1
|
Gupta G, Samuel VP, M RM, Rani B, Sasikumar Y, Nayak PP, Sudan P, Goyal K, Oliver BG, Chakraborty A, Dua K. Caspase-independent cell death in lung cancer: from mechanisms to clinical applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04149-0. [PMID: 40257494 DOI: 10.1007/s00210-025-04149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/05/2025] [Indexed: 04/22/2025]
Abstract
Caspase-independent cell death (CICD) has recently become a very important mechanism in lung cancer, in particular, to overcome a critical failure in apoptotic cell death that is common to disease progression and treatment failures. The pathways involved in CICD span from necroptosis, ferroptosis, mitochondrial dysfunction, and autophagy-mediated cell death. Its potential therapeutic applications have been recently highlighted. Glutathione peroxidase 4 (GPX4) inhibition-driven ferroptosis has overcome drug resistance in non-small cell lung cancer (NSCLC). In addition, necroptosis involving RIPK1 and RIPK3 causes tumor cell death and modulation of immune responses in the tumor microenvironment (TME). Mitochondrial pathways are critical for CICD through modulation of metabolic and redox homeostasis. Ferroptosis is amplified by mitochondrial reactive oxygen species (ROS) and lipid peroxidation in lung cancer cells, and mitochondrial depolarization induces oxidative stress and leads to cell death. In addition, mitochondria-mediated autophagy, or mitophagy, results in the clearance of damaged organelles under stress conditions, while this function is also linked to CICD when dysregulated. The role of cell death through autophagy regulated by ATG proteins and PI3K/AKT/mTOR pathway is dual: to suppress tumor and to sensitize cells to therapy. A promising approach to enhancing therapeutic outcomes involves targeting mechanisms of CICD, including inducing ferroptosis by SLC7A11 inhibition, modulating mitochondrial ROS generation, or combining inhibition of autophagy with chemotherapy. Here, we review the molecular underpinnings of CICD, particularly on mitochondrial pathways and their potential to transform lung cancer treatment.
Collapse
Affiliation(s)
- Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vijaya Paul Samuel
- Department of Anatomy, RAK College of Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Bindu Rani
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Y Sasikumar
- Department of CHEMISTRY, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Priya Priyadarshini Nayak
- Department of Medical Oncology IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Puneet Sudan
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
| | - Brian G Oliver
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amlan Chakraborty
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Kamal Dua
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia.
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
2
|
Zhao K, Ma Y, Luo J, Xu Y, Shou Q, Jiang H, Zhu X. Hirsutella sinensis Fungus Promotes CD8 + T Cell-Mediated Anti-Tumor Immunity by Affecting Tumor-Associated Macrophages-Derived CCRL2. Immunol Invest 2025:1-16. [PMID: 39819245 DOI: 10.1080/08820139.2025.2450246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
INTRODUCTION Hirsutella sinensis fungus (HSF)is an artificial substitute for Cordyceps sinensis and has shown promising therapeutic effects in various diseases including cancer. Previous studies have demonstrated that HSF can affect macrophage polarization and activate systemic immune response. In our preliminary experiments, we validated that HSF inhibited the proliferation of lung cancer (LC) cells, but the underlying mechanism is elusive. We intended to explore the mechanism of HSF in promoting anti-tumor immunity. METHODS In vivo experiments were performed to confirm inhibitory effect of HSF on LC growth, and sequencing results revealed abnormal expression of CCRL2. Knockdown and overexpression of CCRL2 were conducted to investigate its effect on macrophage polarization, and co-culture with T cells was to assay the impact of HSF+CCRL2 on CD8+ T cell activation by flow cytometry. RESULTS Overexpression of CCRL2 promoted macrophage polarization toward M1 and activated the proliferation and effector function of CD8+ T cells. HSF promoted CCRL2 expression and affected M1 polarization via CCRL2, which in turn affected CD8+ T cell-mediated anti-tumor immunity. DISCUSSION Our study demonstrated that HSF promoted macrophage M1 polarization and activated CD8+ T cells via CCRL2, thereby inhibiting the progression of LC.
Collapse
Affiliation(s)
- Kaixiang Zhao
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, China
| | - Yan Ma
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, China
| | - Jing Luo
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, China
| | - Yanhui Xu
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, China
| | - Qiyang Shou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hao Jiang
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, China
| | - Xinhai Zhu
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
3
|
Yao L, Zhu L, Chen C, Wang X, Zhang A, Gao S, Wu J, Qin L. A systematic review on polysaccharides from fermented Cordyceps sinensis: Advances in the preparation, structural characterization, bioactivities, structure-activity relationships. Int J Biol Macromol 2024; 282:137275. [PMID: 39510481 DOI: 10.1016/j.ijbiomac.2024.137275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Cordyceps sinensis (Berk.) Sacc. (Ophiocordyceps sinensis) is an edible and medicinal fungus used as a natural superior tonic. It is considered as scarce fungus with a high market demand. Therefore, as an alternative, fermentation technology has been proposed to produce artificial cordyceps (fermented C. sinensis) to address the shortage of cordyceps resources for industrialization and commercial utilization. Numerous studies have proved that polysaccharides are the important bioactive substances in the fermented C. sinensis, but the research data lack systematic review. In this review, current relevant research data regarding the preparation (including extraction, fractionation, and purification), structural characterization (including molecular weight, monosaccharide composition, glycosidic bond type, structural and conformational features), bioactivities, structure-activity relationships (SAR) and applications of polysaccharides from different sources of fermented C. sinensis last decade were analyzed and discussed. The findings highlight that the most commonly employed methods for preparing fermented Cordyceps sinensis polysaccharides (FCSPs) involve water extraction and alcohol precipitation, combing with sophisticated chromatographic techniques such as ion exchange and gel permeation chromatography. From these processes, 34 different polysaccharides were identified including 5 glucans and 7 heteropolysaccharides that were thoroughly characterized. FCSPs exhibited a broad spectrum of biological activities, ranging from antioxidant and renal protective effects to immunomodulatory, antitumor, and hypolipidemic properties. The structure-activity relationships (SAR) demonstrated that key factors, such as molecular weight, monosaccharide composition and glucosidic bond types, play critical roles in determining the bioactivity of FCSPs. Nevertheless, there remain unknown elements that continue to influence SAR, leaving room for further exploration. Furthermore, the limitation of existing studies and some new perspectives for future investigations on FCSPs were proposed.
Collapse
Affiliation(s)
- Lumeng Yao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Lili Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Changlun Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xingxing Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Anna Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Siqi Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Jianjun Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| |
Collapse
|
4
|
Wang K, Tao L, Zhu M, Yu X, Lu Y, Yuan B, Hu F. Melittin Inhibits Colorectal Cancer Growth and Metastasis by Ac-Tivating the Mitochondrial Apoptotic Pathway and Suppressing Epithelial-Mesenchymal Transition and Angiogenesis. Int J Mol Sci 2024; 25:11686. [PMID: 39519238 PMCID: PMC11546240 DOI: 10.3390/ijms252111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Melittin has previously been found to have a positive effect on colorectal cancer (CRC) treatment, one of the most difficult-to-treat malignancies, but the mechanism by which this effect occurs remains unclear. We evaluated melittin's pro-apoptotic and anti-metastatic effects on CRC in vitro and in vivo. The results showed that melittin-induced mitochondrial ROS bursts decreased ΔΨm, inhibited Bcl-2 expression, and increased Bax expression in both cells and tumor tissues. This led to increased mitochondrial membrane permeability and the release of pro-apoptotic factors, particularly the high expression of Cytochrome C, initiating the apoptosis program. Additionally, through wound-healing and transwell assays, melittin inhibited the migration and invasion of CRC cells. In vivo, the anti-metastatic effect of melittin was also verified in a lung metastasis mouse model. Western blotting and immunohistochemistry analysis indicated that melittin suppressed the expression of MMPs and regulated the expression of crucial EMT markers and related transcription factors, thereby inhibiting EMT. Furthermore, the melittin disrupts neovascularization, ultimately inhibiting the metastasis of CRC. In conclusion, melittin exerts anti-CRC effects by promoting apoptosis and inhibiting metastasis, providing a theoretical basis for further research on melittin as a targeted therapeutic agent for CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (K.W.); (L.T.); (M.Z.); (X.Y.); (Y.L.); (B.Y.)
| |
Collapse
|
5
|
Zhao F, Chen DY, Jing B, Jiang Y, Liu LY, Song H. Effect of Flammulina velutipes polysaccharide on mitochondrial apoptosis in lung adenocarcinoma A549 cells. Sci Rep 2024; 14:16102. [PMID: 38997305 PMCID: PMC11245558 DOI: 10.1038/s41598-024-57211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/15/2024] [Indexed: 07/14/2024] Open
Abstract
FVP is a polysaccharide extracted from Flammulina velutipes with immunomodulatory, anti-tumor, and anti-oxidation activities. In this study, we obtained the crude polysaccharide FVP-C from the water extract of Flammulina velutipes, and its main component FVP-S1 was obtained after further purification. Upon structural identification, we found that FVP-C is a neutral polysaccharide, and FVP-S1 was an acidic golden mushroom polysaccharide, consisting of glucuronic acid, xylose, and glucose. Lung adenocarcinoma (A549) was treated with FVP-S1 and FVP-C, respectively, and we found that FVP-S1 and FVP-C inhibited the proliferation and migration ability of tumor cells, as well as changed the morphology of the tumor cells and caused chromosome sheteropythosis, among which FVP-S1 had the best inhibition effect. The results of flow cytometry experiments and mitochondrial membrane potential, RT-qPCR, and Western blot showed that FVP-S1 and FVP-C were able to decrease the mitochondrial membrane potential, increase the expression level of apoptotic proteins Casepase-3 and Casepase-9 proteins, and at the same time, increase the ratio of Bax and Bcl-2, which promoted apoptosis of tumor cells. In conclusion, these data indicated that FVP-S1 and FVP-C were able to induce apoptosis in A549 cells through the mitochondrial pathway, which played an important role in inhibiting tumor cells.
Collapse
Affiliation(s)
- Fei Zhao
- School of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, People's Republic of China
| | - Dan-Yang Chen
- School of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, People's Republic of China
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, Jilin, People's Republic of China
| | - Bo Jing
- School of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, People's Republic of China
| | - Yu Jiang
- School of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, People's Republic of China
| | - Lan-Yue Liu
- School of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, People's Republic of China
| | - Hui Song
- School of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, People's Republic of China.
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Changchun, 130118, People's Republic of China.
| |
Collapse
|
6
|
Yu W, Zhang Y, Yao L, Peng J, Tu Y, He B. Research progress on the prevention of tumor by fungal polysaccharides. Trends Food Sci Technol 2024; 147:104422. [DOI: 10.1016/j.tifs.2024.104422] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Zhang Q, Xu Y, Xie L, Shu X, Zhang S, Wang Y, Wang H, Dong Q, Peng W. The function and application of edible fungal polysaccharides. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:45-142. [PMID: 38763529 DOI: 10.1016/bs.aambs.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Edible fungi, commonly known as mushrooms, are precious medicinal and edible homologous gifts from nature to us. Edible fungal polysaccharides (EFPs) are a variety of bioactive macromolecular which isolated from fruiting bodies, mycelia or fermentation broths of edible or medicinal fungus. Increasing researches have confirmed that EFPs possess multiple biological activities both in vitro and in vivo settings, including antioxidant, antiviral, anti-inflammatory, immunomodulatory, anti-tumor, hypoglycemic, hypolipidemic, and regulating intestinal flora activities. As a result, they have emerged as a prominent focus in the healthcare, pharmaceutical, and cosmetic industries. Fungal EFPs have safe, non-toxic, biodegradable, and biocompatible properties with low immunogenicity, bioadhesion ability, and antibacterial activities, presenting diverse potential applications in the food industries, cosmetic, biomedical, packaging, and new materials. Moreover, varying raw materials, extraction, purification, chemical modification methods, and culture conditions can result in variances in the structure and biological activities of EFPs. The purpose of this review is to provide comprehensively and systematically organized information on the structure, modification, biological activities, and potential applications of EFPs to support their therapeutic effects and health functions. This review provides new insights and a theoretical basis for prospective investigations and advancements in EFPs in fields such as medicine, food, and new materials.
Collapse
Affiliation(s)
- Qian Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yingyin Xu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Liyuan Xie
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Xueqin Shu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Shilin Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yong Wang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Haixia Wang
- Horticulture Institute of Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, P.R. China.
| | - Qian Dong
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Weihong Peng
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| |
Collapse
|
8
|
Ying Y, Hao W. Corrigendum: Immunomodulatory function and anti-tumor mechanism of natural polysaccharides: a review. Front Immunol 2024; 14:1361355. [PMID: 38264646 PMCID: PMC10804138 DOI: 10.3389/fimmu.2023.1361355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024] Open
Abstract
[This corrects the article DOI: 10.3389/fimmu.2023.1147641.].
Collapse
Affiliation(s)
- Yang Ying
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Wu Hao
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Tian W, Huang J, Zhang W, Wang Y, Jin R, Guo H, Tang Y, Wang Y, Lai H, Leung ELH. Harnessing natural product polysaccharides against lung cancer and revisit its novel mechanism. Pharmacol Res 2024; 199:107034. [PMID: 38070793 DOI: 10.1016/j.phrs.2023.107034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
The incidence and mortality of lung cancer are on the rise worldwide. However, the benefit of clinical treatment in lung cancer is limited. Owning to important sources of drug development, natural products have received constant attention around the world. Main ingredient polysaccharides in natural products have been found to have various activities in pharmacological research. In recent years, more and more scientists are looking for the effects and mechanisms of different natural product polysaccharides on lung cancer. In this review, we focus on the following aspects: First, natural product polysaccharides have been discovered to directly suppress the growth of lung cancer cells, which can be effective in limiting tumor progression. Additionally, polysaccharides have been considered to enhance immune function, which can play a pivotal role in fighting lung cancer. Lastly, polysaccharides can improve the efficacy of drugs in lung cancer treatment by regulating the gut microbiota. Overall, the research of natural product polysaccharides in the treatment of lung cancer is a promising area that has the potential to lead to new clinical treatments. With better understanding, natural product polysaccharides have the potential to become important components of future lung cancer treatments.
Collapse
Affiliation(s)
- Wangqi Tian
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Jumin Huang
- Cancer Center, Faculty of Health Sciences, and MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau
| | - Weitong Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yifan Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Ruyi Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Hui Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yuping Tang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China.
| | - Huanling Lai
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangdong Province, China; Guangzhou Laboratory, Guangzhou 510005, Guangdong Province, China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, and MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau.
| |
Collapse
|
10
|
Yang M, Rong L, Zhang X, Li G, Wang Q, Li C, Xiao Y, Wei L, Bi H. Hirsutella sinensis mycelium polysaccharides attenuate the TGF-β1-induced epithelial-mesenchymal transition in human intrahepatic bile duct epithelial cells. Int J Biol Macromol 2024; 254:127834. [PMID: 37926312 DOI: 10.1016/j.ijbiomac.2023.127834] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/15/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Hirsutella sinensis is the anamorph of Ophiocordyceps sinensis, and its mycelia has been used to effectively treat a variety of hepatobiliary diseases in clinical practice. In the present study, we performed a systematic study on the composition and structure of its polysaccharides, and then employed a TGF-β1-induced human intrahepatic bile duct epithelial cell-epithelial-mesenchymal transition (HIBEC-EMT) model to investigate their effects on treating primary biliary cholangitis (PBC) based on hepatic bile duct fibrosis. Four polysaccharide fractions were obtained from H. sinensis mycelia by hot-water extraction, DEAE-cellulose column and gradient ethanol precipitation separation. HSWP-1a was an α-(1,4)-D-glucan; HSWP-1b and HSWP-1d mainly consisted of mannoglucans with a backbone composed of 1,4-linked α-D-Glcp and 1,4,6-linked α-D-Manp residues branched at O-6 of the 1,4-linked α-D-Glcp with a 1-linked α-D-Glcp as a side chain; and HSWP-1c mainly contained galactomannoglucans. These polysaccharide fractions protected HIBECs from a TGF-β1-induced EMT, according to HIBEC morphological changes, cell viability, decreased E-cadherin and ZO-1 expression, and increased vimentin and collagen I expression. Furthermore, the effects of the polysaccharides might be mediated by inhibiting the activation of the TGF-β/Smad signaling pathway, which attenuated hepatic bile duct fibrosis and potential PBC effects.
Collapse
Affiliation(s)
- Mengmeng Yang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Medical college, Qinghai University, Xining 810001, China
| | - Lin Rong
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingfang Zhang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Medical college, Qinghai University, Xining 810001, China
| | - Guoqiang Li
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiannan Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China
| | - Cen Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China
| | - Yuancan Xiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China
| | - Lixin Wei
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China.
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| |
Collapse
|
11
|
Li Q, Liu X, Yan C, Zhao B, Zhao Y, Yang L, Shi M, Yu H, Li X, Luo K. Polysaccharide-Based Stimulus-Responsive Nanomedicines for Combination Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206211. [PMID: 36890780 DOI: 10.1002/smll.202206211] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/09/2023] [Indexed: 06/08/2023]
Abstract
Cancer immunotherapy is a promising antitumor approach, whereas nontherapeutic side effects, tumor microenvironment (TME) intricacy, and low tumor immunogenicity limit its therapeutic efficacy. In recent years, combination immunotherapy with other therapies has been proven to considerably increase antitumor efficacy. However, achieving codelivery of the drugs to the tumor site remains a major challenge. Stimulus-responsive nanodelivery systems show controlled drug delivery and precise drug release. Polysaccharides, a family of potential biomaterials, are widely used in the development of stimulus-responsive nanomedicines due to their unique physicochemical properties, biocompatibility, and modifiability. Here, the antitumor activity of polysaccharides and several combined immunotherapy strategies (e.g., immunotherapy combined with chemotherapy, photodynamic therapy, or photothermal therapy) are summarized. More importantly, the recent progress of polysaccharide-based stimulus-responsive nanomedicines for combination cancer immunotherapy is discussed, with the focus on construction of nanomedicine, targeted delivery, drug release, and enhanced antitumor effects. Finally, the limitations and application prospects of this new field are discussed.
Collapse
Affiliation(s)
- Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Bolin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yuxin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, 999078, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| |
Collapse
|
12
|
Ying Y, Hao W. Immunomodulatory function and anti-tumor mechanism of natural polysaccharides: A review. Front Immunol 2023; 14:1147641. [PMID: 36969152 PMCID: PMC10035574 DOI: 10.3389/fimmu.2023.1147641] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Polysaccharides extracted from natural resources have attracted extensive attention in biomedical research and pharmaceutical fields, due to their medical values in anti-tumor, immunomodulation, drug delivery, and many other aspects. At present, a variety of natural polysaccharides have been developed as adjuvant drugs in clinical application. Benefit from their structural variability, polysaccharides have great potential in regulating cellular signals. Some polysaccharides exert direct anti-tumor effects by inducing cell cycle arrest and apoptosis, while the majority of polysaccharides can regulate the host immune system and indirectly inhibit tumors by activating either non-specific or specific immune responses. As the essential of microenvironment in the process of tumor development has been gradually revealed, some polysaccharides were found to inhibit the proliferation and metastasis of tumor cells via tumoral niche modulation. Here, we focused on natural polysaccharides with biomedical application potential, reviewed the recent advancement in their immunomodulation function and highlighted the importance of their signaling transduction feature for the antitumor drug development.
Collapse
Affiliation(s)
- Yang Ying
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Wu Hao
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Sun SJ, Deng P, Peng CE, Ji HY, Mao LF, Peng LZ. Selenium-Modified Chitosan Induces HepG2 Cell Apoptosis and Differential Protein Analysis. Cancer Manag Res 2022; 14:3335-3345. [PMID: 36465707 PMCID: PMC9716935 DOI: 10.2147/cmar.s382546] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/10/2022] [Indexed: 10/29/2023] Open
Abstract
INTRODUCTION Chitosan is the product of the natural polysaccharide chitin removing part of the acetyl group, and exhibits various physiological and bioactive functions. Selenium modification has been proved to further enhance the chitosan bioactivities, and has been a hot topic recently. METHODS The present study aimed to investigate the potential inhibitory mechanism of selenium-modified chitosan (SMC) on HepG2 cells through MTT assays, morphological observation, annexin V-FITC/PI double staining, mitochondrial membrane potential determination, cell-cycle detection, Western blotting, and two-dimensional gel electrophoresis (2-DE). RESULTS The results indicated that SMC can induce HepG2 cell apoptosis with the cell cycle arrested in the S and G2/M phases and gradual disruption of mitochondrial membrane potential, reduce the expression of Bcl2, and improve the expression of Bax, cytochrome C, cleaved caspase 9, and cleaved caspase 3. Also, 2-DE results showed that tubulin α1 B chain, myosin regulatory light chain 12A, calmodulin, UPF0568 protein chromosome 14 open reading frame 166, and the cytochrome C oxidase subunit 5B of HepG2 cells were downregulated in HepG2 cells after SMC treatment. DISCUSSION These data suggested that HepG2 cells induced apoptosis after SMC treatment via blocking the cell cycle in the S and G2/M phases, which might be mediated through the mitochondrial apoptotic pathway. These results could be of benefit to future practical applications of SMC in the food and drug fields.
Collapse
Affiliation(s)
- Su-Jun Sun
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, People’s Republic of China
| | - Peng Deng
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, People’s Republic of China
| | - Chun-E Peng
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, People’s Republic of China
| | - Hai-Yu Ji
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, People’s Republic of China
| | - Long-Fei Mao
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, People’s Republic of China
| | - Li-Zeng Peng
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, People’s Republic of China
| |
Collapse
|
14
|
Rizzi J, Moro TR, Winnischofer SMB, Colusse GA, Tamiello CS, Trombetta-Lima M, Noleto GR, Dolga AM, Duarte MER, Noseda MD. Chemical structure and biological activity of the (1 → 3)-linked β-D-glucan isolated from marine diatom Conticribra weissflogii. Int J Biol Macromol 2022; 224:584-593. [DOI: 10.1016/j.ijbiomac.2022.10.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 10/08/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
15
|
Identification of a novel mechanism for reversal of doxorubicin-induced chemotherapy resistance by TXNIP in triple-negative breast cancer via promoting reactive oxygen-mediated DNA damage. Cell Death Dis 2022; 13:338. [PMID: 35414060 PMCID: PMC9005717 DOI: 10.1038/s41419-022-04783-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022]
Abstract
Given that triple-negative breast cancer (TNBC) lacks specific receptors (estrogen and progesterone receptors and human epidermal growth factor receptor 2) and cannot be treated with endocrine therapy, chemotherapy has remained the mainstay of treatment. Drug resistance is reportedly the main obstacle to the clinical use of doxorubicin (DOX) in this patient population. Accordingly, screening molecules related to chemoresistance and studying their specific mechanisms has clinical significance for improving the efficacy of chemotherapy in TNBC patients. Thioredoxin-interacting protein (TXNIP) is a metabolism-related protein that plays a tumor suppressor role in various malignant tumors; however, the specific role of TXNIP in tumor chemoresistance has not been reported. In the present study, we explored the potential molecular mechanism of TXNIP in the chemoresistance of TNBC for the first time. The results showed that TXNIP inhibited the proliferation of TNBC drug-resistant cells and promoted apoptosis in vitro and in vivo. Furthermore, TXNIP promoted the synthesis of reactive oxygen species (ROS) and the accumulation of DNA damage caused by DOX and increased γ-H2AX levels in a time and dose-dependent manner. Moreover, ROS scavenger pretreatment could block DNA damage induced by TXNIP and restore the resistance of TNBC resistant cells to DOX to a certain extent. In addition, we found that the small molecule c-Myc inhibitor 10058-F4 promoted TXNIP expression, increased ROS synthesis in cells, and could enhance the cytotoxicity of chemotherapy drugs in vitro and in vivo when combined with DOX. These results indicated that c-Myc inhibitor 10058-F4 could induce TXNIP upregulation in TNBC drug-resistant cells, and the upregulated TXNIP increased the accumulation of ROS-dependent DNA damage, thereby decreasing chemotherapy resistance of TNBC. Our findings reveal a new mechanism of mediating drug resistance and provide a new drug combination strategy to overcome DOX resistance in TNBC.
Collapse
|
16
|
Separation, Purification, Structural Characterization, and Anticancer Activity of a Novel Exopolysaccharide from Mucor sp. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072071. [PMID: 35408470 PMCID: PMC9000282 DOI: 10.3390/molecules27072071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Mucor sp. has a wide range of applications in the food fermentation industry. In this study, a novel exopolysaccharide, labeled MSEPS, was separated from Mucor sp. fermentation broth through ethanol precipitation and was purified by ion-exchange chromatography, as well as gel filtration column chromatography. MSEPS was composed mostly of mannose, galactose, fucose, arabinose, and glucose with a molar ratio of 0.466:0.169:0.139:0.126:0.015 and had a molecular weight of 7.78 × 104 Da. The analysis of methylation and nuclear magnetic resonance results indicated that MSEPS mainly consisted of a backbone of →3,6)-α-d-Manp-(1→3,6)-β-d-Galp-(1→, with substitution at O-3 of →6)-α-d-Manp-(1→ and →6)-β-d-Galp-(1→ by terminal α-l-Araf residues. MTT assays showed that MSEPS was nontoxic in normal cells (HK-2 cells) and inhibited the proliferation of carcinoma cells (SGC-7901 cells). Additionally, morphological analysis and flow cytometry experiments indicated that MSEPS promoted SGC-7901 cell death via apoptosis. Therefore, MSEPS from Mucor sp. can be developed as a potential antitumor agent.
Collapse
|
17
|
Chen Z, Tang WJ, Zhou YH, Chen ZM, Liu K. Andrographolide inhibits non-small cell lung cancer cell proliferation through the activation of the mitochondrial apoptosis pathway and by reprogramming host glucose metabolism. ANNALS OF TRANSLATIONAL MEDICINE 2022; 9:1701. [PMID: 34988210 PMCID: PMC8667159 DOI: 10.21037/atm-21-5975] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022]
Abstract
Background The main aim of this research was to explore the role and mechanism of Andrographolide (Andro) in controlling non-small cell lung cancer (NSCLC) cell proliferation. Methods Human NSCLC H1975 cells were treated with Andro (0–20 µM) for 4–72 h. B-cell leukemia/lymphoma 2 (Bcl-2)-antagonist/killer (Bak)-small interfering RNA (siRNA) (Bak-siRNA) and fructose-1,6-bisphosphatase (FBP1)-siRNA were transfected into H1975 cells to inhibit the endogenic Bak and FBP1 expression, respectively, and their expressions were detected by real-time quantitative reverse transcription–polymerase chain reaction (qRT-PCR) and western blotting (WB). Cellular proliferation ability was determined through various assessments, including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation, and cell counting kit-8 (CCK-8) assays. Cell apoptosis ability was measured using flow cytometry. Pro-apoptotic-related proteins (cleaved caspase 9, cleaved caspase 8, and cleaved caspase 3) and mitochondrial apoptosis pathway proteins [Bcl2-associated X (Bax), Bak, Bcl-2, and cytochrome C (cyto C)] were assessed by WB. Aerobic glycolysis-associated genes [pyruvate kinase M2 (PKM2), lactate dehydrogenase A (LDHA), and glucose transporter 1 (GLUT1)] and gluconeogenesis genes [phosphoenolpyruvate carboxykinase 1 (PEPCK1), fructose-1,6-bisphosphatase 1 (FBP1), and phosphofructokinase (PFK)] were measured by qRT-PCR. The mitochondrial membrane depolarization sensor, 5, 50, 6, 60-tetrachloro-1, 10, 3, 30 tetraethyl benzimidazolo carbocyanine iodide (JC-1) assay was used for the measurement of mitochondrial membrane potential (ΔΨm). Additionally, glycolytic metabolism, lactate production, and adenosine triphosphate (ATP) synthesis were also analyzed. Results Andro inhibited human NSCLC cellular proliferation and induced apoptosis in a dose-time or dose-dependent manner via activation of the mitochondrial apoptosis pathway. Andro inhibited glycolysis, promoted the gluconeogenesis pathway, and increased the levels of cleaved caspase 9, cleaved caspase 8, cleaved caspase 3, Bax, Bak, PEPCK1, FBP1, and PFK, and decreased the levels of Bcl-2, PKM2, LDHA, and GLUT1. Moreover, it also decreased the ΔΨm and facilitated the release of cyto C from mitochondria into the cytoplasm. Furthermore, Andro enhanced the mitochondrial translocation of Bak, glucose uptake, lactate release, and intracellular ATP synthesis. Suppression of endogenic Bak and FBP1 expression significantly reduced the effects of Andro in H1975 cells. Conclusions Andro represses NSCLC cell proliferation through the activation of the mitochondrial apoptosis pathway and by reprogramming glucose metabolism.
Collapse
Affiliation(s)
- Zhao Chen
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei-Jian Tang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yu-Han Zhou
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhou-Miao Chen
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Liu
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Zheng B, Zhou X, Hu X, Chen Y, Xie J, Yu Q. Advances in the regulation of natural polysaccharides on human health: The role of apoptosis/autophagy pathway. Crit Rev Food Sci Nutr 2021:1-12. [PMID: 34711083 DOI: 10.1080/10408398.2021.1995844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Due to the multiple biological activities of polysaccharides, their great potential as "natural drugs" for many diseases has been the subject of continuous exploration in the field of food and nutrition. Apoptosis and autophagy play a key role in mammalian growth, development and maintenance of cellular homeostasis. Recent studies suggest that apoptosis/autophagy may be the key regulatory target for the beneficial effects of polysaccharides. However, the regulation of apoptosis and autophagy by polysaccharides is not consistent in different disease models. Therefore, this review outlined the relationship between apoptosis/autophagy and some common human diseases, then discussed the role of apoptosis/autophagy pathway in the regulation of human health by polysaccharides, Furthermore, the application of visualization, imaging and multi-omics techniques was proposed in the future trend. The present review may be beneficial to accelerate our understanding of the anti-disease mechanisms of polysaccharides, and promote the development and utilization of polysaccharides.
Collapse
Affiliation(s)
- Bing Zheng
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Li N, Wang C, Georgiev MI, Bajpai VK, Tundis R, Simal-Gandara J, Lu X, Xiao J, Tang X, Qiao X. Advances in dietary polysaccharides as anticancer agents: Structure-activity relationship. Trends Food Sci Technol 2021; 111:360-377. [DOI: 10.1016/j.tifs.2021.03.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Chen Y, Luo X, Zou Z, Liang Y. The Role of Reactive Oxygen Species in Tumor Treatment and its Impact on Bone Marrow Hematopoiesis. Curr Drug Targets 2021; 21:477-498. [PMID: 31736443 DOI: 10.2174/1389450120666191021110208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/21/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS), an important molecule inducing oxidative stress in organisms, play a key role in tumorigenesis, tumor progression and recurrence. Recent findings on ROS have shown that ROS can be used to treat cancer as they accelerate the death of tumor cells. At present, pro-oxidant drugs that are intended to increase ROS levels of the tumor cells have been widely used in the clinic. However, ROS are a double-edged sword in the treatment of tumors. High levels of ROS induce not only the death of tumor cells but also oxidative damage to normal cells, especially bone marrow hemopoietic cells, which leads to bone marrow suppression and (or) other side effects, weak efficacy of tumor treatment and even threatening patients' life. How to enhance the killing effect of ROS on tumor cells while avoiding oxidative damage to the normal cells has become an urgent issue. This study is a review of the latest progress in the role of ROS-mediated programmed death in tumor treatment and prevention and treatment of oxidative damage in bone marrow induced by ROS.
Collapse
Affiliation(s)
- Yongfeng Chen
- Taizhou University Hosipital, Taizhou University, Taizhou, 318000, Zhejiang, China.,Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Xingjing Luo
- Taizhou University Hosipital, Taizhou University, Taizhou, 318000, Zhejiang, China.,Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Zhenyou Zou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Yong Liang
- Taizhou University Hosipital, Taizhou University, Taizhou, 318000, Zhejiang, China.,Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, 318000, Zhejiang, China
| |
Collapse
|
21
|
Jin L, Jin L, Wu R, Liu X, Zhu X, Shou Q, Fu H. Hirsutella Sinensis Fungus Regulates CD8 + T Cell Exhaustion Through Involvement of T-Bet/Eomes in the Tumor Microenvironment. Front Pharmacol 2021; 11:612620. [PMID: 33488388 PMCID: PMC7820905 DOI: 10.3389/fphar.2020.612620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Targeting exhausted T (Tex) cells is a promising strategy for anti-tumour treatment. Previously, we demonstrated that Hirsutella sinensis fungus (HSF) could significantly increase T cell infiltration and the effector T cell ratio in the tumor microenvironment, activating systemic immune responses. However, we do not know how HSF regulates Tex cells in the tumor microenvironment. Here, we explored the mechanism underlying HSF inhibition of Tex cells and tumor growth and metastasis in breast cancer. Methods: We examined the effects of HSF on various tumor mouse models using in vivo imaging technology. Lung metastasis was detected by H&E staining and the T cell subsets in the tumor microenvironment were assayed with flow cytometry. The in vitro proliferation, function and apoptosis of CD8+ T cells were measured, as well as the T-bet and PD-1 mRNA expressions. Results: HSF inhibited tumor growth and lung metastasis in the mice, and had significantly higher CD44LowCD62LHi and CD44HiCD62LLowpopulations in the tumour-infiltrating CD8+ T cells. However, HSF significantly reduced levels of inhibitory receptors, such as PD-1, TIGIT, CTLA-4, and regulatory T cells. In vitro, HSF inhibited the CD8+ T cell apoptosis rate, and promoted CD8+ T cell proliferation and secretion of interferon (IFN)-γ and granzyme B. Furthermore, HSF treatment both in vivo and in vitro significantly increased Eomes expression, while decreasing T-bet expression. Conclusion: HSF exerted anti-tumour effects mainly through the immune system, by promoting effector/memory T cells and reducing Tex cell production in the tumor microenvironment. The specific mechanisms involved inhibiting T-bet and promoting Eomes to decrease the expression of immune inhibitor receptors and enhance the T cell function, respectively.
Collapse
Affiliation(s)
- Lu Jin
- The Second Clinical Medical School, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lushuai Jin
- The Second Clinical Medical School, Zhejiang Chinese Medical University, Hangzhou, China.,School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Renjie Wu
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Xia Liu
- The Second Clinical Medical School, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinhai Zhu
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, China
| | - Qiyang Shou
- The Second Clinical Medical School, Zhejiang Chinese Medical University, Hangzhou, China.,School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huiying Fu
- The Second Clinical Medical School, Zhejiang Chinese Medical University, Hangzhou, China.,School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
22
|
Liu W, Yuan R, Hou A, Tan S, Liu X, Tan P, Huang X, Wang J. Ganoderma triterpenoids attenuate tumour angiogenesis in lung cancer tumour-bearing nude mice. PHARMACEUTICAL BIOLOGY 2020; 58:1061-1068. [PMID: 33161828 PMCID: PMC7655057 DOI: 10.1080/13880209.2020.1839111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
CONTEXT Ganoderma lucidum (Leyss. ex Fr.) Karst. (Polyporaceae) triterpenoids (GLTs), the main components and bioactive metabolites of G. lucidum, have antitumour activity. OBJECTIVE We investigated the effects of GLTs in lung cancer tumour-bearing nude mice and their potential mechanism. MATERIALS AND METHODS Forty BALB/c nude mice were randomly divided into four groups: saline control, GLT (1 g/kg/day), gefitinib (GEF, 15 mg/kg/day), and GLT (1 g/kg/day) + GEF (15 mg/kg/day) for 14 days. Cell viability was conducted using the Cell Counting Kit-8 assay. The tumour volume, inhibition rate, histopathological, microvessel density (MVD), mRNAs, and proteins were determined. RESULTS GLTs inhibited the cell viability of A549 cells with an IC50 value of 14.38 ± 0.29 mg/L, while the IC50 value of GEF was 10.26 ± 0.47 μmol/L. The tumour inhibition rate in the GLT + GEF group (51.54%) was significantly decreased relative to the saline control… group (p < 0.05). The MVD in the GLT + GEF group (2.9 ± 0.7) was significantly decreased than that in the saline control group (12.8 ± 1.4, p < 0.05). The angiostatin, endostatin, and Bax protein expression in the GLT, GEF, and GLT + GEF groups were significantly increased compared to those in the saline control group, while the VEGFR2 and Bcl-2 protein expression were decreased. DISCUSSION AND CONCLUSIONS Our study provided evidence that GLT and GEF combination therapy may be a promising candidate for the treatment of lung cancer and as an experimental basis for clinical treatment.
Collapse
Affiliation(s)
- Wei Liu
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | | | - Aihua Hou
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Song Tan
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Xin Liu
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Pengcheng Tan
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Xiaoming Huang
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Jinguo Wang
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| |
Collapse
|
23
|
Barbosa JR, Carvalho Junior RND. Occurrence and possible roles of polysaccharides in fungi and their influence on the development of new technologies. Carbohydr Polym 2020; 246:116613. [PMID: 32747253 PMCID: PMC7293488 DOI: 10.1016/j.carbpol.2020.116613] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/23/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
Abstract
The article summarizes the roles of polysaccharides in the biology of fungi and their relationship in the development of new technologies. The comparative approach between the evolution of fungi and the chemistry of glycobiology elucidated relevant aspects about the role of polysaccharides in fungi. Also, based on the knowledge of fungal glycobiology, it was possible to address the development of new technologies, such as the production of new anti-tumor drugs, vaccines, biomaterials, and applications in the field of robotics. We conclude that polysaccharides activate pathways of apoptosis, secretion of pro-inflammatory substances, and macrophage, inducing anticancer activity. Also, the activation of the immune system, which opens the way for the production of vaccines. The development of biomaterials and parts for robotics is a promising and little-explored field. Finally, the article is multidisciplinary, with a different and integrated approach to the role of nature in the sustainable development of new technologies.
Collapse
Affiliation(s)
- Jhonatas Rodrigues Barbosa
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Raul Nunes de Carvalho Junior
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| |
Collapse
|
24
|
Yu X, Wang X, Wang X, Zhou Y, Li Y, Wang A, Wang T, An Y, Sun W, Du J, Tong X, Wang Y. TEOA Inhibits Proliferation and Induces DNA Damage of Diffuse Large B-Cell Lymphoma Cells Through Activation of the ROS-Dependent p38 MAPK Signaling Pathway. Front Pharmacol 2020; 11:554736. [PMID: 33013393 PMCID: PMC7500465 DOI: 10.3389/fphar.2020.554736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/18/2020] [Indexed: 11/26/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of lymphoma, accounting for approximately 30% to 40% of non-Hodgkin’s lymphomas (NHL). The administration of rituximab significantly improved the outcomes of DLBCL; however, the unavoidable development of resistance limits the long-term efficacy. Therefore, a new generation of less toxic drugs with higher chemotherapy response is required to prevent or reverse chemoresistance. TEOA is a pentacyclic triterpenoid compound isolated from the roots of Actinidia eriantha. Studies have confirmed that TEOA has significant cytotoxicity on gastrointestinal cancer cells. However, there are no relevant reports on DLBCL cells. In this study, we investigated the potential molecular mechanism of the anticancer activity of TEOA in DLBCL cells. The results demonstrated that TEOA inhibited proliferation and induced apoptosis in time-and dose-dependent manners. TEOA induced reactive oxygen species (ROS) generation, which was reversed by N-acetyl cysteine (NAC). TEOA induced DNA damage, increased the level of γ-H2AX, and the phosphorylation of CHK1 and CHK2. In addition, TEOA induced the activation of the p38 MAPK pathway and pretreated with p38 inhibitor SB20358 or ROS scavenger could block TEOA-induced DNA damage. Taken together, these results suggest that ROS mediated activation of the p38 MAPK signal pathway plays an important role in initiating TEOA-induced DNA damage.
Collapse
Affiliation(s)
- Xingxing Yu
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Department of Hematology, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Xin Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xu Wang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yi Zhou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Wangjiangshan Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yanchun Li
- The Second Clinical Medical School of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Aiwei Wang
- Department of Hematology, The First People's Hospital of Fuyang, Hangzhou, China
| | - Tongtong Wang
- Wangjiangshan Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yihan An
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Weidong Sun
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jing Du
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiangmin Tong
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,The Second Clinical Medical School of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ying Wang
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
25
|
Yu J, Liu C, Ji HY, Liu AJ. The caspases-dependent apoptosis of hepatoma cells induced by an acid-soluble polysaccharide from Grifola frondosa. Int J Biol Macromol 2020; 159:364-372. [DOI: 10.1016/j.ijbiomac.2020.05.095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/09/2023]
|
26
|
Li Y, Qin G, Cheng C, Yuan B, Huang D, Cheng S, Cao C, Chen G. Purification, characterization and anti-tumor activities of polysaccharides from Ecklonia kurome obtained by three different extraction methods. Int J Biol Macromol 2020; 150:1000-1010. [PMID: 31751739 DOI: 10.1016/j.ijbiomac.2019.10.216] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/09/2019] [Accepted: 10/24/2019] [Indexed: 11/19/2022]
Abstract
To investigate and compare the effects of different extraction methods on the structure and anti-tumor activity of Ecklonia kurome polysaccharides (EP), three techniques, namely hot water extraction (HW), ultrasonic-assisted extraction (UA) and enzyme-assisted extraction (EA), were used to extract EP, and three crude EPs were purified by DEAE-cellulose and gel filtration chromatography. The significant antitumor active components in each method were screened by MTT assay and named as HW-EP5, UA-EP4 and EA-EP3, respectively. The molecular weight, FT-IR assay and NMR showed that HW-EP5, UA-EP4 and EA-EP3 were pyran polysaccharides with a molecular weight of 14,466, 15,922 and 16,947 Da, respectively. HW-EP5 contained the most monosaccharides and the highest content of sulfate and uronic acid. HW-EP5 had an even and smooth sheet-like appearance, while UA-EP4 and EA-EP3 exhibited irregular and rough fragments. All three polysaccharides can inhibit the migration of human breast cancer cells (MCF-7) and promote its apoptosis. All three polysaccharides promoted caspase activity during apoptosis. HW-EP5 and UA-EP4 up-regulated the expression of proapoptotic proteins Bax and p53, while EA-EP3 only up-regulated the expression of p53. These experimental results indicate that Ecklonia kurome polysaccharides, especially HW-EP5, have great potential as a natural medicine for the treatment of breast cancer.
Collapse
Affiliation(s)
- Ying Li
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Gaoyixin Qin
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Chen Cheng
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Biao Yuan
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Dechun Huang
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Shujie Cheng
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Guitang Chen
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China.
| |
Collapse
|
27
|
Zheng T, Gu D, Wang X, Shen X, Yan L, Zhang W, Pu Y, Ge C, Fan J. Purification, characterization and immunomodulatory activity of polysaccharides from Leccinum crocipodium (Letellier.) Watliag. Int J Biol Macromol 2020; 148:647-656. [DOI: 10.1016/j.ijbiomac.2020.01.155] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/23/2019] [Accepted: 01/16/2020] [Indexed: 01/09/2023]
|
28
|
Yan M, Wang W, Zhou J, Chang M, Peng W, Zhang G, Li J, Li H, Bai C. Knockdown of PLAT enhances the anticancer effect of gefitinib in non-small cell lung cancer. J Thorac Dis 2020; 12:712-723. [PMID: 32274137 PMCID: PMC7139041 DOI: 10.21037/jtd.2019.12.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Tyrosine kinase inhibitors (TKIs), such as gefitinib, are widely used as standard treatments for non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations. However, the subsequent inevitable drug resistance has become a major challenge in clinical treatment. The aim of this study was to investigate the role of tissue-type plasminogen activator (PLAT) in gefitinib resistance in NSCLC. Methods The function of PLAT was determined using gefitinib-resistant cells and a nude mouse model. The gene knockdown was achieved by Lentivirus based RNA silence technique. Expression of relevant genes and proteins, cell viability, proliferation, apoptosis, cell cycle, reactive oxygen species levels, mitochondrial membrane potential and differential gene expression was detected by RT-qPCR, western blot, cell counting kit-8 assay, EdU incorporation, flow cytometry, JC-1 dye assay and complementary DNA arrays. The effects of PLAT knockdown on tumorigenesis was analyzed in vivo. Results Gefitinib-resistant cells expressed higher levels of PLAT and that knockdown of PLAT in resistant cells restored gefitinib sensitivity. Tumor proliferation was limited in vivo following PLAT knockdown. Moreover, PLAT knockdown affected mitochondrial function, caused caspase activation and cell cycle arrest, and activated TNF-α signaling, leading to apoptosis of gefitinib-resistant PC9 cells. Conclusions Our results suggest that PLAT reduces apoptosis of NSCLC cells and knockdown of PLAT enhances anticancer effect of gefitinib by upregulating TNF-α signaling.
Collapse
Affiliation(s)
- Mengnan Yan
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Wang
- Department of Pathology, Affiliated Yantai Yuhuangding Hospital, Medical College of Qingdao University, Yantai 264000, China
| | - Jian Zhou
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Meijia Chang
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenjun Peng
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ge Zhang
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jing Li
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huayin Li
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chunxue Bai
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
29
|
Dong XD, Yu J, Meng FQ, Feng YY, Ji HY, Liu A. Antitumor effects of seleno-short-chain chitosan (SSCC) against human gastric cancer BGC-823 cells. Cytotechnology 2019; 71:1095-1108. [PMID: 31598888 DOI: 10.1007/s10616-019-00347-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Seleno-short-chain chitosan (SSCC) is a derivative of chitosan. In the present study, we sought to investigate the underlying antitumor mechanism of SSCC on human gastric cancer BGC-823 cells in vitro. MTT assay suggested that SSCC exhibited a dose-dependent inhibitory effect on the proliferation of BGC-823 cells. We found the SSCC-treated cells showed typical morphological characteristics of apoptosis in a dose dependent manner by observing on microscope. Annexin V-FITC/PI double staining and cell cycle assay identified that SSCC could induce BGC-823 cells apoptosis by triggering G2/M phase arrest. Our research provided the first evidence that SSCC could effectively induce the apoptosis of BGC-823 cells via an intrinsic mitochondrial pathway, as indicated by inducing the disruption of mitochondrial membrane potential (MMP), the excessive accumulation of reactive oxidative species (ROS), the increase of Bax/Bcl-2 ratio and the activation of caspase 3, caspase 9 and cytochrome C (Cyt-C) in BGC-823 cells. These combined results clearly indicated that SSCC could induce BGC-823 cells apoptosis by the involvement of mitochondrial signaling pathway, which provided precise experimental evidence for SSCC as a potential agent in the prevention and treatment of human gastric cancer.
Collapse
Affiliation(s)
- Xiao-Dan Dong
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,QingYunTang Biotech (Beijing) Co., Ltd, No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Juan Yu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,QingYunTang Biotech (Beijing) Co., Ltd, No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Fan-Qi Meng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,QingYunTang Biotech (Beijing) Co., Ltd, No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Ying-Ying Feng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,QingYunTang Biotech (Beijing) Co., Ltd, No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Hai-Yu Ji
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,QingYunTang Biotech (Beijing) Co., Ltd, No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Anjun Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China. .,Tianjin Key Laboratory of Food Nutrition and Safety, School of Food Engineering and Biological Technology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Zone, Tianjin, 300457, China.
| |
Collapse
|
30
|
Purification of an acidic polysaccharide from Suaeda salsa plant and its anti-tumor activity by activating mitochondrial pathway in MCF-7 cells. Carbohydr Polym 2019; 215:99-107. [DOI: 10.1016/j.carbpol.2019.03.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/09/2019] [Accepted: 03/15/2019] [Indexed: 11/23/2022]
|
31
|
Sun JM, Xu HT, Zhao L, Zhang YB, Kang PC, Song ZF, Liu HS, Cui YF. Induction of cell-cycle arrest and apoptosis in human cholangiocarcinoma cells by pristimerin. J Cell Biochem 2019; 120:12002-12009. [PMID: 30825242 DOI: 10.1002/jcb.28485] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 01/24/2023]
Abstract
Pristimerin, a triterpenoid isolated from Celastraceae and Hippocrateaceae, is known to induce cytotoxicity in several cancer cell lines. However, whether pristimerin can induce apoptosis in cholangiocarcinoma cells and the underlying mechanism remain unexplored. We assessed the function of human cholangiocarcinoma QBC and RBE cell lines using various experimental methods such as the cell viability assay to elucidate the viability of cells, flow cytometry to detect the death rate of cells, and Western blot analysis to evaluate the expression of cell cycle-related proteins and autophagy-related proteins. Human cholangiocarcinoma QBC cells were transplanted to nude mice to establish an animal model, and the effect of pristimerin on tumor growth in this model was observed. QBC and RBE cell lines treated with pristimerin (0, 5, 10, and 20 μmol/L) demonstrated the induction of apoptosis in a dose-dependent manner. The cell viability assay revealed a reduction in the cell viability with an increase in the pristimerin concentration. Similarly, flow cytometry revealed a gradual increase in the cell death rate with an increase in the pristimerin concentration. In addition, pristimerin significantly lowered the expression of apoptosis-related proteins (Bcl-2, Bcl-xL, and procaspase-3), but increased the Bax expression. Furthermore, pristimerin resulted in the G0/G1 cell-cycle arrest, reducing the expression of cell cycle-related proteins (cyclin E, CDK2, and CDK4), and increased the expression of autophagy-related proteins (LC3) in QBC cell line. Treatment with pristimerin could inhibit tumor growth in the nude mouse model. Overall, this study suggests the potential effect of pristimerin on the cell-cycle arrest and apoptosis in human cholangiocarcinoma cells.
Collapse
Affiliation(s)
- Jian-Min Sun
- Department of Hepatobiliary Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Hai-Tao Xu
- Department of Hepatobiliary Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Liang Zhao
- Department of Hepatobiliary Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yu-Bao Zhang
- Department of Hepatobiliary Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Peng-Cheng Kang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zeng-Fu Song
- Department of Hepatobiliary Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Hai-Shi Liu
- Department of Hepatobiliary Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yun-Fu Cui
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
32
|
Apoptosis of human gastric carcinoma MGC-803 cells induced by a novel Astragalus membranaceus polysaccharide via intrinsic mitochondrial pathways. Int J Biol Macromol 2019; 126:811-819. [DOI: 10.1016/j.ijbiomac.2018.12.268] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/27/2018] [Accepted: 12/30/2018] [Indexed: 12/11/2022]
|
33
|
Polysaccharides as potential anticancer agents—A review of their progress. Carbohydr Polym 2019; 210:412-428. [PMID: 30732778 DOI: 10.1016/j.carbpol.2019.01.064] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
|
34
|
Chen M, Ou C, Yang C, Yang W, Qin Q, Jiang W, Tan Q, Mao A, Liao X, Ye X, Wei C. A Novel Animal Model of Induced Breast Precancerous Lesion in Tree Shrew. Biol Pharm Bull 2019; 42:580-585. [PMID: 30674757 DOI: 10.1248/bpb.b18-00688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chinese tree shrew, an animal exhibited closer evolutionary relationship with humans compared to rodents, is getting increasingly attentions as an appealing experimental animal model for human diseases. However, a high-efficiency and stable method to establish tree shrew breast precancerous lesions model has not been clearly elucidated. Thus, the current study aimed to explore the way of establishing breast precancerous model in tree shrew and investigate the pathologic characteristics of induced breast precancerous lesions. The results indicated that 7,12-dimethylbenz(a)anthracene (DMBA) could induce breast lesions in tree shrews. However, comparing to DMBA alone, an addition of medroxyprogesterone acetate (MPA) to DMBA critically increased the rate of induced breast lesion in tree shrews. Half of induced breast lesions were intraductal papilloma and the others were atypical ductal hyperplasia. Induced lesions showed positive expression of estrogen receptor α (ERα), progesterone receptor (PR) and cytokeratin 5/6 (CK5/6), but negative expression of human epidermal growth factor receptor-2 (Her-2). The expression of B cell lymphoma-extra large (Bcl-xl) was significantly higher and the expression of B cell lymphoma 2 associated X protein (Bax) was significantly lower in the precancerous lesions (atypical ductal hyperplasia) compared to benign tumor (intraductal papilloma). These results suggest that DMBA is able to induce breast lesions in tree shrews. Combination of DMBA and MPA may be more effective to establish breast precancerous lesion tree shrew models. Tree shrew might be a promising animal model for studying the tumorogenesis of breast cancer.
Collapse
Affiliation(s)
- Maojian Chen
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University
| | - Chao Ou
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University
| | - Chun Yang
- Department of Experimental Research, The Affiliated Tumor Hospital of Guangxi Medical University
| | - Weiping Yang
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University
| | - Qinghong Qin
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University
| | - Wei Jiang
- Department of Medical Oncology, The Affiliated Tumor Hospital of Guangxi Medical University
| | - Qixing Tan
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University
| | - Anyun Mao
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University
| | - Xiaoli Liao
- Department of Medical Oncology, The Affiliated Tumor Hospital of Guangxi Medical University
| | - Xinqing Ye
- Department of Pathology, The Affiliated Tumor Hospital of Guangxi Medical University
| | - Changyuan Wei
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University
| |
Collapse
|
35
|
Natural polysaccharides exhibit anti-tumor activity by targeting gut microbiota. Int J Biol Macromol 2019; 121:743-751. [DOI: 10.1016/j.ijbiomac.2018.10.083] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/29/2018] [Accepted: 10/14/2018] [Indexed: 12/30/2022]
|
36
|
Gao B, Wang R, Peng Y, Li X. Effects of a homogeneous polysaccharide from Sijunzi decoction on human intestinal microbes and short chain fatty acids in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:465-473. [PMID: 29890316 DOI: 10.1016/j.jep.2018.06.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sijunzi decoction (SJZD) is a classic recipe in traditional Chinese medicine (TCM) to strengthen the spleen and replenish Qi. It is well known for treating disorders of gastrointestinal function manifested in poor appetite, reduced food intake and loose stools. Polysaccharide is the most abundant constituent and the major effective component in SJZD. AIM OF THE STUDY The present study aimed to understand the immunomodulatory mechanism of S-3-1, a homogeneous polysaccharide purified from SJZD with immune-enhancement activity, by investigating its effects on human intestinal microbes and short chain fatty acids. MATERIALS AND METHODS S-3-1 was incubated with simulated gastric juice, intestinal juice, and human fecal microflora independently and sequentially. The concentrations of total polysaccharide and reducing sugar were measured to identify the stability of independently and sequentially incubated S-3-1 in three in vitro fermentation models. Gas chromatograph (GC) analysis was used to measure the short chain fatty acid (SCFA) contents in human fecal samples. The human gut microbiota composition was measured by 16S rRNA gene Illumina MiSeq sequencing (V3-V4 region). RESULTS S-3-1 was degraded in three in vitro fermentation models separately and sequentially. Both S-3-1 and incubated S-3-1 could regulate the abundances of Lactobacillus, Pediococcus, Streptococcus, Bacteroides, Enterococcus, Clostridium and Dorea in human intestinal microflora samples. Specifically, S-3-1 could only regulate the abundances of Paraprevotella and Oscillospira, while the influenced flora changed to Butyricimonas, Coprococcus, Dialister, Sutterella, Ruminococcus and Parabacteroides after sequential incubation of S-3-1. In contrast to S-3-1 showing no influence on the content of SCFA, incubated S-3-1 showed increased contents of acetic acid and total acid that were associated with its effects on the abundances of Enterococcus, Sutterella, Butyricimonas and Streptococcus. CONCLUSION S-3-1 plays an immunomodulatory role by regulating the abundances of 9 intestinal bacteria genera. Incubated S-3-1 can regulate more bacteria genera, a total of 13 kinds, and can adjust the SCFA content to affect immunomodulation. Incubation with gastric and intestinal juices enhanced S-3-1's capability of modulating the intestinal flora composition and decreased the bacteria's need for a carbon source. This study could provide new insights for studies on the pharmacological mechanisms of polysaccharides in vitro.
Collapse
Affiliation(s)
- Beibei Gao
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Ruijun Wang
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| |
Collapse
|
37
|
Bamboo-shaving polysaccharide protects against high-diet induced obesity and modulates the gut microbiota of mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
38
|
Bai R, Li W, Li Y, Ma M, Wang Y, Zhang J, Hu F. Cytotoxicity of two water-soluble polysaccharides from Codonopsis pilosula Nannf. var. modesta (Nannf.) L.T.Shen against human hepatocellular carcinoma HepG2 cells and its mechanism. Int J Biol Macromol 2018; 120:1544-1550. [PMID: 30248423 DOI: 10.1016/j.ijbiomac.2018.09.123] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/11/2018] [Accepted: 09/20/2018] [Indexed: 01/02/2023]
Abstract
Two water-soluble polysaccharides named CPP1a and CPP1c were isolated from C. pilosula Nannf. var. modesta L.T.Shen by hot-water extraction and purified by graded alcohol precipitation and DEAE-52 cellulose column. The structure of CPP1c with higher yield has been characterized while its antitumor activities has not been elucidated. In this study, we firstly analyzed the chemical structure of CPP1a. The results of instrumental analysis combined with chemical analysis showed that CPP1a was composed of →1)- β‑l‑Rhap‑(4→, →1)- β‑Arap‑(5→, →1)- β‑d‑GalpA‑(4→, →1)- β‑d‑Galp‑(6→, terminal‑β‑d‑Glcp in a molar ratio of 1:12:1:10:3 and its relative and absolute molecular weight were 1.01 × 105 Da and 1.03 × 105 Da respectively. Further, the cytotoxicity assay indicated that CPP1a and CPP1c were more sensitive to HepG2 cells than cervical carcinoma Hela cells and gastric carcinoma MKN45 cells. Both of CPP1a and CPP1c could influence cell morphology, inhibit the migration and induce apoptosis by affecting the G2/M phase of HepG2 cells. Preliminary mechanism studies confirmed that CPP1a and CPP1c could induce apoptosis through up-regulating the ratio of Bax/Bcl-2 and activating caspase-3. According to previous research, we might speculate that the reason for the stronger cytotoxicity and pro-apoptotic effect of CPP1c than that of CPP1a can be attributed to its high uronic acid content.
Collapse
Affiliation(s)
- Ruibin Bai
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Wuyan Li
- Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Yingdong Li
- Institute of Integrated Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Ming Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yanping Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jing Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Fangdi Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
39
|
Wu D, Zhao Y, Fu S, Zhang J, Wang W, Yan Z, Guo H, Liu A. Seleno-short-chain chitosan induces apoptosis in human breast cancer cells through mitochondrial apoptosis pathway in vitro. Cell Cycle 2018; 17:1579-1590. [PMID: 29895197 DOI: 10.1080/15384101.2018.1464845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Seleno-short-chain chitosan (SSCC) was a synthesized chitosan derivative with the molecular weight of 4826.986 Da. The study is aimed to investigate cytotoxicity of SSCC on human breast cancer MCF-7 and BT-20 cells and explore apoptosis-related mechanism in vitro. The MTT (3- [4,5-Dimethylthiazol-2-yl]-2, 5-diphenylterazolium bromide) assay showed that SSCC exhibited significantly cytotoxic effects on MCF-7 and BT-20 cells in a dose- and time-dependent manner, and the effective inhibitory concentration was 100 μg/ml and 200 μg/ml, respectively. Apoptosis assay of these two kinds of cells was determined by Hoechst 33,342/PI and Annexin V-FITC/PI double staining. The cell cycle assay showed that SSCC triggered S and G2/M phase cell cycle arrest in MCF-7 cells and S phase cell cycle arrest in BT-20 cells in a time-dependent manner. Further studies demonstrated that SSCC led to the generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) in these two kinds of cells. N- acetyl-L cysteine (NAC), as a radical scavenger, significantly inhibited the generation of ROS and decreased the apoptosis of MCF-7 and BT-20 cells. Moreover, the expression of mitochondrial apoptosis-related proteins was detected by western blot assay. SSCC up-regulated the expression of Bax, down-regulated the expression of Bcl-2, subsequently increased the release of cytochrome c from mitochondria to cytoplasm, and activated the cleavage of caspase-9 and -3, which finally induced apoptosis in MCF-7 and BT-20 cells in vitro. Consequently, these data indicated that SSCC could induce apoptosis of MCF-7and BT-20 cells in vitro by mitochondrial pathway.
Collapse
Affiliation(s)
- Di Wu
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Yana Zhao
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Shengnan Fu
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Jianbo Zhang
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Wenhang Wang
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Zhexian Yan
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Heng Guo
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Anjun Liu
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| |
Collapse
|
40
|
Antitumor effects of seleno-β-lactoglobulin (Se-β-Lg) against human gastric cancer MGC-803 cells. Eur J Pharmacol 2018; 833:109-115. [DOI: 10.1016/j.ejphar.2018.05.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022]
|
41
|
Pang G, Wang F, Zhang LW. Dose matters: Direct killing or immunoregulatory effects of natural polysaccharides in cancer treatment. Carbohydr Polym 2018; 195:243-256. [PMID: 29804974 DOI: 10.1016/j.carbpol.2018.04.100] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022]
Abstract
Polysaccharides from natural resources possess anti-tumor activities for decades, but the efficacy of polysaccharides as the adjuvant drugs for cancer treatment at prescribed doses remains open for debate. In this review, molecular mechanisms involved in direct killing effects of polysaccharides, including apoptosis, cell cycle arrest and mitochondria/DNA damage were described. However, the concentrations/doses used to reach the direct killing effects are too high to be applicable. Polysaccharides can also exert anti-tumor effects through immunoregulation at lower doses, and the effects of polysaccharides on natural killer cells, dendritic cells and other lymphocytes for tumor destruction, along with the receptor recognition and downstream signaling pathways, were delineated. Unfortunately, the prescribed doses of polysaccharides are too low to stimulate immunoresponse, resulting in the failure of some clinical trials. Therefore, understanding the sophisticated mechanisms of the immunoregulatory function of natural polysaccharides with refined doses for clinical use will help the standardization of traditional medicine.
Collapse
Affiliation(s)
- Guibin Pang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, 201210, China
| | - Fujun Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Zhejiang Reachall Pharmaceutical Co. Ltd., Zhejiang, 322100, China; Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, 201210, China.
| | - Leshuai W Zhang
- School for Radiological and Interdisciplinary Sciences (RAD-X), State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China; Zhejiang Reachall Pharmaceutical Co. Ltd., Zhejiang, 322100, China.
| |
Collapse
|