiao J, Xu H, Liu R, Chen R, Li C, Hu X, Zhou J, Guo X, Zheng B. First report of Klebsiella pneumoniae co-producing OXA-181, CTX-M-55, and MCR-8 isolated from the patient with bacteremia. Front Microbiol 2022; 13:1020500. [PMID: 36312943 PMCID: PMC9614159 DOI: 10.3389/fmicb.2022.1020500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
The worldwide spread of carbapenem-resistant Enterobacteriaceae (CRE) has led to a major challenge to human health. In this case, colistin is often used to treat the infection caused by CRE. However, the coexistence of genes conferring resistance to carbapenem and colistin is of great concern. In this work, we reported the coexistence of blaOXA-181, blaCTX-M-55, and mcr-8 in an ST273 Klebsiella pneumoniae isolate for the first time. The species identification was performed using MALDI-TOF MS, and the presence of various antimicrobial resistance genes (ARGs) and virulence genes were detected by PCR and whole-genome sequencing. Antimicrobial susceptibility testing showed that K. pneumoniae 5589 was resistant to aztreonam, imipenem, meropenem, ceftriaxone, cefotaxime, ceftazidime, levofloxacin, ciprofloxacin, gentamicin, piperacillin-tazobactam, cefepime, and polymyxin B, but sensitive to amikacin. S1-pulsed-field gel electrophoresis (PFGE) and Southern blotting revealed the mcr-8 gene was carried on a ~ 138 kb plasmid with a conserved structure (IS903B-ymoA-inhA-mcr-8-copR-baeS-dgkA-ampC). In addition, blaOXA-181 was found on another ~51 kb plasmid with a composite transposon flanked by insertion sequence IS26. The in vitro conjugation experiments and plasmid sequence probe indicated that the plasmid p5589-OXA-181 and the p5589-mcr-8 were conjugative, which may contribute to the propagation of ARGs. Relevant detection and investigation measures should be taken to control the prevalence of pathogens coharboring blaOXA-181, blaCTX-M-55 and mcr-8.
Collapse
Affiliation(s)
- Haoyu Ge
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Qiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ruyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenyu Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinjun Hu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Jiawei Zhou
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Xiaobing Guo,
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Research Units of Infectious Diseases and Microecology, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Beiwen Zheng,
| |
Collapse
|
16
|
Genetic Diversity of Escherichia coli Coharboring mcr-1 and Extended Spectrum Beta-Lactamases from Poultry. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8224883. [PMID: 36246985 PMCID: PMC9556198 DOI: 10.1155/2022/8224883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022]
Abstract
Background. The emergence of resistance to beta-lactam agents in poultry results in multidrug-resistant (MDR) phenotypes in Escherichia coli isolates from poultry birds. The appearance of mobile colistin resistance (mcr) genes in the poultry sector has further worsened the situation. Therefore, the current study is aimed at investigating the molecular epidemiology of mcr harboring colistin-resistant E. coli among poultry. Methods. The isolation and identification of colistin-resistant E. coli (CR-Ec) were done from the broiler’s fecal samples through culturing using selective media supplemented with colistin sulfate (4 μg/ml). The antibiogram studies of the isolates were performed using the disc diffusion method and broth microdilution method as per CLSI guidelines. The screening for the genes conferring resistance to colistin as well as beta-lactam agents was performed by PCR. The genetic diversity of mcr-positive strains was assessed by multilocus sequencing typing (MLST). Results. Out of 500 fecal samples, 7% (35/500) were found positive for the presence of colistin-resistant E. coli (CR-Ec). Among the CR-Ec isolates, 74.28% (26/35) were detected as ESBL producers carrying the blaCTX-M-1 gene in 15/35 (42.85%) isolates and blaCTX-M-15 and blaTEM genes in 21/35 (60%) and 35/35 (100%) isolates, respectively. E. coli isolates were found positive for the presence of mcr-1, although none of the isolates exhibited the mcr-2 or mcr-3 genes. The MLST of CR-Ec has shown the ST1035 as the most prevalent genotype, while 82.85% (29/35) of CR-Ec strains belonged to clonal complex (CC) 131 comprising ST1035, ST131, ST1215, ST1650, and ST2279. Conclusions. The findings suggest a continuous monitoring system in veterinary and clinical settings to avoid unnecessary antibiotics. Further studies are needed at the national level to help control the increasing resistance among Enterobacterales in poultry settings.
Collapse
|
17
|
Antibiotic Resistance in Bacteria—A Review. Antibiotics (Basel) 2022; 11:antibiotics11081079. [PMID: 36009947 PMCID: PMC9404765 DOI: 10.3390/antibiotics11081079] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 12/03/2022] Open
Abstract
Background: A global problem of multi-drug resistance (MDR) among bacteria is the cause of hundreds of thousands of deaths every year. In response to the significant increase of MDR bacteria, legislative measures have widely been taken to limit or eliminate the use of antibiotics, including in the form of feed additives for livestock, but also in metaphylaxis and its treatment, which was the subject of EU Regulation in 2019/6. Numerous studies have documented that bacteria use both phenotypis and gentic strategies enabling a natural defence against antibiotics and the induction of mechanisms in increasing resistance to the used antibacterial chemicals. The mechanisms presented in this review developed by the bacteria have a significant impact on reducing the ability to combat bacterial infections in humans and animals. Moreover, the high prevalence of multi-resistant strains in the environment and the ease of transmission of drug-resistance genes between the different bacterial species including commensal flora and pathogenic like foodborne pathogens (E. coli, Campylobacter spp., Enterococcus spp., Salmonella spp., Listeria spp., Staphylococcus spp.) favor the rapid spread of multi-resistance among bacteria in humans and animals. Given the global threat posed by the widespread phenomenon of multi-drug resistance among bacteria which are dangerous for humans and animals, the subject of this study is the presentation of the mechanisms of resistance in most frequent bacteria called as “foodborne pathoges” isolated from human and animals. In order to present the significance of the global problem related to multi-drug resistance among selected pathogens, especially those danger to humans, the publication also presents statistical data on the percentage range of occurrence of drug resistance among selected bacteria in various regions of the world. In addition to the phenotypic characteristics of pathogen resistance, this review also presents detailed information on the detection of drug resistance genes for specific groups of antibiotics. It should be emphasized that the manuscript also presents the results of own research i.e., Campylobacter spp., E. coli or Enetrococcus spp. This subject and the presentation of data on the risks of drug resistance among bacteria will contribute to initiating research in implementing the prevention of drug resistance and the development of alternatives for antimicrobials methods of controlling bacteria.
Collapse
|
18
|
Rybak B, Potrykus M, Plenis A, Wolska L. Raw Meat Contaminated with Cephalosporin-Resistant Enterobacterales as a Potential Source of Human Home Exposure to Multidrug-Resistant Bacteria. Molecules 2022; 27:molecules27134151. [PMID: 35807396 PMCID: PMC9267975 DOI: 10.3390/molecules27134151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
The prevalence of cephalosporine-resistant (3GC-R) strains among United States community-related research samples ranged from 5.6 to 10.8%, while, in the European countries, it was 1.2% to 10.1%. Several studies suggest that meat of animal origin could be one of the reservoirs of 3GC-R bacteria. Here, 86 raw meat samples (turkey, pork, chicken and beef) were collected randomly and verified for the presence of 3GC-R bacteria. The 3GC-R bacteria were isolated, identified and characterized phenotypically (antibiotic resistance, motility and biofilm) and genotypically (repetitive-sequence-based rep-PCR) to elucidate any correlations with principal component analysis (PCA). From 28 3GC-R positive samples, 41 strains were isolated, from which the majority belonged to Serratia fonticola (39%), followed by Escherichia coli (19.5%), Enterobacter cloacae (17.1%) and Klebsiella pneumoniae (14.6%). The isolates of E. coli and S. fonticola presented diverse profiles in rep-PCR. Generally, 3GC-R strains were more resistant to antibiotics used in veterinary medicine than in human medicine. PCA derived from antibiotic resistance, motility and biofilm formation of S. fonticola and E. coli strains showed that resistance to beta-lactams was separated from the resistance to other antibiotic classes. Moreover, for the S. fonticola, E. coli and En. cloacae, the type of meat can create a specific tendency towards antibiotic resistance and phenotypic characteristics for S. fonticola, while these relationships were not found for other tested species.
Collapse
Affiliation(s)
- Bartosz Rybak
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204 Gdansk, Poland; (B.R.); (M.P.); (L.W.)
| | - Marta Potrykus
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204 Gdansk, Poland; (B.R.); (M.P.); (L.W.)
| | - Alina Plenis
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Hallera Str. 107, 80-416 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-349-10-96
| | - Lidia Wolska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204 Gdansk, Poland; (B.R.); (M.P.); (L.W.)
| |
Collapse
|
19
|
Bonardi S, Cabassi CS, Manfreda G, Parisi A, Fiaccadori E, Sabatino A, Cavirani S, Bacci C, Rega M, Spadini C, Iannarelli M, Crippa C, Ruocco F, Pasquali F. Survey on Carbapenem-Resistant Bacteria in Pigs at Slaughter and Comparison with Human Clinical Isolates in Italy. Antibiotics (Basel) 2022; 11:777. [PMID: 35740183 PMCID: PMC9219774 DOI: 10.3390/antibiotics11060777] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
This study is focused on resistance to carbapenems and third-generation cephalosporins in Gram-negative microorganisms isolated from swine, whose transmission to humans via pork consumption cannot be excluded. In addition, the common carriage of carbapenem-resistant (CR) bacteria between humans and pigs was evaluated. Sampling involved 300 faecal samples collected from slaughtered pigs and 300 urine samples collected from 187 hospitalised patients in Parma Province (Italy). In swine, MIC testing confirmed resistance to meropenem for isolates of Pseudomonas aeruginosa and Pseudomonas oryzihabitans and resistance to cefotaxime and ceftazidime for Escherichia coli, Ewingella americana, Enterobacter agglomerans, and Citrobacter freundii. For Acinetobacter lwoffii, Aeromonas hydrofila, Burkolderia cepacia, Corynebacterium indologenes, Flavobacterium odoratum, and Stenotrophomonas maltophilia, no EUCAST MIC breakpoints were available. However, ESBL genes (blaCTXM-1, blaCTX-M-2, blaTEM-1, and blaSHV) and AmpC genes (blaCIT, blaACC, and blaEBC) were found in 38 and 16 isolates, respectively. P. aeruginosa was the only CR species shared by pigs (4/300 pigs; 1.3%) and patients (2/187; 1.1%). P. aeruginosa ST938 carrying blaPAO and blaOXA396 was detected in one pig as well as an 83-year-old patient. Although no direct epidemiological link was demonstrable, SNP calling and cgMLST showed a genetic relationship of the isolates (86 SNPs and 661 allele difference), thus suggesting possible circulation of CR bacteria between swine and humans.
Collapse
Affiliation(s)
- Silvia Bonardi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Clotilde Silvia Cabassi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Gerardo Manfreda
- Food Safety Unit, Department of Agricultural and Food Sciences Alma Mater Studiorum, University of Bologna, 40064 Ozzano dell’Emilia, Italy; (G.M.); (C.C.); (F.P.)
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 70017 Putignano, Italy;
| | - Enrico Fiaccadori
- Nephrology Unit, Parma University-Hospital, Department of Medicine and Surgery, Parma University, 43126 Parma, Italy; (E.F.); (A.S.)
| | - Alice Sabatino
- Nephrology Unit, Parma University-Hospital, Department of Medicine and Surgery, Parma University, 43126 Parma, Italy; (E.F.); (A.S.)
| | - Sandro Cavirani
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Cristina Bacci
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Martina Rega
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Costanza Spadini
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Mattia Iannarelli
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Cecilia Crippa
- Food Safety Unit, Department of Agricultural and Food Sciences Alma Mater Studiorum, University of Bologna, 40064 Ozzano dell’Emilia, Italy; (G.M.); (C.C.); (F.P.)
| | | | - Frédérique Pasquali
- Food Safety Unit, Department of Agricultural and Food Sciences Alma Mater Studiorum, University of Bologna, 40064 Ozzano dell’Emilia, Italy; (G.M.); (C.C.); (F.P.)
| |
Collapse
|
20
|
Hayer SS, Casanova-Higes A, Paladino E, Elnekave E, Nault A, Johnson T, Bender J, Perez A, Alvarez J. Global Distribution of Extended Spectrum Cephalosporin and Carbapenem Resistance and Associated Resistance Markers in Escherichia coli of Swine Origin - A Systematic Review and Meta-Analysis. Front Microbiol 2022; 13:853810. [PMID: 35620091 PMCID: PMC9127762 DOI: 10.3389/fmicb.2022.853810] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Third generation cephalosporins and carbapenems are considered critically important antimicrobials in human medicine. Food animals such as swine can act as reservoirs of antimicrobial resistance (AMR) genes/bacteria resistant to these antimicrobial classes, and potential dissemination of AMR genes or resistant bacteria from pigs to humans is an ongoing public health threat. The objectives of this systematic review and meta-analysis were to: (1) estimate global proportion and animal-level prevalence of swine E. coli phenotypically resistant to third generation cephalosporins (3GCs) and carbapenems at a country level; and (2) measure abundances and global distribution of the genetic mechanisms that confer resistance to these antimicrobial classes in these E. coli isolates. Articles from four databases (CAB Abstracts, PubMed/MEDLINE, PubAg, and Web of Science) were screened to extract relevant data. Overall, proportion of E. coli resistant to 3GCs was lower in Australia, Europe, and North America compared to Asian countries. Globally, <5% of all E. coli were carbapenem-resistant. Fecal carriage rates (animal-level prevalence) were consistently manifold higher as compared to pooled proportion of resistance in E. coli isolates. blaCTX–M were the most common 3GC resistance genes globally, with the exception of North America where blaCMY were the predominant 3GC resistance genes. There was not a single dominant blaCTX–M gene subtype globally and several blaCTX–M subtypes were dominant depending on the continent. A wide variety of carbapenem-resistance genes (blaNDM–, VIM–, IMP–, OXA–48, andKPC–) were identified to be circulating in pig populations globally, albeit at very-low frequencies. However, great statistical heterogeneity and a critical lack of metadata hinders the true estimation of prevalence of phenotypic and genotypic resistance to these antimicrobials. Comparatively frequent occurrence of 3GC resistance and emergence of carbapenem resistance in certain countries underline the urgent need for improved AMR surveillance in swine production systems in these countries.
Collapse
Affiliation(s)
- Shivdeep Singh Hayer
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, United States.,Department of Biology, College of Arts and Sciences, University of Nebraska Omaha, Omaha, NE, United States
| | - Alejandro Casanova-Higes
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Eliana Paladino
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, United States
| | - Ehud Elnekave
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Andre Nault
- Health Sciences Library, University of Minnesota-Twin Cities, Minneapolis, MN, United States
| | - Timothy Johnson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, United States
| | - Jeff Bender
- School of Public Health, University of Minnesota-Twin Cities, Minneapolis, MN, United States
| | - Andres Perez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, United States
| | - Julio Alvarez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, United States.,VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain.,Department of Animal Health, Facultad de Veterinaria, Universidad Complutense Madrid, Madrid, Spain
| |
Collapse
|
21
|
Effect of Intramuscularly Administered Oxytetracycline or Enrofloxacin on Vancomycin-Resistant Enterococci, Extended Spectrum Beta-Lactamase- and Carbapenemase-Producing Enterobacteriaceae in Pigs. Animals (Basel) 2022; 12:ani12050622. [PMID: 35268191 PMCID: PMC8909026 DOI: 10.3390/ani12050622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Nowadays, there is great concern about the prevalence of multidrug resistant bacteria in food-producing animals since they are potential sources of transmission to humans. The aim of this work was to evaluate the effect of two antibiotics (oxytetracycline and enrofloxacin) treatments in pigs on resistant bacteria that are considered a threat to public health. This study highlights that the use of oxytetracycline or enrofloxacin in food-producing animals could select resistant bacteria in pig faeces. Special care should be taken to avoid faecal contamination of carcasses during slaughter. Abstract Nowadays, there is a great concern about the prevalence of multidrug resistant Enterococcus spp. and Enterobacteriaceae in food-producing animals. The aim of this work was to evaluate the effect of oxytetracycline or enrofloxacin treatment on vancomycin-resistant enterococci (VRE), extended spectrum β-lactamase (ESBL) and carbapenemase-producing Enterobacteriaceae in pigs. A total of 26 piglets were received and distributed in three groups. Group 1 was treated with enrofloxacin (N = 12), group 2 with oxytetracycline (N = 10) and group 3 did not receive any treatment (control group) (N = 4). A higher number of vancomycin-resistant E. faecium were recovered compared to E. faecalis. In the pigs treated with enrofloxacin, vancomycin resistant E. faecium was found in a higher percentage of animals than in the control group. ESBL-producing E. coli was not detected in rectal samples from control animals. However, it was detected in 17–20% of animals treated with oxytetracycline on days 6 to 17 and in 17–50% of the animals treated with enrofloxacin. Carbapenemase-producing E. coli was isolated in animals treated with oxytetracycline, but not in animals treated with enrofloxacin or in the control group. This study highlights that the use of oxytetracycline or enrofloxacin in food-producing animals could select ESBL and carbapenemase-producing E. coli. Further studies shall be needed to validate the results obtained, considering a more robust and extended experimental design.
Collapse
|
22
|
Peng Z, Maciel-Guerra A, Baker M, Zhang X, Hu Y, Wang W, Rong J, Zhang J, Xue N, Barrow P, Renney D, Stekel D, Williams P, Liu L, Chen J, Li F, Dottorini T. Whole-genome sequencing and gene sharing network analysis powered by machine learning identifies antibiotic resistance sharing between animals, humans and environment in livestock farming. PLoS Comput Biol 2022; 18:e1010018. [PMID: 35333870 PMCID: PMC8986120 DOI: 10.1371/journal.pcbi.1010018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/06/2022] [Accepted: 03/14/2022] [Indexed: 01/26/2023] Open
Abstract
Anthropogenic environments such as those created by intensive farming of livestock, have been proposed to provide ideal selection pressure for the emergence of antimicrobial-resistant Escherichia coli bacteria and antimicrobial resistance genes (ARGs) and spread to humans. Here, we performed a longitudinal study in a large-scale commercial poultry farm in China, collecting E. coli isolates from both farm and slaughterhouse; targeting animals, carcasses, workers and their households and environment. By using whole-genome phylogenetic analysis and network analysis based on single nucleotide polymorphisms (SNPs), we found highly interrelated non-pathogenic and pathogenic E. coli strains with phylogenetic intermixing, and a high prevalence of shared multidrug resistance profiles amongst livestock, human and environment. Through an original data processing pipeline which combines omics, machine learning, gene sharing network and mobile genetic elements analysis, we investigated the resistance to 26 different antimicrobials and identified 361 genes associated to antimicrobial resistance (AMR) phenotypes; 58 of these were known AMR-associated genes and 35 were associated to multidrug resistance. We uncovered an extensive network of genes, correlated to AMR phenotypes, shared among livestock, humans, farm and slaughterhouse environments. We also found several human, livestock and environmental isolates sharing closely related mobile genetic elements carrying ARGs across host species and environments. In a scenario where no consensus exists on how antibiotic use in the livestock may affect antibiotic resistance in the human population, our findings provide novel insights into the broader epidemiology of antimicrobial resistance in livestock farming. Moreover, our original data analysis method has the potential to uncover AMR transmission pathways when applied to the study of other pathogens active in other anthropogenic environments characterised by complex interconnections between host species. Livestock have been suggested as an important source of antimicrobial-resistant (AMR) Escherichia coli, capable of infecting humans and carrying resistance to drugs used in human medicine. China has a large intensive livestock farming industry, poultry being the second most important source of meat in the country, and is the largest user of antibiotics for food production in the world. Here we studied antimicrobial resistance gene overlap between E. coli isolates collected from humans, livestock and their shared environments in a large-scale Chinese poultry farm and associated slaughterhouse. By using a computational approach that integrates machine learning, whole-genome sequencing, gene sharing network and mobile genetic elements analysis we characterized the E. coli community structure, antimicrobial resistance phenotypes and the genetic relatedness of non-pathogenic and pathogenic E. coli strains. We uncovered the network of genes, associated with AMR, shared across host species (animals and workers) and environments (farm and slaughterhouse). Our approach opens up new avenues for the development of a fast, affordable and effective computational solutions that provide novel insights into the broader epidemiology of antimicrobial resistance in livestock farming.
Collapse
Affiliation(s)
- Zixin Peng
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, People’s Republic of China
| | - Alexandre Maciel-Guerra
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Michelle Baker
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Xibin Zhang
- Qingdao Tian run Food Co., Ltd, New Hope, Beijing, People’s Republic of China
| | - Yue Hu
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Wei Wang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, People’s Republic of China
| | - Jia Rong
- Qingdao Tian run Food Co., Ltd, New Hope, Beijing, People’s Republic of China
| | - Jing Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, People’s Republic of China
| | - Ning Xue
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Paul Barrow
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | - David Renney
- Nimrod Veterinary Products Limited, Moreton-in-Marsh, United Kingdom
| | - Dov Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Paul Williams
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Longhai Liu
- Qingdao Tian run Food Co., Ltd, New Hope, Beijing, People’s Republic of China
| | - Junshi Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, People’s Republic of China
| | - Fengqin Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, People’s Republic of China
- * E-mail: (FL); (TD)
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
- * E-mail: (FL); (TD)
| |
Collapse
|
23
|
Dankittipong N, Fischer EAJ, Swanenburg M, Wagenaar JA, Stegeman AJ, de Vos CJ. Quantitative Risk Assessment for the Introduction of Carbapenem-Resistant Enterobacteriaceae (CPE) into Dutch Livestock Farms. Antibiotics (Basel) 2022; 11:281. [PMID: 35203883 PMCID: PMC8868399 DOI: 10.3390/antibiotics11020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/10/2022] Open
Abstract
Early detection of emerging carbapenem-resistant Enterobacteriaceae (CPE) in food-producing animals is essential to control the spread of CPE. We assessed the risk of CPE introduction from imported livestock, livestock feed, companion animals, hospital patients, and returning travelers into livestock farms in The Netherlands, including (1) broiler, (2) broiler breeder, (3) fattening pig, (4) breeding pig, (5) farrow-to-finish pig, and (6) veal calf farms. The expected annual number of introductions was calculated from the number of farms exposed to each CPE source and the probability that at least one animal in an exposed farm is colonized. The total number of farms with CPE colonization was estimated to be the highest for fattening pig farms, whereas the probability of introduction for an individual farm was the highest for broiler farms. Livestock feed and imported livestock are the most likely sources of CPE introduction into Dutch livestock farms. Sensitivity analysis indicated that the number of fattening pig farms determined the number of high introductions in fattening pigs from feed, and that uncertainty on CPE prevalence impacted the absolute risk estimate for all farm types. The results of this study can be used to inform risk-based surveillance for CPE in livestock farms.
Collapse
Affiliation(s)
- Natcha Dankittipong
- Department Population Health Sciences, Farm Animal Health, Utrecht University, Martinus G. de Bruingebouw, Yalelaan 7, 3584 CL Utrecht, The Netherlands; (E.A.J.F.); (A.J.S.)
| | - Egil A. J. Fischer
- Department Population Health Sciences, Farm Animal Health, Utrecht University, Martinus G. de Bruingebouw, Yalelaan 7, 3584 CL Utrecht, The Netherlands; (E.A.J.F.); (A.J.S.)
| | - Manon Swanenburg
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands; (M.S.); (C.J.d.V.)
| | - Jaap A. Wagenaar
- Department Biomolecular Health Science, Infectious Diseases & Immunology, Utrecht University, Androclusgebouw, Yalelaan 1, 3584 CL Utrecht, The Netherlands;
| | - Arjan J. Stegeman
- Department Population Health Sciences, Farm Animal Health, Utrecht University, Martinus G. de Bruingebouw, Yalelaan 7, 3584 CL Utrecht, The Netherlands; (E.A.J.F.); (A.J.S.)
| | - Clazien J. de Vos
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands; (M.S.); (C.J.d.V.)
| |
Collapse
|
24
|
Ramaloko WT, Osei Sekyere J. Phylogenomics, Epigenomics, Virulome, and Mobilome of Gram-negative Bacteria Co-resistant to Carbapenems and Polymyxins: A One-Health Systematic Review and Meta-analyses. Environ Microbiol 2022; 24:1518-1542. [PMID: 35129271 DOI: 10.1111/1462-2920.15930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 01/30/2022] [Indexed: 11/29/2022]
Abstract
Gram-negative bacteria (GNB) continue to develop resistance against important antibiotics including last-resort ones such as carbapenems and polymyxins. An analysis of GNB with co-resistance to carbapenems and polymyxins from a One Health perspective is presented. Data of species name, country, source of isolation, resistance genes (ARGs), plasmid type, clones, and mobile genetic elements (MGEs) were deduced from 129 articles from January 2016 to March 2021. Available genomes and plasmids were obtained from PATRIC and NCBI. Resistomes and methylomes were analysed using BAcWGSTdb and REBASE whilst Kaptive was used to predict capsule typing. Plasmids and other MEGs were identified using MGE Finder and ResFinder. Phylogenetic analyses were done using RAxML and annotated with MEGA 7. A total of 877 isolates, 32 genomes and 44 plasmid sequences were analysed. Most of these isolates were reported in Asian countries and were isolated from clinical, animal, and environmental sources. Colistin resistance was mostly mediated by mgrB inactivation (37%; n = 322) and mcr-1 (36%; n = 312), while OXA-48/181 was the most reported carbapenemase. IncX and IncI were the most common plasmids hosting carbapenemases and mcr genes. The isolates were co-resistant to other antibiotics, with floR (chloramphenicol) and fosA3 (fosfomycin) being common; E. coli ST156 and K. pneumoniae ST258 strains were common globally. Virulence genes and capsular KL-types were also detected. Type I, II, III and IV restriction modification systems were detected, comprising various MTases and restriction enzymes. The escalation of highly resistant isolates drains the economy due to untreatable bacterial infections, which leads to increasing global mortality rates and healthcare costs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Winnie Thabisa Ramaloko
- Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, South Africa
| |
Collapse
|
25
|
Prendergast DM, O'Doherty Á, Burgess CM, Howe N, McMahon F, Murphy D, Leonard F, Morris D, Harrington C, Carty A, Moriarty J, Gutierrez M. Critically important antimicrobial resistant Enterobacteriaceae in Irish farm effluent and their removal in integrated constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151269. [PMID: 34710415 DOI: 10.1016/j.scitotenv.2021.151269] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the ability of Integrated Constructed Wetlands (ICWs) to remove critically important antimicrobial resistant organisms (AROs) from farm wastewater. Influent samples from the untreated farm waste and effluent samples taken at the end of the ICW system were collected monthly from four ICWs, serving four different farm types (suckler, dairy, dairy & poultry and pig). Using selective media to screen for the presence of carbapenemase resistant organisms, plasmid mediated and AmpC β-Lactamase producing organisms (ESBL/pAmpC) and fluoroquinolone resistant organisms, a total of 82 AROs were obtained with the majority being E. coli (n = 79). Statistically significant were the differences on the number of AROs isolated from influent (higher) compared to effluent, as well as a seasonal effect, with less AROs recovered during winter in comparison to other seasons (P < 0.05). On the other hand, there was no significant differences in the recovery of AROs on different farms. The majority of isolates from each of the farms (99%) were multi drug resistant, with 65% resistant to seven or more antimicrobials. A high incidence of tetracycline, trimethoprim/sulfamethoxazole, and ampicillin resistance was common to the isolates from all four farms but there were differences in ESBL levels with 63% of the isolates recovered from Farm 4 (piggery) being ESBLs compared to 18%, 36% and 4.5% recovered from Farms 1 (suckler), 2 (dairy) and 3 (dairy & poultry), respectively. No carbapenemase producing organisms were isolated. Our results showed that ICWs are effective in removing critically important AROs from farm wastewater on all four farm types.
Collapse
Affiliation(s)
- Deirdre M Prendergast
- Department of Agriculture, Food and the Marine, Backweston Complex, Celbridge, Co. Kildare, Ireland.
| | - Áine O'Doherty
- Department of Agriculture, Food and the Marine, Backweston Complex, Celbridge, Co. Kildare, Ireland
| | | | - Nicole Howe
- Department of Agriculture, Food and the Marine, Backweston Complex, Celbridge, Co. Kildare, Ireland
| | - Frederick McMahon
- Department of Agriculture, Food and the Marine, Backweston Complex, Celbridge, Co. Kildare, Ireland
| | - Declan Murphy
- Department of Agriculture, Food and the Marine, Backweston Complex, Celbridge, Co. Kildare, Ireland
| | - Finola Leonard
- School of Veterinary Medicine, Veterinary Science Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, NUI Galway, Ireland
| | | | - Aila Carty
- VESI Environmental Ltd., Little Island, Cork, Ireland
| | - John Moriarty
- Department of Agriculture, Food and the Marine, Backweston Complex, Celbridge, Co. Kildare, Ireland
| | - Montserrat Gutierrez
- Department of Agriculture, Food and the Marine, Backweston Complex, Celbridge, Co. Kildare, Ireland
| |
Collapse
|
26
|
Majewski P, Gutowska A, Smith DGE, Hauschild T, Majewska P, Hryszko T, Gizycka D, Kedra B, Kochanowicz J, Glowiński J, Drewnowska J, Swiecicka I, Sacha PT, Wieczorek P, Iwaniuk D, Sulewska A, Charkiewicz R, Makarewicz K, Zebrowska A, Czaban S, Radziwon P, Niklinski J, Tryniszewska EA. Plasmid Mediated mcr-1.1 Colistin-Resistance in Clinical Extraintestinal Escherichia coli Strains Isolated in Poland. Front Microbiol 2021; 12:547020. [PMID: 34956105 PMCID: PMC8703133 DOI: 10.3389/fmicb.2021.547020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/02/2021] [Indexed: 01/27/2023] Open
Abstract
Objectives: The growing incidence of multidrug-resistant (MDR) bacteria is an inexorable and fatal challenge in modern medicine. Colistin is a cationic polypeptide considered a “last-resort” antimicrobial for treating infections caused by MDR Gram-negative bacterial pathogens. Plasmid-borne mcr colistin resistance emerged recently, and could potentially lead to essentially untreatable infections, particularly in hospital and veterinary (livestock farming) settings. In this study, we sought to establish the molecular basis of colistin-resistance in six extraintestinal Escherichia coli strains. Methods: Molecular investigation of colistin-resistance was performed in six extraintestinal E. coli strains isolated from patients hospitalized in Medical University Hospital, Bialystok, Poland. Complete structures of bacterial chromosomes and plasmids were recovered with use of both short- and long-read sequencing technologies and Unicycler hybrid assembly. Moreover, an electrotransformation assay was performed in order to confirm IncX4 plasmid influence on colistin-resistance phenotype in clinical E. coli strains. Results: Here we report on the emergence of six mcr-1.1-producing extraintestinal E. coli isolates with a number of virulence factors. Mobile pEtN transferase-encoding gene, mcr-1.1, has been proved to be encoded within a type IV secretion system (T4SS)-containing 33.3 kbp IncX4 plasmid pMUB-MCR, next to the PAP2-like membrane-associated lipid phosphatase gene. Conclusion: IncX4 mcr-containing plasmids are reported as increasingly disseminated among E. coli isolates, making it an “epidemic” plasmid, responsible for (i) dissemination of colistin-resistance determinants between different E. coli clones, and (ii) circulation between environmental, industrial, and clinical settings. Great effort needs to be taken to avoid further dissemination of plasmid-mediated colistin resistance among clinically relevant Gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Piotr Majewski
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Białystok, Poland
| | - Anna Gutowska
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Białystok, Poland
| | - David G E Smith
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Tomasz Hauschild
- Department of Microbiology, Institute of Biology, University of Białystok, Białystok, Poland
| | | | - Tomasz Hryszko
- Second Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Białystok, Białystok, Poland
| | - Dominika Gizycka
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Białystok, Poland
| | - Boguslaw Kedra
- Second Department of General and Gastroenterological Surgery, Medical University of Białystok, Białystok, Poland
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Białystok, Białystok, Poland
| | - Jerzy Glowiński
- Department of Vascular Surgery and Transplantation, Medical University of Białystok, Białystok, Poland
| | - Justyna Drewnowska
- Department of Microbiology, Institute of Biology, University of Białystok, Białystok, Poland
| | - Izabela Swiecicka
- Department of Microbiology, Institute of Biology, University of Białystok, Białystok, Poland
| | - Pawel T Sacha
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Białystok, Poland
| | - Piotr Wieczorek
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Białystok, Poland
| | - Dominika Iwaniuk
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Białystok, Poland
| | - Anetta Sulewska
- Department of Clinical Molecular Biology, Medical University of Białystok, Białystok, Poland
| | - Radoslaw Charkiewicz
- Department of Clinical Molecular Biology, Medical University of Białystok, Białystok, Poland
| | | | | | - Slawomir Czaban
- Department of Anesthesiology and Intensive Care, Medical University of Białystok, Białystok, Poland
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, Białystok, Poland.,Department of Hematology, Medical University of Białystok, Białystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Białystok, Białystok, Poland
| | - Elzbieta A Tryniszewska
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
27
|
Canton L, Lanusse C, Moreno L. Rational Pharmacotherapy in Infectious Diseases: Issues Related to Drug Residues in Edible Animal Tissues. Animals (Basel) 2021; 11:2878. [PMID: 34679899 PMCID: PMC8532868 DOI: 10.3390/ani11102878] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
Drugs are used in veterinary medicine to prevent or treat animal diseases. When rationally administered to livestock following Good Veterinary Practices (GVP), they greatly contribute to improving the production of food of animal origin. Since humans can be exposed chronically to veterinary drugs through the diet, residues in food are evaluated for effects following chronic exposures. Parameters such as an acceptable daily intake (ADI), the no-observed-adverse-effect level (NOAEL), maximum residue limits (MRLs), and the withdrawal periods (WPs) are determined for each drug used in livestock. Drug residues in food exceeding the MRLs usually appear when failing the GVP application. Different factors related either to the treated animal or to the type of drug administration, and even the type of cooking can affect the level of residues in edible tissues. Residues above the MRLs can have a diverse negative impact, mainly on the consumer's health, and favor antimicrobial resistance (AMR). Drug residue monitoring programmes are crucial to ensure that prohibited or authorized substances do not exceed MRLs. This comprehensive review article addresses different aspects of drug residues in edible tissues produced as food for human consumption and provides relevant information contributing to rational pharmacotherapy in food-producing animals.
Collapse
Affiliation(s)
| | | | - Laura Moreno
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBACONICET, Facultad de Ciencias Veterinarias, Tandil CP7000, Argentina; (L.C.); (C.L.)
| |
Collapse
|
28
|
Köck R, Herr C, Kreienbrock L, Schwarz S, Tenhagen BA, Walther B. Multiresistant Gram-Negative Pathogens—A Zoonotic Problem. DEUTSCHES ARZTEBLATT INTERNATIONAL 2021; 118:579-589. [PMID: 33814041 DOI: 10.3238/arztebl.m2021.0184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 11/25/2020] [Accepted: 03/07/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Extended-spectrum-β-lactamase-producing, carbapenemase-producing, and colistin-resistant Enterobacteriaceae (ESBL-E, CPE, and Col-E) are multiresistant pathogens that are increasingly being encountered in both human and veterinary medicine. In this review, we discuss the frequency, sources, and significance of the zoonotic transmission of these pathogens between animals and human beings. METHODS This review is based on pertinent publications retrieved by a selective literature search. Findings for Germany are presented in the global context. RESULTS ESBL-E are common in Germany in both animals and human beings, with a 6-10% colonization rate in the general human population. A major source of ESBL-E is human-tohuman transmission, partly through travel. Some colonizations are of zoonotic origin (i.e., brought about by contact with animals or animal-derived food products); in the Netherlands, more than 20% of cases are thought to be of this type. CPE infections, on the other hand, are rare in Germany in both animals and human beings. Their main source in human beings is nosocomial transmission. Col-E, which bear mcr resistance genes, have been described in Germany mainly in food-producing animals and their meat. No representative data are available on Col-E in human beings in Germany; in Europe, the prevalence of colonization is less than 2%, with long-distance travel as a risk factor. The relevance of animals as a source of Col-E for human beings is not yet entirely clear. CONCLUSION Livestock farming and animal contact affect human colonization with the multiresistant Gram-negative pathogens CPE, ESBL-E and Col-E to differing extents. Improved prevention will require the joint efforts of human and veterinary medicine.
Collapse
|
29
|
High prevalence of bla CTX-M and bla SHV among ESBL producing E. coli isolates from beef cattle in China's Sichuan-Chongqing Circle. Sci Rep 2021; 11:13725. [PMID: 34215807 PMCID: PMC8253751 DOI: 10.1038/s41598-021-93201-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/17/2021] [Indexed: 12/01/2022] Open
Abstract
Enterobacteria that produce extended-spectrum β-lactamase (ESBL) such as Escherichia coli (E. coli) are common in our environment and known to cause serious health implications in humans and animals. β-lactam antibiotics such as penicillins, cephalosporins and monobactams are the most commonly used anti-bacterials in both humans and animals, however, Gram negative bacteria (such as E. coli) that produces extended-spectrum β-lactamases (ESBLs) have the ability to hydrolyze most β-lactams therefore making them resistant to β-lactam antibiotics. Recent extensive researches on the epidemiology and genetic characteristics of extended-spectrum β-lactamase (ESBL)-producing E. coli reported the existence of ESBL-producing E. coli in humans, companion animals and poultry. Therefore, this experiment was performed to investigate the prevalence and genetic characteristics of β-lactamase producing E. coli isolated from beef cattle farms in the Sichuan-Chongqing circle of China. Phenotypic confirmation of ESBL-producing E. coli was performed using the double disk synergy test. Polymerase Chain Reaction (PCR) was used to detect blaCTX-M, blaSHV and blaTEM gene codes, then after, isolates were divided into different phylogenetic groups and multi-locus sequence typing (MLST). The results showed that out of the 222 E. coli strains isolated from the beef cattle, 102 strains showed ESBL phenotypes. The PCR results showed that blaCTX-M was the predominant ESBL gene identified among the E. coli strains with 21 (9.5%) isolates having this gene, followed by blaSHV which was found in 18 (8.1%) isolates. The majority of these ESBL positive isolates were assigned to phylogroup A (19.8%) followed by phylogroup B1 (13.5%). In addition, from the MLST results on ESBL positive isolates (n = 30) we identified 19 STs, ST398 (ST398cplx) and ST7130 which were the prevalent population (20%). In conclusion, the high prevalence of CTX-M, and SHV in the study confirmed its association with E. coli infection; therefore, this calls for health concerns on ESBL-producing E. coli. As far as we know, this is the first comprehensive research report relating to ESBL-producing E. coli incidence in Chinese beef cattle.
Collapse
|
30
|
Diaconu EL, Carfora V, Alba P, Di Matteo P, Stravino F, Buccella C, Dell'Aira E, Onorati R, Sorbara L, Battisti A, Franco A. Novel IncFII plasmid harbouring blaNDM-4 in a carbapenem-resistant Escherichia coli of pig origin, Italy. J Antimicrob Chemother 2021; 75:3475-3479. [PMID: 32835381 PMCID: PMC7662189 DOI: 10.1093/jac/dkaa374] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022] Open
Abstract
Objectives To the best of our knowledge, we describe the first evidence in Europe of an MDR, blaNDM-4-positive Escherichia coli isolated from a food-producing animal, harboured by a novel IncFII plasmid of which we report the complete sequence. Methods One blaNDM-4-positive E. coli isolated in 2019 from the caecal contents of a fattening pig in Italy was in-depth characterized by combined bioinformatic analysis of Oxford Nanopore long reads and Illumina short reads, for in silico typing, determination of the blaNDM-4 genetic context and full reconstruction of the blaNDM-4–carrying plasmid. Results The isolate belonged to ST641 and to the genoserotype O108:H23 and tested positive for different virulence genes and plasmid replicons. The MDR phenotype of resistance to all β-lactams, carbapenems, sulfamethoxazole and trimethoprim was mediated by blaTEM-1B, blaNDM-4, sul1/sul3 and dfrA12, respectively. The blaNDM-4 gene was harboured by a novel 53 043 bp IncFII plasmid (pMOL412_FII) composed of four main genetic regions, including an MDR region (MRR-NDM-4) of 16 kb carrying blaNDM-4 and several antimicrobial resistance genes located in a class 1 integron. pMOL412_FII was closely related to another ∼90.3 kb plasmid (pM109_FII) harbouring blaNDM-4 in an E. coli isolated from a human patient in Myanmar. Conclusions To the best of our knowledge, we have identified for the first time in Europe an NDM-producing Enterobacterales in livestock and resolved the complete sequence of the novel pMOL412_FII plasmid harbouring blaNDM-4 in an MRR. A global One Health approach, comparing genomic data from different sources and geographical areas, may help to trace back and control possible plasmid-borne carbapenemase gene transmission between animals and humans and along the food chain at international level.
Collapse
Affiliation(s)
- Elena L Diaconu
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Rome, Italy
| | - Virginia Carfora
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Rome, Italy
| | - Patricia Alba
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Rome, Italy
| | - Paola Di Matteo
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Rome, Italy
| | - Fiorentino Stravino
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Rome, Italy
| | - Carmela Buccella
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Rome, Italy
| | - Elena Dell'Aira
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Rome, Italy
| | - Roberta Onorati
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Rome, Italy
| | - Luigi Sorbara
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Rome, Italy
| | - Antonio Battisti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Rome, Italy
| | - Alessia Franco
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri', National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Rome, Italy
| |
Collapse
|
31
|
Koutsoumanis K, Allende A, Álvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Argüello H, Berendonk T, Cavaco LM, Gaze W, Schmitt H, Topp E, Guerra B, Liébana E, Stella P, Peixe L. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J 2021; 19:e06651. [PMID: 34178158 PMCID: PMC8210462 DOI: 10.2903/j.efsa.2021.6651] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of food-producing environments in the emergence and spread of antimicrobial resistance (AMR) in EU plant-based food production, terrestrial animals (poultry, cattle and pigs) and aquaculture was assessed. Among the various sources and transmission routes identified, fertilisers of faecal origin, irrigation and surface water for plant-based food and water for aquaculture were considered of major importance. For terrestrial animal production, potential sources consist of feed, humans, water, air/dust, soil, wildlife, rodents, arthropods and equipment. Among those, evidence was found for introduction with feed and humans, for the other sources, the importance could not be assessed. Several ARB of highest priority for public health, such as carbapenem or extended-spectrum cephalosporin and/or fluoroquinolone-resistant Enterobacterales (including Salmonella enterica), fluoroquinolone-resistant Campylobacter spp., methicillin-resistant Staphylococcus aureus and glycopeptide-resistant Enterococcus faecium and E. faecalis were identified. Among highest priority ARGs bla CTX -M, bla VIM, bla NDM, bla OXA -48-like, bla OXA -23, mcr, armA, vanA, cfr and optrA were reported. These highest priority bacteria and genes were identified in different sources, at primary and post-harvest level, particularly faeces/manure, soil and water. For all sectors, reducing the occurrence of faecal microbial contamination of fertilisers, water, feed and the production environment and minimising persistence/recycling of ARB within animal production facilities is a priority. Proper implementation of good hygiene practices, biosecurity and food safety management systems is very important. Potential AMR-specific interventions are in the early stages of development. Many data gaps relating to sources and relevance of transmission routes, diversity of ARB and ARGs, effectiveness of mitigation measures were identified. Representative epidemiological and attribution studies on AMR and its effective control in food production environments at EU level, linked to One Health and environmental initiatives, are urgently required.
Collapse
|
32
|
Timmermans M, Wattiau P, Denis O, Boland C. Colistin resistance genes mcr-1 to mcr-5, including a case of triple occurrence (mcr-1, -3 and -5), in Escherichia coli isolates from faeces of healthy pigs, cattle and poultry in Belgium, 2012-2016. Int J Antimicrob Agents 2021; 57:106350. [PMID: 33910096 DOI: 10.1016/j.ijantimicag.2021.106350] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/24/2022]
Abstract
Colistin is a last-resort antimicrobial used to treat infections caused by multidrug-resistant Gram-negative bacilli (MDR-GNB). The emergence of colistin resistance, particularly linked to mobile genetic elements including the mcr genes, is a major threat to the management of MDR-GNB infections. The aim of this study was to assess the presence of mcr genes in a collection of 40 colistin-resistant commensal Escherichia coli isolated from healthy pigs, cattle and poultry in Belgium between 2012 and 2016. All isolates carried at least one mcr gene. The genes mcr-1 to -5 were observed in this collection. Different replicons associated with mcr genes were identified, including IncHI2/IncHI2A associated with mcr-1, IncX4 associated with mcr-1 and mcr-2, and ColE10 associated with mcr-4. While the occurrence of multiple mcr genes in a single isolate has rarely been reported elsewhere, a triple occurrence (mcr-1, -3 and -5) was found in this study. All isolates were MDR and carried between one and nine different replicons. Seventeen different sequence types were observed among the 40 E. coli isolates. In conclusion, this study revealed the presence of a reservoir of mobile colistin resistance genes (mcr-1 to -5) observed during at least 5 years (2012-2016) in the commensal gut flora of pigs, cattle and poultry in Belgium.
Collapse
Affiliation(s)
- Michaël Timmermans
- Veterinary Bacteriology, Sciensano, Ixelles, Belgium; Faculté de médecine, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Olivier Denis
- Ecole de Santé Publique, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Clinical Microbiology, National Reference Center for Monitoring Antimicrobial Resistance in Gram-Negative Bacteria, CHU UCL Namur, Yvoir, Belgium
| | - Cécile Boland
- Veterinary Bacteriology, Sciensano, Ixelles, Belgium.
| |
Collapse
|
33
|
Genomic Insights into a Colistin-Resistant Uropathogenic Escherichia coli Strain of O23:H4-ST641 Lineage Harboring mcr-1.1 on a Conjugative IncHI2 Plasmid from Egypt. Microorganisms 2021; 9:microorganisms9040799. [PMID: 33920265 PMCID: PMC8069611 DOI: 10.3390/microorganisms9040799] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
The reintroduction of colistin, a last-resort antibiotic for multidrug-resistant pathogens, resulted in the global spread of plasmid-mediated mobile colistin resistance (mcr) genes. Our study investigated the occurrence of colistin resistance among Escherichia coli isolated from patients with urinary tract infections admitted to a teaching hospital in Egypt. Out of 67 isolates, three isolates were colistin-resistant, having a minimum inhibitory concentration of 4 µg/mL and possessing the mcr-1 gene. A double mechanism of colistin resistance was detected; production of mcr-1 along with amino acid substitution in PmrB (E123D and Y358N) and PmrA (G144S). Broth mating experiments inferred that mcr-1 was positioned on conjugative plasmids. Whole-genome sequencing of EC13049 indicated that the isolate belonged to O23:H4-ST641 lineage and to phylogroup D. The mcr-1-bearing plasmid corresponded to IncHI2 type with a notable similarity to other E. coli plasmids previously recovered from Egypt. The unbanned use of colistin in the Egyptian agriculture sector might have created a potential reservoir for the mcr-1 gene in food-producing animals that spread to humans. More proactive regulations must be implemented to prevent further dissemination of this resistance. This is the first characterization of mcr-1-carrying IncHI2:ST4 plasmid recovered from E. coli of a clinical source in Egypt.
Collapse
|
34
|
Zalewska M, Błażejewska A, Czapko A, Popowska M. Antibiotics and Antibiotic Resistance Genes in Animal Manure - Consequences of Its Application in Agriculture. Front Microbiol 2021; 12:610656. [PMID: 33854486 PMCID: PMC8039466 DOI: 10.3389/fmicb.2021.610656] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance genes (ARGs) are a relatively new type of pollutant. The rise in antibiotic resistance observed recently is closely correlated with the uncontrolled and widespread use of antibiotics in agriculture and the treatment of humans and animals. Resistant bacteria have been identified in soil, animal feces, animal housing (e.g., pens, barns, or pastures), the areas around farms, manure storage facilities, and the guts of farm animals. The selection pressure caused by the irrational use of antibiotics in animal production sectors not only promotes the survival of existing antibiotic-resistant bacteria but also the development of new resistant forms. One of the most critical hot-spots related to the development and dissemination of ARGs is livestock and poultry production. Manure is widely used as a fertilizer thanks to its rich nutrient and organic matter content. However, research indicates that its application may pose a severe threat to human and animal health by facilitating the dissemination of ARGs to arable soil and edible crops. This review examines the pathogens, potentially pathogenic microorganisms and ARGs which may be found in animal manure, and evaluates their effect on human health through their exposure to soil and plant resistomes. It takes a broader view than previous studies of this topic, discussing recent data on antibiotic use in farm animals and the effect of these practices on the composition of animal manure; it also examines how fertilization with animal manure may alter soil and crop microbiomes, and proposes the drivers of such changes and their consequences for human health.
Collapse
Affiliation(s)
- Magdalena Zalewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Błażejewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Czapko
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
35
|
Li G, Xia LJ, Zhou SY, Wang XR, Cui CY, He YZ, Diao XY, Liu M, Lian XL, Kreiswirth BN, Liu YH, Liao XP, Chen L, Sun J. Linoleic acid and α-linolenic acid inhibit conjugative transfer of an IncX4 plasmid carrying mcr-1. J Appl Microbiol 2020; 130:1893-1901. [PMID: 33034112 DOI: 10.1111/jam.14885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/19/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022]
Abstract
AIMS The aim of this study was to determine the effects of unsaturated fatty acids on clinical plasmids. METHODS AND RESULTS Two unsaturated fatty acids, linoleic acid (LA) and α-linolenic acid (ALA) at final concentration 0, 0·03, 0·3 and 3 mmol l-1 , respectively, were used to assess the effects on conjugative transfer of a mcr-1-harbouring plasmid pCSZ4 (IncX4) in conjugation experiment. The inhibitory mechanisms were analysed by molecular docking and the gene expression of virB11 was quantitated by qRT-PCR. Target plasmid diversity was carried out by TrwD/VirB11 homology protein sequence prediction analysis. Our results showed that LA and ALA inhibit plasmid pCSZ4 transfer by binding to the amino acid residues (Phe124 and Thr125) of VirB11 with dose-dependent effects. The expression levels of virB11 gene were also significantly inhibited by LA and ALA treatment. Protein homology analysis revealed a wide distribution of TrwD/VirB11-like genes among over 37 classes of plasmids originated from both Gram-negative and Gram-positive bacteria. CONCLUSIONS This study demonstrates representing a diversity of plasmids that may be potentially inhibited by unsaturated fatty acids. SIGNIFICANCE AND IMPACT OF THE STUDY Our work reported here provides additional support for application of curbing the spread of multiple plasmids by unsaturated fatty acids.
Collapse
Affiliation(s)
- G Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, P. R. China
| | - L-J Xia
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, P. R. China
| | - S-Y Zhou
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, P. R. China
| | - X-R Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, P. R. China
| | - C-Y Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, P. R. China
| | - Y-Z He
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, P. R. China
| | - X-Y Diao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, P. R. China
| | - M Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, P. R. China
| | - X-L Lian
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, P. R. China
| | - B N Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.,Hackensack Meridian School of Medicine, Seton Hall University, Nutley, NJ, USA
| | - Y-H Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, P. R. China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - X-P Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, P. R. China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - L Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.,Hackensack Meridian School of Medicine, Seton Hall University, Nutley, NJ, USA
| | - J Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, P. R. China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| |
Collapse
|
36
|
Association between the use of colistin for short-term treatment of Gram-negative bacterial infections and the emergence of colistin-resistant Enterobacteriaceae in swine from selected swine farms in Thailand. PLoS One 2020; 15:e0238939. [PMID: 33017441 PMCID: PMC7535051 DOI: 10.1371/journal.pone.0238939] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/26/2020] [Indexed: 11/19/2022] Open
Abstract
Long-term use of colistin for preventing Gram-negative bacterial infections in food animals was prohibited in Thailand in 2017, but it is permitted for short-term treatment. This study aimed to investigate association between the use of colistin for short-term treatment of infection and the emergence of colistin-resistant Enterobacteriaceae in swine. The current study was conducted at 2 selected swine farms in Thailand. Neither farm has used colistin to prevent infection for longer than 1 year. Rectal swabs were collected from the same 66 pigs at birth, and on days 7, 14, 21, 28, and 60. Colistin was used to treat sick pigs for up to 3 days. Additional rectal swabs were collected during colistin treatment. Rectal swabs were analyzed for colistin-resistant Enterobacteriaceae and the mcr-1 gene. Results revealed that colistin-resistant Enterobacteriaceae were absent at birth. Some pigs at both farms had diarrhea and received colistin treatment during days 2-27. Colistin-resistant Enterobacteriaceae were detected in 13.3-50.0% of sick and healthy pigs. No sick pigs were observed during days 28-60, and colistin was not used during that period. Colistin-resistant Enterobacteriaceae were detected in 2.8-10.0% of healthy pigs on day 28, and in 0-3.4% of healthy pigs on day 60. The mcr-1 gene was detected in 57.6% of colistin-resistant Enterobacteriaceae isolates. Short-term treatment with colistin was found to be associated with the emergence of colistin-resistant Enterobacteriaceae in swine. Colistin-resistant Enterobacteriaceae rapidly emerged after colistin use, and rapidly decreased or disappeared after its discontinuation.
Collapse
|
37
|
Li L, Su YB, Peng B, Peng XX, Li H. Metabolic mechanism of colistin resistance and its reverting in Vibrio alginolyticus. Environ Microbiol 2020; 22:4295-4313. [PMID: 32291842 DOI: 10.1111/1462-2920.15021] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/12/2020] [Indexed: 12/17/2022]
Abstract
Colistin is a last-line antibiotic against Gram-negative multidrug-resistant bacteria, but the increased resistance poses a huge challenge to this drug. However, the mechanisms underlying such resistance are largely unexplored. The present study first identified the mutations of two genes encoding AceF subunit of pyruvate dehydrogenase (PDH) and TetR family transcriptional regulator in colistin-resistant Vibrio alginolyticus (VA-RCT ) through genome sequencing. Then, gas chromatography-mass spectroscopy-based metabolomics was adopted to investigate metabolic responses since PDH plays a role in central carbon metabolism. Colistin resistance was associated with the reduction of the central carbon metabolism and energy metabolism, featuring the alteration of the pyruvate cycle, a recently characterized energy-producing cycle. Metabolites in the pyruvate cycle reprogramed colistin-resistant metabolome to colistin-sensitive metabolome, resulting in increased gene expression, enzyme activity or protein abundance of the cycle and sodium-translocating nicotinamide adenine dinucleotide-ubiquinone oxidoreductase. This reprogramming promoted the production of the proton motive force that enhances the binding between colistin and lipid A in lipopolysaccharide. Moreover, this metabolic approach was effective against VA-RCT in vitro and in vivo as well as other clinical isolates. These findings reveal a previously unknown mechanism of colistin resistance and develop a metabolome-reprogramming approach to promote colistin efficiency to combat with colistin-resistant bacteria.
Collapse
Affiliation(s)
- Lu Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, China
| | - Yu-Bin Su
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, China
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Bo Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Xuan-Xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
38
|
Nigg A, Brilhante M, Dazio V, Clément M, Collaud A, Gobeli Brawand S, Willi B, Endimiani A, Schuller S, Perreten V. Shedding of OXA-181 carbapenemase-producing Escherichia coli from companion animals after hospitalisation in Switzerland: an outbreak in 2018. ACTA ACUST UNITED AC 2020; 24. [PMID: 31576806 PMCID: PMC6774230 DOI: 10.2807/1560-7917.es.2019.24.39.1900071] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Carbapenem-resistant Enterobacteriaceae pose a serious threat to public health worldwide, and the role of companion animals as a reservoir is still unclear. Aims This 4-month prospective observational study evaluated carriage of carbapenem-resistant Enterobacteriaceae at admission and after hospitalisation in a large referral hospital for companion animals in Switzerland. Methods Rectal swabs of dogs and cats expected to be hospitalised for at least 48 h were taken from May to August 2018 and analysed for the presence of carbapenem-resistant Enterobacteriaceae using selective agar plates. Resistant isolates were further characterised analysing whole genome sequences for resistance gene and plasmid identification, and ad hoc core genome multilocus sequence typing. Results This study revealed nosocomial acquisition of Escherichia coli harbouring the carbapenemase gene blaOXA-181, the pAmpC cephalosporinase gene blaCMY-42 as well as quinolone resistance associated with qnrS1 and mutations in the topoisomerases II (GyrA) and IV (ParC). The blaOXA-181 and qnrS1 genes were identified on a 51 kb IncX3 plasmid and blaCMY-42 on a 47 kb IncI1 plasmid. All isolates belonged to sequence type ST410 and were genetically highly related. This E. coli clone was detected in 17 of 100 dogs and four of 34 cats after hospitalisation (21.6%), only one of the tested animals having tested positive at admission (0.75%). Two positive animals were still carriers 4 months after hospital discharge, but were negative after 6 months. Conclusions Companion animals may acquire carbapenemase-producing E. coli during hospitalisation, posing the risk of further dissemination to the animal and human population and to the environment.
Collapse
Affiliation(s)
- Aurélien Nigg
- Institute of Veterinary Bacteriology, Bern, University of Bern
| | - Michael Brilhante
- Graduate School of Cellular and Biomedical Sciences, Bern, University of Bern.,Institute of Veterinary Bacteriology, Bern, University of Bern
| | - Valentina Dazio
- Department of Clinical Veterinary Medicine, Bern, University of Bern
| | - Mathieu Clément
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Graduate School of Cellular and Biomedical Sciences, Bern, University of Bern
| | | | | | - Barbara Willi
- Clinic for Small Animal Internal Medicine, University of Zurich, Zurich, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Simone Schuller
- Department of Clinical Veterinary Medicine, Bern, University of Bern
| | | |
Collapse
|
39
|
Hsueh SC, Lai CC, Huang YT, Liao CH, Chiou MT, Lin CN, Hsueh PR. Molecular Evidence for Intra- and Inter-Farm Spread of Porcine mcr- 1-Carrying Escherichia coli in Taiwan. Front Microbiol 2020; 11:1967. [PMID: 32973713 PMCID: PMC7468466 DOI: 10.3389/fmicb.2020.01967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/24/2020] [Indexed: 11/29/2022] Open
Abstract
From January 2013 to December 2018, 90 Escherichia coli isolates were collected from 90 sick pigs on 58 farms in seven cities in Taiwan. The minimum inhibitory concentrations (MICs) of the isolates to 14 antimicrobial agents were determined on the VITEK 2 system (bioMérieux, Marcy-l’Etoile, France), and the resistance to colistin was assessed via the reference broth microdilution (BMD) method. The mobilized colistin resistance genes (mcr) were determined for the colistin-resistant isolates, which displayed BMD MICs ≥ 4 mg/L. Genotypes of the mcr-positive E. coli isolates were determined by multilocus sequence typing, arbitrarily primed polymerase chain reaction (PCR), and pulsed-field gel electrophoresis. All of the isolates were tested for susceptibility to carbapenems. Fifty isolates (55.6%) were resistant to colistin, 39 of which (78%) were positive for the mcr-1 gene. E. coli isolates harboring mcr-1 were most frequent in 2017 (15/18, 83.3%), followed by 2018 (13/23, 56.5%), 2015 (7/21, 33.3%), and 2016 (3/24, 12.5%). A total of 18 sequence types (STs) were identified among the 39 porcine mcr-1-carrying E. coli isolates; 13 were ST2521 (33.3%) isolated in 2017 and 2018. Five genotypes (clones) were identified, and the same genotypes were in sick pigs on the same farm and different farms. This suggests intra- and inter-farm spread of porcine mcr-1-carrying E. coli. The results presented here indicate high colistin resistance and wide mcr-1 E. coli prevalence among the sick pigs sampled in 2015–2018 in different regions of Taiwan.
Collapse
Affiliation(s)
- Shun-Chung Hsueh
- Department of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Cheng Lai
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| | - Yu-Tsung Huang
- Division of Infectious Diseases, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Hsing Liao
- Division of Infectious Diseases, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Tang Chiou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chao-Nan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
40
|
Pauly N, Hammerl JA, Grobbel M, Tenhagen BA, Käsbohrer A, Bisenius S, Fuchs J, Horlacher S, Lingstädt H, Mauermann U, Mitro S, Müller M, Rohrmann S, Schiffmann AP, Stührenberg B, Zimmermann P, Schwarz S, Meemken D, Irrgang A. ChromID ® CARBA Agar Fails to Detect Carbapenem-Resistant Enterobacteriaceae With Slightly Reduced Susceptibility to Carbapenems. Front Microbiol 2020; 11:1678. [PMID: 32849351 PMCID: PMC7432429 DOI: 10.3389/fmicb.2020.01678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/26/2020] [Indexed: 02/02/2023] Open
Abstract
After first detections of carbapenemase-producing Enterobacteriaceae (CPE) in animals, the European Union Reference Laboratory for Antimicrobial Resistance has provided a protocol for the isolation of carbapenemase-producing Escherichia (E.) coli from cecum content and meat. Up to now, only few isolates were recovered using this procedure. In our experience, the choice of the selective agar is important for the efficacy of the method. Currently, the use of the prevailing method fails to detect CPE that exhibit a low resistance against carbapenems. Thus, this study aims to evaluate the suitability of selective media with antibiotic supplements and commercial ChromID® CARBA agar for a reliable CPE detection. For comparative investigations, detection of freeze-dried carbapenemase-resistant bacteria was studied on different batches of the ChromID® CARBA agar as well as on MacConkey agar supplemented with 1 mg/L cefotaxime and 0.125 mg/L meropenem (McC+CTX+MEM). The suitability of the different media was assessed within a time of 25 weeks, starting at least six weeks before expiration of the media. Carbapenem-resistant isolates exhibiting a serine-based hydrolytic resistance mechanism (e.g., bla KPC genes) were consistently detected over 25 weeks on the different media. In contrast, carbapenemase producers with only slightly reduced susceptibility and exhibiting a zinc-catalyzed activity (e.g., bla VIM, bla NDM, and bla IMP) could only be cultivated on long-time expired ChromID® CARBA, but within the whole test period on McC+CTX+MEM. Thus, ChromID® CARBA agar appears to be not suitable for the detection of CPE with slightly increased minimum inhibitory concentrations (MIC) against carbapenems, which have been detected in German livestock and thus, are of main interest in the national monitoring programs. Our data are in concordance with the results of eleven state laboratories that had participated in this study with their ChromID® CARBA batches routinely used for the German CPE monitoring. Based on the determined CPE detection rate, we recommend the use of McC+CTX+MEM for monitoring purposes. This study indicates that the use of ChromID® CARBA agar might lead to an underestimation of the current CPE occurrence in food and livestock samples.
Collapse
Affiliation(s)
- Natalie Pauly
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jens A Hammerl
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Mirjam Grobbel
- German Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Annemarie Käsbohrer
- German Federal Institute for Risk Assessment, Berlin, Germany.,Unit for Veterinary Public Health and Epidemiology, University of Veterinary Medicine, Vienna, Austria
| | - Sandra Bisenius
- Institute for Fish and Fishery Products (LAVES), Cuxhaven, Germany
| | - Jannika Fuchs
- Chemical and Veterinary Investigation Office, Karlsruhe, Germany
| | | | - Holger Lingstädt
- State Office for Consumer Protection Saxony-Anhalt, Stendal, Germany
| | | | - Silke Mitro
- State Investigation Institute for Health and Veterinary Services, Chemnitz, Germany
| | - Margit Müller
- Chemical and Veterinary Investigation Office Rhein-Ruhr-Wupper, Krefeld, Germany
| | - Stefan Rohrmann
- Chemical and Veterinary Investigation Office, Arnsberg, Germany
| | | | | | - Pia Zimmermann
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Diana Meemken
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
41
|
Bustamante P, Iredell JR. The roles of HicBA and a novel toxin-antitoxin-like system, TsxAB, in the stability of IncX4 resistance plasmids in Escherichia coli. J Antimicrob Chemother 2020; 74:553-556. [PMID: 30535076 DOI: 10.1093/jac/dky491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To identify toxin-antitoxin (TA)-like plasmid stability loci on IncX4 plasmids. METHODS TA-like loci were identified bioinformatically and their contribution to stability of the IncX4 plasmid pJIE143 was tested in optimal growth conditions in vitro. The conservation of the TA-like loci identified was analysed within an updated IncX plasmid database. RESULTS A novel TA-like locus, tsxAB, was identified on the IncX4 plasmid pJIE143, carrying the important plasmid-borne antibiotic resistance gene blaCTX-M-15. pJIE143 (the WT plasmid) and its tsxA mutant are stable for 80 bacterial generations in the absence of selective pressure but a tsxB deletion mutant of pJIE143 is relatively quickly lost without positive selection (91.1% ± 1.5% loss after 50 generations). Nine IncX subclasses were identified among 272 fully sequenced IncX plasmids, dominated by those identified as IncX3, IncX1 and IncX4 subclasses in PlasmidFinder. The novel TA-like locus, tsxAB, appears to be a feature of IncX4 plasmids, being present in 64 of 67 so identified, but only present in a single IncX1 plasmid (of 79 identified) and present in no other IncX plasmids. CONCLUSIONS tsxAB, a novel TA-like stability locus, is highly conserved in IncX4 plasmids associated with transmission of important antibiotic resistance genes. Previous in silico analysis indicated that IncX4 encodes only HicBA among the known TA systems. Here we show that HicBA does not contribute to plasmid stability in optimal growth conditions for Escherichia coli and instead demonstrate this role for a completely novel TA-like system, TsxAB, that appears both necessary and sufficient for E. coli addiction to IncX4 resistance plasmids.
Collapse
Affiliation(s)
- Paula Bustamante
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
42
|
Renzhammer R, Loncaric I, Roch FF, Pinior B, Käsbohrer A, Spergser J, Ladinig A, Unterweger C. Prevalence of Virulence Genes and Antimicrobial Resistances in E. coli Associated with Neonatal Diarrhea, Postweaning Diarrhea, and Edema Disease in Pigs from Austria. Antibiotics (Basel) 2020; 9:E208. [PMID: 32344550 PMCID: PMC7235777 DOI: 10.3390/antibiotics9040208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/31/2022] Open
Abstract
Increasing numbers of multi-resistant Escherichia (E.) coli from clinical specimens emphasize the importance of monitoring of their resistance profiles for proper treatment. Furthermore, knowledge on the presence of virulence associated genes in E. coli isolates from European swine stocks is scarce. Consequently, a total of 694 E. coli isolated between 2016 and 2018 from diarrheic piglets of Austrian swine herds were investigated. The isolates were tested for their susceptibility to twelve antibiotics using agar disk diffusion test and for the presence of 22 virulence associated genes via PCR. Overall, 71.9, 67.7, and 49.5% of all isolates were resistant to ampicillin, tetracycline, and trimethoprim-sulfamethoxazole, while resistance levels to gentamicin and fosfomycin were 7.7 and 2.0%, respectively. Resistance frequency to ciprofloxacin was higher than in previous studies. Isolates were more likely to be resistant to ampicillin if they were also resistant to ciprofloxacin. No isolate was resistant to meropenem or amikacin. Virulence genes were detected more frequently in isolates expressing hemolytic activity on blood agar plates. The detection rate of faeG was increased in fimH negative isolates. We assume, that hemolytic activity and absence of fimH could be considered as potential indicators for the virulence of E. coli in piglets.
Collapse
Affiliation(s)
- René Renzhammer
- University Clinic for Swine, University of Veterinary Medicine, 1210 Vienna, Austria (C.U.)
| | - Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria; (I.L.)
| | - Franz-Ferdinand Roch
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Beate Pinior
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Annemarie Käsbohrer
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Joachim Spergser
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria; (I.L.)
| | - Andrea Ladinig
- University Clinic for Swine, University of Veterinary Medicine, 1210 Vienna, Austria (C.U.)
| | - Christine Unterweger
- University Clinic for Swine, University of Veterinary Medicine, 1210 Vienna, Austria (C.U.)
| |
Collapse
|
43
|
Schages L, Wichern F, Kalscheuer R, Bockmühl D. Winter is coming - Impact of temperature on the variation of beta-lactamase and mcr genes in a wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136499. [PMID: 31945531 DOI: 10.1016/j.scitotenv.2020.136499] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/18/2019] [Accepted: 01/01/2020] [Indexed: 05/29/2023]
Abstract
Wastewater treatment plants (WWTP) play a key role in the dissemination of antibiotic resistance and analyzing the abundance of antibiotic resistance genes (ARGs) and resistant bacteria is necessary to evaluate the risk of proliferation caused by WWTPs. Since few studies investigated the seasonal variation of antibiotic resistance, this study aimed to determine the abundance of beta-lactamase and mcr genes and to characterize phenotypic resistant strains in a WWTP in Germany over the seasons. Wastewater, sewage sludge and effluent samples were collected over a one year period and analyzed using quantitative real-time PCR. Resistant strains were isolated, followed by identification and antibiotic susceptibility testing using VITEK 2. The results show a significantly higher occurrence of nearly all investigated ARGs in the wastewater compared to sewage sludge and effluent. ARG abundance and temperature showed a negative correlation in wastewater and significant differences between ARG abundance during warmer and colder seasons were determined, indicating a seasonal effect. Co-occurrence of mcr-1 and carbapenemase genes in a multi-drug resistant Enterobacter cloacae and Escherichia coli producing extended-spectrum beta-lactamase (ESBL) was determined. To the best of our knowledge, this is the first detection of mcr-1, blaVIM and blaOXA-48 in an ESBL-producing E. coli. Although wastewater treatment reduced the abundance of ARGs and resistant strains, a dissemination into the river might be possible because carbapenemase-, CTX-M- and mcr-1-gene harboring strains were still present in the effluent.
Collapse
Affiliation(s)
- Laura Schages
- Rhine-Waal University of Applied Sciences, Faculty of Life Sciences, Kleve, Germany; Heinrich-Heine University Düsseldorf, Institute of Pharmaceutical Biology and Biotechnology, Germany
| | - Florian Wichern
- Rhine-Waal University of Applied Sciences, Faculty of Life Sciences, Kleve, Germany
| | - Rainer Kalscheuer
- Heinrich-Heine University Düsseldorf, Institute of Pharmaceutical Biology and Biotechnology, Germany
| | - Dirk Bockmühl
- Rhine-Waal University of Applied Sciences, Faculty of Life Sciences, Kleve, Germany.
| |
Collapse
|
44
|
Liu C, Fang Y, Zeng Y, Lu J, Sun Q, Zhou H, Shen Z, Chen G. First Report of OXA-181-Producing Klebsiella pneumoniae in China. Infect Drug Resist 2020; 13:995-998. [PMID: 32308440 PMCID: PMC7147608 DOI: 10.2147/idr.s237793] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/15/2020] [Indexed: 11/30/2022] Open
Abstract
We present here the first report of an OXA-181-producing Klebsiella pneumoniae isolated from the fecal specimen of a patient in China. The OXA-181-encoding gene blaOXA-181 was located on a 51 kb IncX3-type plasmid. Conjugation assay and whole-genome sequencing analysis revealed that this transferrable plasmid in the K. pneumoniae isolate might have originated from Escherichia coli and have the potential to mediate the spread of blaOXA-181.
Collapse
Affiliation(s)
- Congcong Liu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, People's Republic of China
| | - Yinfei Fang
- Department of Clinical Laboratory, Jinhua Municipal Central Hospital, Zhejiang, Jinhua, People's Republic of China
| | - Yu Zeng
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, People's Republic of China
| | - Jiayue Lu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, People's Republic of China
| | - Qiaoling Sun
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, People's Republic of China
| | - Hongwei Zhou
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, People's Republic of China
| | - Zhangqi Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Gongxiang Chen
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, People's Republic of China
| |
Collapse
|
45
|
Savin M, Bierbaum G, Hammerl JA, Heinemann C, Parcina M, Sib E, Voigt A, Kreyenschmidt J. ESKAPE Bacteria and Extended-Spectrum-β-Lactamase-Producing Escherichia coli Isolated from Wastewater and Process Water from German Poultry Slaughterhouses. Appl Environ Microbiol 2020; 86:e02748-19. [PMID: 32033950 PMCID: PMC7117925 DOI: 10.1128/aem.02748-19] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
The wastewater of livestock slaughterhouses is considered a source of antimicrobial-resistant bacteria with clinical relevance and may thus be important for their dissemination into the environment. To get an overview of their occurrence and characteristics, we investigated process water (n = 50) from delivery and unclean areas as well as wastewater (n = 32) from the in-house wastewater treatment plants (WWTPs) of two German poultry slaughterhouses (slaughterhouses S1 and S2). The samples were screened for ESKAPE bacteria (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) and Escherichia coli Their antimicrobial resistance phenotypes and the presence of extended-spectrum-β-lactamase (ESBL), carbapenemase, and mobilizable colistin resistance genes were determined. Selected ESKAPE bacteria were epidemiologically classified using different molecular typing techniques. At least one of the target species was detected in 87.5% (n = 28/32) of the wastewater samples and 86.0% (n = 43/50) of the process water samples. The vast majority of the recovered isolates (94.9%, n = 448/472) was represented by E. coli (39.4%), the A. calcoaceticus-A. baumannii (ACB) complex (32.4%), S. aureus (12.3%), and K. pneumoniae (10.8%), which were widely distributed in the delivery and unclean areas of the individual slaughterhouses, including their wastewater effluents. Enterobacter spp., Enterococcus spp., and P. aeruginosa were less abundant and made up 5.1% of the isolates. Phenotypic and genotypic analyses revealed that the recovered isolates exhibited diverse resistance phenotypes and β-lactamase genes. In conclusion, wastewater effluents from the investigated poultry slaughterhouses exhibited clinically relevant bacteria (E. coli, methicillin-resistant S. aureus, K. pneumoniae, and species of the ACB and Enterobacter cloacae complexes) that contribute to the dissemination of clinically relevant resistances (i.e., blaCTX-M or blaSHV and mcr-1) in the environment.IMPORTANCE Bacteria from livestock may be opportunistic pathogens and carriers of clinically relevant resistance genes, as many antimicrobials are used in both veterinary and human medicine. They may be released into the environment from wastewater treatment plants (WWTPs), which are influenced by wastewater from slaughterhouses, thereby endangering public health. Moreover, process water that accumulates during the slaughtering of poultry is an important reservoir for livestock-associated multidrug-resistant bacteria and may serve as a vector of transmission to occupationally exposed slaughterhouse employees. Mitigation solutions aimed at the reduction of the bacterial discharge into the production water circuit as well as interventions against their further transmission and dissemination need to be elaborated. Furthermore, the efficacy of in-house WWTPs needs to be questioned. Reliable data on the occurrence and diversity of clinically relevant bacteria within the slaughtering production chain and in the WWTP effluents in Germany will help to assess their impact on public and environmental health.
Collapse
Affiliation(s)
- Mykhailo Savin
- Institute of Animal Sciences, University of Bonn, Bonn, Germany
| | - Gabriele Bierbaum
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Jens Andre Hammerl
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Marijo Parcina
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Esther Sib
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Alexander Voigt
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Judith Kreyenschmidt
- Institute of Animal Sciences, University of Bonn, Bonn, Germany
- Hochschule Geisenheim University, Department of Fresh Produce Logistics, Geisenheim, Germany
| |
Collapse
|
46
|
Flerlage T, Brazelton de Cardenas JN, Garner CD, Hasan NA, Karathia H, Qudeimat A, Maron G, Hayden R. Multiple NDM-5-Expressing Escherichia Coli Isolates From an Immunocompromised Pediatric Host. Open Forum Infect Dis 2020; 7:ofaa018. [PMID: 32047833 PMCID: PMC7003983 DOI: 10.1093/ofid/ofaa018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/09/2020] [Indexed: 11/17/2022] Open
Abstract
Background Genes conferring carbapenem resistance have disseminated worldwide among Gram-negative bacteria. Here we present longitudinal changes in clinically obtained Escherichia coli isolates from 1 immunocompromised pediatric patient. This report demonstrates potential for antibiotic resistance genes and plasmids to emerge over time in clinical isolates from patients receiving intensive anticancer chemotherapy and broad-spectrum antibiotics. Methods Thirty-three isolates obtained over 7 months from 1 patient were included. Clinical data were abstracted from the medical record. For each isolate, studies included phenotypic antibacterial resistance patterns, sequence typing, bacterial isolate sequencing, plasmid identification, and antibiotic resistance gene identification. Results Sites of isolation included blood, wound culture, and culture for surveillance purposes from the perianal area. Isolates were of 5 sequence types (STs). All were resistant to multiple classes of antibiotics; 23 (69.6%) were phenotypically resistant to all carbapenems. The blaNDM-5 gene was identified in 22 (67%) isolates, all of ST-167 and ST-940, and appeared to coincide with the presence of the IncFII and IncX3 plasmid. Conclusions We present unique microbiologic data from 33 multidrug-resistant E. coli isolates obtained over the course of 7 months from an individual patient in the United States. Two E. coli sequence types causing invasive infection in the same patient and harboring the blaNDM-5 gene, encoded on the IncX3 plasmid and the IncFII plasmid, were identified. This study highlights the emergence of multidrug-resistant bacteria on antibiotic therapy and the necessity of adequate neutrophil number and function in the clearance of bacteremia.
Collapse
Affiliation(s)
- Tim Flerlage
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Cherilyn D Garner
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Nur A Hasan
- CosmosID Incorporated, Rockville, Maryland, USA
| | | | - Amr Qudeimat
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Gabriela Maron
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Randall Hayden
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
47
|
Miguela-Villoldo P, Hernández M, Moreno MÁ, Rodríguez-Lázaro D, Quesada A, Domínguez L, Ugarte-Ruiz M. Carbapenemase-Producing Elizabethkingia Meningoseptica from Healthy Pigs Associated with Colistin Use in Spain. Antibiotics (Basel) 2019; 8:E146. [PMID: 31514353 PMCID: PMC6783829 DOI: 10.3390/antibiotics8030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 11/26/2022] Open
Abstract
Carbapenems are considered last-resort antimicrobials, especially for treating infections involving multidrug-resistant Gram-negative bacteria. In recent years, extended-spectrum β-lactamase (ESBL) and carbapenemase-producing Gram-negative bacteria have become widespread in hospitals, community settings, and the environment, reducing the range of effective therapeutic alternatives. The use of colistin to treat infection caused by these multi-drug bacteria may favour the selection and persistence of carbapenem-resistant bacteria. In this study, it is described, for the first time to our knowledge, a carbapenemase-producing isolate of Elizabethkingia meningoseptica from healthy pigs in Spain. The isolate we report was recovered during a study to detect colistin-resistant bacteria from faecal samples of healthy food-production animals using a chromogenic selective medium. Unexpectedly, we found an isolate of Elizabethkingia meningoseptica with high Minimum Inhibitory Concentration (MIC) values for several antibiotics tested. Molecular analysis did not show any mcr family genes related with colistin resistance, but two carbapenemase genes, blaB-12_1 and blaGOB-17_1, were detected. This finding in healthy animals could suggest that colistin may favour the selection and persistence of carbapenem-resistant bacteria.
Collapse
Affiliation(s)
- Pedro Miguela-Villoldo
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid 28040, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Marta Hernández
- Laboratorio de Biología Molecular y Microbiología, Instituto Tecnológico Agrario de Castilla y León, 47071 Valladolid, Spain
- Área de Microbiología, Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, 09001 Burgos, Spain
| | - Miguel Á Moreno
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid 28040, Spain.
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain.
| | - David Rodríguez-Lázaro
- Área de Microbiología, Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, 09001 Burgos, Spain
| | - Alberto Quesada
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain
- INBIO G+C, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid 28040, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - María Ugarte-Ruiz
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid 28040, Spain
| |
Collapse
|
48
|
Roschanski N, Hadziabdic S, Borowiak M, Malorny B, Tenhagen BA, Projahn M, Kaesbohrer A, Guenther S, Szabo I, Roesler U, Fischer J. Detection of VIM-1-Producing Enterobacter cloacae and Salmonella enterica Serovars Infantis and Goldcoast at a Breeding Pig Farm in Germany in 2017 and Their Molecular Relationship to Former VIM-1-Producing S. Infantis Isolates in German Livestock Production. mSphere 2019; 4:e00089-19. [PMID: 31189558 PMCID: PMC6563352 DOI: 10.1128/msphere.00089-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/23/2019] [Indexed: 01/30/2023] Open
Abstract
In 2011, VIM-1-producing Salmonella enterica serovar Infantis and Escherichia coli were isolated for the first time in four German livestock farms. In 2015/2016, highly related isolates were identified in German pig production. This raised the issue of potential reservoirs for these isolates, the relation of their mobile genetic elements, and potential links between the different affected farms/facilities. In a piglet-producing farm suspicious for being linked to some blaVIM-1 findings in Germany, fecal and environmental samples were examined for the presence of carbapenemase-producing Enterobacteriaceae and Salmonella spp. Newly discovered isolates were subjected to Illumina whole-genome sequencing (WGS) and S1 pulsed-field gel electrophoresis (PFGE) hybridization experiments. WGS data of these isolates were compared with those for the previously isolated VIM-1-producing Salmonella Infantis isolates from pigs and poultry. Among 103 samples, one Salmonella Goldcoast isolate, one Salmonella Infantis isolate, and one Enterobacter cloacae isolate carrying the blaVIM-1 gene were detected. Comparative WGS analysis revealed that the blaVIM-1 gene was part of a particular Tn21-like transposable element in all isolates. It was located on IncHI2 (ST1) plasmids of ∼290 to 300 kb with a backbone highly similar (98 to 100%) to that of reference pSE15-SA01028. SNP analysis revealed a close relationship of all VIM-1-positive S Infantis isolates described since 2011. The findings of this study demonstrate that the occurrence of the blaVIM-1 gene in German livestock is restricted neither to a certain bacterial species nor to a certain Salmonella serovar but is linked to a particular Tn21-like transposable element located on transferable pSE15-SA01028-like IncHI2 (ST1) plasmids, being present in all of the investigated isolates from 2011 to 2017.IMPORTANCE Carbapenems are considered one of few remaining treatment options against multidrug-resistant Gram-negative pathogens in human clinical settings. The occurrence of carbapenemase-producing Enterobacteriaceae in livestock and food is a major public health concern. Particularly the occurrence of VIM-1-producing Salmonella Infantis in livestock farms is worrisome, as this zoonotic pathogen is one of the main causes for human salmonellosis in Europe. Investigations on the epidemiology of those carbapenemase-producing isolates and associated mobile genetic elements through an in-depth molecular characterization are indispensable to understand the transmission of carbapenemase-producing Enterobacteriaceae along the food chain and between different populations to develop strategies to prevent their further spread.
Collapse
Affiliation(s)
- Nicole Roschanski
- Institute for Animal Hygiene and Environmental Health, Freie Universitaet Berlin, Berlin, Germany
| | - Sead Hadziabdic
- Department of Biological Safety, German Federal Institute for Risk Assessment, BfR, Berlin, Germany
| | - Maria Borowiak
- Department of Biological Safety, German Federal Institute for Risk Assessment, BfR, Berlin, Germany
| | - Burkhard Malorny
- Department of Biological Safety, German Federal Institute for Risk Assessment, BfR, Berlin, Germany
| | - Bernd-Alois Tenhagen
- Department of Biological Safety, German Federal Institute for Risk Assessment, BfR, Berlin, Germany
| | - Michaela Projahn
- Institute for Animal Hygiene and Environmental Health, Freie Universitaet Berlin, Berlin, Germany
| | - Annemarie Kaesbohrer
- Department of Biological Safety, German Federal Institute for Risk Assessment, BfR, Berlin, Germany
- Institute of Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Sebastian Guenther
- Institute for Animal Hygiene and Environmental Health, Freie Universitaet Berlin, Berlin, Germany
| | - Istvan Szabo
- Department of Biological Safety, German Federal Institute for Risk Assessment, BfR, Berlin, Germany
| | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health, Freie Universitaet Berlin, Berlin, Germany
| | - Jennie Fischer
- Department of Biological Safety, German Federal Institute for Risk Assessment, BfR, Berlin, Germany
| |
Collapse
|
49
|
Abstract
Polymyxins are important lipopeptide antibiotics that serve as the last-line defense against multidrug-resistant (MDR) Gram-negative bacterial infections. Worryingly, the clinical utility of polymyxins is currently facing a serious threat with the global dissemination of mcr, plasmid-mediated polymyxin resistance. The first plasmid-mediated polymyxin resistance gene, termed as mcr-1 was identified in China in November 2015. Following its discovery, isolates carrying mcr, mainly mcr-1 and less commonly mcr-2 to -7, have been reported across Asia, Africa, Europe, North America, South America and Oceania. This review covers the epidemiological, microbiological and genomics aspects of this emerging threat to global human health. The mcr has been identified in various species of Gram-negative bacteria including Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Salmonella enterica, Cronobacter sakazakii, Kluyvera ascorbata, Shigella sonnei, Citrobacter freundii, Citrobacter braakii, Raoultella ornithinolytica, Proteus mirabilis, Aeromonas, Moraxella and Enterobacter species from animal, meat, food product, environment and human sources. More alarmingly is the detection of mcr in extended-spectrum-β-lactamases- and carbapenemases-producing bacteria. The mcr can be carried by different plasmids, demonstrating the high diversity of mcr plasmid reservoirs. Our review analyses the current knowledge on the emergence of mcr-mediated polymyxin resistance.
Collapse
Affiliation(s)
- Sue C Nang
- a Department of Microbiology, Monash Biomedicine Discovery Institute , Monash University , Melbourne , Australia
| | - Jian Li
- a Department of Microbiology, Monash Biomedicine Discovery Institute , Monash University , Melbourne , Australia
| | - Tony Velkov
- b Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences , The University of Melbourne , Parkville , Australia
| |
Collapse
|
50
|
Bonardi S, Pitino R. Carbapenemase-producing bacteria in food-producing animals, wildlife and environment: A challenge for human health. Ital J Food Saf 2019; 8:7956. [PMID: 31316921 PMCID: PMC6603432 DOI: 10.4081/ijfs.2019.7956] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/09/2019] [Indexed: 01/11/2023] Open
Abstract
Antimicrobial resistance is an increasing global health problem and one of the major concerns for economic impacts worldwide. Recently, resistance against carbapenems (doripenem, ertapenem, imipenem, meropenem), which are critically important antimicrobials for human cares, poses a great risk all over the world. Carbapenemases are β-lactamases belonging to different Ambler classes (A, B, D) and encoded by both chromosomal and plasmidic genes. They hydrolyze a broad variety of β-lactams, including carbapenems, cephalosporins, penicillins and aztreonam. Despite several studies in human patients and hospital settings have been performed in European countries, the role of livestock animals, wild animals and the terrestrial and aquatic environment in the maintenance and transmission of carbapenemase- producing bacteria has been poorly investigated. The present review focuses on the carbapenemase-producing bacteria detected in pigs, cattle, poultry, fish, mollusks, wild birds and wild mammals in Europe as well as in non-European countries, investigating the genetic mechanisms for their transmission among food-producing animals and wildlife. To shed light on the important role of the environment in the maintenance and genetic exchange of resistance determinants between environmental and pathogenic bacteria, studies on aquatic sources (rivers, lakes, as well as wastewater treatment plants) are described.
Collapse
Affiliation(s)
- Silvia Bonardi
- Department of Veterinary Science, University of Parma, Italy
| | | |
Collapse
|