1
|
Liu C, Liao Y, Wu A, He C, Du X, Chen S, Tan L, Zou Y, Baimawangzha, Tang Q, Chen D. Tibetan dark tea Theabrownin alleviates LPS-induced inflammation by modulating the Nrf2/NF-κB signaling pathway and host microbial metabolites. Food Chem 2025; 483:144264. [PMID: 40245629 DOI: 10.1016/j.foodchem.2025.144264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/24/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
Theabrownin is a key contributor to the flavor and health benefits of dark tea, but its structural characterization and anti-inflammatory properties remain underexplored. This study systematically investigated the physicochemical characteristics and anti-inflammatory mechanisms of Tibetan dark tea theabrownin (TTB). Our findings demonstrate that TTB is a hydroxyl- and carboxyl-rich polyphenolic aromatic polymer, composed of polyphenols, lipids, polysaccharides, and proteins. TTB modulated the NF-κB/Nrf2 signaling pathway, reducing inflammatory cytokines and oxidative stress, which in turn led to a decreased M1/M2 macrophage ratio and alleviated systemic inflammation. Fecal metabolomics analysis indicated that TTB exerts anti-inflammatory effects potentially by regulating key microbial metabolites, such as allantoic acid, and critical metabolic pathways like purine metabolism, as well as the metabolism of lysine, cysteine, phenylalanine, and pyruvate, etc. These findings provide insights into TTB's physicochemical properties and its mechanisms in alleviating systematic inflammation, providing a theoretical basis for the health-promoting effects of Tibetan dark tea.
Collapse
Affiliation(s)
- Chen Liu
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Yihong Liao
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Chunlei He
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Xiao Du
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Shengxiang Chen
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Liqiang Tan
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Yao Zou
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Baimawangzha
- Bomi Agricultural Station, Bomi County, Lizhi city, 850300, Tibet Autonomous Region, PR China
| | - Qian Tang
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China.
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China.
| |
Collapse
|
2
|
Liang G, Zheng W, Dai Y, Li Y, Hu X, Zhang L, Gui L, Ran Q, Zhong Y, Wang S, Su T, Zhang D, Li C, Li C, Zhou D, Li P, Gong M. Tibetan Tea Alleviates the Intestinal Dysfunction in Sleep-Deprived Mice Through Regulating Oxidative Stress and Inflammation-Related Intestinal Metabolisms. Mol Nutr Food Res 2025:e70098. [PMID: 40350986 DOI: 10.1002/mnfr.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/27/2025] [Accepted: 04/22/2025] [Indexed: 05/14/2025]
Abstract
Sleep deprivation (SD) disrupts intestinal homeostasis through excessive reactive oxygen species (ROS) accumulation. Tibetan tea is a potential dietary intervention for inflammation, it's effect on SD-induced intestinal inflammation remains unclear. This study investigates the alleviating effects of Tibetan tea water-soluble extract (TTE) on intestinal dysfunction in SD mice. After TTE supplementation, the physiological activity, inflammatory cytokines, and oxidative stress levels were assessed in SD-induced intestinal dysfunction mice. SD increased ROS levels and pro-inflammatory cytokines in plasma and small intestine, causing intestinal injury characterized by reduced goblet cells, decreased Mucin2 (MUC2) expression, and impaired tight junction proteins. Conversely, TTE reversed these disorders and improved mucosal injury in the small intestine. Furthermore, TTE modulated gut microbiota by enriching probiotics linked to SCFA production and restored SD-induced metabolic disturbances in the small intestine and systemic circulation, particularly affecting tricarboxylic acid (TCA) cycle, urea cycle, and TAG-related metabolites. Overall, TTE remarkably ameliorated SD-induced intestinal dysfunction through reducing ROS, restoring intestinal barrier function, and regulating the gut microbiome, which suggested that Tibetan tea could contribute to the treatment of intestinal inflammation.
Collapse
Affiliation(s)
- Ge Liang
- Department of Gastroenterology, Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Zheng
- Department of Gastroenterology, Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, China
| | - Yaru Dai
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yijin Li
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyi Hu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Zhang
- Department of Gastroenterology, Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, China
| | - Luolan Gui
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Ran
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhong
- Department of Gastroenterology, Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, China
| | - Shisheng Wang
- Department of Liver Surgery and Liver Transplant Center, Proteomics-Metabolomics Analysis Platform, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Su
- Department of Gastroenterology, Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, China
| | - Dingkun Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Li
- Emergency Department, The 945, Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Ya'an, China
| | - Chaogui Li
- Chengdu Tea for Health Research Center, Chengdu, China
| | - Digang Zhou
- Chengdu Tea for Health Research Center, Chengdu, China
| | - Peng Li
- Chengdu Tea for Health Research Center, Chengdu, China
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Liu C, Liao Y, Jiang H, Tang Q, He C, Wang Y, Ren M, Wang C, Chen S, Tan L, Wan X, Chen D. Theabrownin: The 'rich hue' of Chinese dark tea, its extraction, and role in regulating inflammation and immune response. Food Res Int 2025; 209:116185. [PMID: 40253125 DOI: 10.1016/j.foodres.2025.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Theabrownin (TB) is one of the most representative bioactive components in Chinese dark tea, often referred to as the "gold in dark tea." The complex macromolecular structure of TB is influenced by its source (tea materials), extraction, separation, and purification methods, which affect its final structure and bioactivity. In recent years, research on TB has surged, becoming a hotspot in the field of tea functional components and health research. Extensive studies on its health benefits indicate that TB is a crucial active ingredient in dark tea with substantial potential for application in food, health care, industry, and medical fields. This review summarizes the formation of TB during dark tea manufacturing, especially the "piling" stage, extraction methods, various purification techniques, and the physicochemical properties of TB. Additionally, it comprehensively reviews recent research on TB's role in typical inflammation and immune imbalance-induced diseases such as colitis, atherosclerosis, non-alcoholic fatty liver disease, and innate immune diseases. The review concludes with a comparative summary of the biological activities of TB from the five major types of Chinese dark tea in terms of anti-inflammatory and immune regulatory effects.
Collapse
Affiliation(s)
- Chen Liu
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China; Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Yihong Liao
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Hanrui Jiang
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Qian Tang
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Chunlei He
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Mengyi Ren
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Chenbo Wang
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Shengxiang Chen
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Liqiang Tan
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China.
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China.
| |
Collapse
|
4
|
Wang D, Liu Y, Zeng B, Xu Y, Cao S, Luo Y, Xiao S, Teng J. Compositional and biochemical activity evaluation of highly polymerized tea pigments in black tea based on natural deep eutectic solvent extraction. Food Chem X 2025; 27:102413. [PMID: 40236747 PMCID: PMC11999212 DOI: 10.1016/j.fochx.2025.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/26/2025] [Accepted: 03/23/2025] [Indexed: 04/17/2025] Open
Abstract
Highly polymeric tea pigments (HPTPs) in black tea have not been comprehensively analyzed because of the complex composition of their structural components. 14 natural deep eutectic solvents (NADESs) were evaluated for extracting HPTPs from black tea, and choline chloride-urea (ChCl-UA) was selected as the best candidate. The HPTPs were separated from the NADES using a dialysis membrane. Microstructural analysis was conducted by XRD, SEM, and AFM, combined with thermal property analysis using TG-DSC and Py-GC-MS determination of biochemical components, and structural analysis through UV-visible, FT-IR, NMR, and SERS spectroscopies. The antioxidant activity analyzed using ABTS, DPPH, and FRAP assays. The results revealed that the extract obtained using the ChCl-UA has a higher tea pigment content, greater polymerization degree, and simpler impurities. The extraction of HPTPs using a NADES and the analysis of the chemical composition and structural characteristics of the extract are helpful for understanding the macromolecular pigments in tea.
Collapse
Affiliation(s)
- Di Wang
- Department of Tea Science, College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yang Liu
- Department of Tea Science, College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bin Zeng
- Suichuan Tea Research Institute, Ji'an 343009, China
| | - Yuqin Xu
- Department of Tea Science, College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Sheng Cao
- Suichuan Tea Research Institute, Ji'an 343009, China
| | - Yuanyan Luo
- Suichuan Tea Research Institute, Ji'an 343009, China
| | - Shuangling Xiao
- Department of Tea Science, College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jie Teng
- Department of Tea Science, College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
5
|
Yang M, Zhang X, Yang CS. Bioavailability of Tea Polyphenols: A Key Factor in Understanding Their Mechanisms of Action In Vivo and Health Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3816-3825. [PMID: 39920567 DOI: 10.1021/acs.jafc.4c09205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Tea polyphenols (TPP) are key contributors to the beneficial health effects of green tea and black tea. However, their molecular mechanisms of action remain unclear. This article discusses the importance of the bioavailability of TPP in understanding their mechanisms of action and health effects of tea consumption. The systemic bioavailability is rather high for smaller catechins, low for galloyl catechins, and very low or null for oligomers and polymers from black tea. The bioavailability of TPP oxidation-derived polymers and self-assembled nanomaterials is not clearly known. If the large molecular weight TPP cannot get into systemic circulation, then the biological activities and mechanisms of action derived from studies in vitro are unlikely to be relevant to their actions in internal organs in vivo. In that case, their interactions with microbiota and actions on the epithelial cells of the gastrointestinal tract are important to their health effects. Therefore, the bioavailability of different types of TPP is an important factor in determining their mechanisms of action and the health effects of tea consumption.
Collapse
Affiliation(s)
- Mingchuan Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854-8020, United States
| |
Collapse
|
6
|
Xu J, Xie M, Liang X, Luo P, Yang X, Zhao J, Bian J, Sun B, Tang Q, Du X, Zou Y, Dai W, He C. The Preventive Effect of Theabrownin from Ya'an Tibetan Tea Against UVB-Induced Skin Photodamage in BALB/c Mice via the MAPK/NF-κB and Nrf2 Signaling Pathways. Foods 2025; 14:600. [PMID: 40002044 PMCID: PMC11854306 DOI: 10.3390/foods14040600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Ya'an Tibetan tea, renowned as a mysterious tea, has been used as a traditional remedy for disease prevention among ethnic minorities in the Qinghai-Tibet Plateau region, which experiences the highest levels of UVB radiation in the world, for over 1000 years. Theabrownin (TB) from Ya'an Tibetan tea exhibits various health benefits. In this study, the preventive effects of TB on UVB-induced skin damage were investigated. The results showed that TB pretreatment significantly alleviated visible skin damage, epidermal hyperplasia, and collagen destruction in BALB/c mice. The mechanism of action involved increasing the mRNA and protein levels of Nrf2 and enhancing SOD enzyme activity, thereby reducing MDA content and improving the body's antioxidant capacity. TB also inhibited the protein synthesis of inflammatory factors such as TNF-α, IL-1β, and IL-6, as well as the expression of NF-κB mRNA and protein, thereby reducing skin inflammation. Furthermore, it suppressed the overexpression of p38 MAPK, ERK, and AP-1 mRNA and protein, along with the downstream MMP-1 protein, to prevent collagen destruction in the skin. Additionally, TB pretreatment prevented cell apoptosis by reducing Caspase-3 overexpression. These results suggest that TB can prevent UVB-induced photodamage and exert its preventive effects in a dose-dependent manner by downregulating the MAPK/NF-κB signaling pathway while promoting the Nrf2 signaling pathway in the skin. Consequently, TB holds promising potential for future applications in skin photodamage prevention and skin health promotion.
Collapse
Affiliation(s)
- Jingyi Xu
- Tea Department of College of Horticulture Science, Sichuan Agricultural University, Chengdu 611130, China; (J.X.); (M.X.); (P.L.); (X.Y.); (J.Z.); (J.B.); (B.S.); (Q.T.); (X.D.); (Y.Z.)
- Sichuan Key Laboratory of Refined Sichuan Tea, Chengdu 611130, China
| | - Mingji Xie
- Tea Department of College of Horticulture Science, Sichuan Agricultural University, Chengdu 611130, China; (J.X.); (M.X.); (P.L.); (X.Y.); (J.Z.); (J.B.); (B.S.); (Q.T.); (X.D.); (Y.Z.)
- Sichuan Key Laboratory of Refined Sichuan Tea, Chengdu 611130, China
| | - Xing Liang
- Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Peida Luo
- Tea Department of College of Horticulture Science, Sichuan Agricultural University, Chengdu 611130, China; (J.X.); (M.X.); (P.L.); (X.Y.); (J.Z.); (J.B.); (B.S.); (Q.T.); (X.D.); (Y.Z.)
- Sichuan Key Laboratory of Refined Sichuan Tea, Chengdu 611130, China
| | - Xinyao Yang
- Tea Department of College of Horticulture Science, Sichuan Agricultural University, Chengdu 611130, China; (J.X.); (M.X.); (P.L.); (X.Y.); (J.Z.); (J.B.); (B.S.); (Q.T.); (X.D.); (Y.Z.)
- Sichuan Key Laboratory of Refined Sichuan Tea, Chengdu 611130, China
| | - Jing Zhao
- Tea Department of College of Horticulture Science, Sichuan Agricultural University, Chengdu 611130, China; (J.X.); (M.X.); (P.L.); (X.Y.); (J.Z.); (J.B.); (B.S.); (Q.T.); (X.D.); (Y.Z.)
- Sichuan Key Laboratory of Refined Sichuan Tea, Chengdu 611130, China
| | - Jinlin Bian
- Tea Department of College of Horticulture Science, Sichuan Agricultural University, Chengdu 611130, China; (J.X.); (M.X.); (P.L.); (X.Y.); (J.Z.); (J.B.); (B.S.); (Q.T.); (X.D.); (Y.Z.)
- Sichuan Key Laboratory of Refined Sichuan Tea, Chengdu 611130, China
| | - Bo Sun
- Tea Department of College of Horticulture Science, Sichuan Agricultural University, Chengdu 611130, China; (J.X.); (M.X.); (P.L.); (X.Y.); (J.Z.); (J.B.); (B.S.); (Q.T.); (X.D.); (Y.Z.)
| | - Qian Tang
- Tea Department of College of Horticulture Science, Sichuan Agricultural University, Chengdu 611130, China; (J.X.); (M.X.); (P.L.); (X.Y.); (J.Z.); (J.B.); (B.S.); (Q.T.); (X.D.); (Y.Z.)
- Sichuan Key Laboratory of Refined Sichuan Tea, Chengdu 611130, China
| | - Xiao Du
- Tea Department of College of Horticulture Science, Sichuan Agricultural University, Chengdu 611130, China; (J.X.); (M.X.); (P.L.); (X.Y.); (J.Z.); (J.B.); (B.S.); (Q.T.); (X.D.); (Y.Z.)
- Sichuan Key Laboratory of Refined Sichuan Tea, Chengdu 611130, China
| | - Yao Zou
- Tea Department of College of Horticulture Science, Sichuan Agricultural University, Chengdu 611130, China; (J.X.); (M.X.); (P.L.); (X.Y.); (J.Z.); (J.B.); (B.S.); (Q.T.); (X.D.); (Y.Z.)
- Sichuan Key Laboratory of Refined Sichuan Tea, Chengdu 611130, China
| | - Weidong Dai
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Chunlei He
- Tea Department of College of Horticulture Science, Sichuan Agricultural University, Chengdu 611130, China; (J.X.); (M.X.); (P.L.); (X.Y.); (J.Z.); (J.B.); (B.S.); (Q.T.); (X.D.); (Y.Z.)
- Sichuan Key Laboratory of Refined Sichuan Tea, Chengdu 611130, China
| |
Collapse
|
7
|
Zhang F, Wang Y, Wang M, Tan C, Huang S, Mou H, Wu K, Peng L, Fang Z, Tian Y, Sheng J, Zhao C. Structural characteristics and nonvolatile metabolites of theabrownins and their impact on intestinal microbiota in high-fat-diet-fed mice. Food Chem 2025; 463:141317. [PMID: 39332361 DOI: 10.1016/j.foodchem.2024.141317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024]
Abstract
This study prepared enzymatic theabrownins (TBs-e), alkaline theabrownins (TBs-a), and Pu-erh tea theabrownins (TBs-f), and investigated whether different preparation processes affected the structures, nonvolatile metabolites, and biofunctional activities of TBs. Structural characterization revealed that TBs were polymeric phenolic compounds rich in hydroxyl and carboxyl groups. Nontargeted metabolomics revealed that amino acids were the primary nonvolatile metabolites in TBs-e and TBs-a, accounting for over 70 % of the total nonvolatile content. TBs-f contained more polyphenols, caffeine, and flavonoids, accounting for 14.2 %, 3.9 %, and 0.8 % of total nonvolatile content, respectively. In vivo, at 560 mg/kg body weight, TBs-f were associated with regulation of blood glucose and lipid concentrations in mice. Moreover, 16S rRNA indicated that at 1120 mg/kg body weight, TBs-a were associated with increased numbers of microbiota linked with hypolipidemic activity. This study explores the impacts of different preparation processes on TBs and provides a theoretical foundation for the understanding of TBs.
Collapse
Affiliation(s)
- Feng Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Ya Wang
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Mingming Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunlei Tan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Si Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Hongyu Mou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Kuan Wu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lei Peng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhongqi Fang
- Boao Yiling Life Care Center, Qionghai 571400, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; PuEr University, PuEr 665000, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Cunchao Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Yunnan Plateau Characteristic Agricultural Industry Research Institute, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
8
|
Deng S, Zhang T, Fan S, Na H, Dong H, Wang B, Gao Y, Xu YQ, Liu X. Polysaccharide Conjugates' contribution to mellow and thick taste of Pu-erh ripe tea, besides Theabrownin. Food Chem X 2024; 23:101726. [PMID: 39246694 PMCID: PMC11377140 DOI: 10.1016/j.fochx.2024.101726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
Mellow and thick taste (MTT) is considered to be a typical taste characteristic of high-quality Pu-erh ripe tea. However, the role of polysaccharide conjugates remains unclear. In this study, the infusion of different grades of Pu-erh ripe tea was isolated to fractions by sensory-guided ultrafiltration technology and the key taste substances of MTT in Pu-erh ripe tea were identified and confirmed in the sensory reconstruction experiment. Further separation, purification and structural identification of the polysaccharide conjugates were carried out. Involving in aggregation morphology, the ultrafiltration fraction exhibited obvious MTT than other fractions. The main MTT compound (PRTPS-5), mainly composed of the rhamnose, galactose, arabinose and mannose, had a molecular weight of 22.93 kDa. The main chain of PRTPS-5 comprised α-L-Araf-(1→, →2,4)-α-L-Rhap-(1→, →2)-α-L-Rhap-(1→, α-D-Galp-(1→, →4)-α-D-GalpA-6-OMe-(1→, →4)-α-D-Manp-(1→, →3,6)-β-D-Galp-(1 → and →5)-α-L-Araf-(1 → and contained multiple pectic characteristic peaks. This result had scientific guiding significance for the quality enhancement of Pu-erh ripe tea.
Collapse
Affiliation(s)
- Sihan Deng
- College of Tea Science, Yunnan Agriculture University, Kunming 650201, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, China, 9 South Meiling Road, Hangzhou 310008, China
| | - Tianfang Zhang
- College of Tea Science, Yunnan Agriculture University, Kunming 650201, China
| | - Suhang Fan
- College of Tea Science, Yunnan Agriculture University, Kunming 650201, China
| | - Huahua Na
- College of Tea Science, Yunnan Agriculture University, Kunming 650201, China
| | - Haiyu Dong
- College of Tea Science, Yunnan Agriculture University, Kunming 650201, China
| | - Baijuan Wang
- College of Tea Science, Yunnan Agriculture University, Kunming 650201, China
| | - Ying Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, China, 9 South Meiling Road, Hangzhou 310008, China
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, China, 9 South Meiling Road, Hangzhou 310008, China
| | - Xiaohui Liu
- College of Tea Science, Yunnan Agriculture University, Kunming 650201, China
| |
Collapse
|
9
|
Zhao L, Zhao C, Miao Y, Lei S, Li Y, Gong J, Peng C. Theabrownin from Pu-erh Tea Improves DSS-Induced Colitis via Restoring Gut Homeostasis and Inhibiting TLR2&4 Signaling Pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155852. [PMID: 39029137 DOI: 10.1016/j.phymed.2024.155852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Theabrownin (TB) is a dark brown pigment from Pu-erh tea or other dark teas. It is formed by further oxidization of theaflavins and thearubigins, in combination with proteins, polysaccharides, and caffeine etc. TB is a characteristic ingredient and bioactive substance of Pu-erh tea. However, the effects of TB on ulcerative colitis (UC) remains unclear. PURPOSE This study aims to elucidate the mechanism of TB on UC in terms of recovery of intestinal homeostasis and regulation of toll-like receptor (TLR) 2&4 signaling pathway. METHODS The colitis models were established by administering 5% dextran sulfate sodium (DSS) to C57BL/6 mice for 5 days to evaluate the therapeutic and preventive effects of TB on UC. Mesalazine was used as a positive control. H&E staining, complete blood count, enzyme-linked immunosorbent assay, immunohistochemistry, flow cytometry, and 16S rRNA sequencing were employed to assess histological changes, blood cells analysis, content of cytokines, expression and distribution of mucin (MUC)2 and TLR2&4, differentiation of CD4+T cells in lamina propria, and changes in intestinal microbiota, respectively. Western blot was utilized to study the relative expression of tight junction proteins and the key proteins in TLR2&4-mediated MyD88-dependent MAPK, NF-κB, and AKT signaling pathways. RESULTS TB outstanding alleviated colitis, inhibited the release of pro-inflammatory cytokines, reduced white blood cells while increasing red blood cells, hemoglobin, and platelets. TB increased the expression of occludin, claudin-1 and MUC2, effectively restored intestinal barrier function. TB also suppressed differentiation of Th1 and Th17 cells in the colon's lamina propria, increased the fraction of Treg cells, and promoted the balance of Treg/Th17 to tilt towards Tregs. Moreover, TB increased the Firmicutes to Bacteroides (F/B) ratio, as well as the abundance of Akkermansia, Muribaculaceae, and Eubacterium_coprostanoligenes_group at the genus level. In addition, TB inhibited the activation of TLR2&4-mediated MAPK, NF-κB, and AKT signaling pathways in intestinal epithelial cells of DSS-induced mice. CONCLUSION TB acts in restoring intestinal homeostasis and anti-inflammatory in DSS-induced UC, and exhibiting a preventive effect after long-term use. In a word, TB is a promising beverage, health product and food additive for UC.
Collapse
Affiliation(s)
- Lei Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yue Miao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China
| | - Shuwen Lei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yujing Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China.
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
10
|
Chen X, Wang Y, Chen Y, Dai J, Cheng S, Chen X. Formation, physicochemical properties, and biological activities of theabrownins. Food Chem 2024; 448:139140. [PMID: 38574720 DOI: 10.1016/j.foodchem.2024.139140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/03/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Theabrownins (TBs) are heterogeneous mixtures of water-soluble brown tea pigments, and important constituents to evaluate the quality of dark tea. TBs have numerous hydroxyl and carboxyl groups and are formed by the oxidative polymerization of tea polyphenols. Many biological activities attributed to TBs, including antioxidant, anti-obesity, and lipid-regulating, have been demonstrated. This review summarizes the research progress made on the formation mechanism and physicochemical properties of TBs. It also discusses their protective effects against various diseases and associated potential molecular mechanisms. Additionally, it examines the signaling pathways mediating the bioactivities of TBs and highlights the difficulties and challenges of TBs research as well as their research prospects and applications.
Collapse
Affiliation(s)
- Xiujuan Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yongyong Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Jun Dai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Shuiyuan Cheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
11
|
Su S, Long P, Zhang Q, Wen M, Han Z, Zhou F, Ke J, Wan X, Ho CT, Zhang L. Chemical, sensory and biological variations of black tea under different drying temperatures. Food Chem 2024; 446:138827. [PMID: 38402772 DOI: 10.1016/j.foodchem.2024.138827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
As the final processing step, drying temperature between 90 and 140 ℃ is usually applied to terminate enzymatic activities and improve sensory characteristics of black tea. Liquid chromatography tandem mass spectrometry (LC-MS) based non-targeted and targeted metabolomics analyses combined in vitro biological assays were adopted to investigate the chemical and biological variations after drying. Fifty-nine differentially expressed metabolites including several hydroxycinnamic acid derivatives and pyroglutamic acid-glucose Amadori rearrangement products (ARPs) were identified, the latter of which was correspondingly accumulated with increasing temperature. The levels of theaflavins (TFs), thearubigins (TRs), monosaccharides and free amino acids gradually decreased with increasing temperature. Furthermore, the bioassays of black tea showed that drying under 110 ℃ provided the highest antioxidant capacities, but the inhibitory effects on α-glucosidase and α-amylase were decreasing along with increasing drying temperature. These results are valuable for optimizing drying process to obtain superior sensory properties and preserve bioactivities of black tea.
Collapse
Affiliation(s)
- Shengxiao Su
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Piaopiao Long
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Qing Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Feng Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jiaping Ke
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
12
|
Li M, Bai W, Yang Y, Zhang X, Wu H, Li Y, Xu Y. Waste Tea-Derived Theabrownins for Solar-Driven Steam Generation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10158-10169. [PMID: 38354064 DOI: 10.1021/acsami.3c18438] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Solar-driven seawater desalination has been considered an effective and sustainable solution to mitigate the global freshwater crisis. However, the substantial cost associated with photothermal materials for evaporator fabrication still hinders large-scale manufacturing for practical applications. Herein, we successfully obtained high yields of theabrownins (TB), which were oxidation polymerization products of polyphenols from waste and inferior tea leaves using a liquid-state fermentation strategy. Subsequently, a series of photothermal complexes were prepared based on the metal-phenolic networks assembled from TB and metal ions (Fe(III), Cu(II), Ni(II), and Zn(II)). Also, the screened TB@Fe(III) complexes were directly coated on a hydrophilic poly(vinylidene fluoride) (PVDF) membrane to construct the solar evaporation device (TB@Fe(III)@PVDF), which not only demonstrated superior light absorption property and notable hydrophilicity but also achieved a high water evaporation rate of 1.59 kg m-2 h-1 and a steam generation efficiency of 90% under 1 sun irradiation. More importantly, its long-term stability and exceptionally low production cost enabled an important step toward the possibility of large-scale practical applications. We believe that this study holds the potential to pave the way for the development of sustainable and cost-effective photothermal materials, offering new avenues for utilization of agriculture resource waste and solar-driven water remediation.
Collapse
Affiliation(s)
- Maoyun Li
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wanjie Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Yiyan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Yuanting Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Chen X, Chen T, Liu J, Wei Y, Zhou W. Physicochemical stability and antibacterial mechanism of theabrownins prepared from tea polyphenols catalyzed by polyphenol oxidase and peroxidase. Food Sci Biotechnol 2024; 33:47-61. [PMID: 38186623 PMCID: PMC10766583 DOI: 10.1007/s10068-023-01341-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 01/09/2024] Open
Abstract
Tea polyphenols were used as substrates and oxidized successively by polyphenol oxidase and peroxidase to prepare theabrownins (TBs-dE). The conversion rate of catechins to TBs-dE was 90.91%. The ultraviolet and infrared spectroscopic properties and zeta potential of TBs-dE were characterized. TBs-dE is more stable at pH 5.0-7.0, about 25 °C or in dark environment. Ultraviolet light and sunlight can deepen its color due to the further oxidative polymerization. Mg2+, Cu2+, and Al3+ had a significant effect on the stability of TBs-dE. The inhibitory rates of TBs-dE (1 mg/mL) against Staphylococcus aureus and Escherichia coli DH5α were 51.45% and 45.05%, respectively. After TBs-dE treatment, the cell morphology of both bacteria changed, some cell walls were blurred, and the cytoplasmic content leaked. The research results can provide theoretical support for the industrialization of theabrownins.
Collapse
Affiliation(s)
- Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068 China
| | - Tingting Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068 China
| | - Jiayan Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068 China
| | - Yan’an Wei
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068 China
| | - Weilong Zhou
- National Center for Tea Quality Inspection and Testing, Hangzhou Tea Research Institute, All China Federation of Supply and Marketing Cooperatives, Hangzhou, 310016 China
| |
Collapse
|
14
|
Xu J, Wei Y, Huang Y, Weng X, Wei X. Current understanding and future perspectives on the extraction, structures, and regulation of muscle function of tea pigments. Crit Rev Food Sci Nutr 2023; 63:11522-11544. [PMID: 35770615 DOI: 10.1080/10408398.2022.2093327] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the aggravating aging of modern society, the sarcopenia-based aging syndrome poses a serious potential threat to the health of the elderly. Natural dietary supplements show great potential to reduce muscle wasting and enhance muscle performance. Tea has been widely recognized for its health-promoting effects. which contains active ingredients such as tea polyphenols, tea pigments, tea polysaccharides, theanine, caffeine, and vitamins. In different tea production processes, the oxidative condensation and microbial transformation of catechins and other natural substances from tea promotes the production of various tea pigments, including theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs). Tea pigments have shown a positive effect on maintaining muscle health. Nevertheless, the relationship between tea pigments and skeletal muscle function has not been comprehensively elucidated. In addition, the numerous research on the extraction and purification of tea pigments is disordered with the limited recent progress due to the complexity of species and molecular structure. In this review, we sort out the strategies for the separation of tea pigments, and discuss the structures of tea pigments. On this basis, the regulation mechanisms of tea pigments on muscle functional were emphasized. This review highlights the current understanding on the extraction methods, molecular structures and regulation mechanisms of muscle function of tea pigments. Furthermore, main limitations and future perspectives are proposed to provide new insights into broadening theoretical research and industrial applications of tea pigments in the future.
Collapse
Affiliation(s)
- Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Environmental and Chemical Engineering, Shanghai University, Baoshan, Shanghai, People's Republic of China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yi Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xinchu Weng
- School of Environmental and Chemical Engineering, Shanghai University, Baoshan, Shanghai, People's Republic of China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Qin X, Zhou J, He C, Qiu L, Zhang D, Yu Z, Wang Y, Ni D, Chen Y. Non-targeted metabolomics characterization of flavor formation of Lichuan black tea processed from different cultivars in Enshi. Food Chem X 2023; 19:100809. [PMID: 37780350 PMCID: PMC10534183 DOI: 10.1016/j.fochx.2023.100809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 10/03/2023] Open
Abstract
Nine tea cultivars planted in Enshi were selected and processed into "Lichuan black tea". Sensory evaluation showed that cultivar had the greatest influence on taste and aroma quality, including sweetness, umami and concentration of taste, as well as sweet and floral fragrances of aroma. The non-volatile and volatile components were identified by UPLC-Q-TOF/MS and GC-MS, and PCA analysis showed good separation between cultivars, which could cause the difference in quality. Baiyaqilan, Meizhan and Echa 10 had a floral aroma, with obvious difference in their aromatic composition from other cultivars. Moreover, Echa 10 also had a strong sweet aroma. The key aroma components in Echa 10 (with the largest cultivation area) were further investigated by GC-O-MS combined with odor activity value (OAV) analysis, included β-damascenone, phenylethylaldehyde, nonenal, geraniol, linalool, jasmonone, (E)-2-nonenal, β-cyclocitral, (E)-β-ocimene, methyl salicylate, β-ionone, 2,6,10,10-tetramethyl-1-oxaspiro[4.5]dec-6-ene, citral, β-myrcene, nerol, phenethyl alcohol, benzaldehyde, hexanal, nonanoic acid, and jasmin lactone.
Collapse
Affiliation(s)
- Xinxue Qin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Jingtao Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Chang He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Li Qiu
- Lichuan Xingdoushan Black Tea Co., Ltd, Lichuan, Hubei 445000, People’s Republic of China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Yu Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| |
Collapse
|
16
|
Dai YH, Wei JR, Chen XQ. Interactions between tea polyphenols and nutrients in food. Compr Rev Food Sci Food Saf 2023; 22:3130-3150. [PMID: 37195216 DOI: 10.1111/1541-4337.13178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/08/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
Tea polyphenols (TPs) are important secondary metabolites in tea and are active in the food and drug industry because of their rich biological activities. In diet and food production, TPs are often in contact with other food nutrients, affecting their respective physicochemical properties and functional activity. Therefore, the interaction between TPs and food nutrients is a very important topic. In this review, we describe the interactions between TPs and food nutrients such as proteins, polysaccharides, and lipids, highlight the forms of their interactions, and discuss the changes in structure, function, and activity resulting from their interactions.
Collapse
Affiliation(s)
- Yi-Hui Dai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Jia-Ru Wei
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Xiao-Qiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| |
Collapse
|
17
|
An In Vitro Catalysis of Tea Polyphenols by Polyphenol Oxidase. Molecules 2023; 28:molecules28041722. [PMID: 36838710 PMCID: PMC9959171 DOI: 10.3390/molecules28041722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Tea polyphenol (TPs) oxidation caused by polyphenol oxidase (PPO) in manufacturing is responsible for the sensory characteristics and health function of fermented tea, therefore, this subject is rich in scientific and commercial interests. In this work, an in vitro catalysis of TPs in liquid nitrogen grinding of sun-dried green tea leaves by PPO was developed, and the changes in metabolites were analyzed by metabolomics. A total of 441 metabolites were identified in the catalyzed tea powder and control check samples, which were classified into 11 classes, including flavonoids (125 metabolites), phenolic acids (67 metabolites), and lipids (55 metabolites). The relative levels of 28 metabolites after catalysis were decreased significantly (variable importance in projection (VIP) > 1.0, p < 0.05, and fold change (FC) < 0.5)), while the relative levels of 45 metabolites, including theaflavin, theaflavin-3'-gallate, theaflavin-3-gallate, and theaflavin 3,3'-digallate were increased significantly (VIP > 1.0, p < 0.05, and FC > 2). The increase in theaflavins was associated with the polymerization of catechins catalyzed by PPO. This work provided an in vitro method for the study of the catalysis of enzymes in tea leaves.
Collapse
|
18
|
Pu'er raw tea extract alleviates lipid deposition in both LO2 cells and Caenorhabditis elegans. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Nurmilah S, Cahyana Y, Utama GL. Metagenomics Analysis of the Polymeric and Monomeric Phenolic Dynamic Changes Related to the Indigenous Bacteria of Black Tea Spontaneous Fermentation. BIOTECHNOLOGY REPORTS 2022; 36:e00774. [DOI: 10.1016/j.btre.2022.e00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
20
|
An Improved Method of Theabrownins Extraction and Detection in Six Major Types of Tea (Camellia sinensis). J CHEM-NY 2022. [DOI: 10.1155/2022/8581515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tea pigments consisting of theabrownins (TBs), theaflavins (TFs), and thearubigins (TRs) affect the color and taste of tea. TBs include a variety of water-soluble compounds, but do not dissolve in n-butanol and ethyl acetate. Previously, the traditional method of TB extraction only mixed tea with n-butanol, and TBs were retained in the water phase. However, without ethyl acetate extraction, TFs and TRs remained in the water phase and affected the detection of TB content. Although an improved method had been devised by adding an ethyl acetate extraction step between tea production and n-butanol extraction, the proportional equation for calculating TB content (%) was not yet developed. In this study, we compared the absorbance at 380 nm (A380) of TB solutions from six major types of tea (green, yellow, oolong, white, black, and dark teas) extracted by improved and traditional methods from the same tea samples. Significantly lower A380 values were obtained from TB solutions via the improved method compared to the traditional method for six major types of tea, and the highest and lowest slops in TB concentrations from A380 analyses were from dark tea and green tea, respectively. Moreover, newly developed equations for TB content in those six tea types extracted by the improved methods were also established.
Collapse
|
21
|
Li HY, Huang SY, Xiong RG, Wu SX, Zhou DD, Saimaiti A, Luo M, Zhu HL, Li HB. Anti-Obesity Effect of Theabrownin from Dark Tea in C57BL/6J Mice Fed a High-Fat Diet by Metabolic Profiles through Gut Microbiota Using Untargeted Metabolomics. Foods 2022; 11:foods11193000. [PMID: 36230076 PMCID: PMC9564053 DOI: 10.3390/foods11193000] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
The epidemic of obesity is a serious public health problem. In this study, the effect of theabrownin from dark tea on obesity was evaluated by biochemical tests and nuclear magnetic resonance in C57BL/6J mice fed a high-fat diet. A mixture of antibiotics was used to deplete gut microbiota and then fecal microbiota transplant was used to restore gut microbiota. Untargeted metabolomics was used to reveal the effects of theabrownin on metabolic profiles through gut microbiota. The results showed that theabrownin significantly reduced body weight gain (83.0%) and body fat accumulation (30.29%) without affecting appetite. Also, theabrownin promoted lipid clearance with a hepatoprotective effect. The extra antibiotics disrupted the regulation of theabrownin on weight control while fecal microbiota transplant restored the beneficial regulation. That is, gut microbiota was important for theabrownin to reduce body weight gain. The untargeted metabolomics indicated that 18 metabolites were related to the anti-obesity effect of theabrownin mediated by gut microbiota. Furthermore, phenylalanine metabolism, histidine metabolism, as well as protein digestion and absorption pathway played a role in the anti-obesity of theabrownin. Our findings suggested that theabrownin significantly alleviated obesity via gut microbiota-related metabolic pathways, and theabrownin could be used for the prevention and treatment of obesity.
Collapse
|
22
|
Xiao Y, Huang Y, Long F, Yang D, Huang Y, Han Y, Wu Y, Zhong K, Bu Q, Gao H, Huang Y. Insight into structural characteristics of theabrownin from Pingwu Fuzhuan brick tea and its hypolipidemic activity based on the in vivo zebrafish and in vitro lipid digestion and absorption models. Food Chem 2022; 404:134382. [DOI: 10.1016/j.foodchem.2022.134382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
|
23
|
Theabrownin Alleviates Colorectal Tumorigenesis in Murine AOM/DSS Model via PI3K/Akt/mTOR Pathway Suppression and Gut Microbiota Modulation. Antioxidants (Basel) 2022; 11:antiox11091716. [PMID: 36139789 PMCID: PMC9495753 DOI: 10.3390/antiox11091716] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common and fatal cancers worldwide, yet therapeutic options for CRC often exhibit strong side effects which cause patients’ well-being to deteriorate. Theabrownin (TB), an antioxidant from Pu-erh tea, has previously been reported to have antitumor effects on non-small-cell lung cancer, osteosarcoma, hepatocellular carcinoma, gliomas, and melanoma. However, the potential antitumor effect of TB on CRC has not previously been investigated in vivo. The present study therefore aimed to investigate the antitumor effect of TB on CRC and the underlying mechanisms. Azoxymethane (AOM)/dextran sodium sulphate (DSS) was used to establish CRC tumorigenesis in a wild type mice model. TB was found to significantly reduce the total tumor count and improve crypt length and fibrosis of the colon when compared to the AOM/DSS group. Immunohistochemistry staining shows that the expression of the proliferation marker, Ki67 was reduced, while cleaved caspase 3 was increased in the TB group. Furthermore, TB significantly reduced phosphorylation of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and the downstream mechanistic target of rapamycin (mTOR)and cyclin D1 protein expression, which might contribute to cell proliferation suppression and apoptosis enhancement. The 16s rRNA sequencing revealed that TB significantly modulated the gut microbiota composition in AOM/DSS mice. TB increased the abundance of short chain fatty acid as well as SCFA-producing Prevotellaceae and Alloprevotella, and it decreased CRC-related Bacteroidceae and Bacteroides. Taken together, our results suggest that TB could inhibit tumor formation and potentially be a promising candidate for CRC treatment.
Collapse
|
24
|
Deng S, Zhou X, Dong H, Xu Y, Gao Y, Wang B, Liu X. Mellow and Thick Taste of Pu−Erh Ripe Tea Based on Chemical Properties by Sensory−Directed Flavor Analysis. Foods 2022; 11:foods11152285. [PMID: 35954052 PMCID: PMC9368183 DOI: 10.3390/foods11152285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
The mellow and thick taste is a unique characteristic of pu−erh ripe tea infusion, and it is closely related to the chemical composition of pu−erh ripe tea, which is less studied. This paper clarifies and compares the chemical composition of pu−erh ripe tea to that of the raw materials of sun−dried green tea, and uses membrane separation technology to separate pu−erh ripe tea into the rejection liquid and the filtration liquid. The results show that microorganisms transformed most physicochemical components, except caffeine, during the pile fermentation. It was found that total tea polyphenols, soluble proteins, total soluble sugars, theabrownin, and galloylated catechins became enriched in the rejection liquid, and the rejection liquid showed a more obvious mellow and thick characteristic. Taste interactions between crude protein, crude polysaccharide, and theabrownin were determined. They illustrated that the mellow and thick taste of pu−erh ripe tea with the addition of theabrownin increased from 4.45 to 5.13. It is of great significance to explore the chemical basis of the mellow and thick taste in pu−erh tea for guiding the pu−erh tea production process and for improving the quality of pu−erh tea.
Collapse
Affiliation(s)
- Sihan Deng
- College of Tea Science, Yunnan Agriculture University, Kunming 650201, China; (S.D.); (X.Z.); (H.D.); (B.W.)
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China;
| | - Xinru Zhou
- College of Tea Science, Yunnan Agriculture University, Kunming 650201, China; (S.D.); (X.Z.); (H.D.); (B.W.)
| | - Haiyu Dong
- College of Tea Science, Yunnan Agriculture University, Kunming 650201, China; (S.D.); (X.Z.); (H.D.); (B.W.)
| | - Yongquan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China;
| | - Ying Gao
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China;
- Correspondence: (Y.G.); (X.L.)
| | - Baijuan Wang
- College of Tea Science, Yunnan Agriculture University, Kunming 650201, China; (S.D.); (X.Z.); (H.D.); (B.W.)
- Yunnan Organic Tea Industry Intelligent Engineering Research Center, Kunming 650201, China
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Kunming 650201, China
| | - Xiaohui Liu
- College of Tea Science, Yunnan Agriculture University, Kunming 650201, China; (S.D.); (X.Z.); (H.D.); (B.W.)
- Yunnan Organic Tea Industry Intelligent Engineering Research Center, Kunming 650201, China
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Kunming 650201, China
- Correspondence: (Y.G.); (X.L.)
| |
Collapse
|
25
|
Excitation-emission matrix fluorescence spectroscopy coupled with chemometric methods for characterization and authentication of Anhua brick tea. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Yang CY, Hung KC, Yen YY, Liao HE, Lan SJ, Lin HC. Anti-Oxidative Effect of Pu-erh Tea in Animals Trails: A Systematic Review and Meta-Analysis. Foods 2022; 11:1333. [PMID: 35564056 PMCID: PMC9100797 DOI: 10.3390/foods11091333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
This study adopted systematic literature review and meta-analysis methodology to explored anti-oxidative effect of pu-erh tea. Study authors have systemically searched seven databases up until 21 February 2020. In performing the literature search on the above-mentioned databases, the authors used keywords of pu-erh AND (superoxide dismutase OR glutathione peroxidase OR malondialdehyde). Results derived from meta-analyses showed statistically significant effects of pu-erh tea on reducing serum MDA levels (SMD, −4.19; 95% CI, −5.22 to −3.15; p < 0.001; I2 = 93.67%); increasing serum SOD levels (SMD, 2.41; 95% CI, 1.61 to 3.20; p < 0.001; I2 = 91.36%); and increasing serum GSH-Px levels (SMD, 4.23; 95% CI, 3.10 to 5.36; p < 0.001; I2 = 93.69%). Results from systematic review and meta-analyses validated that various ingredients found in pu-erh tea extracts had anti-oxidation effects, a long-held conventional wisdom with limited supporting evidence.
Collapse
Affiliation(s)
- Chiung-Ying Yang
- Department of Healthcare Administration, Asia University, Taichung 413, Taiwan; (C.-Y.Y.); (H.-E.L.); (S.-J.L.)
| | - Kuang-Chen Hung
- Taichung Armed Forces General Hospital, Taichung 411, Taiwan;
- National Defense Medical Center, Taipei 114, Taiwan
| | - Yea-Yin Yen
- Department of Oral Hygiene, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Hung-En Liao
- Department of Healthcare Administration, Asia University, Taichung 413, Taiwan; (C.-Y.Y.); (H.-E.L.); (S.-J.L.)
| | - Shou-Jen Lan
- Department of Healthcare Administration, Asia University, Taichung 413, Taiwan; (C.-Y.Y.); (H.-E.L.); (S.-J.L.)
| | - Hsin-Cheng Lin
- Taichung Armed Forces General Hospital, Taichung 411, Taiwan;
- National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
27
|
Hu S, Li X, Gao C, Meng X, Li M, Li Y, Xu T, Hao Q. Detection of composition of functional component theabrownins in Pu-erh tea by degradation method. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Chen X, Hu Y, Wang B, Chen Y, Yuan Y, Zhou W, Song W, Wu Z, Li X. Characterization of Theabrownins Prepared From Tea Polyphenols by Enzymatic and Chemical Oxidation and Their Inhibitory Effect on Colon Cancer Cells. Front Nutr 2022; 9:849728. [PMID: 35369086 PMCID: PMC8965357 DOI: 10.3389/fnut.2022.849728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022] Open
Abstract
Theabrownins (TBs) are prepared from dark tea and contain a large number of complex heterogeneous components, such as carbohydrates, proteins, and flavonoids, which are difficult to remove. In addition, some toxic and harmful extraction solvents are used to purify TBs. These obstacles hinder the utilization and industrialization of TBs. In this study, tea polyphenols were used as substrates and polyphenol oxidase and sodium bicarbonate (NaHCO3) were used successively to prepare theabrownins (TBs-E). The UV-visible characteristic absorption peaks of the TBs-E were located at 203 and 270 nm and Fourier-transform IR analysis showed that they were polymerized phenolic substances containing the hydroxy and carboxyl groups. The TBs-E aqueous solution was negatively charged and the absolute values of the zeta potential increased with increasing pH. A storage experiment showed that TBs-E were more stable at pH 7.0 and in low-temperature environments around 25°C. HT-29 human colon cancer cells were used to evaluate the biological activity of TBs-E through 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT), H&E staining, propidium iodide immunofluorescent staining, flow cytometry, and real-time PCR assays. The TBs-E significantly inhibited cell growth and caused late apoptosis, particularly at the dose of 500 μg/ml. The TBs-E markedly reduced the expression of antioxidant enzyme genes and increased the generation of reactive oxygen species to break the redox balance, which may have led to cell damage and death. These results will promote research and industrialization of TBs.
Collapse
Affiliation(s)
- Xiaoqiang Chen
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
- *Correspondence: Xiaoqiang Chen
| | - Yuxi Hu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Bingjie Wang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yin Chen
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yao Yuan
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Weilong Zhou
- National Center for Tea Quality Inspection and Testing, Hangzhou Tea Research Institute, All China Federation of Supply and Marketing Cooperatives, Hangzhou, China
| | - Wei Song
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Research Center of Food Safety Risk Assessment and Control, College of Food Science and Technology, Northwest University, Xi'an, China
- Wei Song
| | - Zhengqi Wu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
29
|
Xu J, Xiao X, Yan B, Yuan Q, Dong X, Du Q, Zhang J, Shan L, Ding Z, Zhou L, Efferth T. Green tea-derived theabrownin induces cellular senescence and apoptosis of hepatocellular carcinoma through p53 signaling activation and bypassed JNK signaling suppression. Cancer Cell Int 2022; 22:39. [PMID: 35078476 PMCID: PMC8788116 DOI: 10.1186/s12935-022-02468-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/13/2022] [Indexed: 01/07/2023] Open
Abstract
Abstract
Background
Theabrownin (TB) is a bioactive component of tea and has been reported to exert effects against many human cancers, but its efficacy and mechanism on hepatocellular carcinoma (HCC) with different p53 genotypes remains unclarified.
Methods
MTT assay, DAPI staining, flow cytometry and SA-β-gal staining were applied to evaluate the effects of TB on HCC cells. Quantitative real time PCR (qPCR) and Western blot (WB) were conducted to explore the molecular mechanism of TB. A xenograft model of zebrafish was established to evaluate the anti-tumor effect of TB.
Results
MTT assays showed that TB significantly inhibited the proliferation of SK-Hep-1, HepG2, and Huh7 cells in a dose-dependent manner, of which SK-Hep-1 was the most sensitive one with the lowest IC50 values. The animal data showed that TB remarkably suppressed SK-Hep-1 tumor growth in xenograft model of zebrafish. The cellular data showed TB's pro-apoptotic and pro-senescent effect on SK-Hep-1 cells. The molecular results revealed the mechanism of TB that p53 signaling pathway (p-ATM, p-ATR, γ-H2AX, p-Chk2, and p-p53) was activated with up-regulation of downstream senescent genes (P16, P21, IL-6 and IL-8) as well as apoptotic genes (Bim, Bax and PUMA) and proteins (Bax, c-Casp9 and c-PARP). The p53-mediated mechanism was verified by using p53-siRNA. Moreover, by using JNK-siRNA, we found JNK as a bypass regulator in TB's mechanism.
Conclusions
To sum up, TB exerted tumor-inhibitory, pro-senescent and pro-apoptotic effects on SK-Hep-1 cells through ATM-Chk2-p53 signaling axis in accompany with JNK bypass regulation. This is the first report on the pro-senescent effect and multi-target (p53 and JNK) mechanism of TB on HCC cells, providing new insights into the underlying mechanisms of TB's anti-HCC efficacy.
Collapse
|
30
|
Du Y, Yang W, Yang C, Yang X. A comprehensive review on microbiome, aromas and flavors, chemical composition, nutrition and future prospects of Fuzhuan brick tea. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Wang Y, Zhao A, Du H, Liu Y, Qi B, Yang X. Theabrownin from Fu Brick Tea Exhibits the Thermogenic Function of Adipocytes in High-Fat-Diet-Induced Obesity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11900-11911. [PMID: 34581185 DOI: 10.1021/acs.jafc.1c04626] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study explored whether the antiobesity effect of theabrownin (TB) extracted from Fu brick tea (FBT) was associated with the activation of brown adipose tissue (BAT) or browning of the white adipose tissue (WAT) in mice fed a high-fat diet (HFD). Mice were divided into five groups, which received a normal diet, HFD, or HFD plus TB (200, 400, and 800 mg/kg), respectively. A 12-week administration of TB in a dose-dependent manner reduced the body weight and WAT weight and improved lipid and glucose disorders in the HFD-fed mice (p < 0.05). TB also promoted the expression of thermogenic and mitochondrial genes, whereas inflammation genes were reduced in interscapular BAT (iBAT), inguinal WAT (iWAT), and epididymis white adipose tissue (eWAT), accompanied by improvement in the intestinal homeostasis by improving SCFAs, especially butyric acid levels (p < 0.05), which was related to thermogenic and inflammatory factors of iBAT and iWAT. Mechanistically, TB was shown to efficiently promote thermogenesis by stimulating the AMPK-PGC1α pathway with an increase in uncoupling protein 1 (UCP1). Conclusively, these findings suggest that long-term consumption of TB can enhance BAT activity and WAT browning by activating the AMPK-PGC1α pathway and modulating SCFAs; meanwhile, SCFAs regulating TB improved inflammatory disorder in HFD-fed mice.
Collapse
Affiliation(s)
- Yu Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Aiqing Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Haiping Du
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yueyue Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Bangran Qi
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
32
|
Zhou H, Liu N, Yan Z, Yu D, Wang L, Wang K, Wei X, Wu A. Development and validation of the one-step purification method coupled to LC-MS/MS for simultaneous determination of four aflatoxins in fermented tea. Food Chem 2021; 354:129497. [PMID: 33752112 DOI: 10.1016/j.foodchem.2021.129497] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/20/2021] [Accepted: 02/25/2021] [Indexed: 12/25/2022]
Abstract
Aflatoxin B1 is the potential chemical contaminant of most concern during the production and storage of fermented tea. In this work, a simple, fast, sensitive, accurate, and inexpensive method has been developed and validated for the simultaneous detection of four aflatoxins in fermented tea based on a modified sample pretreatment method and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Aflatoxins were extracted using acetonitrile and purified using mixed fillers (carboxyl multiwalled carbon nanotubes, hydrophilic-lipophilic balance, silica gel). Under optimum LC-MS conditions, the limits of quantification (LOQs) were 0.02-0.5 µg·kg-1. Recoveries from aflatoxins-fortified tea samples (1-12 µg·kg-1) were in the range of 78.94-105.23% with relative standard deviations (RSDs) less than 18.20%. The proposed method was applied successfully to determine aflatoxin levels in fermented tea samples.
Collapse
Affiliation(s)
- Haiyan Zhou
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Zheng Yan
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Dianzhen Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Lan Wang
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Kunbo Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, PR China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China.
| |
Collapse
|
33
|
Jiang H, Zhang M, Wang D, Yu F, Zhang N, Song C, Granato D. Analytical strategy coupled to chemometrics to differentiate Camellia sinensis tea types based on phenolic composition, alkaloids, and amino acids. J Food Sci 2020; 85:3253-3263. [PMID: 32856300 DOI: 10.1111/1750-3841.15390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/11/2020] [Accepted: 07/06/2020] [Indexed: 11/26/2022]
Abstract
Catechins, amino acids, and alkaloids are primary chemical components of tea and play a crucial role in determining tea quality. Their composition and content largely vary among different types of tea. In this study, a convenient chemical classification method was developed for six Camellia sinensis tea types (white, green, oolong, black, dark, and yellow) based on the quantification of their major components. Twenty-one free amino acids, 6 catechins, 2 alkaloids, and gallic acid in 24 teas were quantified using ultra-high-performance liquid chromatography (UHPLC). The total catechin contents in these tea samples ranged from 10.96 to 95.67 mg/g, while total free amino acid content ranged from 2.63 to 25.89 mg/g. Theanine (Thea) was the most abundant amino acid in all tea varieties. Catechin and amino acid levels in tea were markedly reduced upon fermentation of tea. Furthermore, high-temperature processing (roasting) during tea production induced degradation and epimerization of catechins, yielding epimerized catechins, simple catechins, and gallic acid. Principal component analysis revealed that major ester-catechins (EGCG and ECG), major amino acids (Thea), and major alkaloids (caffeine) are potential factors for distinguishing different types of tea. Linear discriminant analysis showed that 100% of teas were correctly classified in which (+)-catechin, ECG, EGC, gallic acid, GABA, cysteine, lysine, and threonine were the most discriminating compounds. This study shows that quantification of the major tea components combined with chemometric analysis, can serve as a simple, convenient, and reliable approach for classifying tea according to fermentation level. PRACTICAL APPLICATION: Different Camellia sinensis tea types can be produced worldwide but it is still challenging to know which chemical markers can be used to trace their production. in this paper we used a targeted methodology to classify six tea types (white, green, oolong, black, dark, and yellow) based on phenolic composition, alkaloids, and amino acids. The main chemical markers responsible for the discrimination were pinpointed with the use of chemometric tools.
Collapse
Affiliation(s)
- Hao Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China.,School of Tea and Food Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Mengting Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China.,School of Tea and Food Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Feng Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China.,School of Tea and Food Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Na Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China.,School of Tea and Food Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China.,School of Tea and Food Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Daniel Granato
- Food Processing and Quality, Natural Resources Institute Finland, Tietotie 2, Espoo, 02150, Finland
| |
Collapse
|
34
|
Zhu MZ, Li N, Zhou F, Ouyang J, Lu DM, Xu W, Li J, Lin HY, Zhang Z, Xiao JB, Wang KB, Huang JA, Liu ZH, Wu JL. Microbial bioconversion of the chemical components in dark tea. Food Chem 2020; 312:126043. [PMID: 31896450 DOI: 10.1016/j.foodchem.2019.126043] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Dark tea is a unique fermented tea produced by solid-state fermentation of tea leaves (Camellia sinensis). It includes ripe Pu-erh tea, Fu brick tea, Liupao tea, and other teas. Microbial fermentation is considered to be the key factor controlling the quality of dark tea. It involves a series of reactions that modify the chemical constituents of tea leaves. These chemical conversions during microbial fermentation of dark tea are associated with a variety of functional core microorganisms. Further, Multi-omics approaches have been used to reveal the microbial impact on the conversion of the chemical components in dark tea. In the present review, we provide an overview of the most recent advances in the knowledge of the microbial bioconversion of the chemical components in dark tea, including the chemical composition of dark tea, microbial community composition and dynamics during the fermentation process, and the role of microorganisms in biotransformation of chemical constituents.
Collapse
Affiliation(s)
- Ming-Zhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, 410128, China
| | - Na Li
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Fang Zhou
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Ouyang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Dan-Min Lu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Xu
- Horticulture college, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Hai-Yan Lin
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Zhang Zhang
- China Tea (Hunan) Anhua 1st Factory Co., Ltd., Yiyang, 413500, China
| | - Jian-Bo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | - Kun-Bo Wang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Jian-An Huang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Zhong-Hua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China.
| | - Jian-Lin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau.
| |
Collapse
|
35
|
Long P, Wen M, Granato D, Zhou J, Wu Y, Hou Y, Zhang L. Untargeted and targeted metabolomics reveal the chemical characteristic of pu-erh tea (Camellia assamica) during pile-fermentation. Food Chem 2020; 311:125895. [DOI: 10.1016/j.foodchem.2019.125895] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022]
|
36
|
Structural Characteristics and Hypolipidemic Activity of Theabrownins from Dark Tea Fermented by Single Species Eurotium cristatum PW-1. Biomolecules 2020; 10:biom10020204. [PMID: 32019226 PMCID: PMC7072556 DOI: 10.3390/biom10020204] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 11/22/2022] Open
Abstract
Recently, studies on theabrownins (TBs), the main bioactive polymeric pigments found in dark tea, have received increasing attention for its health effects. Thus far, information on their structural characteristics is unclear. In the present study, theabrownins were isolated from single species Eurotium cristatum PW-1-fermented loose tea and their structural and hypolipidemic characteristics were studied for the first time. The theabrownins were fractionated by their molecular weights and were then analyzed. Ultraviolet–visible spectrophotometry (UV-Vis) and Flourier transformation infrared spectroscopy (FT-IR) showed that they were polymerized phenolic substances containing abundant hydroxy and carboxyl groups. All theabrownin samples exhibited hypolipidemic activity in high-fat zebrafish; among which TBs-10-30k sample, decreased lipid level in high-fat zebrafish to 51.57% at 1000 μg/mL, was most effective. It was found that TBs-10-30k was a type of amorphous and thermostable polymer with slice shape and smooth surface under scanning electron microscope (SEM). Atomic force microscope (AFM) analysis showed that it had island-like structure because of aggregation of theabrownin molecules. Pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) analysis further showed that the main pyrolytic products of TBs-10-30k were hexadecanoic acid (33.72%), phenol (14.90%), and eicosane (12.95%), indicating TBs-10-30k was mainly composed of phenols, lipids, saccharides, and proteins. These results not only facilitate subsequent identification of theabrownins, but also provide insights into the applications of theabrownins in functional foods.
Collapse
|
37
|
Sun Y, Wang Y, Song P, Wang H, Xu N, Wang Y, Zhang Z, Yue P, Gao X. Anti-obesity effects of instant fermented teas in vitro and in mice with high-fat-diet-induced obesity. Food Funct 2019; 10:3502-3513. [PMID: 31143917 DOI: 10.1039/c9fo00162j] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is a chronic metabolic disorder that is associated with higher risks of developing diabetes and cardiovascular disease. Chinese dark tea is a fermented beverage with many biological effects and could be considered for the management of obesity. This study is aimed to assess the possible anti-obesity properties of instant dark tea (IDT) and instant pu-erh tea (PET) in high fat diet (HFD)-fed mice. Male C57BL/6 mice were divided into 5 groups. They received low-fat diet (LFD), HFD, HFD supplemented with drinking IDT infusion (5 mg mL-1), PET infusion (5 mg mL-1) or water for 8 weeks. The results showed IDT exhibited better inhibitory effect than PET on body weight gain and visceral fat weights. IDT also improved the serum high-density lipoprotein cholesterol (HDL-C) level, but decreased the low-density lipoprotein cholesterol (LDL-C) and leptin levels more effectively than PET. Both IDT and PET lowered the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the plasma and significantly increased the ratio of albumin to globin (A/G) in the serum compared to the control group. IDT treatment reduced the malondialdehyde (MDA) level in the liver. Histomorphology evidenced that the liver tissue architecture was well preserved by IDT administration. Moreover, IDT regulated the expression of obesity-related genes more effectively than PET. Overall, the present findings have provided the proof of concept that dietary IDT could provide a safer and cost-effective option for people with HFD-induced obesity.
Collapse
Affiliation(s)
- Yue Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang L, Ho CT, Zhou J, Santos JS, Armstrong L, Granato D. Chemistry and Biological Activities of Processed Camellia sinensis Teas: A Comprehensive Review. Compr Rev Food Sci Food Saf 2019; 18:1474-1495. [PMID: 33336903 DOI: 10.1111/1541-4337.12479] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/05/2019] [Accepted: 06/25/2019] [Indexed: 01/20/2023]
Abstract
Tea is a typical processed beverage from the fresh leaves of Camellia sinensis [Camellia sinensis (L.) O. Kuntze] or Camellia assamica [Camellia sinensis var. assamica (Mast.) Kitamura] through different manufacturing techniques. The secondary metabolites of fresh tea leaves are mainly flavan-3-ols, phenolic acids, purine alkaloids, condensed tannins, hydrolysable tannins, saponins, flavonols, and their glycoside forms. During the processing, tea leaves go through several steps, such as withering, rolling, fermentation, postfermentation, and roasting (drying) to produce different types of tea. After processing, theaflavins, thearubigins, and flavan-3-ols derivatives emerge as the newly formed compounds with a corresponding decrease in concentrations of catechins. Each type of tea has its own critical process and presents unique chemical composition and flavor. The components among different teas also cause significant changes in their biological activities both in vitro and in vivo. In the present review, the progress of tea chemistry and the effects of individual unit operation on components were comprehensively described. The health benefits of tea were also reviewed based on the human epidemiological and clinical studies. Although there have been multiple studies about the tea chemistry and biological activities, most of existing results are related to tea polyphenols, especially (-)-epigallocatechin gallate. Other compounds, including the novel compounds, as well as isomers of amino acids and catechins, have not been explored in depth.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural Univ., 230036, Hefei, People's Republic of China
| | - Chi-Tang Ho
- Dept. of Food Science, Rutgers Univ., New Brunswick, 08901-8554, NJ, U.S.A
| | - Jie Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural Univ., 230036, Hefei, People's Republic of China
| | - Jânio Sousa Santos
- Graduation Program in Food Science and Technology, State Univ. of Ponta Grossa, 84030-900, Ponta Grossa, Brazil
| | - Lorene Armstrong
- Graduation Program in Chemistry, State Univ. of Ponta Grossa, 84030-900, Ponta Grossa, Brazil
| | - Daniel Granato
- Graduation Program in Food Science and Technology, State Univ. of Ponta Grossa, 84030-900, Ponta Grossa, Brazil.,Innovative Food System Unit, Natural Resources Inst. Finland (LUKE), FI-02150, Espoo, Finland
| |
Collapse
|
39
|
Wu E, Zhang T, Tan C, Peng C, Chisti Y, Wang Q, Gong J. Theabrownin from Pu-erh tea together with swinging exercise synergistically ameliorates obesity and insulin resistance in rats. Eur J Nutr 2019; 59:1937-1950. [PMID: 31273522 DOI: 10.1007/s00394-019-02044-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/30/2019] [Indexed: 01/03/2023]
Abstract
PURPOSE Theabrownin (TB)-containing Pu-erh tea has been shown to be hypolipidemic in rats fed a high-fat diet. Physical exercise such as swinging is also known to reduce obesity. We hypothesized that TB in combination with swinging can synergistically ameliorate obesity and insulin resistance in rats with metabolic syndrome. METHODS TB, rosiglitazone, or lovastatin (controls) was administered by gavage to rats fed a diet high in fat, sugar, and salt. A subgroup of the rats was subjected to a 30-min daily swinging exercise regimen, whereas the other rats did not exercise. RESULTS Theabrownin in combination with swinging was found to significantly improve serum lipid status and prevent development of obesity and insulin resistance in rats. Liver transcriptomics data suggested that theabrownin activated circadian rhythm, protein kinase A, the adenosine monophosphate-activated protein kinase, and insulin signaling pathways by enhancing cyclic adenosine monophosphate levels and, hence, accelerating nutrient metabolism and the consumption of sugar and fat. The serum dopamine levels in rats increased significantly after exercise. In parallel work, intraperitoneal dopamine injections were shown to significantly reduce weight gain and prevent the elevation in triglyceride levels that would otherwise be induced by the high fat-sugar-salt diet. Theabrownin prevented obesity and insulin resistance mainly by affecting the circadian rhythm, while swinging exercise stimulated the overproduction of dopamine to accelerate metabolism of glucose and lipid. CONCLUSIONS Theabrownin and exercise synergistically ameliorated metabolic syndrome in rats and effectively prevented obesity.
Collapse
Affiliation(s)
- Enkai Wu
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, 650201, Yunnan, China
| | - Tingting Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, 650201, Yunnan, China
| | - Chao Tan
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, 650201, Yunnan, China
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Heilong Tan, Kunming, 650201, Yunnan, China
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Qiuping Wang
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, 650201, Yunnan, China.
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, 650201, Yunnan, China.
| |
Collapse
|
40
|
Ryan CM, Khoo W, Stewart AC, O'Keefe SF, Lambert JD, Neilson AP. Flavanol concentrations do not predict dipeptidyl peptidase-IV inhibitory activities of four cocoas with different processing histories. Food Funct 2017; 8:746-756. [PMID: 28106217 DOI: 10.1039/c6fo01730d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cocoa and its constituent bioactives (particularly flavanols) have reported anti-diabetic and anti-obesity activities. One potential mechanism of action is inhibition of dipeptidyl peptidase-IV (DPP4), the enzyme that inactivates incretin hormones such as glucagon-like peptide-1 and gastric inhibitory peptide. The objective of this study was to determine the DPP4 inhibitory activities of cocoas with different processing histories, and identify processing factors and bioactive compounds that predict DPP4 inhibition. IC25 values (μg mL-1) were 4.82 for Diprotin A (positive control), 2135 for fermented bean extract, 1585 for unfermented bean extract, 2871 for unfermented liquor extract, and 1076 for fermented liquor extract This suggests mild inhibitory activity. Surprisingly, protein binding activity, total polyphenol, total flavanol, individual flavanol and complex fermentation/roasting product levels were all positively correlated to IC25 concentrations (greater levels correspond to less potent inhibition). For the representative samples studied, fermentation appeared to improve inhibition. This study suggests that cocoa may possess mild DPP4 inhibitory activity, and that processing steps such as fermentation may actually enhance activity. Furthermore, this activity and the variation between samples were not easily explainable by traditional putative bioactives in cocoa. The compounds driving this activity, and the associated mechanism(s) by which this inhibition occurs, remain to be elucidated.
Collapse
Affiliation(s)
- Caroline M Ryan
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - Weslie Khoo
- Department of Food Science, Pennsylvania State University, University Park, PA, USA
| | - Amanda C Stewart
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - Sean F O'Keefe
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - Joshua D Lambert
- Department of Food Science, Pennsylvania State University, University Park, PA, USA
| | - Andrew P Neilson
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
41
|
Wang Q, Gong J, Chisti Y, Sirisansaneeyakul S. Production of theabrownins using a crude fungal enzyme concentrate. J Biotechnol 2016; 231:250-259. [DOI: 10.1016/j.jbiotec.2016.06.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 11/16/2022]
|
42
|
Liu J, Peng CX, Gao B, Gong JS. Serum metabolomics analysis of rat after intragastric infusion of Pu-erh theabrownin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3708-3716. [PMID: 26676261 DOI: 10.1002/jsfa.7556] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/03/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND The aim was to study the effects of Pu-erh theabrownin (TB) (Mw > 50 kDa) on the metabolism of rat serum by nuclear magnetic resonance (NMR)-based metabolomics and identify candidate marker metabolites associated with Pu-erh TB, and thus provide fundamental information for a better understanding of the metabolism of Pu-erh tea in animals. RESULTS TB infusion induced different changes in endogenous serum metabolites depending on the type of diet. Compared with the control group, the TB infusion group showed significantly reduced serum glycine and choline levels, as well as significantly increased taurine, carnitine and high-density lipoprotein (all P < 0.05). Compared with the high-lipid group, the high-lipid TB infusion group exhibited significantly reduced low-density lipoprotein and acetate levels, as well as significantly increased inositol, carnitine and glycine levels (all P < 0.05). CONCLUSION Examination of the variations of these differential expressed metabolites and their individual functions revealed that the TB extract accelerated lipid catabolism in rats and might affect glucose metabolism. Of these, carnitine level significantly increased after intragastric infusion of TB regardless of the type of diet, and activities of carnitine palmitoyltransferases I and II changed significantly, suggesting carnitine may be a candidate serum marker for tracking the metabolism of TB in rats. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jian Liu
- Faculty of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Chun-Xiu Peng
- Horticultural Department, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Bin Gao
- Faculty of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Jia-Shun Gong
- Faculty of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| |
Collapse
|
43
|
Kondo M, Nishi K, Sugahara T. Ishizuchi dark tea suppresses IgE-mediated degranulation of RBL-2H3 cells and nasal rubbing behavior of pollinosis in mice. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.02.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
44
|
Wang Q, Gong J, Chisti Y, Sirisansaneeyakul S. Fungal isolates from a Pu-erh type tea fermentation and their ability to convert tea polyphenols to theabrownins. J Food Sci 2015; 80:M809-17. [PMID: 25799937 DOI: 10.1111/1750-3841.12831] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/03/2015] [Indexed: 01/16/2023]
Abstract
The natural microbiota involved in the fermentation influence the quality and taste of fully postfermented teas such as China's Pu-erh tea. Ten microbial isolates representing 6 species were recovered from a solid-state fermentation of a Pu-erh type tea. The isolates were Aspergillus tubingensis, Aspergillus marvanovae, Rhizomucor pusillus, Rhizomucor tauricus, Aspergillus fumigatus, and Candida mogii. With the exception of A. marvanovae and C. mogii, all these microorganisms have been previously reported in solid-state fermentations of native Pu-erh tea. The ability of the isolates for converting the tea polyphenols to bioactive theabrownins in infusions of sun-dried green tea leaves in a submerged fermentation process was subsequently investigated. All isolates except C. mogii TISTR 5938 effectively produced theabrownins in a 4-d fermentation in shake flasks at 40 °C, 250 rpm. A. tubingensis TISTR 3646, A. tubingensis TISTR 3647, A. marvanovae TISTR 3648, and A. fumigatus TISTR 3654 produced theabrownins at particularly high levels of 6.5, 12.4, 11.1, and 8.4 g/L, respectively.
Collapse
Affiliation(s)
- Qiuping Wang
- Dept. of Biotechnology, Faculty of Agro-Industry, Kasetsart Univ, 50 Ngam Wong Wan Road, Ladyao, Chatuchak, Bangkok, 10900, Thailand
| | | | | | | |
Collapse
|