1
|
Lekurwale S, Mahajan S, Banerjee SK, Banerjee S. Systematic evaluations and integration of Assam indigenous Joha rice starch in intelligent packaging films for monitoring food freshness using beetroot extract. Int J Biol Macromol 2024; 277:134332. [PMID: 39089563 DOI: 10.1016/j.ijbiomac.2024.134332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/20/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
It is becoming increasingly important to have starch sources with different physicochemical properties to meet the needs of new applications in food, packaging, bioplastic, and pharmaceutical industries. The first part of this study dealt with the isolation of starch from culturally, geographically, nutritionally esteemed, and high-yielding Assam Joha rice. Fine and uniform particle size (6.3 ± 0.09 μm), high amylose content (28 ± 1.03 %), swelling behavior, viscoelastic rheological behavior, moderate gelatinization temperature (66 ± 1.7 °C), thermostable nature, type A crystallographic pattern with high (45 ± 3.3 %) crystallinity, and suitable microbial quality make the Joha rice derived starch physico-chemically and functionally suitable for potential applications in diverse domains. The latter part of the study focuses on one of the applications of derived starch as a suitable matrix for intelligent packaging films with the incorporation of betanin-enriched beetroot extract (BRE) as a bio-based pH sensor. The addition of 1.0 % w/v BRE to the starch film (starch-BRE III) significantly increased its functionality by reducing UV-visible light transmittance and water vapor permeability, along with enhancing flexibility and hydrophobicity due to intermolecular bonding between BRE and the starch film matrix. Moreover, starch-BRE films with different BRE concentrations were successfully used to monitor the real-time freshness of white meat (chicken and fish) and Indian cottage cheese samples. Overall, the results indicated that starch-BRE III has great potential as an intelligent packaging material for monitoring food freshness.
Collapse
Affiliation(s)
- Srushti Lekurwale
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari 781101, Assam, India
| | - Shriram Mahajan
- Department of Biotechnology, NIPER-Guwahati, Changsari 781101, Assam, India
| | - Sanjay K Banerjee
- Department of Biotechnology, NIPER-Guwahati, Changsari 781101, Assam, India
| | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari 781101, Assam, India.
| |
Collapse
|
2
|
Amornrojvaravut C, Peerapattana J. Application of co-precipitated glutinous rice starch as a multifunctional excipient in direct compression tablets. Heliyon 2023; 9:e19904. [PMID: 37809676 PMCID: PMC10559294 DOI: 10.1016/j.heliyon.2023.e19904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Two key properties of excipients for inclusion in direct compression tablets are flowability and compactibility. Glutinous rice starch (GRS) has poor flowability, which limits its use in direct compression tablets. This study aimed to create a multifunctional direct compression excipient (filler binder disintegrant) with improved flowability from GRS by the co-precipitation method. The physicochemical and pharmaceutical properties of the co-precipitated GRS (cpGRS) were investigated. The optimum conditions for producing cpGRS (0.43 M sodium hydroxide solution, 7.09% PVP K30, 14.02% calcium carbonate, 95 min of mixing time and pH of 6.97) resulted in 68.80% yield, fair to good flowability, acceptable tablet strength, and fast disintegration. The FT-IR spectra of cpGRS showed no significant shifts in the key peaks, which indicates that there was an absence of chemical interactions within cpGRS. X-ray diffractograms also showed no significant changes, indicating that the GRS granules, calcium carbonate, and PVP K30 components remained unaltered during co-precipitation. cpGRS also demonstrated a dilution capacity of 50% when paracetamol was used as model drug. When cpGRS was combined with domperidone or propranolol hydrochloride it showed a better deformation capability than the physical mixtures. Although cpGRS was sensitive to lubricant, the hardness and tensile strength were higher than common strength for general purpose use in tablets. When compared to the physical mixture, pregelatinized starch and directly compressible calcium carbonate, the results showed that cpGRS tablets of both model drugs passed the friability test, demonstrated the best disintegration property, provided the fastest and highest drug release profile for propranolol, and improved the drug release profile for domperidone. For propranolol-cpGRS tablets, dissolution medium at different pH did not affect the dissolution profile. For domperidone-cpGRS tablets, the pH of dissolution medium did affect the dissolution profile of the tablets. This was according to the API solubility. These results reveal that cpGRS is an excellent multifunctional i.e., filler, binder, and disintegrant excipient suitable for direct compression tablets. The main component is natural. The preparation method is simple, quick, and efficient. This method does not produce harmful waste and requires only basic equipment, and affordable reactants and devices.
Collapse
Affiliation(s)
- Chonticha Amornrojvaravut
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Jomjai Peerapattana
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
3
|
John R, Bollinedi H, Jeyaseelan C, Padhi SR, Sajwan N, Nath D, Singh R, Ahlawat SP, Bhardwaj R, Rana JC. Mining nutri-dense accessions from rice landraces of Assam, India. Heliyon 2023; 9:e17524. [PMID: 37449133 PMCID: PMC10336429 DOI: 10.1016/j.heliyon.2023.e17524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 04/25/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
The Indian subcontinent is the primary center of origin of rice where huge diversity is found in the Indian rice gene pool, including landraces. North Eastern States of India are home to thousands of rice landraces which are highly diverse and good sources of nutritional traits, but most of them remain nutritionally uncharacterized. Hence, nutritional profiling of 395 Assam landraces was done for total starch, amylose content (AC), total dietary fiber (TDF), total protein content (TPC), oil, phenol, and total phytic acid (TPA) using official AOAC and standard methods, where the mean content for the estimated traits were found to be 75.2 g/100g, 22.2 g/100g, 4.67 g/100g, 9.8 g/100g, 5.26%, 0.40 GAE g/100g, and 0.34 g/100g for respectively. The glycaemic index (GI) was estimated in 24 selected accessions, out of which 17 accessions were found to have low GI (<55). Among different traits, significant correlations were found that can facilitate the direct and indirect selection such as estimated glycemic index (EGI) and amylose content (-0.803). Multivariate analyses, including principal component analysis (PCA) and hierarchical clustering analysis (HCA), revealed the similarities/differences in the nutritional attributes. Four principal components (PC) i.e., PC1, PC2, PC3, and PC4 were identified through principal component analysis (PCA) which, contributed 81.6% of the variance, where maximum loadings were from protein, oil, starch, and phytic acid. Sixteen clusters were identified through hierarchical clustering analysis (HCA) from which the trait-specific and biochemically most distant accessions could be identified for use in cultivar development in breeding programs.
Collapse
Affiliation(s)
- Racheal John
- Amity Institute of Applied Sciences, Amity University, Noida, India
| | | | | | | | | | | | | | | | | | - Jai Chand Rana
- Alliance of Bioversity International and CIAT – India Office, New Delhi, India
| |
Collapse
|
4
|
Kalita P, Ahmed AB, Sen S, Pachuau L, Phukan M. Synthesis and characterization of citrate soft rice starch: A new strategy of producing disintegrating agent for design drug and resistant starch. Int J Biol Macromol 2023; 240:124475. [PMID: 37076065 DOI: 10.1016/j.ijbiomac.2023.124475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Assam soft rice starch (ASRS) and Citric acid-esterified Assam soft rice starch (c-ASRS) were studied extensively. FTIR, CHN, DSC, XRD, SEM, TEM and optical microscope studies were performed for native and modified starches. Powder rearrangements, cohesiveness and flowability were studied by the Kawakita plot. Moisture and ash content was around 9 % and 0.5 %. In vitro digestibility of ASRS and c-ASRS produced functional RS. Paracetamol tablets were prepared using ASRS and c-ASRS as granulating-disintegrating agents through wet granulation methods. The prepared tablets' physical properties, disintegrant properties, in vitro dissolution and dissolution efficiency (DE) were performed. The average particle size was obtained at 6.59 ± 0.355 μm and 8.15 ± 0.168 μm for ASRS and c-ASRS, respectively. All the results were statistically significant at p < 0.05, p < 0.01 and p < 0.001. The amylose content was 6.78 %, classifying it as a low amylose type of starch. The disintegration time was reduced with the increasing concentration of ASRS and c-ASRS and facilitated the immediate release of the model drug from the tablet compact to improve its bioavailability. Therefore, the current investigation concludes that ASRS and c-ASRS can be used as novel and functional materials in pharmaceutical industries due to their unique physicochemical attributes. HYPOTHESIS: The central hypothesis of the current work was to develop citrated starch through a one-step reactive extrusion method and investigate its disintegrants property for pharmaceutical tablets. Extrusion is a continuous, simple, high-speed, low-cost, producing very limited wastewater and gas. Characterization was done through different instrumental techniques to confirm successful esterification. The flow properties were evaluated, and tablets were prepared at a different level of ASRS and c-ASRS (disintegrating agent), followed by the evaluation of tablets to confirm the model drug's dissolution and disintegration efficiency. Finally, in vitro digestibility of both ASRS and c-ASRS was analyzed to establish their potential nutritional benefits.
Collapse
Affiliation(s)
- Pratap Kalita
- Pratiksha Institute of Pharmaceutical sciences, Guwahati, Assam 781026, India; Assam Science and Technology University, Guwahati, Assam 781013, India.
| | - Abdul Baquee Ahmed
- Girijananda Chowdhury Institute of Pharmaceutical Sciences, Tezpur, Assam 784501, India
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam down town University, Panikhaiti, Guwahati, Assam 781026, India
| | - Lalduhsanga Pachuau
- Department of Pharmaceutical Sciences, Assam University, Silchar, Assam 788011, India
| | - Mayuri Phukan
- Pratiksha Institute of Pharmaceutical sciences, Guwahati, Assam 781026, India
| |
Collapse
|
5
|
Han N, Yao X, Wang Y, Huang W, Niu M, Zhu P, Mao Y. Recent Progress of Biomaterials-Based Epidermal Electronics for Healthcare Monitoring and Human-Machine Interaction. BIOSENSORS 2023; 13:393. [PMID: 36979605 PMCID: PMC10046871 DOI: 10.3390/bios13030393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Epidermal electronics offer an important platform for various on-skin applications including electrophysiological signals monitoring and human-machine interactions (HMI), due to their unique advantages of intrinsic softness and conformal interfaces with skin. The widely used nondegradable synthetic materials may produce massive electronic waste to the ecosystem and bring safety issues to human skin. However, biomaterials extracted from nature are promising to act as a substitute material for the construction of epidermal electronics, owing to their diverse characteristics of biocompatibility, biodegradability, sustainability, low cost and natural abundance. Therefore, the development of natural biomaterials holds great prospects for advancement of high-performance sustainable epidermal electronics. Here, we review the recent development on different types of biomaterials including proteins and polysaccharides for multifunctional epidermal electronics. Subsequently, the applications of biomaterials-based epidermal electronics in electrophysiological monitoring and HMI are discussed, respectively. Finally, the development situation and future prospects of biomaterials-based epidermal electronics are summarized. We expect that this review can provide some inspirations for the development of future, sustainable, biomaterials-based epidermal electronics.
Collapse
|
6
|
Kalita P, Ahmed AB, Sen S, Chakraborty R. Citric acid esterified Glutinous Assam bora rice starch enhances disintegration and dissolution efficiency of model drug. Int J Biol Macromol 2023; 227:424-436. [PMID: 36549610 DOI: 10.1016/j.ijbiomac.2022.12.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The current work was designed to study the starch's physicochemical attributes, tablet disintegration and dissolution efficiency and its derivatives obtained from the glutinous Assam bora rice (G-ABR) variety of Assam, Northeast India. Starch was isolated by a simple protein denaturation method, and a starch derivative was prepared through citric acid modification. G-ABRS and citrated G-ABRS were characterized through FTIR, DSC, XRD and SEM. The rate of consolidation, consolidation index, angle of internal friction, packing rearrangement and cohesive properties were determined to investigate their applications as functional excipients in pharmaceutical industries. G-ABRS and citrated G-ABRS exhibited better packing rearrangement and cohesive properties than standard corn starch. Furthermore, immediate release of API from the tablet compact was observed when the starch concentration increased from 1 to 5 %, indicating facilitation of the tablet compact disintegration. Therefore, G-ABRS and citrated G-ABRS are potentially functional and sustainable materials for pharmaceutical industries.
Collapse
Affiliation(s)
- Pratap Kalita
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam 781026, India; Assam Science and Technology University, Guwahati, Assam 781013, India.
| | - Abdul Baquee Ahmed
- Girijananda Chowdhury Institute of Pharmaceutical Sciences, Tezpur, Assam 784501, India
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam down town University, Panikhaiti, Guwahati, Assam 781026, India
| | - Raja Chakraborty
- Institute of Pharmacy, Assam Don Bosco University, Guwahati, Assam 782402, India
| |
Collapse
|
7
|
Kowsalya P, Sharanyakanth P, Mahendran R. Traditional rice varieties: A comprehensive review on its nutritional, medicinal, therapeutic and health benefit potential. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Luo Q, Shi R, Gong P, Liu Y, Chen W, Wang C. Biogenic amines in Huangjiu (Chinese rice wine): Formation, hazard, detection, and reduction. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Lutz TM, Kimna C, Casini A, Lieleg O. Bio-based and bio-inspired adhesives from animals and plants for biomedical applications. Mater Today Bio 2022; 13:100203. [PMID: 35079700 PMCID: PMC8777159 DOI: 10.1016/j.mtbio.2022.100203] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 01/01/2023] Open
Abstract
With the "many-headed" slime mold Physarum polycelphalum having been voted the unicellular organism of the year 2021 by the German Society of Protozoology, we are reminded that a large part of nature's huge variety of life forms is easily overlooked - both by the general public and researchers alike. Indeed, whereas several animals such as mussels or spiders have already inspired many scientists to create novel materials with glue-like properties, there is much more to discover in the flora and fauna. Here, we provide an overview of naturally occurring slimy substances with adhesive properties and categorize them in terms of the main chemical motifs that convey their stickiness, i.e., carbohydrate-, protein-, and glycoprotein-based biological glues. Furthermore, we highlight selected recent developments in the area of material design and functionalization that aim at making use of such biological compounds for novel applications in medicine - either by conjugating adhesive motifs found in nature to biological or synthetic macromolecules or by synthetically creating (multi-)functional materials, which combine adhesive properties with additional, problem-specific (and sometimes tunable) features.
Collapse
Affiliation(s)
- Theresa M. Lutz
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Ceren Kimna
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching, 85748, Germany
| | - Oliver Lieleg
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| |
Collapse
|
10
|
He M, Hu J, Wu Y, Ouyang J. Determination of starch and amylose contents in various cereals using common model of near-infrared reflectance spectroscopy. INTERNATIONAL FOOD RESEARCH JOURNAL 2021. [DOI: 10.47836/ifrj.28.5.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Near-infrared reflectance spectroscopy (NIRS) was used to determine the total starch and amylose contents in various kinds of cereals namely wheat, waxy rice, non-waxy rice, millet, sorghum, waxy maize, buckwheat, barley, and hulless oat. The partial least-squares (PLS) analysis and principal component regression (PCR) were used to establish the calibration models. PLS model achieved a better effect than PCR at 1100 - 2500 nm, and the coefficient of determination (R2) of the calibration and prediction sets were both higher than 0.9 after the best pre-treatment method, first derivative plus Savitzky-Golay. Additionally, the root mean square error (RMSE) was lower than 2.50, and the root mean square error of cross-validation (RMSECV) was less than 3.50 for starch. By comparing PLS models at different waveband regions, the optimal determination results for starch and amylose were obtained at 1923 - 1961 and 1724 - 1818 nm, respectively. NIRS was found to be a successful method to determine of the starch and amylose contents in various cereals.
Collapse
|
11
|
Yang Y, Hu W, Xia Y, Mu Z, Tao L, Song X, Zhang H, Ni B, Ai L. Flavor Formation in Chinese Rice Wine (Huangjiu): Impacts of the Flavor-Active Microorganisms, Raw Materials, and Fermentation Technology. Front Microbiol 2020; 11:580247. [PMID: 33281774 PMCID: PMC7691429 DOI: 10.3389/fmicb.2020.580247] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Huangjiu (Chinese rice wine) has been consumed for centuries in Asian countries and is known for its unique flavor and subtle taste. The flavor compounds of Huangjiu are derived from a wide range of sources, such as raw materials, microbial metabolic activities during fermentation, and chemical reactions that occur during aging. Of these sources, microorganisms have the greatest effect on the flavor quality of Huangjiu. To enrich the microbial diversity, Huangjiu is generally fermented under an open environment, as this increases the complexity of its microbial community and flavor compounds. Thus, understanding the formation of flavor compounds in Huangjiu will be beneficial for producing a superior flavored product. In this paper, a critical review of aspects that may affect the formation of Huangjiu flavor compounds is presented. The selection of appropriate raw materials and the improvement of fermentation technologies to promote the flavor quality of Huangjiu are discussed. In addition, the effects of microbial community composition, metabolic function of predominant microorganisms, and dynamics of microbial community on the flavor quality of Huangjiu are examined. This review thus provides a theoretical basis for manipulating the fermentation process by using selected microorganisms to improve the overall flavor quality of Huangjiu.
Collapse
Affiliation(s)
- Yijin Yang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.,School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wuyao Hu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiyong Mu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Leren Tao
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Zhang
- Shanghai Jinfeng Wine Co., Ltd., Shanghai, China
| | - Bin Ni
- Shanghai Jinfeng Wine Co., Ltd., Shanghai, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
12
|
Sen S, Chakraborty R, Kalita P. Rice - not just a staple food: A comprehensive review on its phytochemicals and therapeutic potential. Trends Food Sci Technol 2020; 97:265-285. [DOI: 10.1016/j.tifs.2020.01.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Ren B, Xie H, Guo L, Zhong K, Huang Y, Gao H. Effect of Konjac Glucomannan on Sensory, Physical and Thermal Properties of Mochi. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2020. [DOI: 10.1515/ijfe-2019-0227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AbstractMochi is a popular snack in Asia, but few studies explored applications of konjac glucomannan (KGM) combined with mochi. The textural and thermal properties, sensory and microstructural changes were measured from mochi, which performed mainly from glutinous rice flour and KGM blends of which KGM shared 1–5 %. About 1–3 % KGM substitution could improve sensory qualities of mochi. The color of mochi with different KGM concentration could be distinguished by the naked eye. The variants with 4–5 % KGM concentration exhibited high hardness, stickiness of texture parameters, and obvious changes in temperature peak of thermodynamic parameters. The reticular gelatinized microstructures of mochi showed increased aperture of cavities with enhanced matrix surrounded. These changes could be due to high water binding capacity of KGM. In general, 3 % KGM concentration could lead to desirable sensory and textural properties of mochi, indicating a potential of KGM for widespread usage in glutinous rice starch-based foods industry.
Collapse
Affiliation(s)
- Bingxi Ren
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan Province610065, China
| | - Hongchen Xie
- West China School of Public Health, Sichuan University, Chengdu, Sichuan Province 610065, China
| | - Lulu Guo
- West China School of Public Health, Sichuan University, Chengdu, Sichuan Province 610065, China
| | - Kai Zhong
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan Province610065, China
| | - Yina Huang
- West China School of Public Health, Sichuan University, Chengdu, Sichuan Province 610065, China
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan Province610065, China
| |
Collapse
|
14
|
Liang Y, Su Y, Li L, Huang X, Panhwar FH, Zheng T, Tang Z, Ei HH, Farooq MU, Zeng R, Zhang Y, Ye X, Jia X, Zheng L, Zhu J. Quick selenium accumulation in the selenium-rich rice and its physiological responses in changing selenium environments. BMC PLANT BIOLOGY 2019; 19:559. [PMID: 31847801 PMCID: PMC6918634 DOI: 10.1186/s12870-019-2163-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/26/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND The element selenium (Se) deficiency is thought to be a global human health problem, which could disperse by daily-supplement from Se-rich food. Increasing the accumulation of Se in rice grain is an approach matched to these nutrient demands. Nonetheless, Se is shown to be essential but also toxic to plants, with a narrow margin between deficiency and toxicity. Notably, the regulatory mechanism balancing the accumulation and tolerance of Se in Se-rich rice plants remains unknown. RESULTS In this study, we investigated the phenotypical, physiological, and biochemical alterations of Se-rich rice in the exposure to a variety of Se applications. Results showed that the Se-rich rice was able to accumulate more abundance of Se from the root under a low Se environment comparing to the Se-free rice. Besides, excessive Se led to phytotoxic effects on Se-rich rice plants by inducing chlorosis and dwarfness, decreasing the contents of antioxidant, and exacerbating oxidative stresses. Furthermore, both phosphate transporter OsPT2 and sulfate transporters OsSultr1;2 may contribute to the uptake of selenate in rice. CONCLUSIONS Se-rich red rice is more sensitive to exogenous application of Se, while and the most effective application of Se in roots of Se-rich rice was reached in 20 μM. Our findings present a direct way to evaluate the toxic effects of Se-rich rice in the Se contaminated field. Conclusively, some long-term field trial strategies are suggested to be included in the evaluation of risks and benefits within various field managements.
Collapse
Affiliation(s)
- Yuanke Liang
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Su
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ling Li
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xin Huang
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Faiz Hussain Panhwar
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Tengda Zheng
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhichen Tang
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hla Hla Ei
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Muhammad Umer Farooq
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Rui Zeng
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Dujiangyan Agricultural and Rural Bureau, Dujiangyan, 611830, Sichuan, China
| | - Yujie Zhang
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoying Ye
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaomei Jia
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lanlan Zheng
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Jianqing Zhu
- Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
15
|
Lavra ZMM, de Medeiros FPM, da Silva RMF, Rosa TA, Wanderley Sales VDA, Barros Silva LCPB, de Sousa ALMD, de Lima LG, Rolim LA, Neto PJR. Formulation, Development and Scale-Up of Fixed-Dose Combination Tablets Containing Zidovudine, Lamivudine and Nevirapine. Curr HIV Res 2019; 17:360-367. [DOI: 10.2174/1570162x17666190927162155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022]
Abstract
Background:
The development of antiretroviral associations in a single dosage form aims
to ensure improved efficacy, low costs and better adherence to treatment.
Objective:
This work performed the pharmacotechnical development, coating, and stability studies
of fixed-dose combination tablets of zidovudine, lamivudine and nevirapine (300 + 200 + 150 mg,
respectively).
Methods:
Qualitative and quantitative planning of diluents (101 and 250 microcrystalline cellulose,
spray-dried monohydrate lactose and corn starch) and coating polymers (Opadry white II HP® and
Instacoat Aqua Moistshield II®) were analyzed, and direct compression (DC) and wet granulation
(WG) methods were tested aiming the development of the pharmaceutical form. Quality control was
carried out according to the specifications set by official compendia. The chosen formulation was
scaled-up and the industrial batches were submitted to accelerated and long-term stability studies.
Results:
The batches obtained by WG met the requirements, using 101 microcrystalline cellulose,
corn starch and Opadry white II HP®
as excipients. The DC trial was not possible due to the need of
a greater ratio of excipients to improve formulation properties.
Conclusion:
Thus, this study brings a new therapeutic alternative for HIV treatment, contributing to
the development of another possibility to simplify drug administration.
Collapse
Affiliation(s)
- Zênia Maria Maciel Lavra
- Secretariat of Science, Technology and Strategic Inputs - Ministry of Health, Brasilia, DF, Brazil
| | | | - Rosali Maria Ferreira da Silva
- Laboratorio de Tecnologia dos Medicamentos, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife-PE, Brazil
| | - Talita Atanazio Rosa
- Laboratorio de Tecnologia dos Medicamentos, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife-PE, Brazil
| | | | | | | | | | - Larissa Araújo Rolim
- Pharmacy Collegiate, Federal University of Vale do Sao Francisco, Petrolina-PE, Brazil
| | - Pedro José Rolim Neto
- Laboratorio de Tecnologia dos Medicamentos, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife-PE, Brazil
| |
Collapse
|
16
|
Farooq MU, Tang Z, Zheng T, Asghar MA, Zeng R, Su Y, Ei HH, Liang Y, Zhang Y, Ye X, Jia X, Zhu J. Cross-Talk between Cadmium and Selenium at Elevated Cadmium Stress Determines the Fate of Selenium Uptake in Rice. Biomolecules 2019; 9:E247. [PMID: 31238551 PMCID: PMC6627080 DOI: 10.3390/biom9060247] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 12/04/2022] Open
Abstract
Cadmium (Cd) is a well-known metal imposing threats to human health, and it can be accumulated in polished rice over the permitted range of 0.2 mg kg-1 (GB 2762-2017). It has been reported that selenium (Se) application decreases Cd uptake. Se-rich diets have gained attention recently, but the potential of Se-rich rice in mitigating Cd stress needs further investigation. In this study, a pot experiment in the field was conducted to assess the influence of environmental factors and exogenous split application of Se on the nutritional status of rice under Cd stress. The results indicated that the increased fertilizer treatment in soil bulk linearly increased the metal content in rice grains. Approximately 50-70% of metal was recovered in rice tissues, while 5-20% of the metal that was applied leached down into the soil. A Se concentration of 0.4 mg kg-1 could significantly improve the total Se content in grain and mitigate Cd toxicity (1 mg kg-1) below the permitted range. Panicles and roots were more active for total Se accumulation in Se-rich and non-Se-rich rice, respectively. Polishing and milling operations can significantly reduce the Cd content, as rice bran in rice tissues accumulated most of the metal's residues. The late matured rice cultivars consumed more heat units, and more metal contents were found in them. Collectively, it was found that Se can mitigate Cd toxicity, but the rice cultivation at T2 (high Cd; 2 mg kg-1 and Se; 1 mg kg-1) increased the metal uptake capability and health-risk index in polished rice, with its Se content heightened over permitted range of 0.04 to 0.30 mg kg-1 (GB/T 22499-2008). However, further molecular studies are required, in order to completely access the inverted Se accumulation behavior in rice tissues at high Cd soil stress.
Collapse
Affiliation(s)
- Muhammad Umer Farooq
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Zhichen Tang
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Tengda Zheng
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Muhammad Ahsan Asghar
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Rui Zeng
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Dujiangyan Agricultural and Rural Bureau, Dujiangyan 611830, Sichuan, China.
| | - Yang Su
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Hla Hla Ei
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yuanke Liang
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yujie Zhang
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Xiaoying Ye
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Xiaomei Jia
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Jianqing Zhu
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
17
|
Chan SY, Goh CF, Lau JY, Tiew YC, Balakrishnan T. Rice starch thin films as a potential buccal delivery system: Effect of plasticiser and drug loading on drug release profile. Int J Pharm 2019; 562:203-211. [DOI: 10.1016/j.ijpharm.2019.03.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
|
18
|
Chakraborty R, Kalita P, Sen S. Natural Starch in Biomedical and Food Industry: Perception and Overview. Curr Drug Discov Technol 2019; 16:355-367. [PMID: 30280669 DOI: 10.2174/1570163815666181003143732] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/13/2018] [Accepted: 08/29/2018] [Indexed: 11/22/2022]
Abstract
Utilization of native starch is increasing globally because of its wide distribution and natural occurrence. Starch is mainly abundant in tubers and food grains. Scientific research on starch is increasing in recent years due to its unique physiochemical and biomedical properties. Native starch is an emerging biopolymer and copolymer in the biomedical and pharmaceutical areas due to its renewability, biocompatibility, biodegradability, and relative inexpensiveness. Today, there is an increasing interest in natural starches to design and produce diverse products due to their pertinent structural properties and non-toxicity. Due to these attributes, these natural polymers are becoming functional core materials in the biomedical industry, construction materials, medicine industry, food industry, food packaging, and carrier for active drugs. In this paper, we mainly attempt to analyze the physicochemical attributions and the biomedical applications on native or non-conventional starches obtained from the natural botanical sources.
Collapse
Affiliation(s)
- Raja Chakraborty
- Department of Pharmacy, Assam Down Town University, Panikhaiti, Guwahati, Assam - 781026, India
| | - Pratap Kalita
- Department of Pharmacy, Assam Down Town University, Panikhaiti, Guwahati, Assam - 781026, India
| | - Saikat Sen
- Department of Pharmacy, Assam Down Town University, Panikhaiti, Guwahati, Assam - 781026, India
| |
Collapse
|
19
|
Taro starch (Colocasia esculenta) and citric acid modified taro starch as tablet disintegrating agents. Int J Biol Macromol 2018; 118:397-405. [DOI: 10.1016/j.ijbiomac.2018.06.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 11/23/2022]
|
20
|
Physicochemical and disintegrant properties of sodium Carboxymethyl starch derived from Borassus aethiopum (Arecaceae) shoot. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1565-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Liang Y, Farooq MU, Hu Y, Tang Z, Zhang Y, Zeng R, Zheng T, Ei HH, Ye X, Jia X, Zhu J. Study on Stability and Antioxidant Activity of Red Anthocyanidin Glucoside Rich Hybrid Rice, its Nutritional and Physicochemical Characteristics. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.687] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yuanke Liang
- Rice Research Institute, Sichuan Agricultural University
| | | | - Yongjun Hu
- Yibin Products Quality Superivison and Inspection Institute
| | - Zhicheng Tang
- Rice Research Institute, Sichuan Agricultural University
| | - Yujie Zhang
- Rice Research Institute, Sichuan Agricultural University
| | - Rui Zeng
- Rice Research Institute, Sichuan Agricultural University
| | - Tengda Zheng
- Rice Research Institute, Sichuan Agricultural University
| | - Hla Hla Ei
- Rice Research Institute, Sichuan Agricultural University
| | - Xiaoying Ye
- Rice Research Institute, Sichuan Agricultural University
| | - Xiaomei Jia
- Rice Research Institute, Sichuan Agricultural University
| | - Jianqing Zhu
- Rice Research Institute, Sichuan Agricultural University
| |
Collapse
|
22
|
Davoodi M, Kavoosi G, Shakeri R. Preparation and characterization of potato starch-thymol dispersion and film as potential antioxidant and antibacterial materials. Int J Biol Macromol 2017; 104:173-179. [DOI: 10.1016/j.ijbiomac.2017.05.145] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/03/2017] [Accepted: 05/23/2017] [Indexed: 01/01/2023]
|