1
|
Jin X, Wu Z, Chen H, Liu W, Gu F, Li J. Extraction and Identification of Polysaccharide from Lentinus edodes and Its Effect on Immunosuppression and Intestinal Barrier Injury Induced by Cyclophosphamide. Int J Mol Sci 2024; 25:12432. [PMID: 39596497 PMCID: PMC11594469 DOI: 10.3390/ijms252212432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Lentinus edodes serves as a significant source of both medicine and food, with its key component, lentinan (LNT), recognized as an effective immunomodulator. However, the mechanisms by which it regulates immune and intestinal functions under conditions of immunosuppression remain unclear. This study aims to investigate the components of lentinan and examine its potential effects on countering cyclophosphamide (CP)-induced immunosuppression, intestinal barrier damage, and dysregulation of gut microbiota. In this study, the effects of LNT were evaluated by serological indicators, histopathological changes in ileum, tight-junction-related protein expression, cytokine expression levels, and gut microbiota 16S rRNA gene sequencing. We found that LNT was effective in mitigating the abnormalities in body weight, immune organ index, and serum levels of IL-6, IL-2, IFN-γ, and IgG in mice induced by CP (p < 0.05). Furthermore, LNT demonstrated the ability to alleviate intestinal barrier damage induced by CP by increasing the mRNA levels of TNF-α, IL-1β, IFN-γ, Occludin, and ZO-1 (p < 0.05). Additionally, 16S rRNA gene sequencing revealed that LNT also normalized the disrupted abundance of Firmicutes, Proteobacteria, and Bacteroidets caused by CP. This restoration brought the gut microbiota back to normal levels and increased the abundance of certain tumor-inhibiting bacteria, such as Alistipes. Overall, lentinan demonstrated the ability to reverse the immunosuppressive effects induced by cyclophosphamide and modulate gut microbiota to restore a healthy microbial balance.
Collapse
Affiliation(s)
- Xiaodi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.J.); (Z.W.); (H.C.); (W.L.); (F.G.)
| | - Zhiyong Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.J.); (Z.W.); (H.C.); (W.L.); (F.G.)
- Heilongjiang Academy of Chinese Medicine Sciences, Harbin 150030, China
| | - Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.J.); (Z.W.); (H.C.); (W.L.); (F.G.)
| | - Weiqi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.J.); (Z.W.); (H.C.); (W.L.); (F.G.)
| | - Fuhua Gu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.J.); (Z.W.); (H.C.); (W.L.); (F.G.)
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.J.); (Z.W.); (H.C.); (W.L.); (F.G.)
| |
Collapse
|
2
|
Wu L, Liu J, Chen K, Zhang L, Li Y. Triterpenoids from the roots of Sanguisorba officinalis and their Nrf2 stimulation activity. PHYTOCHEMISTRY 2023; 214:113803. [PMID: 37516332 DOI: 10.1016/j.phytochem.2023.113803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
Thirteen undescribed ursane-type triterpenoids, named as sangosides A-M (1-13), including two nor-ursanes, one split ring-ursane and ten ursanes, along with thirty-six known triterpenoids (14-49) were isolated and identified from the roots of Sanguisorba officinalis (Rosaceae). Their structures and absolute configurations were elucidated through spectroscopic data, single-crystal X-ray crystallography and electronic circular dichroism analysis. Their Nrf2 activation activity was evaluated in 293 T cells in vitro. Compounds 2, 5-7, 9-13, 19, 25, 26, 28-39, 41 and 46 showed significant Nrf2 agonistic effects compared with the control group at 25 μM, their cytotoxicity and dose-effect relationship were further studied in a dose-dependent manner. Their structure-activity relationships analysis suggested that the pentacyclic triterpenoids (10, 11, 30-34 and 41) contains two pairs of double bonds on the C & E rings and the ursane-type triterpenoids (25 and 26) with a carbonyl to C-2 and a hydroxyl group at C-3 all showed a considerably Nrf2 activation activity. These results suggested that S. officinalis was worthy of further investigation to find small molecule Nrf2 activators and facilitate their utilization as natural antioxidants.
Collapse
Affiliation(s)
- Longlong Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Jingwen Liu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Liuqiang Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| |
Collapse
|
3
|
Lim JW, Seo JK, Jung SJ, Lee KY, Kang SY. An antiviral optimized extract from Sanguisorba officinalis L. roots using response surface methodology, and its efficacy in controlling viral hemorrhagic septicemia of olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109066. [PMID: 37689225 DOI: 10.1016/j.fsi.2023.109066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/19/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Viral hemorrhagic septicemia causes considerable economic losses for Korea's olive flounder (Paralichthys olivaceus) aquaculture farms; therefore, effective antiviral agents for controlling viral hemorrhagic septicemia virus (VHSV) infection are imperative. The present study implemented a Box-Behnken design and cytopathic reduction assay to derive an optimized extract of Sanguisorba officinalis L. roots (OE-SOR) with maximum antiviral activity against VHSV. OE-SOR prepared under optimized extraction conditions (55% ethanol concentration at 50 °C for 5 h) exhibited potent antiviral activity against VHSV, with a 50% effective 0.21 μg/mL concentration and a 340 selective index. OE-SOR also showed direct virucidal activity in the plaque reduction assay. Administering OE-SOR to olive flounder exhibited substantial efficacies against VHSV infection. Fish receiving 100 mg/kg body weight/day of OE-SOR as a preventive (40.0%; p < 0.05) or therapeutic (44.4%; p < 0.05) exhibited a higher relative survival than the untreated VHSV-infected control group (mortalities of 100% and 90%, respectively). In addition, fish fed with OE-SOR (100 mg/kg body weight/day) for two weeks conveyed a significantly higher inflammatory cytokine expression (nuclear factor kappa-light-chain-enhancer of activated B cells [NF-κB], interleukin-1 beta [IL-1β], and tumor necrosis factor-alpha [TNF-α]) than the control group one to two days post-administration. Moreover, no hematological or histological changes were observed in olive flounder treated with OE-SOR over four weeks. Liquid chromatography-quadrupole-time of flight tandem mass spectrometry and -triple quadrupole tandem mass spectrometry analyses identified ziyuglycoside I as a prominent OE-SOR constituent and marker compound (content: 14.5%). This study verifies that OE-SOR is an effective alternative for controlling viral hemorrhagic septicemia in olive flounder farms as it exhibits efficient in vivo anti-VHSV activity and increases innate immune responses.
Collapse
Affiliation(s)
- Jae-Woong Lim
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Joong-Kyeong Seo
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Ki Yong Lee
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - So Young Kang
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, Republic of Korea.
| |
Collapse
|
4
|
Yao S, Yang X, Wu W, Jiang Q, Deng S, Zheng B, Chen L, Chen Y, Xiang X. Effect of Paecilomyces cicadae polysaccharide Pc0-1 on cyclophosphamide-induced immunosuppression and regulation of intestinal flora in mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Son SU, Lee SJ, Shin KS. Immunostimulating and intracellular signaling pathways mechanism on macrophage of rhamnogalacturonan-I type polysaccharide purified from radish leaves. Int J Biol Macromol 2022; 217:506-514. [PMID: 35843395 DOI: 10.1016/j.ijbiomac.2022.07.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/16/2022] [Accepted: 07/10/2022] [Indexed: 12/18/2022]
Abstract
In this study, the intracellular signaling pathways involved in macrophage activation through the RG-I-type polysaccharide (REP-I) purified from radish leaves were elucidated. The gene expression and secretion of immune-related factors such as interleukin (IL)-6, tumor necrosis factor (TNF)-α, and nitrogen oxide (NO) from macrophages were enhanced by the addition of REP-I. Moreover, immunoblotting and immunocytochemistry analyses indicated that REP-I dose-dependently phosphorylated the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways. An investigation using different inhibitors revealed that the effect of REP-I on NO secretion was mostly promoted by c-Jun N-terminal kinase (JNK) and NF-κB. Furthermore, the secretion of IL-6 was mostly induced via extracellular-signal-regulated kinase (ERK), JNK, and NF-κB. TNF-α secretion was mostly induced via NF-κB. In contrast, an investigation using anti-pattern recognition receptor (PRR) antibodies revealed that the effect of REP-I on the secretion of NO was mostly related with dectin-1, scavenger receptor (SR), toll-like receptor (TLR)2, TLR4, CD14, and CD11b. Furthermore, the secretion of IL-6 was mostly involved with SR, and the secretion of TNF-α was mostly relevance to TLR2. In conclusion, it is affirmed that immunostimulatory activation of macrophage of REP-I purified from radish leaves was deeply associated with several PRR and phosphorylating MAPK and NF-κB.
Collapse
Affiliation(s)
- Seung-U Son
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea; Transdisciplinary Major in Learning Health System, Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| | - Sue Jung Lee
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea.
| | - Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea.
| |
Collapse
|
6
|
Mi XJ, Xu XY, Choi HS, Kim H, Cho IH, Yi TH, Kim YJ. The Immune-Enhancing Properties of Hwanglyeonhaedok-Tang-Mediated Biosynthesized Gold Nanoparticles in Macrophages and Splenocytes. Int J Nanomedicine 2022; 17:477-494. [PMID: 35125869 PMCID: PMC8812323 DOI: 10.2147/ijn.s338334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/05/2021] [Indexed: 12/19/2022] Open
Abstract
Background Despite great advances in the field of immunotherapy, there is still a need for novel and effective immunostimulants to overcome challenges, such as instability and autoinflammatory toxicity, associated with conventional immunostimulants. Nanotechnology provides the possibility to overcome these challenges. The well-known classical Chinese formula, Hwanglyeonhaedok-tang (HHT) has been widely used to treat immune-related diseases in clinical practice. Methods We developed novel gold nanoparticles (AuNPs) utilizing one-pot synthesis with the herbal formula-HHT. The optimal conditions for HHT-AuNP biosynthesis were established, and physicochemical properties of the optimized HHT-AuNPs were identified using various spectrometric and microscopic techniques. Bio-TEM analysis revealed that HHT-AuNPs were highly engulfed within RAW264.7 cells without inducing cytotoxicity. The effect of HHT-AuNPs on immunostimulatory activity was evaluated in innate and adaptive immune cells (RAW264.7 macrophages and ICR mice splenocytes) using qRT-PCR, immunoblotting, and ELISA. Results The HHT-AuNPs remarkably increased the nitric oxide (NO) and immune-related cytokines production by activating the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways in RAW264.7 cells. Furthermore, HHT-AuNPs exerted immunostimulatory effects on mouse splenocytes by priming T/B-cells and macrophages. Discussion The present study is the first to demonstrate that HHT-AuNPs could be utilized as immunostimulators to activate both innate and adaptive immune systems. These results provide a foundation for the application of traditional Chinese medicinal formulae in the field of nanomedicine.
Collapse
Affiliation(s)
- Xiao-Jie Mi
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, 17104, Gyeonggi-do, Republic of Korea
| | - Xing Yue Xu
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, 17104, Gyeonggi-do, Republic of Korea
| | - Han Sol Choi
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, 17104, Gyeonggi-do, Republic of Korea
| | - Hoon Kim
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, 17104, Gyeonggi-do, Republic of Korea
| | - Ik Hyun Cho
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Tae-Hoo Yi
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, 17104, Gyeonggi-do, Republic of Korea
| | - Yeon-Ju Kim
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, 17104, Gyeonggi-do, Republic of Korea
- Correspondence: Yeon-Ju Kim; Ik Hyun Cho Tel +82-31-201-5634Fax +82-31-204-8116 Email ;
| |
Collapse
|
7
|
Tao W, Fu T, He ZJ, Zhou HP, Hong Y. Immunomodulatory effects of Radix isatidis polysaccharides in vitro and in vivo. Exp Ther Med 2021; 22:1405. [PMID: 34675998 DOI: 10.3892/etm.2021.10841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022] Open
Abstract
Radix isatidis (R. isatidis) is a commonly used traditional Chinese herbal medicine, which has been used for thousands of years in China and is believed to have the pharmacological properties of heat-clearing and detoxification. Heat-clearing and detoxification are theories of traditional Chinese medicine meaning that R. isatidis could treat febrile disease by clearing heat and reducing swelling. Polysaccharides isolated from R. isatidis by water extraction and alcohol precipitation have exhibited numerous biological activities, including antiviral and immunomodulatory effects. The present study was performed to investigate the immunomodulatory effects of water-soluble R. isatidis polysaccharides (RIPs) on RAW264.7 macrophages and murine splenocytes, and attempt to preliminarily identify the mechanism of immunomodulation. In vitro, RIPs had a low cytotoxicity, as shown by CellTiter 96® AQueous One Solution Cell Proliferation Assay. RAW264.7 cells treated with different concentrations of RIP displayed different morphological changes, from a round shape and aggregation to polygonal shape and dispersion in a dose-dependent manner. In the 5 mg/ml RIP-treated group, the changes of morphology were as same as the lipopolysaccharide-treated group. RIP also significantly enhanced the release of nitric oxide as shown by Griess method, and the secretion of TNF-α and IL-6 in RAW264.7 cells was confirmed by ELISA assay. Western blotting revealed a significant increase of toll-like receptor-4 (TLR-4) in RIP-treated RAW264.7, suggesting that TLR-4 may be associated with the immunomodulatory mechanism of RIP. Animal experiments also demonstrated through ELISA assays a significant increase in IFN-γ and IL-10 levels after the splenocytes of RIP-immunized mice were stimulated by inactivated herpes simplex virus type 2. The immune function of RIP-immunized mice was improved. The present study suggested that RIP could be potentially used as a novel immunomodulator.
Collapse
Affiliation(s)
- Wei Tao
- School of Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310013, P.R. China
| | - Ting Fu
- School of Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310013, P.R. China
| | - Zhuo-Jing He
- School of Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310013, P.R. China
| | - Han-Peng Zhou
- School of Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310013, P.R. China
| | - Yan Hong
- School of Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
8
|
Sun J, Gan C, Huang J, Wang Z, Wu C, Jiang S, Yang X, Peng H, Wei F, Yang C. Determination of Triterpenoids and Phenolic Acids from Sanguisorba officinalis L. by HPLC-ELSD and Its Application. Molecules 2021; 26:molecules26154505. [PMID: 34361658 PMCID: PMC8348980 DOI: 10.3390/molecules26154505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
A novel analytical method involving high-performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) was developed for simultaneous determination of 11 phenolic acids and 12 triterpenes in Sanguisorba officinalis L. Chromatographic separation was conducted with gradient elution mode by using a DiamonsilTM C18 column (250 mm × 4.6 mm, 5 μm) with the mobile phase of 0.1% acetic acid water (A) and methanol (B). The drift tube temperature of ELSD was set at 70 °C and the nitrogen cumulative flow rate was 1.6 L/min. The method was fully validated to be linear over a wide concentration range (R2 ≥ 0.9991). The precisions (RSD) were less than 3.0% and the recoveries were between 97.7% and 101.4% for all compounds. The results indicated that this method is accurate and effective for the determination of 23 functional components in Sanguisorba officinalis L. and could also be successfully applied to study the influence of processing method on those functional components in Sanguisorba officinalis L.
Collapse
Affiliation(s)
- Jiahui Sun
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150086, China; (J.S.); (C.W.); (S.J.); (X.Y.); (H.P.); (F.W.)
| | - Chunli Gan
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150086, China;
| | - Jing Huang
- Department of Inorganic Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150086, China;
| | - Zhenyue Wang
- Department of Resources and Development of Chinese Materia Medica, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Chengcui Wu
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150086, China; (J.S.); (C.W.); (S.J.); (X.Y.); (H.P.); (F.W.)
| | - Shuang Jiang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150086, China; (J.S.); (C.W.); (S.J.); (X.Y.); (H.P.); (F.W.)
| | - Xinrong Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150086, China; (J.S.); (C.W.); (S.J.); (X.Y.); (H.P.); (F.W.)
| | - Hesong Peng
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150086, China; (J.S.); (C.W.); (S.J.); (X.Y.); (H.P.); (F.W.)
| | - Fanshu Wei
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150086, China; (J.S.); (C.W.); (S.J.); (X.Y.); (H.P.); (F.W.)
| | - Chunjuan Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150086, China; (J.S.); (C.W.); (S.J.); (X.Y.); (H.P.); (F.W.)
- Correspondence:
| |
Collapse
|
9
|
Sharma A, Sharma A, Tripathi A. Biological activities of Pleurotus spp. polysaccharides: A review. J Food Biochem 2021; 45:e13748. [PMID: 33998679 DOI: 10.1111/jfbc.13748] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 11/27/2022]
Abstract
Mushrooms are consumed for their nutrients and therapeutic bioactive compounds and are used medicinally in Chinese and Japanese medicine traditions since time immemorial. Members of the genus Pleurotus form a heterogeneous group of edible species with outstanding nutritional profiles rich in fiber, vitamins (thiamine, riboflavin, ascorbic acid, ergosterine, and niacin), micro and macro-elements (phosphorus and iron), and carbohydrates. Pleurotus is one of the most diversified medicinal and edible mushrooms related to the composition of chemical structures such as polysaccharides, glycoproteins, and secondary metabolites such as alkaloids and betalains. The cultivation of Pleurotus spp. on lignocellulosic wastes represents one of the most economically and cost-effective organic recycling processes, especially for the utilization of different feasible and cheap recyclable residues. Also, several Pleurotus spp. have the ability to remove phenolic compounds from wastewater with the action of phenoloxidase activity. Here, we have reviewed the chemistry of such polysaccharides and their reported biological activities, namely, anti-inflammatory, immunomodulatory, anti-diabetic, anti-tumor, antioxidant, etc. The mechanism of action and effects of novel polysaccharides extracted from various species of Pleurotus have been studied. The current study will be beneficial for guiding future research projects on the above concept and investigating more deeply the health of human beings. PRACTICAL APPLICATIONS: Mushrooms are one of the most delicious foods around the globe and have many medicinal properties for decades. Various Pleurotus species have been in focus in recent years because of their palatability and medicinal importance too. It contains many bioactive compounds among which polysaccharides are valued to a great extent. Many biological activities are exerted by polysaccharides derived from the Pleurotus spp., namely, anti-tumor, antioxidant, and many more. They are responsible for significant physiological responses in animals, animal-alternative in vitro models, and humans. Their important physicochemical characteristics benefit their use in the food industry as well. So, the biological activities of these Pleurotus spp. polysaccharides will provide an insight to develop Pleurotus spp. as functional foods, because of their nutritional value and presence of bioactive components.
Collapse
Affiliation(s)
- Aparajita Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Aditi Sharma
- Faculty of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Astha Tripathi
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| |
Collapse
|
10
|
Nivedita PS, Joy HH, Torvi AI, Shettar AK. Applications of Polysaccharides in Cancer Treatment. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
11
|
Jiang N, Li H, Sun Y, Zeng J, Yang F, Kantawong F, Wu J. Network Pharmacology and Pharmacological Evaluation Reveals the Mechanism of the Sanguisorba Officinalis in Suppressing Hepatocellular Carcinoma. Front Pharmacol 2021; 12:618522. [PMID: 33746755 PMCID: PMC7969657 DOI: 10.3389/fphar.2021.618522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Sanguisorba Officinalis L. (SO) is a well-known traditional Chinese medicine (TCM), commonly applied to treat complex diseases, such as anticancer, antibacterial, antiviral, anti-inflammatory, anti-oxidant and hemostatic effects. Especially, it has been reported to exert anti-tumor effect in various human cancers. However, its effect and pharmacological mechanism on hepatocellular carcinoma (HCC) remains unclear. Methods: In this study, network pharmacology approach was applied to characterize the underlying mechanism of SO on HCC. Active compounds and potential targets of SO, as well as related genes of HCC were obtained from the public databases, the potential targets and signaling pathways were determined by protein-protein interaction (PPI), gene ontology (GO) and pathway enrichment analyses. And the compound-target and target-pathway networks were constructed. Subsequently, in vitro experiments were also performed to further verify the anticancer effects of SO on HCC. Results: By using the comprehensive network pharmacology analysis, 41 ingredients in SO were collected from the corresponding databases, 12 active ingredients screened according to their oral bioavailability and drug-likeness index, and 258 potential targets related to HCC were predicted. Through enrichment analysis, SO was found to show its excellent therapeutic effects on HCC through several pathways, mainly related to proliferation and survival via the EGFR, PI3K/AKT, NFκB and MAPK signaling pathways. Additionally, in vitro, SO was found to inhibit cell proliferation, induce apoptosis and down-regulate cell migration and invasion in various HCC cells. Moreover, western blot analysis showed that SO treatment down-regulated the expression of p-EGFR, p-PI3K, p-AKT, p-NFκB and p-MAPK proteins in HepG2 cells. These results validated that SO exerted its therapeutic effects on HCC mainly by the regulation of cell proliferation and survival via the EGFR/MAPK and EGFR/PI3K/AKT/NFκB signaling pathways. Conclusion: Taken together, this study, revealed the anti-HCC effects of SO and its potential underlying therapeutic mechanisms in a multi-target and multi-pathway manner.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- School of Pharmacy, Southwest Medical University, Luzhou, China
- International Education School, Southwest Medical University, Luzhou, China
| | - Hong Li
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Yueshan Sun
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Fei Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Jianming Wu
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| |
Collapse
|
12
|
Chen X, Liu L, Chen W, Qin F, Zhou F, Yang H. Ziyuglycoside II Inhibits Rotavirus Induced Diarrhea Possibly via TLR4/NF-κB Pathways. Biol Pharm Bull 2021; 43:932-937. [PMID: 32475915 DOI: 10.1248/bpb.b19-00771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rotavirus (RV) induced diarrhea has been a major reason affecting children healthy under 5 years old especially in developing countries. Although specific vaccines have preventive effects, antiviral therapy is essential for the diarrhea patients. Ziyuglycoside II is a traditional Chinese herb which has been proven to possess anti-virus effects. This study aimed to investigate the roles of Ziyuglycoside II in rotavirus-induced diarrhea and the underlying molecular mechanism. We found that normal MA104 cells treated with RV became swollen and gather together. However, Ziyuglycoside II treatment inhibited cell growth in a dose- and time dependent manner and suppressed RV replication. Moreover, Ziyuglycoside II reversed RV-induced downregulation of anti-inflammatory cytokine interleukin (IL)-10 and upregulation of pro-inflammatory factors, such as interferon-γ (IFN-γ), IL-1β, IL-6, and tumor necrosis factor (TNF-α). Moreover, Ziyuglycoside II administration and ribavirin blocked toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling pathway both in mRNA and protein level, which was paralleled with immunohistochemical assay. Additionally, Ziyuglycoside II administration improved diarrhea symptoms and decreased diarrhea scores. Ziyuglycoside II and ribavirin inhibited the apoptosis of small intestine epithelial cells induced by RV. Taken together, RV treatment induced diarrhea. Ziyuglycoside II administration inhibited TLR4/NF-κB pathway and inflammatory response and improved RV-induced diarrhea. The inhibitory effects of Ziyuglycoside II on RV-induced diarrhea predicted Ziyuglycoside II may be a promising drug for diarrhea.
Collapse
Affiliation(s)
- Xiaolan Chen
- College of Veterinary Pharmaceutical, Jiangsu Agri-animal Husbandry Vocational College
| | - Li Liu
- College of Veterinary Pharmaceutical, Jiangsu Agri-animal Husbandry Vocational College
| | - Wei Chen
- College of Veterinary Medicine, Jiangsu Agri-animal Husbandry Vocational College
| | - Feng Qin
- College of Veterinary Pharmaceutical, Jiangsu Agri-animal Husbandry Vocational College
| | - Fang Zhou
- College of Veterinary Pharmaceutical, Jiangsu Agri-animal Husbandry Vocational College
| | - Haifeng Yang
- College of Veterinary Pharmaceutical, Jiangsu Agri-animal Husbandry Vocational College
| |
Collapse
|
13
|
Chen JF, Tan L, Ju F, Kuang QX, Yang TL, Deng F, Gu YC, Jiang LS, Deng Y, Guo DL. Phenolic glycosides from Sanguisorba officinalis and their anti-inflammatory effects. Nat Prod Res 2020; 36:2097-2104. [DOI: 10.1080/14786419.2020.1849202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jin-feng Chen
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Tan
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Ju
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi-xuan Kuang
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian-long Yang
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Deng
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Berkshire, UK
| | - Li-shi Jiang
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yun Deng
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Da-le Guo
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Assessment of the anti-virulence potential of extracts from four plants used in traditional Chinese medicine against multidrug-resistant pathogens. BMC Complement Med Ther 2020; 20:318. [PMID: 33076882 PMCID: PMC7574281 DOI: 10.1186/s12906-020-03114-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Multidrug-resistant pathogens are resistant to many antibiotics and associated with serious infections. Amomum tsaoko Crevost et Lemaire, Sanguisorba officinalis, Terminalia chebula Retz and Salvia miltiorrhiza Bge, are all used in Traditional Chinese Medicine (TCM) against multidrug-resistant pathogens, and the purpose of this study was to evaluate the antibacterial and anti-virulence activity of extracts derived from them. METHODS The antibacterial activity of ethanol and aqueous extracts from these four plants was examined against several multi-drug resistant bacterial strains, and their anti-virulence potential (including quorum quenching activity, biofilm inhibition, and blocking production of virulence factor δ-toxin) was assessed against different S. aureus strains. The chemical composition of the most effective extract was determined by LC-FTMS. RESULTS Only extracts from S. officinalis and A. tsaoko were shown to exhibit limited growth inhibition activity at a dose of 256 μg·mL-1. The S. officinalis ethanol extract, the ethanol and aqueous extract of A. tsaoko, and the aqueous extract of S. miltiorrhiza all demonstrated quorum quenching activity, but didn't significantly inhibit bacterial growth. The ethanol extract of S. officinalis inhibited bacterial toxin production and biofilm formation at low concentrations. Chemical composition analysis of the most effective extract of S. officinalis showed that it mainly contained saponins. CONCLUSIONS The most active extract tested in this study was the ethanol root extract of S. officinalis. It inhibited δ-toxin production and biofilm formation at low concentrations and saponins may be its key active components. While the four plants showed no direct antibacterial effects, their anti-virulence properties may be key to fighting bacterial infections.
Collapse
|
15
|
Fang H, Xie X, Liu P, Rao Y, Cui Y, Yang S, Yu J, Luo Y, Feng Y. Ziyuglycoside II alleviates cyclophosphamide-induced leukopenia in mice via regulation of HSPC proliferation and differentiation. Biomed Pharmacother 2020; 132:110862. [PMID: 33069969 DOI: 10.1016/j.biopha.2020.110862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/21/2022] Open
Abstract
Ziyuglycoside II (ZGS II) is a major bioactive ingredient of Sanguisorbae officinalis L., which has been widely used for managing myelosuppression or leukopenia induced by chemotherapy or radiotherapy. In the current study, we investigated the pro-hematopoietic effects and underlying mechanisms of ZGS II in cyclophosphamide-induced leukopenia in mice. The results showed that ZGS II significantly increased the number of total white blood cells and neutrophils in the peripheral blood. Flow cytometry analysis also showed a significant increase in the number of nucleated cells and hematopoietic stem and progenitor cells (HSPCs) including ST-HSCs, MPPs, and GMPs, and enhanced HSPC proliferation in ZGS II treated mice. The RNA-sequencing analysis demonstrated that ZGS II effectively regulated cell differentiation, immune system processes, and hematopoietic system-related pathways related to extracellular matrix (ECM)-receptor interaction, focal adhesion, hematopoietic cell lineage, cytokine-cytokine receptor interaction, the NOD-like receptor signaling pathway, and the osteoclast differentiation pathway. Moreover, ZGS II treatment altered the differentially expressed genes (DEGs) with known functions in HSPC differentiation and mobilization (Cxcl12, Col1a2, and Sparc) and the surface markers of neutrophilic precursors or neutrophils (Ngp and CD177). Collectively, these data suggest that ZGS II protected against chemotherapy-induced leukopenia by regulating HSPC proliferation and differentiation.
Collapse
Affiliation(s)
- Haihong Fang
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Xinxu Xie
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Peng Liu
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Ying Rao
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Yaru Cui
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Shilin Yang
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jun Yu
- Department of Physiology and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA19140, USA
| | - Yingying Luo
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Yulin Feng
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
16
|
Bunse M, Lorenz P, Stintzing FC, Kammerer DR. Characterization of Secondary Metabolites in Flowers of Sanguisorba officinalis L. by HPLC-DAD-MS n and GC/MS. Chem Biodivers 2020; 17:e1900724. [PMID: 32096590 DOI: 10.1002/cbdv.201900724] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/24/2020] [Indexed: 12/19/2022]
Abstract
The investigations reported here focus on an in-depth characterization of the secondary metabolite profile of Sanguisorba officinalis flowers. For this purpose, fresh flowers were extracted with MeOH/H2 O and EtOH/H2 O and the resulting crude extracts fractionated using CH2 Cl2 , AcOEt, and BuOH. Individual compounds were characterized by high performance liquid chromatography and gas chromatography coupled with mass spectrometric detection (HPLC-DAD-MSn and GC/MS). MeOH/H2 O extraction and LC/MSn investigations revealed the occurrence of flavonoid glycosides (quercetin, kaempferol), ellagitannin glycosides and four anthocyanins. Among the latter, two components, i. e., cyanidin-malonyl-glucose and cyanidin-galloyl-hexose, have not been reported for S. officinalis so far. Furthermore, phenylethylamine was characterized for the first time in Sanguisorba by pH value dependent extraction with CH2 Cl2 . In addition, AcOEt and BuOH extracts were analyzed by GC/MS both prior to and after acid hydrolysis of secondary metabolites. For this purpose, the extracts were treated with 1 n HCl solution (105 °C, 1 h) and derivatized with BSTFA. Analyses revealed the occurrence of several classes of phenolic compounds, such as gallic acid, hydroxybenzoic acid, hydroxycinnamic acid and ellagic acid derivatives. Additionally, the most prominent ursane-type triterpenoid (ziyu-glycoside I) from Sanguisorba and its corresponding aglycone isomers were detected and assigned based on their characteristic fragmentation patterns.
Collapse
Affiliation(s)
- Marek Bunse
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany.,Department of Plant Systems Biology, Hohenheim University, Garbenstraße 30, DE-70599, Stuttgart, Germany
| | - Peter Lorenz
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany
| | - Florian C Stintzing
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany
| | - Dietmar R Kammerer
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany
| |
Collapse
|
17
|
Bai C, Sun Y, Pan X, Yang J, Li X, Wu A, Qin D, Cao S, Zou W, Wu J. Antitumor Effects of Trimethylellagic Acid Isolated From Sanguisorba officinalis L. on Colorectal Cancer via Angiogenesis Inhibition and Apoptosis Induction. Front Pharmacol 2020; 10:1646. [PMID: 32047442 PMCID: PMC6997556 DOI: 10.3389/fphar.2019.01646] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022] Open
Abstract
Previous studies have demonstrated that tannin could inhibit the proliferation and angiogenesis of cancer cells. However, the mechanism(s) associated with its antitumor effect remains unclear. Here, we investigated the effects of 3,3',4'-trimethylellagic acid (TMEA), a tannin compound isolated from Sanguisorba officinalis L., on the proliferation, angiogenesis, and apoptosis in cancer cells, as well as the underlying mechanism(s) related to its antitumor activity. TMEA was isolated from Sanguisorba officinalis L. by silica gel column chromatography. Molecular docking was carried out to assess active pocket binding between TMEA and vascular endothelial growth factor receptor 2 (VEGFR2). The antiangiogenic effect of TMEA on the migration and tube formation was detected in HUVECs by wound healing and tube formation assays, respectively. The antitumor effects of TMEA on the cell proliferation were determined in HepG2, A549, and SW620 cells by MTS assay in vitro and on the tumor growth of SW620 xenografts bearing in nude mice in vivo. The mRNA expression of Bcl-2, Bax, caspase-3, VEGF, PI3K, and mTOR were measured by qRT-PCR and protein expression of Bcl-2, Bax, caspase-3, VEGF, PI3K, and mTOR by Western blotting, and the protein expression of Bcl-2, Bax, caspase-3 and CD31 were detected by immunohistochemical analysis in vivo, respectively. The results showed that TMEA combined with VEGFR2 in the functional pockets of Asn223A, Gly922A, and Leu840A and inhibited the proliferation, migration, tube formation, and expression of VEGF and its downstream signaling mediators in HUVECs. TMEA also significantly inhibited the proliferation of HepG2, A549, and SW620 cancer cells in vitro, and suppressed the growth of SW620 tumors in vivo. Moreover, TMEA upregulated the expression of proapoptotic factors Bax and caspase-3 and downregulated the expression of antiapoptotic factors CD31 and Bcl-2 in cancer cells and/or tumor tissues. The data indicate that TMEA executes its anticancer activity by inducing apoptosis and inhibiting angiogenesis in cancer cells in vitro and tumor growth in vivo. The underlying anticancer mechanism is associated with the apoptotic and VEGF/PI3K/AKT/mTOR pathways.
Collapse
Affiliation(s)
- Chongfei Bai
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueshan Sun
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xianchao Pan
- Department of Medicine, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Yang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, Key Laboratory of Medical Electrophysiology, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Xiaoxuan Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, Key Laboratory of Medical Electrophysiology, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Dalian Qin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, Key Laboratory of Medical Electrophysiology, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wenjun Zou
- Department of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, Key Laboratory of Medical Electrophysiology, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
18
|
Bai RB, Zhang YJ, Fan JM, Jia XS, Li D, Wang YP, Zhou J, Yan Q, Hu FD. Immune-enhancement effects of oligosaccharides from Codonopsis pilosula on cyclophosphamide induced immunosuppression in mice. Food Funct 2020; 11:3306-3315. [DOI: 10.1039/c9fo02969a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oligosaccharides are the main components of C. pilosula and show excellent immunomodulatory activities.
Collapse
Affiliation(s)
- Rui-Bin Bai
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Ya-Jie Zhang
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Jing-Min Fan
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Xu-Seng Jia
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Dai Li
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Yan-Ping Wang
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Jing Zhou
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Qiao Yan
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Fang-Di Hu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| |
Collapse
|
19
|
Rodrigues Barbosa J, Dos Santos Freitas MM, da Silva Martins LH, de Carvalho RN. Polysaccharides of mushroom Pleurotus spp.: New extraction techniques, biological activities and development of new technologies. Carbohydr Polym 2019; 229:115550. [PMID: 31826512 DOI: 10.1016/j.carbpol.2019.115550] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
The biodiversity of mushrooms Pleurotus spp. is impressive due to its complexity and diversity related to the composition of chemical structures such as polysaccharides, glycoproteins and secondary metabolites such as alkaloids, flavonoids and betalains. Recent studies of polysaccharides and their structural elucidation have helped to direct research and development of technologies related to pharmacological action, production of bioactive foods and application of new, more sophisticated extraction tools. The diversity of bioactivities related to these biopolymers, their mechanisms and routes of action are constant focus of researches. The elucidation of bioactivities has helped to formulate new vaccines and targeted drugs. In this context, in terms of polysaccharides and the diversity of mushrooms Pleurotus spp., this review seeks to revisit the genus, making an updated approach on the recent discoveries of polysaccharides, new extraction techniques and bioactivities, emphasising on their mechanisms and routes in order to update the reader on the recent technologies related to these polymers.
Collapse
Affiliation(s)
- Jhonatas Rodrigues Barbosa
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Maurício Madson Dos Santos Freitas
- LAPOA/FEA (Laboratory of Products of Animal Origin/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Luiza Helena da Silva Martins
- LABIOTEC/FEA (Biotechnological Process Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Raul Nunes de Carvalho
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| |
Collapse
|
20
|
Chakraborty I, Sen IK, Mondal S, Rout D, Bhanja SK, Maity GN, Maity P. Bioactive polysaccharides from natural sources: A review on the antitumor and immunomodulating activities. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101425] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Wang LN, Qin LL, He JL, Li XH, Cao ZX, Gu YC, Deng F, Deng Y. Aryl-tetralin-type lignan isolated from Sanguisorba officinalis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:999-1004. [PMID: 29945462 DOI: 10.1080/10286020.2018.1487957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
Three aryl-tetralin-type lignans, including 2 previously undescribed compounds, were isolated from the root of Sanguisorba officinalis. The structures of the new compounds were elucidated by 1D- and 2D-NMR spectroscopic analyses and mass spectrometry. Experimental and calculated ECD were used to determine the absolute configurations. The isolated compounds were evaluated for cytotoxicity against two cell lines (MV4-11 and MDA-MB-231) and compound 1 exhibited moderate growth inhibition against MDA-MB-231 cell line with IC50 value of 15.76 μM.
Collapse
Affiliation(s)
- Li-Na Wang
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , China
| | - Ling-Ling Qin
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , China
| | - Jun-Lin He
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , China
| | - Xiao-Hua Li
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , China
| | - Zhi-Xing Cao
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre , Berkshire RG42 6EY , UK
| | - Fang Deng
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , China
| | - Yun Deng
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , China
| |
Collapse
|
22
|
Guo DL, Chen JF, Tan L, Jin MY, Ju F, Cao ZX, Deng F, Wang LN, Gu YC, Deng Y. Terpene Glycosides from Sanguisorba officinalis and Their Anti-Inflammatory Effects. Molecules 2019; 24:E2906. [PMID: 31405117 PMCID: PMC6720167 DOI: 10.3390/molecules24162906] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/20/2022] Open
Abstract
Two new terpene glycosides (1-2) along with two known analogs (3-4) were obtained from the root of Sanguisorba officinalis, which is a common traditional Chinese medicine (TCM). Their structures were elucidated by nuclear magnetic resonance (NMR), electrospray ionization high resolution mass spectrometry (HRESIMS), and a hydrolysis reaction, as well as comparison of these data with the literature data. Compounds 1-4 exhibited anti-inflammatory properties in vitro by attenuating the production of inflammatory mediators, such as nitric oxide (NO) as well as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). An anti-inflammatory assay based on the zebrafish experimental platform indicated that compound 1 had good anti-inflammatory activity in vivo by not only regulating the distribution, but also by reducing the amount of the macrophages of the zebrafish exposed to copper sulfate.
Collapse
Affiliation(s)
- Da-Le Guo
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin-Feng Chen
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lu Tan
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meng-Ying Jin
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Feng Ju
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhi-Xing Cao
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Deng
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li-Na Wang
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- School of Nursing, Sichuan Tianyi College, Mianzhu 618200, China.
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Berkshire RG42 6EY, UK
| | - Yun Deng
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
23
|
Ji HY, Yu J, Dong XD, Liu AJ. Preparation of soluble dietary fibers from Gracilaria lemaneiformis and its antitumor activity in vivo. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00073-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Ali U, Kanwar S, Yadav K, Basu S, Mazumder K. Effect of arabinoxylan and β-glucan stearic acid ester coatings on post-harvest quality of apple (Royal Delicious). Carbohydr Polym 2019; 209:338-349. [DOI: 10.1016/j.carbpol.2019.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/19/2018] [Accepted: 01/01/2019] [Indexed: 11/30/2022]
|
25
|
Zhang XJ, Liu SF, Lu Y, Wang JY, Chen KS. Immunomodulatory activity of a fructooligosaccharide isolated from burdock roots. RSC Adv 2019; 9:11092-11100. [PMID: 35520210 PMCID: PMC9063030 DOI: 10.1039/c8ra10091h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/25/2019] [Indexed: 01/03/2023] Open
Abstract
Immunomodulatory activity of burdock fructooligosaccharide (BFO-1) on immune cells in in vitro normal mice, immunosuppressed mice treated with cyclophosphamide and S180 tumor-bearing mice.
Collapse
Affiliation(s)
| | | | - Yan Lu
- School of Life Science
- Shandong University
- Qingdao
- China
| | - Jian-yue Wang
- School of Life Science
- Shandong University
- Qingdao
- China
| | - Kao-shan Chen
- School of Life Science
- Shandong University
- Qingdao
- China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs
| |
Collapse
|
26
|
Kim S, Oh S, Noh HB, Ji S, Lee SH, Koo JM, Choi CW, Jhun HP. In Vitro Antioxidant and Anti- Propionibacterium acnes Activities of Cold Water, Hot Water, and Methanol Extracts, and Their Respective Ethyl Acetate Fractions, from Sanguisorba officinalis L . Roots. Molecules 2018; 23:E3001. [PMID: 30453560 PMCID: PMC6278274 DOI: 10.3390/molecules23113001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 11/17/2022] Open
Abstract
Identification of medicinal plants and naturally derived compounds as new natural antioxidant and antibacterial sources for topical acne treatment has long been important. To determine anti-Propionibacterium acnes activity and in vitro antioxidant activities, Sanguisorba officinalis L. root (SOR) was extracted with cold water (CWE), hot water (HWE), and methanol (ME), and each extract was fractionated successively with hexane, ethyl acetate (EA), and butanol to determine whether the activities could be attributed to the total phenolic, flavonoid, terpenoid, and condensed tannin contents. Pearson's correlation coefficients were analyzed between the respective variables. The SOR CWE, HWE, ME, and their respective EA fractions showed anti-P. acnes activity based on the paper disc diffusion method on agar plates, minimum inhibitory concentration (MIC), and minimal bactericidal concentration (MBC). The MIC against P. acnes had a moderate (+) correlation with the total phenolic content, but not with the other measures. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity (SC) had a strong (⁻) correlation with the total phenolic content and a moderate (⁻) correlation with the total flavonoid content. The total antioxidant capacity had a strong (+) correlation with the condensed tannin content. Linoleic acid peroxidation inhibition had a strong (⁻) correlation with the total phenolic content. To elucidate the major active phytochemicals in the CWE-EA, HWE-EA, and ME-EA fractions, high performance liquid chromatography-ultraviolet (HPLC-UV) and ultra high performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) were performed. The HPLC-UV analysis showed the presence of nine compounds in common (arjunic acid and/or euscaphic acid, gallic acid, kaempferol, caffeic acid, ferulic acid, tannic acid, and coumarin, quercetin). The UHPLC-QTOF-MS analysis showed the presence of nine compounds in common (gallic acid; caffeic acid; umbelliferone; arjunic acid, euscaphic acid, and/or tormentic acid; pomolic acid; rosamultic acid; and benzoic acid). When standards of the identified phytochemicals were tested against the same bacterium, quercetin, coumarin, and euscaphic acid showed antibacterial activity against P. acnes.
Collapse
Affiliation(s)
- Seongdae Kim
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 35345, Korea.
| | - Sung Oh
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 35345, Korea.
| | - Han Byul Noh
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 35345, Korea.
| | - Seongmi Ji
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 35345, Korea.
| | - Song Hee Lee
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 35345, Korea.
| | - Jung Mo Koo
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 35345, Korea.
| | - Chang Won Choi
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 35345, Korea.
| | | |
Collapse
|
27
|
Simultaneous Determination and Pharmacokinetics Study of Six Triterpenes in Rat Plasma by UHPLC-MS/MS after Oral Administration of Sanguisorba officinalis L. Extract. Molecules 2018; 23:molecules23112980. [PMID: 30445715 PMCID: PMC6278537 DOI: 10.3390/molecules23112980] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022] Open
Abstract
A selective and sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated for the determination of ziyuglycoside I (I), 3β,19α-dihydroxyurs-12-en-28-oic-acid 28-β-d-glucopyranosyl ester (II), 3β-[(α-l-arabinopyranosyl) oxy]-urs-12,18(19)-dien-28-oic acid β-d-glucopyranosyl ester (III), rosamultin (IV), 1β-hydroxyeuscaphic acid (V) and alpinoside (VI) in rats after oral administration of Sanguisorba officinalis L. (S. officinalis) extract. The 3β,19α-dihydroxyurs-12-en-28-oic-acid 28-β-d-glucopyranosyl ester, 3β-[(α-l-arabinopyranosyl) oxy]-urs-12,18(19)-dien-28-oic acid β-d-glucopyranosyl ester, rosamultin, 1β-hydroxyeuscaphic acid and alpinoside in rat plasma were the first report in the pharmacokinetics study in the present study. The analytes were quantified using the multiple reaction monitoring (MRM) mode with the electrospray ion source in positive electrospray ionization. Plasma was extracted with ethyl acetate via liquid–liquid extraction. Bifendate was used as internal standard (IS). The current method was validated for linearity, intra-day and inter-day precisions, accuracy, extraction recovery, matrix effect and stability. The lower limits of quantification of ziyuglycoside I, 3β,19α-dihydroxyurs-12-en-28-oic-acid 28-β-d-glucopyranosyl ester, 3β-[(α-l-arabinopyranosyl) oxy]-urs-12,18(19)-dien-28-oic acid β-d-glucopyranosyl ester, rosamultin, 1β-hydroxyeuscaphic acid and alpinoside were 6.1, 4.9, 1.3, 3.8, 1.5 and 5.7 ng/mL, respectively. Intra-day and inter-day precision and the accuracy of the assay were in range from −9.48 to 12.74%. The extraction recoveries of analytes and bifendate (IS) from rat plasma ranged from 77.17% to 92.48%. Six compounds could be rapidly absorbed into blood (Tmax, 0.58–1.58 h), and then eliminated relatively slowly (t1/2, 6.86–11.63 h). The pharmacokinetic results might contribute to further guide the clinical application of S. officinalis.
Collapse
|
28
|
Jang E, Kim S, Lee NR, Kim H, Chae S, Han CW, Kim Y, Lee KT, Kim BJ, Inn KS, Lee JH. Sanguisorba officinalis extract, ziyuglycoside I, and II exhibit antiviral effects against hepatitis B virus. Eur J Integr Med 2018. [DOI: 10.1016/j.eujim.2018.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Li ZF, Zhou MY, Tan T, Zhong CC, Wang Q, Pan LL, Luo YY, Yang SL, Feng YL, Ouyang H. A Sample and Sensitive HPLC-MS/MS Method for Simultaneous Determination of Ziyuglycoside I and Its Metabolite Ziyuglycoside II in Rat Pharmacokinetics. Molecules 2018; 23:molecules23030543. [PMID: 29495641 PMCID: PMC6017276 DOI: 10.3390/molecules23030543] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 11/16/2022] Open
Abstract
Ziyuglycoside I (ZGS1) is a promising drug candidate for the treatment of leucopenia. Currently, information on ZGS1 and its in vivo metabolite ziyuglycoside II (ZGS2) is limited. The objective of this study was to investigate the pharmacokinetics, tissue distribution, and excretion of ziyuglycoside I (ZGS1) and its metabolite ziyuglycoside II (ZGS2) in rats. In our study, a simple and sensitive high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) method was established for simultaneous determination of ZGS1 and its metabolite for Sprague-Dawley rat pharmacokinetics studies. The method was validated following internationally-approved guidelines. The results presented in this study indicated that subcutaneous administration of ZGS1 prolonged its extension time and increased the area under the curve (AUC0-t) of ZGS2 during 0 to t minutes. In summary, in this study, the pharmacokinetic characteristics of ZGS1 and its metabolite ZGS2 were defined and its tissue distribution, and excretion in rats were described. Our finding may be beneficial for leucopenia drug that focus on ZGS1.
Collapse
Affiliation(s)
- Zhi-Feng Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Meng-Ying Zhou
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Ting Tan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Chen-Cong Zhong
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Qi Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Ling-Ling Pan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Ying-Ying Luo
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Shi-Lin Yang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Yu-Lin Feng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Hui Ouyang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
30
|
De Novo Transcriptome Assembly and Characterization of the Synthesis Genes of Bioactive Constituents in Abelmoschus esculentus (L.) Moench. Genes (Basel) 2018; 9:genes9030130. [PMID: 29495525 PMCID: PMC5867851 DOI: 10.3390/genes9030130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/11/2022] Open
Abstract
Abelmoschus esculentus (okra or lady's fingers) is a vegetable with high nutritional value, as well as having certain medicinal effects. It is widely used as food, in the food industry, and in herbal medicinal products, but also as an ornamental, in animal feed, and in other commercial sectors. Okra is rich in bioactive compounds, such as flavonoids, polysaccharides, polyphenols, caffeine, and pectin. In the present study, the concentrations of total flavonoids and polysaccharides in five organs of okra were determined and compared. Transcriptome sequencing was used to explore the biosynthesis pathways associated with the active constituents in okra. Transcriptome sequencing of five organs (roots, stem, leaves, flowers, and fruits) of okra enabled us to obtain 293,971 unigenes, of which 232,490 were annotated. Unigenes related to the enzymes involved in the flavonoid biosynthetic pathway or in fructose and mannose metabolism were identified, based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. All of the transcriptional datasets were uploaded to Sequence Read Archive (SRA). In summary, our comprehensive analysis provides important information at the molecular level about the flavonoid and polysaccharide biosynthesis pathways in okra.
Collapse
|
31
|
Jang E, Inn KS, Jang YP, Lee KT, Lee JH. Phytotherapeutic Activities of Sanguisorba officinalis and its Chemical Constituents: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:299-318. [PMID: 29433389 DOI: 10.1142/s0192415x18500155] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sanguisorba officinalis Linne (S. officinalis, Rosaceae) has been used as a medicinal plant for the treatment of burns, hematemesis, melena, intestinal infections, and dermatitis for a long time in China, Korea, and Japan. The therapeutic efficacy of this herb is intimately associated with its anti-oxidant, anti-inflammatory, antiviral, antifungal, hemostatic, and anticancer activities. Its root contains triterpenoid saponins (zigyuglycoside I: C[Formula: see text]H[Formula: see text]O[Formula: see text] and ziyuglycoside II: C[Formula: see text]H[Formula: see text]O8) and tannins (sanguiin H-6: C[Formula: see text]H[Formula: see text]O[Formula: see text]). It has been recently revealed that these active constituents of S. officinalis possess antiwrinkle properties without cytotoxicity. They also have anticancer effects by inducing apoptosis and cell cycle arrest. Moreover, they can inhibit proliferative tumorigenesis. The underlying mechanism involved in the pharmacological actions of these active constituents is mainly related to p38 MAPK signaling. Although various studies have reported its therapeutic activities and major chemical components, review articles that extensively organize various properties of S. officinalis and its major constituents are still scarce. Taken together, the objective of this paper is to provide overall pharmacological and phytochemical profiles of S. officinalis and its constituents (including ziyuglycoside I, ziyuglycoside II, and sanguiin H-6), and their potential roles in clinical applications for the treatment of inflammatory diseases, bleeding disorders, and cancer.
Collapse
Affiliation(s)
- Eungyeong Jang
- * College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.,∥ Department of Internal Medicine, Kyung Hee University Korean Medicine Hospital, Seoul 02447, Republic of Korea
| | - Kyung-Soo Inn
- † Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Young Pyo Jang
- ‡ Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.,§ Department of Oriental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Tae Lee
- ‡ Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.,¶ Department of Pharmaceutical Biochemistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jang-Hoon Lee
- * College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
32
|
Zhang H, Chen J, Cen Y. Burn wound healing potential of a polysaccharide from Sanguisorba officinalis L. in mice. Int J Biol Macromol 2018; 112:862-867. [PMID: 29425875 DOI: 10.1016/j.ijbiomac.2018.01.214] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 02/05/2023]
Abstract
Sanguisorba officinalis L. is widely used in China to treat various wounds, particularly burns. The present study was carried to evaluate the healing efficacy of a purified polysaccharide (SOP) from the roots of S. officinalis L. on burn wound models in mice. The results indicated that oral administration of SOP (50 and 200mg/kg) significantly stimulated wound contraction and reduced epithelialization time as compared to control group, which might be mediated by promoting collagen synthesis as evidenced by an increase of hydroxyproline content. Elevation of IL-1β and VEGF content was also observed in mice following SOP treatment, which in turn facilitate epithelization and angiogenesis. Besides, histopathological examination of the wound tissues in the SOP-treated animals showed collagen deposition and epidermal formation. It may be concluded that the enhancement of burn wound healing by SOP might be due to promotional collagen synthesis and angiogenesis during skin wound repair as a result of the stimulation of hydroxyproline, IL-1β and VEGF production. The excellent wound-healing activities of SOP provide a scientific rationale for the development of plant-based product in the management of wounds.
Collapse
Affiliation(s)
- Hongfang Zhang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junjie Chen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
33
|
Yu Y, Shen M, Song Q, Xie J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr Polym 2017; 183:91-101. [PMID: 29352896 DOI: 10.1016/j.carbpol.2017.12.009] [Citation(s) in RCA: 855] [Impact Index Per Article: 106.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/22/2017] [Accepted: 12/05/2017] [Indexed: 12/26/2022]
Abstract
Pharmacotherapy using natural substances can be currently regarded as a very promising future alternative to conventional therapy. As biological macromolecules, polysaccharide together with protein and polynucleotide, are extremely important biomacromoleules which play important roles in the growth and development of living organism. Polysaccharide is important component of higher plants, membrane of the animal cell and the cell wall of microbes. It is also closely related to the physiological functions. Recently, increasing attention has been paid on polysaccharides as an important class of bioactive natural products. Numerous researches have demonstrated the bioactivities of natural polysaccharides, which lead to the application of polysaccharides in the treatment of disease. In this paper, the various aspects of the investigation results of the bioactivities of polysaccharides were summarized, including its diversity pharmacological applications, such as immunoregulatory, anti-tumor, anti-virus, antioxidation, and hypoglycemic activity, and their application of polysaccharides in the treatment of disease are also discussed. We hope this review can offer some theoretical basis and inspiration for the mechanism study of the bioactivity of polysaccharides.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qianqian Song
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
34
|
Seo DW, Cho YI, Gu S, Kim DH, Yi YJ, Lee SM. A hot-water extract of Sanguisorba officinalis ameliorates endotoxin-induced septic shock by inhibiting inflammasome activation. Microbiol Immunol 2017; 62:44-54. [PMID: 29193282 DOI: 10.1111/1348-0421.12557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/15/2017] [Accepted: 11/24/2017] [Indexed: 11/28/2022]
Abstract
The inflammasome is a multiprotein signaling complex that mediates inflammatory innate immune responses through caspase 1 activation and subsequent IL-1β secretion. However, because its aberrant activation often leads to inflammatory diseases, targeting the inflammasome holds promise for the treatment of inflammation-related diseases. In this study, it was found that a hot-water extract of Sanguisorba officinalis (HSO) suppresses inflammasome activation triggered by adenosine 5'-triphosphate, nigericin, microbial pathogens, and double stranded DNA in bone marrow-derived macrophages. HSO was found to significantly suppress IL-1β production in a dose-dependent manner; this effect correlated well with small amounts of caspase 1 and little ASC pyroptosome formation in HSO-treated cells. The anti-inflammatory activity of HSO was further confirmed in a mouse model of endotoxin-induced septic shock. Oral administration of HSO reduced IL-1β titers in the serum and peritoneal cavity, increasing the survival rate. Taken together, our results suggest that HSO is an inhibits inflammasome activation through nucleotide-binding domain and leucine-rich repeat pyrin domain 3, nucleotide-binding domain and leucine-rich repeat caspase recruitment domain 4 and absent in melanoma 2 pathways, and may be useful for treatment of inflammasome-mediated diseases.
Collapse
Affiliation(s)
- Dong-Won Seo
- Gyeongbuk Institute for Bio industry, Andong-si, Gyeongbuk 760-380, South Korea
| | - Yong-Il Cho
- Department of Animal Science and Technology, Suncheon National University, 255 Jungang-ro, Suncheon-si, Jeollanam-do 57922, South Korea
| | - Suna Gu
- Division of Biotechnology, College of Environmental and Bioresources, Chonbuk National University, Iksan-si, Jeollabuk-do 570-752, South Korea
| | - Da-Hee Kim
- Division of Biotechnology, College of Environmental and Bioresources, Chonbuk National University, Iksan-si, Jeollabuk-do 570-752, South Korea
| | - Young-Joo Yi
- Division of Biotechnology, College of Environmental and Bioresources, Chonbuk National University, Iksan-si, Jeollabuk-do 570-752, South Korea
| | - Sang-Myeong Lee
- Division of Biotechnology, College of Environmental and Bioresources, Chonbuk National University, Iksan-si, Jeollabuk-do 570-752, South Korea
| |
Collapse
|
35
|
Pu WL, Sun LK, Gao XM, Rüegg C, Cuendet M, Hottiger MO, Zhou K, Miao L, Zhang YS, Gebauer M. Targeting tumor-associated macrophages by anti-tumor Chinese materia medica. Chin J Integr Med 2017; 23:723-732. [PMID: 28988387 DOI: 10.1007/s11655-017-2974-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Indexed: 12/23/2022]
Abstract
Tumor-associated macrophages (TAMs) play a key role in all stages of tumorigenesis and tumor progression. TAMs secrete different kinds of cytokines, chemokines, and enzymes to affect the progression, metastasis, and resistance to therapy depending on their state of reprogramming. Therapeutic benefit in targeting TAMs suggests that macrophages are attractive targets for cancer treatment. Chinese materia medica (CMM) is an important approach for treating cancer in China and in the Asian region. According to the theory of Chinese medicine (CM) and its practice, some prescriptions of CM regulate the body's internal environment possibly including the remodeling the tumor microenvironment (TME). Here we briefly summarize the pivotal effects of TAMs in shaping the TME and promoting tumorigenesis, invasion, metastasis and immunosuppression. Furthermore, we illustrate the effects and mechanisms of CMM targeting TAMs in antitumor therapy. Finally, we reveal the CMM's dual-regulatory and multi-targeting functions on regulating TAMs, and hopefully, provide the theoretical basis for CMM clinical practice related to cancer therapy.
Collapse
Affiliation(s)
- Wei-Ling Pu
- Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Li-Kang Sun
- Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Xiu-Mei Gao
- Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Curzio Rüegg
- Pathology Unit, Department of Medicine, Faculty of Sciences, University of Fribourg, Fribourg, Switzerland
| | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Genève, Switzerland
| | - Micheal O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich-Irchel, Zurich, Switzerland
| | - Kun Zhou
- Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Lin Miao
- Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- Department of Molecular Mechanisms of Disease, University of Zurich-Irchel, Zurich, Switzerland
| | - Yun-Sha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- Pathology Unit, Department of Medicine, Faculty of Sciences, University of Fribourg, Fribourg, Switzerland
| | - Margaret Gebauer
- Chingcura, Center for Traditional Chinese Medicine, Zurich, Switzerland
| |
Collapse
|
36
|
Nam SH, Lkhagvasuren K, Seo HW, Kim JK. Antiangiogenic Effects of Ziyuglycoside II, a Major Active Compound ofSanguisorba officinalisL. Phytother Res 2017; 31:1449-1456. [DOI: 10.1002/ptr.5874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Sang-Hyeon Nam
- Department of Biomedical Science; Catholic University of Daegu; Gyeongsan-si 38430 Korea
| | - Khaliunaa Lkhagvasuren
- Department of Biomedical Science; Catholic University of Daegu; Gyeongsan-si 38430 Korea
| | - Hee Won Seo
- Department of Biomedical Science; Catholic University of Daegu; Gyeongsan-si 38430 Korea
| | - Jin-Kyung Kim
- Department of Biomedical Science; Catholic University of Daegu; Gyeongsan-si 38430 Korea
| |
Collapse
|
37
|
Chen X, Li B, Gao Y, Ji J, Wu Z, Chen S. Saponins from Sanguisorba officinalis Improve Hematopoiesis by Promoting Survival through FAK and Erk1/2 Activation and Modulating Cytokine Production in Bone Marrow. Front Pharmacol 2017; 8:130. [PMID: 28360858 PMCID: PMC5353277 DOI: 10.3389/fphar.2017.00130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/01/2017] [Indexed: 12/31/2022] Open
Abstract
Radix Sanguisorbae, the root of Sanguisorba officinalis L. is used as traditional Chinese medicine. In recent decades, it has been reported to be clinically effective against myelosuppression induced by chemotherapy and/ or radiotherapy. However, the underlining mechanism has not been well studied. In this work, we evaluated the hematopoietic effect of total saponins from S. officinalis L. on myelosuppressive mice induced by cyclophosphamide and by60Co-γ-irradiation and confirmed the therapeutic effect. Then, we found total saponins and their characteristic constituents Ziyuglycoside I and Ziyuglycoside II can inhibit apoptosis of TF-1 cells caused by cytokine deprivation, and promote survival of mouse bone marrow nuclear cells through focal adhesion kinase (FAK) and extracellular signal-regulated kinase 1/2 (Erk1/2) activation in vitro. In addition, they can down-regulate macrophage inflammatory protein 2 (MIP-2), platelet factor 4 (PF4) and P-selectin secretion, which are reported to be suppressive to hematopoiesis, both in vitro and in vivo. These results suggest that promotion of survival through FAK and Erk1/2 activation and inhibition of suppressive cytokines in the bone marrow is likely to be the pharmacological mechanism underlying the hematopoietic effect of saponins from S. officinalis L.
Collapse
Affiliation(s)
- Xin Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences (CAS)Sichuan, China; Graduate School, University of Chinese Academy of Sciences (CAS)Beijing, China
| | - Bogang Li
- Chengdu Institute of Biology, Chinese Academy of Sciences (CAS)Sichuan, China; Di Ao Pharmaceutical GroupSichuan, China
| | - Yue Gao
- Institute of Radiation Medicine, Academy of Military Medical Sciences Beijing, China
| | - Jianxin Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences (CAS) Sichuan, China
| | - Zhongliu Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences (CAS) Sichuan, China
| | - Shuang Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences (CAS) Sichuan, China
| |
Collapse
|
38
|
Liu WB, Xie F, Sun HQ, Meng M, Zhu ZY. Anti-tumor effect of polysaccharide from Hirsutella sinensis on human non-small cell lung cancer and nude mice through intrinsic mitochondrial pathway. Int J Biol Macromol 2017; 99:258-264. [PMID: 28235606 DOI: 10.1016/j.ijbiomac.2017.02.071] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/07/2017] [Accepted: 02/19/2017] [Indexed: 01/16/2023]
Abstract
Our previous works had proved the structural properties of Hirsutella sinensis polysaccharide-III(HSP-III). Herein, its anti-tumor effect on lung cancer correlated with mitochondrial apoptosis pathway was investigated. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that HSP-III induces the apoptosis of H1299 cells; however the proliferation viability of normal lung epithelial cells is not affected. HSP-III treatment collapses the H1299 cell mitochondrial membrane potential, and western blot analysis of cytochrome C, Bax, caspase-3 and caspase-9 further indicates that apoptotic effects induced by HSP-III is through the mitochondrial pathway. Furthermore, we found the apoptotic effects of HSP-III are triggered by Reactive oxygen species (ROS) generation. Blue native Polyacrylamide Gel-Electrophoresis (PAGE) showed the expressions of mitochondrial respiratory chain complexes I-V were also decreased. Taken together, anti-tumor effect of HSP-III is through intrinsic mitochondrial apoptosis mechanism pathway and involving ROS increasing. Finally, in vivo nude mice experiment, HSP-III attenuated the growth of tumor compared with control. In contrast, N-acetyl-l-cysteine (NAC) could restore the cell apoptosis effects induced by HSP-III. These findings suggest that HSP-III induce apoptosis of H1299 cells and attenuated growth of nude mice tumor in vivo through the intrinsic mitochondrial pathway and stimulating ROS. HSP-III could be a composition for lung cancer treatment.
Collapse
Affiliation(s)
- Wen-Bin Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fei Xie
- School of Medicine, Yunnan University, Kunming 650091, PR China
| | - Hui-Qing Sun
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Meng Meng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhen-Yuan Zhu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
39
|
Chen Y, Yao F, Ming K, Wang D, Hu Y, Liu J. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity. Molecules 2016; 21:E1705. [PMID: 27983593 PMCID: PMC6273901 DOI: 10.3390/molecules21121705] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/23/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.
Collapse
Affiliation(s)
- Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fangke Yao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ke Ming
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
40
|
Zhu X, Wang K, Zhang K, Zhang T, Yin Y, Xu F. Ziyuglycoside I Inhibits the Proliferation of MDA-MB-231 Breast Carcinoma Cells through Inducing p53-Mediated G2/M Cell Cycle Arrest and Intrinsic/Extrinsic Apoptosis. Int J Mol Sci 2016; 17:E1903. [PMID: 27879682 PMCID: PMC5133901 DOI: 10.3390/ijms17111903] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/06/2016] [Accepted: 11/10/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Due to the aggressive clinical behavior, poor outcome, and lack of effective specific targeted therapies, triple-negative breast cancer (TNBC) has currently been recognized as one of the most malignant types of tumors. In the present study, we investigated the cytotoxic effect of ziyuglycoside I, one of the major components extracted from Chinese anti-tumor herbal Radix Sanguisorbae, on the TNBC cell line MDA-MB-231. METHODS The underlying molecular mechanism of the cytotoxic effect ziyuglycoside I on MDA-MB-231 cells was investigated with cell viability assay, flow cytometric analysis and Western blot. RESULTS Compared to normal mammary gland Hs 578Bst cells, treatment of ziyuglycoside I resulted in a significant growth inhibitory effect on MDA-MB-231 cells. Ziyuglycoside I induced the G2/M phase arrest and apoptosis of MDA-MB-231 cells in a dose-dependent manner. These effects were found to be partially mediated through the up-regulation of p53 and p21WAF1, elevated Bax/Bcl-2 ratio, and the activation of both intrinsic (mitochondrial-initiated) and extrinsic (Fas/FasL-initiated) apoptotic pathways. Furthermore, the p53 specific siRNA attenuated these effects. CONCLUSION Our study suggested that ziyuglycoside I-triggered MDA-MB-231 cell cycle arrest and apoptosis were probably mediated by p53. This suggests that ziyuglycoside I might be a potential drug candidate for treating TNBC.
Collapse
Affiliation(s)
- Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| | - Kai Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| | - Ting Zhang
- The Affiliated Maternity and Children Health Hospital of Nanjing Medical University, Wuxi 214002, China.
- Department of Molecular Cell Biology and Toxicology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment Cancer Center, School of Public Health, Nanjing Medical University, Nanjing 210029, China.
| | - Yongxiang Yin
- Department of Pathology, the Affiliated Maternity and Children Health Hospital of Nanjing Medical University, Wuxi 214002, China.
| | - Fei Xu
- Department of Laboratory Medicine, the Affiliated Maternity and Children Health Hospital of Nanjing Medical University, Wuxi 214002, China.
| |
Collapse
|
41
|
Huang Z, Huang Q, Ji L, Wang Y, Qi X, Liu L, Liu Z, Lu L. Epigenetic regulation of active Chinese herbal components for cancer prevention and treatment: A follow-up review. Pharmacol Res 2016; 114:1-12. [PMID: 27697644 DOI: 10.1016/j.phrs.2016.09.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/13/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022]
Abstract
Epigenetic modifications include DNA methylation, histone modification, and other patterns. These processes are associated with carcinogenesis and cancer progression. Thus, epigenetic modification-related enzymes, such as DNA methyltransferases (DNMTs), histone methyltransferases (HMTs), histone demethylases (HDMTs), histone acetyltransferases (HATs), and histone deacetylases (HDACs), as well as some related proteins, including methyl-CpG binding proteins (MBPs) and DNMT1-associated protein (DMAP 1), are considered as potential targets for cancer prevention and therapy. Numerous natural compounds, mainly derived from Chinese herbs and chemically ranging from polyphenols and flavonoids to mineral salts, inhibit the growth and development of various cancers by targeting multiple genetic and epigenetic alterations. This review summarizes the epigenetic mechanisms by which active compounds from Chinese herbs exert their anti-cancer effect. A subset of these compounds, such as curcumin and resveratrol, affect multiple epigenetic processes, including DNMT inhibition, HDAC inactivation, MBP suppression, HAT activation, and microRNA modulation. Other compounds also regulate epigenetic modification processes, but the underlying mechanisms and clear targets remain unknown. Accordingly, further studies are required.
Collapse
Affiliation(s)
- Zhiying Huang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Qiuju Huang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Liyan Ji
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiaoxiao Qi
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China.
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China.
| |
Collapse
|
42
|
Liang Y, Zhou Y, Deng S, Chen T. Microwave-Assisted Syntheses of Benzimidazole-Containing Selenadiazole Derivatives That Induce Cell-Cycle Arrest and Apoptosis in Human Breast Cancer Cells by Activation of the ROS/AKT Pathway. ChemMedChem 2016; 11:2339-2346. [DOI: 10.1002/cmdc.201600261] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/03/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Yuanwei Liang
- Department of Chemistry; Jinan University; Guangzhou 510632 P.R. China
| | - Yangliang Zhou
- Department of Chemistry; Jinan University; Guangzhou 510632 P.R. China
| | - Shulin Deng
- Department of Chemistry; Jinan University; Guangzhou 510632 P.R. China
| | - Tianfeng Chen
- Department of Chemistry; Jinan University; Guangzhou 510632 P.R. China
| |
Collapse
|
43
|
Yang JH, Yoo JM, Cho WK, Ma JY. Anti-inflammatory effects of Sanguisorbae Radix water extract on the suppression of mast cell degranulation and STAT-1/Jak-2 activation in BMMCs and HaCaT keratinocytes. Altern Ther Health Med 2016; 16:347. [PMID: 27599590 PMCID: PMC5011966 DOI: 10.1186/s12906-016-1317-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/24/2016] [Indexed: 11/10/2022]
Abstract
Background Sanguisorbae Radix (SR) is a well-known herbal medicine used to treat inflammatory disease and skin burns in Asia. In addition, it is used to treat many types of allergic skin diseases, including urticaria, eczema, and allergic dermatitis. SR has been reported to exhibit anti-wrinkle, anti-oxidant, and anti-contact dermatitis bioactivities. Methods In this study, we investigated the mechanism underlying the anti-inflammatory effects of SR water extract (WSR) using human keratinocyte (HaCaT) cells and BALB/c mouse bone marrow-derived mast cells (BMMCs). Viability assays were used to evaluate non-cytotoxic concentrations of WSR in both BMMCs and HaCaT cells. To investigate the effect of WSR treatment on the degranulation of IgE/Ag-activated BMMCs, we measured the release of β-hexosaminidase (β-HEX). We determined the production of pro-inflammatory chemokines including thymus and activation regulated chemokine (TARC; CCL17), regulated on activation, normal T-cell expressed and secreted (RANTES; CCL5), macrophage-derived chemokine (MDC; CCL22), and interleukin 8 (IL-8; CXCL8) in stimulated human keratinocytes. The ability of WSR to reduce the expression of pro-inflammatory marker proteins was evaluated by Western blotting in HaCaT cells stimulated with tumor necrosis factor (TNF)-α/interferon (IFN)-γ. Result WSR inhibited IgE/Ag-activated mast cell degranulation in BMMCs. Treatment with various concentrations of WSR decreased β-HEX release in a dose-dependent manner with an IC50 of 27.5 μg/mL. In keratinocytes, WSR suppressed TNF-α/IFN-γ-induced chemokine production and pro-inflammatory molecules via a blockade STAT-1, Jak-2, p38, and JNK activation. Conclusions This results demonstrate that WSR inhibits degranulation of IgE/Ag-activated mast cells and inhibits the production of pro-inflammatory chemokines by suppressing the phosphorylation of p38 and JNK in HaCaT cells.
Collapse
|
44
|
Immune-enhancing activity of extracellular polysaccharides isolated from Rhizopus nigricans. Carbohydr Polym 2016; 148:318-25. [DOI: 10.1016/j.carbpol.2016.04.068] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/15/2016] [Accepted: 04/17/2016] [Indexed: 01/04/2023]
|
45
|
Gawron-Gzella A, Witkowska-Banaszczak E, Bylka W, Dudek-Makuch M, Odwrot A, Skrodzka N. Chemical Composition, Antioxidant and Antimicrobial Activities of Sanguisorba officinalis L. Extracts. Pharm Chem J 2016; 50:244-249. [PMID: 32214538 PMCID: PMC7089018 DOI: 10.1007/s11094-016-1431-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Indexed: 12/25/2022]
Abstract
Sanquisorba officinalis has been used internally for the treatment of intestinal infections and duodenal ulcers, as well as hemorrhoids, phlebitis and varicose veins and female disorders, and topically to heal wounds, burns, and ulcers. In our study, the antioxidant and antimicrobial activities, as well as quantitative analysis of polyphenols (phenolic acids, flavonoids and total polyphenols) in methanol and aqueous extracts from S. officinalis herbs are presented. A correlation between the antioxidant activity and composition of tested extracts indicates that flavonoids are the major compounds causing scavenging of free radicals. Higher content of flavonoids was found in the methanol extract, while the content of total phenolics was higher in the aqueous extract. Both extracts from S. officinalis herbs showed antioxidant activity and high antimicrobial activity in a wide spectrum of test strains.
Collapse
Affiliation(s)
- Anna Gawron-Gzella
- Department of Pharmacognosy, University of Medical Sciences in Poznan, 4 OEiêcickiego Street, 60-781 Poznan, Poland
| | - Ewa Witkowska-Banaszczak
- Department of Pharmacognosy, University of Medical Sciences in Poznan, 4 OEiêcickiego Street, 60-781 Poznan, Poland
| | - Wiesława Bylka
- Department of Pharmacognosy, University of Medical Sciences in Poznan, 4 OEiêcickiego Street, 60-781 Poznan, Poland
| | - Marlena Dudek-Makuch
- Department of Pharmacognosy, University of Medical Sciences in Poznan, 4 OEiêcickiego Street, 60-781 Poznan, Poland
| | - Agnieszka Odwrot
- Department of Pharmacognosy, University of Medical Sciences in Poznan, 4 OEiêcickiego Street, 60-781 Poznan, Poland
| | - Natalia Skrodzka
- Department of Pharmacognosy, University of Medical Sciences in Poznan, 4 OEiêcickiego Street, 60-781 Poznan, Poland
| |
Collapse
|
46
|
Hydroxycinnamic acid bound arabinoxylans from millet brans-structural features and antioxidant activity. Int J Biol Macromol 2016; 88:296-305. [DOI: 10.1016/j.ijbiomac.2016.03.069] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 01/25/2023]
|
47
|
Chen X, Shang F, Meng Y, Li L, Cui Y, Zhang M, Qi K, Xue T. Ethanol extract of Sanguisorba officinalis L. inhibits biofilm formation of methicillin-resistant Staphylococcus aureus in an ica-dependent manner. J Dairy Sci 2015; 98:8486-91. [PMID: 26454299 DOI: 10.3168/jds.2015-9899] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/22/2015] [Indexed: 11/19/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important nosocomial pathogen that shows resistance to many antibiotics and is usually associated with serious infections. Having the ability for biofilm formation increases resistance to antibiotics. Sanguisorba officinalis L. is a perennial plant that is distributed in the northern districts of China and has been used as a traditional Chinese medicine. In this study, the effect of S. officinalis on MRSA strain SA3 isolated from a dairy cow with mastitis was evaluated by testing the growth and biofilm formation ability of MRSA cultured with or without ethanol extracts of S. officinalis. The results showed that the ethanol extract of S. officinalis strongly inhibited the biofilm formation of MRSA. With a confocal laser scanning microscope system, we observed that the biofilm structure of the test group with the addition of S. officinalis appeared looser and had less biomass compared with the control group without S. officinalis. Furthermore, we found that the transcript levels of the icaADBC operon remarkably decreased upon addition of the ethanol extract of S. officinalis, indicating that S. officinalis inhibits biofilm formation of MRSA in an ica-dependent manner.
Collapse
Affiliation(s)
- Xiaolin Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yajing Meng
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Long Li
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yunmei Cui
- School of Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ming Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Kezong Qi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
48
|
PARK SUNMIN, KIM DASOL, KANG SUNA, SHIN BAEKEUN. Synergistic topical application of salt-processed Phellodendron amurense and Sanguisorba officinalis Linne alleviates atopic dermatitis symptoms by reducing levels of immunoglobulin E and pro-inflammatory cytokines in NC/Nga mice. Mol Med Rep 2015; 12:7657-64. [DOI: 10.3892/mmr.2015.4348] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 08/19/2015] [Indexed: 11/06/2022] Open
|
49
|
Son DJ, Hwang SY, Kim MH, Park UK, Kim BS. Anti-Diabetic and Hepato-Renal Protective Effects of Ziyuglycoside II Methyl Ester in Type 2 Diabetic Mice. Nutrients 2015. [PMID: 26198246 PMCID: PMC4517009 DOI: 10.3390/nu7075232] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes is a metabolic disorder caused by abnormal carbohydrate metabolism, and closely associated with abnormal lipid metabolism and hepato-renal dysfunction. This study investigated the anti-diabetic and hepato-renal protective properties of ziyuglycoside I (ZG01) derivative on type 2 diabetes. ZG01 was isolated from roots of Sanguisorba officinalis and chemically modified by deglycosylation and esterification to obtained ziyuglycoside II methyl ester (ZG02-ME). Here, we showed that ZG02-ME has stronger anti-diabetic activity than the original compound (ZG01) through decreasing blood glucose, glycated hemoglobin (HbA1c), and insulin levels in a mouse model of type 2 diabetes (db/db mice). We further found that ZG02-ME treatment effectively ameliorated serum insulin, leptin and C-peptide levels, which are key metabolic hormones, in db/db mice. In addition, we showed that elevated basal blood lipid levels were decreased by ZG02-ME treatment in db/db mice. Furthermore, treatment of ZG02-ME significantly decreased serum AST, ALT, BUN, creatinine, and liver lipid peroxidation in db/db mice. These results demonstrated that compared to ZG01, chemically modified ZG02-ME possess improved anti-diabetic properties, and has hepato-renal protective activities in type 2 diabetes.
Collapse
Affiliation(s)
- Dong Ju Son
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Chungbuk 361-951, Korea.
| | - Seock Yeon Hwang
- Department of Biomedical Laboratory Science, College of Natural Science, Daejeon University, Daejeon 300-716, Korea.
| | - Myung-Hyun Kim
- Department of Physiology, College of Korean Medicine, Daejeon University, Daejeon 300-716, Korea.
| | - Un Kyu Park
- Department of Biomedical Laboratory Science, College of Natural Science, Daejeon University, Daejeon 300-716, Korea.
| | - Byoung Soo Kim
- Department of Physiology, College of Korean Medicine, Daejeon University, Daejeon 300-716, Korea.
| |
Collapse
|
50
|
Ye W, Fu H, Xie L, Zhou L, Rao T, Wang Q, Shao Y, Xiao J, Kang D, Wang G, Liang Y. Development and validation of a quantification method for ziyuglycoside I and II in rat plasma: Application to their pharmacokinetic studies. J Sep Sci 2015; 38:2340-7. [DOI: 10.1002/jssc.201500102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/26/2015] [Accepted: 04/04/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Ye
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines; China Pharmaceutical University; Tongjiaxiang 24 Nanjing China
| | - Hanxu Fu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines; China Pharmaceutical University; Tongjiaxiang 24 Nanjing China
| | - Lin Xie
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines; China Pharmaceutical University; Tongjiaxiang 24 Nanjing China
| | - Lijun Zhou
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines; China Pharmaceutical University; Tongjiaxiang 24 Nanjing China
| | - Tai Rao
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines; China Pharmaceutical University; Tongjiaxiang 24 Nanjing China
| | - Qian Wang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines; China Pharmaceutical University; Tongjiaxiang 24 Nanjing China
| | - Yuhao Shao
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines; China Pharmaceutical University; Tongjiaxiang 24 Nanjing China
| | - Jingcheng Xiao
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines; China Pharmaceutical University; Tongjiaxiang 24 Nanjing China
| | - Dian Kang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines; China Pharmaceutical University; Tongjiaxiang 24 Nanjing China
| | - Guangji Wang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines; China Pharmaceutical University; Tongjiaxiang 24 Nanjing China
| | - Yan Liang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines; China Pharmaceutical University; Tongjiaxiang 24 Nanjing China
| |
Collapse
|