1
|
Pan ZC, Li AZ, Zeng NK, Yang XQ, Xie HJ, Chen J, Zhao K, Wang Y. Structural characteristics and hypoglycemic activity of a polysaccharide from an edible bolete Phlebopus portentosus. Int J Biol Macromol 2025:142587. [PMID: 40154713 DOI: 10.1016/j.ijbiomac.2025.142587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Phlebopus portentosus, a bolete renowned for its exceptional flavor, delightful taste, and pleasant texture, has been reported to exhibit hypoglycemic activity attributed to its polysaccharides. However, the structural characteristics of these polysaccharides and the mechanisms of action remain unclear. In this study, a neutral polysaccharide (PPP-0A) was isolated and purified from its fruiting bodies using DEAE-52 cellulose and Sephacryl S-400 HR propylene dextran gel column chromatography. The structural characteristics of PPP-0A were elucidated at multiple levels, employing SEC-MALLS-RI, GC-MS, IR, methylation analysis, NMR, SEM, and CD. PPP-0A is identified as an α-pyranoside with a molecular weight of 13.2 kDa, comprising galactose, fucose, glucose, mannose, and xylose in the ratios of 62.26:16.96:15.23:4.68:0.87. Methylation and NMR analyses suggest that the backbone of PPP-0A mainly consists of →6)-α-D-Galp-(1→, →2,6)-α-D-Galp-(1→, and →3)-α-D-Glcp-(1→. The branches are formed by α-L-Fucp-(1→ linked to the sugar residue at the O-2 position of →2,6)-α-D-Galp-(1→. Furthermore, we confirmed the potent hypoglycemic activity of PPP-0A through enzyme activity assays, inhibition kinetics, and in vitro insulin resistance experiments using HepG2 cells. This study clearly outlines the structural features of purified polysaccharides from P. portentosus under specific processing conditions, establishing a foundation for further investigation into the structure-activity relationship of these bolete polysaccharides.
Collapse
Affiliation(s)
- Zhang-Chao Pan
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - An-Zhi Li
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Nian-Kai Zeng
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Xin-Quan Yang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China.
| | - Hui-Jing Xie
- International Center for Aging and Cancer, Hainan Medical University, Haikou 571199, China
| | - Jiao Chen
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Ke Zhao
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Yong Wang
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
2
|
Jiang Y, Wang Z, Wang W, Liu Y, Meng Y, Wang Y, Fan M, Cai C. Ganoderma lucidum polysaccharide alleviates cognitive dysfunction by inhibiting neuroinflammation via NLRP3/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119065. [PMID: 39522844 DOI: 10.1016/j.jep.2024.119065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/21/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderma lucidum (G. lucidum), a traditional Chinese medicinal herb, is commonly recommended for its potential to promote mental relaxation and alleviate memory impairment. Recently, there have been reports suggesting that it exhibits anti-neuroinflammatory activity through the gut-brain axis. Cognitive dysfunction is among the most prevalent neurodegenerative diseases. AIM OF THE STUDY This study aimed to investigate the efficacy of polysaccharides extracted from G. lucidum in alleviating cognitive dysfunction. METHODS AND MATERIALS A polysaccharide was extracted through the process of alkali extraction followed by alcohol precipitation. Comprehensive analysis was conducted to characterize the total sugar content, amino acid composition, and sugar chain structure. The levels of inflammatory related factors were assessed using griess reagent, qPCR and western blotting assay in vitro. The efficacy of alleviating cognitive dysfunction was evaluated through a series of behavioral studies in mice model induced by the high-fat high-sugar diet combined with chronic unpredictable mild stress (HFFD/CUMS) in vivo. The mechanism was investigated by 16S rRNA sequence, immunohistochemistry, flow cytometry and short-chain fatty acid detection. RESULTS Ganoderma lucidum polysaccharide (GLP) is a polysaccharide identified as β-glucan. Bioactivity experiments have demonstrated that GLP possesses the potential to ameliorate cognitive dysfunction. The mechanism study revealed that GLP can modulate the composition of gut microbiota and suppress the activation of inflammasomes via NLRP3/NF-κB signaling pathway, thereby attenuating neuroinflammatory. Furthermore, GLP may enhance the peripheral immunity response of the body, leading to a comprehensive regulatory effect. CONCLUSION A polysaccharide alleviates cognitive dysfunction via inhibiting neuroinflammation.
Collapse
Affiliation(s)
- Yudi Jiang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Shandong Key Laboratory of Glycoscience and Glycotherapeutic, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Zhe Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Shandong Key Laboratory of Glycoscience and Glycotherapeutic, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Wanshuai Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Shandong Key Laboratory of Glycoscience and Glycotherapeutic, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yang Liu
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Shandong Key Laboratory of Glycoscience and Glycotherapeutic, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yang Meng
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, Shandong, China
| | - Yaozhong Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, Shandong, China
| | - Minghao Fan
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, 266100, Shandong, China.
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Shandong Key Laboratory of Glycoscience and Glycotherapeutic, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
3
|
Tang N, Zhang C, Ma K, Wang X, Xiao L, Zhang X, Rui X, Li W. Advanced structural characterization and in vitro fermentation prebiotic properties of cell wall polysaccharide from Kluyveromyces marxianus. Int J Biol Macromol 2023; 241:124420. [PMID: 37085078 DOI: 10.1016/j.ijbiomac.2023.124420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/26/2023] [Accepted: 04/08/2023] [Indexed: 04/23/2023]
Abstract
Through previous study, the three yeast α-mannans (MPS) from various sources of Kluyveromyces marxianus (LZ-MPS, MC-MPS, and G-MPS) were preliminarily characterized. In this study, the advanced structural characterization and the in vitro human fecal fermentation behavior of the three MPS were investigated. According to the results of this study, the polysaccharide molecules of the three MPS were aggregated in solution, supporting their branched chain structure. After in vitro fermentation, the molecular weight and pH of fermentation broth decreased significantly, indicating that the three MPS could be utilized by human gut microbiota. Meanwhile, the production of total short-chain fatty acids (SCFAs) of the three MPS was promoted, especially the production of propionic acid was 45.55, 38.23, and 38.87 mM, respectively. In particular, the three MPS have the ability to alter the composition of human gut microbiota, especially to promote the proliferation of Bacteroidetes, suggesting that the bioactivities of the three MPS can be significantly influenced by intestine Bacteroidetes. In terms of metabolism, all MPS can promote cofactors, vitamins, amino acid metabolism, and glycan biosynthesis and metabolism of bacteria. In consequence, the three MPS were confirmed to regulate the human gut microbiota, increase the level of SCFAs, promote the metabolisms of bacteria on amino acid and glycan, and improve the intestinal health.
Collapse
Affiliation(s)
- Nanyu Tang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Changliang Zhang
- Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu 214400, PR China; Probiotics Australia Pty, Ormeau, Queensland 4208, Australia
| | - Kai Ma
- Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu 214400, PR China; Probiotics Australia Pty, Ormeau, Queensland 4208, Australia
| | - Xiaomeng Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Luyao Xiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xueliang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xin Rui
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wei Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
4
|
Wu G, Gu W, Chen G, Cheng H, Li D, Xie Z. Interactions of tea polysaccharides with gut microbiota and their health-promoting effects to host: Advances and perspectives. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
5
|
Structural characterization of peach gum polysaccharide and its effects on the regulation of DSS-induced acute colitis. Int J Biol Macromol 2023; 225:1224-1234. [PMID: 36427612 DOI: 10.1016/j.ijbiomac.2022.11.183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
The structure and the effect of polysaccharide from peach gum (DPG2) on ameliorating DSS-induced acute colitis in mice were investigated in the present study. The results showed that DPG2 was identified as an AG II arabinogalactan with the backbone of β-D-(1 → 6)-galactan, which consisted of mannose, glucuronic acid, galactose, xylose and arabinose with a molar ratio of 4.64:1.02:2.61:39.82:3.89:48.02. Moreover, DPG2 behaved as a flexible chain conformation with a coil-like structure with a molecular weight (Mw) of 5.21 × 105 g/mol. Furthermore, the worm-like chain model parameters for DPG2 were estimated as follows: ML = 379 nm-1, q = 0.74 nm and d = 0.82 nm. The results of the animal assay showed that the intake of DPG2 not only effectively improved the phenotypes of DSS-induced colitis in mice, but also significantly improved the oxidative stress status of mice, such as regulating NO content and T-SOD and MPO levels and repairing oxidative damage to the colonic mucosa. Moreover, DPG2 improved the inflammation of DSS-induced colitis in mice by inhibiting the secretion of the proinflammatory cytokines TNF-α, IFN-γ, IL-1β, IL-6 and IL-17. Therefore, these results suggested that peach gum polysaccharide showed protective effects against colitis, and has great potential for the application of functional components in the food industry.
Collapse
|
6
|
Yuan H, Dong L, Zhang Z, He Y, Ma X. Production, structure, and bioactivity of polysaccharide isolated from Tremella fuciformis. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Dong FK, Quan XG, Wang QB, Liu ZM, Cui T, Wang WJ, Tang DM, Zhang RM, Zhang C, Wang HY, Ren Q. Purification, structural characterization, and anticoagulant activity evaluation of chondroitin sulfate from codfish (Gadus macrocephalus) bones. Int J Biol Macromol 2022; 210:759-767. [PMID: 35526771 DOI: 10.1016/j.ijbiomac.2022.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/13/2022] [Accepted: 05/01/2022] [Indexed: 11/28/2022]
Abstract
Chondroitin sulfate (CCS) was purified from discarded codfish (Gadus macrocephalus) bones, and its chemical structure and anticoagulant activity were assessed. CCS was obtained via enzymatic lysis and ion-exchange column chromatography, with a yield of approximately 0.15%. High-performance gel performance chromatography revealed CCS to be a largely homogeneous polysaccharide with a relatively low molecular weight of 12.3 kDa. FT-IR spectroscopy, NMR spectroscopy, and SAX-HPLC indicated that CCS was composed of monosulfated disaccharides (ΔDi4S 73.85% and ΔDi6S 19.06%) and nonsulfated disaccharides (ΔDi0S 7.09%). In vitro anticoagulation analyses revealed that CCS was able to significantly prolong activated partial thromboplastin time (APTT) and thrombin time (TT) (p < 0.05). At a CCS concentration of 5 μg/mL and 25 μg/mL, APTT and TT were approximately 1.08 and 1.12 times higher, respectively, compared to the negative control group. The results indicated that CCS might offer value as a dietary fiber supplement with the potential to prevent the incidence of coagulation-related thrombosis.
Collapse
Affiliation(s)
- Fa-Kun Dong
- Department of Pharmacy, Weifang Medical University, Weifang, Shandong, China; Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Xian-Gao Quan
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Qing-Bing Wang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Zhao-Ming Liu
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Teng Cui
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Wen-Jing Wang
- Rongsense Aquatic Food Group Co. LTD, Rizhao, Shandong, China
| | - Dao-Min Tang
- Rongsense Aquatic Food Group Co. LTD, Rizhao, Shandong, China
| | - Rui-Ming Zhang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Chen Zhang
- Department of Pharmacy, Weifang Medical University, Weifang, Shandong, China; Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Hui-Yun Wang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| | - Qiang Ren
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| |
Collapse
|
8
|
Zhu J, Chen X, Li F, Wei K, Chen J, Wei X, Wang Y. Preparation, Physicochemical and Hypoglycemic Properties of Natural Selenium-Enriched Coarse Tea Glycoproteins. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:258-264. [PMID: 35612700 DOI: 10.1007/s11130-022-00975-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Various functional components in tea have been well developed, but less research has been explored on glycoproteins in tea. In this paper, three types of glycoprotein fractions, namely tea selenium-binding glycoprotein1-1 (TSBGP1-1), TSBGP2-1, and TSBGP3-1, respectively, were extracted and purified from selenium-enriched coarse green tea. Chemical analysis revealed that three fractions were glycoproteins, but their selenium content, molecular weight, and monosaccharide composition were significantly different. Fourier transforms infrared (FT-IR) analysis indicated that three fractions contained characteristic absorption peaks of glycoproteins but differed in secondary structural composition. Thermogravimetric (TG) analysis showed that the thermal stability of the three fractions was dramatically distinct. The in vitro hypoglycemic activity showed that TSBGPs significantly activated the insulin receptor substrate 2 (IRS2)/protein kinase B (Akt) pathway in LO2 cells, then enhanced glucose metabolism and inhibited gluconeogenesis, and finally ameliorated insulin resistance (IR) and glucose metabolism disorders. Furthermore, Pearson correlation analysis reveals that the hypoglycemic activity was significantly correlated with Se, protein, monosaccharide composition (especially glucose), molecular weight, and secondary structure. Our results show that Se-enriched tea glycoprotein is a desirable candidate for developing anti-diabetic food, and TSBGP-2 and TSBGP-3 had a better regulation effect. Our results can provide a research reference for the extraction, physicochemical property, and function of selenium-enriched plant glycoproteins.
Collapse
Affiliation(s)
- Jiangxiong Zhu
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai, 200234, China
| | - Xueqing Chen
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai, 200234, China
| | - Fanglan Li
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai, 200234, China
| | - Kang Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Jiwang Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Xinlin Wei
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai, 200234, China.
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| | - Yuanfeng Wang
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai, 200234, China.
| |
Collapse
|
9
|
Influencing Factors on the Physicochemical Characteristics of Tea Polysaccharides. Molecules 2021; 26:molecules26113457. [PMID: 34200163 PMCID: PMC8201348 DOI: 10.3390/molecules26113457] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 11/18/2022] Open
Abstract
Tea polysaccharides (TPSs) are one of the main bioactive constituents of tea with various biological activities such as hypoglycemic effect, antioxidant, antitumor, and immunomodulatory. The bioactivities of TPSs are directly associated with their structures such as chemical composition, molecular weight, glycosidic linkages, and conformation among others. To study the relationship between the structures of TPSs and their bioactivities, it is essential to elucidate the structure of TPSs, particularly the fine structures. Due to the vast variation nature of monosaccharide units and their connections, the structure of TPSs is extremely complex, which is also affected by several major factors including tea species, processing technologies of tea and isolation methods of TPSs. As a result of the complexity, there are few studies on their fine structures and chain conformation. In the present review, we aim to provide a detailed summary of the multiple factors influencing the characteristics of TPS chemical structures such as variations of tea species, degree of fermentation, and preparation methods among others as well as their applications. The main aspects of understanding the structural difference of TPSs and influencing factors are to assist the study of the structure and bioactivity relationship and ultimately, to control the production of the targeted TPSs with the most desired biological activity.
Collapse
|
10
|
Gao Y, Wang Y, Ji X, Xiao Y, Xiao B, Peng P. Tea polysaccharides from Camellia sinensis: chemical analysis, structural characterization, and inhibition of HeLa cells activity. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.1877957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yuefang Gao
- College of Horticulture, Northwest A&F University, Yangling, China
| | | | - Xuening Ji
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Yao Xiao
- Department of Foreign Languages, Northwest A&F University, Yangling, China
| | - Bin Xiao
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Pai Peng
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Cheng J, Song J, Liu Y, Lu N, Wang Y, Hu C, He L, Wei H, Lv G, Yang S, Zhang Z. Conformational properties and biological activities of α-D-mannan from Sanghuangporus sanghuang in liquid culture. Int J Biol Macromol 2020; 164:3568-3579. [DOI: 10.1016/j.ijbiomac.2020.08.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
|
12
|
Structural characterization and immunostimulatory activity of a glucan from Cyclina sinensis. Int J Biol Macromol 2020; 161:779-786. [DOI: 10.1016/j.ijbiomac.2020.06.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
|
13
|
Chen D, Chen G, Sun Y, Zeng X, Ye H. Physiological genetics, chemical composition, health benefits and toxicology of tea (Camellia sinensis L.) flower: A review. Food Res Int 2020; 137:109584. [PMID: 33233193 DOI: 10.1016/j.foodres.2020.109584] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
The flower of tea (Camellia sinensis L.) plant has been paid an increasing attention in the last twenty years, since it was found that tea flowers contained representative constituents similar to those of tea leaves, such as catechins, caffeine and amino acids. Tea flower is theoretically valuable although it has been considered as an industrial waste over a long period of time. This review summarizes the research findings conducted until now on physiological genetics, chemical composition, health benefits and toxicology of tea flowers, aiming to foresee their future applications. A lot of genes are involved in flower development and the synthesis and transmission of various chemicals in tea flowers. The chemical composition of tea flower consists mainly of catechins, polysaccharides, proteins, amino acids and saponins and thus tea flower possesses various health benefits such as antioxidant, anti-inflammatory, immunostimulating, antitumor, hypoglycemic, anti-obesity and anti-allergic activities. Moreover, tea flower contains a protease that can elevate the free amino acids content in the tea infusion by almost two folds. More importantly, the enzymatic activity of the protease is much higher than that of the commercially available proteases. Additionally, aqueous extracts of tea flower are demonstrated to safe to animals. Thus, the potential uses of tea flowers in food and medical fields are warranted.
Collapse
Affiliation(s)
- Dan Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | - Hong Ye
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
14
|
Hei Z, Zhao M, Tian Y, Chang H, Shen X, Xia G, Wang J. Isolation and Characterization of a Novel Sialoglycopeptide Promoting Osteogenesis from Gadus morhua Eggs. Molecules 2019; 25:molecules25010156. [PMID: 31906039 PMCID: PMC6983019 DOI: 10.3390/molecules25010156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/12/2022] Open
Abstract
Gadus morhua eggs contain several nutrients, including polyunsaturated fatty acids, lecithin and glycoproteins. A novel sialoglycopeptide from the eggs of G. morhua (Gm-SGPP) was extracted with 90% phenol and purified by Q Sepharose Fast Flow (QFF) ion exchange chromatography, followed by S-300 gel filtration chromatography. Gm-SGPP contained 63.7% carbohydrate, 16.2% protein and 18.6% N-acetylneuraminic acid. High-performance size exclusion chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that Gm-SGPP is a 7000-Da pure sialoglycopeptide. β-elimination reaction suggested that Gm-SGPP contained N-glycan units. Amino acid N-terminal sequence analysis indicated the presence of Ala-Ser-Asn-Gly-Thr-Gln-Ala-Pro amino acid sequence. Moreover, N-glycan was connected at the third Asn location of the peptide chain through GlcNAc. Gm-SGPP was composed of D-mannose, D-glucuronic acid and D-galactose. Fourier transform-infrared spectroscopy (FT-IR), 1H-nuclear magnetic resonance spectroscopy (1H-NMR) and methylation analysis were performed to reveal the structure profile of Gm-SGPP. In vitro results showed that the proliferation activity of MC3T3-E1 cells was significantly promoted by Gm-SGPP. In vivo data revealed that Gm-SGPP increased the calcium and phosphorus content of tibias and promoted longitudinal bone growth in adolescent rats.
Collapse
Affiliation(s)
- Zhiliang Hei
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China
- College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Meihui Zhao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China
- College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Yingying Tian
- Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China
| | - Hong Chang
- Hainan Institute for Food Control, Hainan 570228, China
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China
- College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China
- College of Food Science and Technology, Hainan University, Hainan 570228, China
- Correspondence: (G.X.); (J.W.); Tel.: +86-0898-6619-6803 (G.X.); +86-0532-8203-1948 (J.W.); Fax: +86-0532-8203-2468 (G.X.); +86-0898-6619-6803 (J.W.)
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Correspondence: (G.X.); (J.W.); Tel.: +86-0898-6619-6803 (G.X.); +86-0532-8203-1948 (J.W.); Fax: +86-0532-8203-2468 (G.X.); +86-0898-6619-6803 (J.W.)
| |
Collapse
|
15
|
Ye J, Hua X, Zhao Q, Zhao W, Chu G, Zhang W, Yang R. Chain conformation and rheological properties of an acid-extracted polysaccharide from peanut sediment of aqueous extraction process. Carbohydr Polym 2019; 228:115410. [PMID: 31635751 DOI: 10.1016/j.carbpol.2019.115410] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/21/2019] [Accepted: 09/29/2019] [Indexed: 12/20/2022]
Abstract
A polysaccharide (PPS) in peanut sediment of aqueous extraction process was obtained at pH4.0, purified via anion-exchange chromatography. The composition, chain conformation and rheological properties were investigated. PPS mainly consisted of arabinose, galacturonic acid, xylose, and rhamnose. The intrinsic viscosity [η] was 0.71 dL/g in 0.1 M NaNO3 solution. The weight-average molar mass Mw and polydispersity index were 3.77 × 105 g/mol and 1.25, suggesting high homogeneity. The average radius of gyration (Rg), hydrodynamic radius (Rh), Rg/Rh ratio and conformation parameter v were 25.5, 18.2, 1.40 and 0.21, respectively, indicating compact coil chain conformation with branched structure. Molecular morphology revealed that PPS displayed chain shape comprised of spheres with a diameter range of 15-50 nm and apparent length of chains mainly ranged from 100 to 300 nm. The aggregation caused by molecular self-association enhanced with concentration increasing. Additionally, Newtonian behavior was observed at various concentrations. Increase in temperature effectively broke this behavior. 10.0 wt.% PPS possessed activation energy of 21.7 KJ/mol, was structured liquid and almost fitted Cox-Merz rule. These closely related with its conformation and molecular self-association behavior.
Collapse
Affiliation(s)
- Jianfen Ye
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, China
| | - Xiao Hua
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, China
| | - Qiyan Zhao
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, China
| | - Wei Zhao
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, China
| | - Guanhe Chu
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, China
| | - Wenbin Zhang
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, China
| | - Ruijin Yang
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, China.
| |
Collapse
|
16
|
Chen Y, Zhou Y, Zeng L, Dong F, Tu Y, Yang Z. Occurrence of Functional Molecules in the Flowers of Tea (Camellia sinensis) Plants: Evidence for a Second Resource. Molecules 2018; 23:molecules23040790. [PMID: 29596355 PMCID: PMC6017242 DOI: 10.3390/molecules23040790] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 11/16/2022] Open
Abstract
Tea (Camellia sinensis) is an important crop, and its leaves are used to make the most widely consumed beverage, aside from water. People have been using leaves from tea plants to make teas for a long time. However, less attention has been paid to the flowers of tea plants, which is a waste of an abundant resource. In the past 15 years, researchers have attempted to discover, identify, and evaluate functional molecules from tea flowers, and have made insightful and useful discoveries. Here, we summarize the recent investigations into these functional molecules in tea flowers, including functional molecules similar to those in tea leaves, as well as the preponderant functional molecules in tea flowers. Tea flowers contain representative metabolites similar to those of tea leaves, such as catechins, flavonols, caffeine, and amino acids. The preponderant functional molecules in tea flowers include saponins, polysaccharides, aromatic compounds, spermidine derivatives, and functional proteins. We also review the safety and biological functions of tea flowers. Tea flower extracts are proposed to be of no toxicological concern based on evidence from the evaluation of mutagenicity, and acute and subchronic toxicity in rats. The presence of many functional metabolites in tea flowers indicates that tea flowers possess diverse biological functions, which are mostly related to catechins, polysaccharides, and saponins. Finally, we discuss the potential for, and challenges facing, future applications of tea flowers as a second resource from tea plants.
Collapse
Affiliation(s)
- Yiyong Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Dafeng Road 6, Tianhe District, Guangzhou 510640, China.
| | - Ying Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Fang Dong
- Guangdong Food and Drug Vocational College, Longdongbei Road 321, Tianhe District, Guangzhou 510520, China.
| | - Youying Tu
- Department of Tea Science, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China.
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
17
|
Wang L, Liu HM, Xie AJ, Wang XD, Zhu CY, Qin GY. Chinese quince ( Chaenomeles sinensis ) seed gum: Structural characterization. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Wei C, He P, He L, Ye X, Cheng J, Wang Y, Li W, Liu Y. Structure characterization and biological activities of a pectic polysaccharide from cupule of Castanea henryi. Int J Biol Macromol 2017; 109:65-75. [PMID: 29248551 DOI: 10.1016/j.ijbiomac.2017.12.081] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
A pectic polysaccharide (CHIP3) was fractionated from the natural cupule of Castanea henryi. It contained mannose (10.70%), rhamnose (8.70%), galacturonic acid (38.21%), galactose (13.75%) and arabinose (28.63%) with a molecular weight of 2.44 × 104 g/mol by multi-laser light scattering. The structure was elucidated by using FT-IR spectroscopy, methylation analysis and NMR analysis. Results showed that the backbone of CHIP3 consisted of 1, 4-α-linked d-GalpA residues containing the non-methyl-esterified carboxyl groups, interspersed with a few 1,2-α-l-Rhap units. Its side chains were attached by two branches to O-4 of Rhap with 1,4-β-linked d-Galp units and 1,5-α-l-linked Araf units bearing 3,5-substituted α-l-linked Araf residues as branching points. AFM data revealed it existed as a flexible chain in 0.1 M NaNO3 aqueous solution. Furthermore, CHIP3 was demonstrated to have notable antioxidant activity of FRAP, ABTS+ radical scavenging and reducing power. Cytotoxicity assay showed it displayed inhibitory activity against HepG2 cells with IC50 values of 242.6 μg/mL.
Collapse
Affiliation(s)
- Chaoyang Wei
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China; Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Pengfei He
- Department of Processing, Marine Fisheries Research Institute of Zhejiang, Zhoushan 316021, China
| | - Liang He
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China.
| | - Xingqian Ye
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Junwen Cheng
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Yanbin Wang
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Weiqi Li
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yu Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Gao Y, Zhou Y, Zhang Q, Zhang K, Peng P, Chen L, Xiao B. Hydrothermal extraction, structural characterization, and inhibition HeLa cells proliferation of functional polysaccharides from Chinese tea Zhongcha 108. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.057] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
20
|
Li J, Yuan P, Wang X, Aipire A, Li M, Yang J, Tao H, Ying T, Fu C, Wei X, Zhang F, Li J. Purification, characterization and bioactivities of polysaccharides from Pleurotus ferulae. Food Funct 2017; 8:1905-1914. [DOI: 10.1039/c7fo00227k] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pleurotus ferulae polysaccharides promote the maturation of dendritic cells.
Collapse
|
21
|
Chen G, Yuan Q, Saeeduddin M, Ou S, Zeng X, Ye H. Recent advances in tea polysaccharides: Extraction, purification, physicochemical characterization and bioactivities. Carbohydr Polym 2016; 153:663-678. [PMID: 27561538 DOI: 10.1016/j.carbpol.2016.08.022] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 07/31/2016] [Accepted: 08/08/2016] [Indexed: 01/18/2023]
Abstract
Tea has a long history of medicinal and dietary use. Tea polysaccharide (TPS) is regarded as one of the main bioactive constituents of tea and is beneficial for health. Over the last decades, considerable efforts have been devoted to the studies on TPS: extraction, structural feature and bioactivity of TPS. However, it has been received much less attention compared with tea polyphenols. In order to provide new insight for further development of TPS in functional foods, in present review we summarize the recent literature, update the information and put forward future perspectives on TPS covering its extraction, purification, quantitative determination techniques as well as physicochemical characterization and bioactivities.
Collapse
Affiliation(s)
- Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qingxia Yuan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Muhammad Saeeduddin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | - Hong Ye
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
22
|
Zhu ZY, Luo Y, Dong GL, Ren YY, Chen LJ, Guo MZ, Wang XT, Yang XY, Zhang Y. Effects of the ultra-high pressure on structure and α-glucosidase inhibition of polysaccharide from Astragalus. Int J Biol Macromol 2016; 87:570-6. [DOI: 10.1016/j.ijbiomac.2016.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/04/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
|
23
|
Xiao JB, Jiang H. A review on the structure-function relationship aspect of polysaccharides from tea materials. Crit Rev Food Sci Nutr 2016; 55:930-8. [PMID: 24915319 DOI: 10.1080/10408398.2012.678423] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tea (Camellia sinensis) has a long history of medicinal use in the world. The chemical components of tea mainly consist of polyphenols (TPP), proteins, polysaccharides (TPS), chlorophyll, alkaloids, and so on. Great advances have been made in chemical and bioactive studies of catechins and TPP from tea in recent decades. However, the TPS from tea materials have received much less consideration than that of TPP. The number of relevant publications on the TPS from tea leaves and flowers has increased rapidly in recent years. This mini-review summarizes the structure-function relationship of TPS from tea leaves and flowers. The application of purified TPS from tea material as functional or nutritional foods was still little. It will help to develop the function foods with tea TPS and better understand the structure-bioactivity relationship of tea TPS.
Collapse
Affiliation(s)
- Jian Bo Xiao
- a Department of Biology , College of Life & Environment Science, Shanghai Normal University , Shanghai , 200234 , PR China
| | | |
Collapse
|
24
|
Scoparo CT, Souza LM, Dartora N, Sassaki GL, Santana-Filho AP, Werner MFP, Borato DG, Baggio CH, Iacomini M. Chemical characterization of heteropolysaccharides from green and black teas (Camellia sinensis) and their anti-ulcer effect. Int J Biol Macromol 2016; 86:772-81. [PMID: 26861826 DOI: 10.1016/j.ijbiomac.2016.02.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 01/18/2023]
Abstract
In order to obtain polysaccharides from green and black teas (Camellia sinensis), commercial leaves were submitted to infusion and then to alkaline extraction. The extracts were fractionated by freeze-thawing process, giving insoluble and soluble fractions. Complex arabinogalactan protein from the soluble fractions of both teas (GTPS and BTPS) were determined by methylation analysis and (1)H/(13)C-HSQC spectroscopy, showing a main chain of (1→3)-β-Galp, substituted at O-6 by (1→6)-linked β-Galp with side chains of α-Araf and terminal units of α-Araf, α-Fucp and α-Rhap. A highly branched heteroxylan from the insoluble fractions (GTPI and BTPI) showed in methylation analysis and (1)H/(13)C-HSQC spectroscopy the main chain of (1→4)-β-Xylp, substituted in O-3 by α-Araf, β-Galp and α-Glcp units. Evaluating their gastroprotective activity, the fractions containing the soluble heteropolysaccharides from green (GTPS) and black teas (BTPS) reduced the gastric lesions induced by ethanol. Furthermore, the fraction of insoluble heteropolysaccharides of green (GTPI) and black (BTPI) teas also protected the gastric mucosa. In addition, the maintenance of gastric mucus and reduced glutathione (GSH) levels was involved in the polysaccharides gastroprotection.
Collapse
Affiliation(s)
- Camila T Scoparo
- Department of Biochemistry and Molecular Biology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, Brazil
| | - Lauro M Souza
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdade Pequeno Príncipe, Curitiba, PR, Brazil
| | - Nessana Dartora
- Department of Biology, Sector of Biological Sciences, State University of Centro-Oeste, Guarapuava, PR, Brazil
| | - Guilherme L Sassaki
- Department of Biochemistry and Molecular Biology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, Brazil
| | - Arquimedes P Santana-Filho
- Department of Biochemistry and Molecular Biology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, Brazil
| | - Maria Fernanda P Werner
- Department of Pharmacology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, Brazil
| | - Débora G Borato
- Department of Pharmacology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, Brazil
| | - Cristiane H Baggio
- Department of Pharmacology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, Brazil.
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
25
|
Wei CY, Li WQ, Shao SS, He L, Cheng J, Han S, Liu Y. Structure and chain conformation of a neutral intracellular heteropolysaccharide from mycelium of Paecilomyces cicadae. Carbohydr Polym 2016; 136:728-37. [DOI: 10.1016/j.carbpol.2015.09.088] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 09/22/2015] [Accepted: 09/24/2015] [Indexed: 01/12/2023]
|
26
|
Purification and structural characterization of an α-glucosidase inhibitory polysaccharide from apricot (Armeniaca sibirica L. Lam.) pulp. Carbohydr Polym 2015; 121:309-14. [PMID: 25659703 DOI: 10.1016/j.carbpol.2014.12.065] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/07/2014] [Accepted: 12/22/2014] [Indexed: 11/20/2022]
Abstract
In this study, the crude polysaccharide (APPS) from the fruiting bodies of apricot (Armeniaca sibirica L. Lam.) was isolated and fractionated by ultrafiltration and Sephadex G-75 gel chromatography. The hypoglycemic activities of all fractions were determined by α-glucosidase inhibitory activity in vitro. The fraction APPS1-2 showed the best activity with an IC50 of 6.06 mg/mL. The properties and chemical compositions of this fraction were analyzed with high-performance liquid chromatography, gel permeation chromatography-eighteen angle laser light scattering instrument, UV spectroscopy, infrared spectroscopy, and NMR spectroscopy ((1)H). The results demonstrated that APPS1-2 was a neutral glycoconjugate with a molecular weight of 25.93 kDa. It comprised rhamnose, glucose, mannose, and galactose, with a relative molar ratio of 1.34:2.01:0.48:0.35. The backbone of APPS1-2 may consist of rhamnose and glucose, but its branches may consist of mannose and galactose. The IR and UV spectrum of APPS1-2 revealed the typical characteristics of heteropolysaccharide. (1)H NMR spectrum showed that APPS1-2 contained α-configurations.
Collapse
|
27
|
Cui J, Gu X, Zhang Q, Ou Y, Wang J. Production and anti-diabetic activity of soluble dietary fiber from apricot pulp by Trichoderma viride fermentation. Food Funct 2015; 6:1635-42. [DOI: 10.1039/c5fo00207a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Soluble dietary fiber (SDF) was prepared by Trichoderma viride fermentation by using apricot pulp as the raw material.
Collapse
Affiliation(s)
- Jie Cui
- College of Nature Conservation
- Beijing Forestry University
- Beijing 100083
- P.R. China
| | - Xin Gu
- College of Nature Conservation
- Beijing Forestry University
- Beijing 100083
- P.R. China
| | - Qiaohui Zhang
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- P.R. China
| | - Yangjie Ou
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- P.R. China
| | - Jianzhong Wang
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- P.R. China
| |
Collapse
|
28
|
Purification and Partial Characterization of an Acidic α-Glucan–Protein Complex from the Fruiting Body ofPleurotus sajor-cajuand Its Effect on Macrophage Activation. Biosci Biotechnol Biochem 2014; 76:1884-90. [DOI: 10.1271/bbb.120371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Hu DJ, Cheong KL, Zhao J, Li SP. Chromatography in characterization of polysaccharides from medicinal plants and fungi. J Sep Sci 2012; 36:1-19. [DOI: 10.1002/jssc.201200874] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/10/2012] [Accepted: 10/10/2012] [Indexed: 02/04/2023]
Affiliation(s)
- De-jun Hu
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences; University of Macau; Macao; China
| | - Kit-leong Cheong
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences; University of Macau; Macao; China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences; University of Macau; Macao; China
| | - Shao-ping Li
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences; University of Macau; Macao; China
| |
Collapse
|
30
|
Hong T, Zhao J, Dong M, Meng Y, Mu J, Yang Z. Composition and bioactivity of polysaccharides from Inula britannica flower. Int J Biol Macromol 2012; 51:550-4. [DOI: 10.1016/j.ijbiomac.2012.06.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 11/30/2022]
|
31
|
Yang R, Meng D, Song Y, Li J, Zhang Y, Hu X, Ni Y, Li Q. Simultaneous decoloration and deproteinization of crude polysaccharide from pumpkin residues by cross-linked polystyrene macroporous resin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8450-8456. [PMID: 22860708 DOI: 10.1021/jf3031315] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A novel method for the purification of crude polysaccharide from fermentation broth of pumpkin residues by macroporous resins was developed. Through static adsorption and desorption and adsorption kinetic tests, six resins (AB-8, S-8, HPH480, HPD100, X-5, and D101) with different polarity, diameter, and surface area were studied for simultaneous decoloration and deproteinization of crude polysaccharide, and S-8 was chosen as the best one. Dynamic breakthrough and desorption tests were performed in a glass column packed with S-8 resin, and the resulting adsorption ratios of pigment and protein were 84.3% and 75.9% (w/w), respectively, with a recovery ratio of polysaccharide 84.7% (w/w). S-8 resin also exhibited higher purification efficiency than the other tested traditional methods. Moreover, UV/vis spectroscopy (200-900 nm) analysis revealed most of the pigment and protein were absorbed by S-8 resin, and HPLC (containing a refractive index detector and a HPSEC column) results indicated that there was no degradation of the polysaccharide. This automated and efficient method via adsorption-desorption strategy could have potential in scale-up purification and preparation of polysaccharide in the future.
Collapse
Affiliation(s)
- Rui Yang
- College of Food Science and Nutritional Engineering, China Agricultural University , National Engineering Research Center for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100083, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Morikawa T, Miyake S, Miki Y, Ninomiya K, Yoshikawa M, Muraoka O. Quantitative analysis of acylated oleanane-type triterpene saponins, chakasaponins I-III and floratheasaponins A-F, in the flower buds of Camellia sinensis from different regional origins. J Nat Med 2012; 66:608-13. [PMID: 22307219 DOI: 10.1007/s11418-012-0627-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 01/05/2012] [Indexed: 11/26/2022]
Abstract
A quantitative analytical method was developed for the determination of acylated oleanane-type triterpene saponins, chakasaponins I-III (1-3) and floratheasaponins A-F (4-9), found in Camellia sinensis (Theaceae). The practical conditions for separation and detection of these saponins were established on an ODS column with methanol containing 5 mM trifluoroacetic acid as a mobile phase, and the detection and quantitation limits of the method were estimated to be 1.1-3.8 and 3.5-12.5 ng, respectively. The relative standard deviation values of intra- and interday precision were lower than 2.35 and 6.12%, respectively, overall mean recoveries of all saponins being 94.7-108.8%, and the correlation coefficients of all the calibration curves showed good linearity within the test ranges. To approve the validity of the protocol, extracts of 13 kinds of C. sinensis collected in China, Taiwan, Japan, and India were evaluated. The results indicated that the assay was reproducible and precise, and could be readily utilized for the quality evaluation of tea flowers. It was noteworthy that the distinct regional difference was observed with respect to the content of chakasaponins and floratheasaponins, more chakasaponins being contained in the extracts of tea flowers from Fujian and Sichuan provinces, China than those from Japan, Taiwan, and India. Optimum conditions for the extraction process were also established.
Collapse
Affiliation(s)
- Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kinki University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Yi WS, Qin LH, Cao JB. Investigation of morphological change of green tea polysaccharides by SEM and AFM. SCANNING 2011; 33:450-454. [PMID: 21796644 DOI: 10.1002/sca.20263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/08/2011] [Indexed: 05/31/2023]
Abstract
The objective of this study is to investigate the morphological structure and its change of green tea polysaccharides (GTPS) before and after enzyme reaction by scanning electron microscope (SEM) and atomic force microscope (AFM). Before enzyme reaction, with the novel sample preparation method SEM images of GTPS have obtained many branches and network structures. After enzyme reaction, the morphological structure of GTPS changed, and surface roughness increased. The microstructure of GTPS from SEM with the novel sample preparation method was in accordance with the results from AFM with the tapping mode. The results indicate that the novel sample preparation of GTPS for SEM is a simple, feasible, and reliable method for observing the surface morphology.
Collapse
Affiliation(s)
- Wei Song Yi
- School of Science, Huazhong Agricultural University, Wuhan, People's Republic of China
| | | | | |
Collapse
|
34
|
Xu R, Ye H, Sun Y, Tu Y, Zeng X. Preparation, preliminary characterization, antioxidant, hepatoprotective and antitumor activities of polysaccharides from the flower of tea plant (Camellia sinensis). Food Chem Toxicol 2011; 50:2473-80. [PMID: 22033094 DOI: 10.1016/j.fct.2011.10.047] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/10/2011] [Accepted: 10/12/2011] [Indexed: 01/21/2023]
Abstract
In the present study, the crude polysaccharides from the flowers of tea plant (Camellia sinensis) (TFPS) were prepared with hot water and further fractionated on a DEAE-52 cellulose chromatography to afford three purified fractions of TFPS-1, TFPS-2 and TFPS-3. Then, their preliminary structures, antioxidant and antitumor activities in vitro and hepatoprotective activity in vivo were investigated. Compared with TFPS-2 and TFPS-3, TFPS-1 had relative higher content of sulfate and relative complicated monosaccharide composition. In addition, TFPS-1 and TFPS-3 showed relative stronger antioxidant activity and inhibitory activity on the growth of human gastric cancer BGC-823 cells. For hepatoprotective activity in vivo, we demonstrated that crude TFPS significantly prevented the increase of serum alanine aminotransferase and aspartate aminotransferase levels, reduced the formation of malondialdehyde and enhanced the activities of superoxide dismutase and glutathione peroxidase in carbon tetrachloride-induced liver injury mice. The results suggested that TFPS should be a potent natural polymer with antioxidant, hepatoprotective and antitumor activities.
Collapse
Affiliation(s)
- Renjie Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
35
|
Wei X, Xi X, Wu M, Wang Y. A novel method for quantitative determination of tea polysaccharide by resonance light scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 79:928-933. [PMID: 21571584 DOI: 10.1016/j.saa.2011.03.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 03/17/2011] [Accepted: 03/24/2011] [Indexed: 05/30/2023]
Abstract
A new method for the determination of tea polysaccharide (TPS) in green tea (Camellia sinensis) leaves has been developed. The method was based on the enhancement of resonance light scattering (RLS) of TPS in the presence of cetylpyridinium chloride (CPC)-NaOH system. Under the optimum conditions, the RLS intensity of CPC was greatly enhanced by adding TPS. The maximum peak of the enhanced RLS spectra was located at 484.02 nm. The enhanced RLS intensity was proportional to the concentration of TPS in the range of 2.0-20 μg/ml. It showed that the new method and phenol-sulfuric acid method give some equivalent results by measuring the standard compounds. The recoveries of the two methods were 96.39-103.7% (novel method) and 100.15-103.65% (phenol-sulfuric acid method), respectively. However, it showed that the two methods were different to some extent. The new method offered a limit of detection (LOD) of 0.047 μg/ml, whereas the phenol-sulfuric acid method gives a LOD of 1.54 μg/ml. Interfered experiment demonstrated that the new method had highly selectivity, and was more suitable for the determination of TPS than phenol-sulfuric method. Stability test showed that new method had good stability. Moreover, the proposed method owns the advantages of easy operation, rapidity and practicability, which suggested that the proposed method could be satisfactorily applied to the determination of TPS in green tea.
Collapse
Affiliation(s)
- Xinlin Wei
- Institute of Food Engineering, College of Life & Environment Science, Shanghai Normal University, 100 Guilin Rd, Shanghai 200234, PR China
| | | | | | | |
Collapse
|
36
|
Wang Y, Yang Z, Wei X. Sugar compositions, α-glucosidase inhibitory and amylase inhibitory activities of polysaccharides from leaves and flowers of Camellia sinensis obtained by different extraction methods. Int J Biol Macromol 2010; 47:534-9. [DOI: 10.1016/j.ijbiomac.2010.07.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/19/2010] [Accepted: 07/26/2010] [Indexed: 01/21/2023]
|