1
|
Fu M, Zhang Y, Chen H, Peng X, Kan J. Effects of three hydrophilic colloids on gelatinization, retrogradation properties, microstructure of highland barley starch and the quality of highland barley noodles. Food Chem 2025; 476:143424. [PMID: 39986071 DOI: 10.1016/j.foodchem.2025.143424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 01/22/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
The impact of xanthan gum (XG), sodium alginate (ALG), and carrageenan (CGN) on the gelatinization, rejuvenation, microstructure, and noodle quality of highland barley was investigated. The XG-HBS mixture demonstrated superior dilatancy, gelatinization viscosity, and dynamic moduli compared to ALG and CGN, suggesting that XG enhances starch water absorption and swelling. Furthermore, LF-NMR results indicated that hydrophilic colloids reduced T23 and increased T22, signifying a shift from free water to bound water, this also indicates that the hydrophilic colloids can inhibit the formation and long-term regeneration of short-range ordered structures. Scanning electron microscopy revealed that XG resulted in a denser network structure than the other samples. Furthermore, XG, ALG, and CGN reduced cooking loss and improved noodle hardness. These findings underscore that incorporating hydrophilic colloids is an effective strategy to enhance the quality of highland barley starch and improve highland barley-based pasta products.
Collapse
Affiliation(s)
- Mingze Fu
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Yi Zhang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Huijing Chen
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Xiaowei Peng
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China.
| |
Collapse
|
2
|
Muhammad Z, Ramzan R, Abdullah, Abbas HMK, Sun W, Zhang G. Integrating the modified amphiphilic Eleocharis tuberosa starch to stabilize curcuminoid-enriched Pickering emulsions for enhanced bioavailability, thermal stability, and retention of the hydrophobic bioactive compound. Carbohydr Polym 2025; 352:123199. [PMID: 39843101 DOI: 10.1016/j.carbpol.2024.123199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/25/2024] [Accepted: 12/28/2024] [Indexed: 01/24/2025]
Abstract
The study involves the modification of a non-conventional starch isolated from the under-utilized variety of Chinese water chestnut (CWC (Eleocharis tuberosa) and integrating it to fabricate stabilized and curcumin-enriched Pickering emulsions with enhanced bioavailability, thermal stability, and retention of encapsulated curcumin. A time-efficient, semi-dried esterification method was used to prepare modified amphiphilic starches using 3, 6, or 9 % (w/v) octenyl succinic anhydride (OSA) and characterized through degree of substitution (DS), contact angle, particle size, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and in-vitro digestibility. Moreover, Pickering emulsions were formulated using CWCS-OSA at 3 %, 6 %, or 9 % concentrations to serve as a carrier for curcumin to improve its water solubility and storage stability. The research investigated Pickering emulsions' encapsulation efficiency, curcumin retention, emulsifying properties, micromorphology, temperature stability, and bioaccessibility. Results showed that CWCS-OSA, with an OSA concentration between 3 % and 9 %, exhibited a degree of substitution (DS) ranging from 0.017 to 0.031 and an expansion in contact angle from 68.36o to 85.45o. CWCS-9%OSA showed the highest encapsulation efficiency at 89.4 % and maintained an emulsification index above 80 % during a 10-day storage period. A significantly higher bio-accessibility (41.26 ± 1.34 %) of curcumin in Pickering emulsions stabilized with CWCS-9%OSA than in the bulk oil system (19.53 ± 1.62 %). This study highlights the potential of chemically modified amphiphilic starch from an underutilized variety of CWCS (Eleocharis tuberosa) to produce the stabilized Pickering emulsion gels as a stable and effective carrier for unstable hydrophobic polyphenolic compounds by enhancing their bioavailability in the foods and pharmaceutics.
Collapse
Affiliation(s)
- Zafarullah Muhammad
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui-, China; Wuhu Green Food Industrial Research Institute Co., Ltd., Wuhu 241000, Anhui- China
| | - Rabia Ramzan
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui-, China
| | - Abdullah
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | | | - Wu Sun
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui-, China
| | - Guoqiang Zhang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui-, China; Wuhu Green Food Industrial Research Institute Co., Ltd., Wuhu 241000, Anhui- China.
| |
Collapse
|
3
|
Milanezzi GC, Silva EK. Pulsed electric field-induced starch modification for food industry applications: A review of native to modified starches. Carbohydr Polym 2025; 348:122793. [PMID: 39562069 DOI: 10.1016/j.carbpol.2024.122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/08/2024] [Accepted: 09/21/2024] [Indexed: 11/21/2024]
Abstract
Starch, a polysaccharide primarily composed of amylose and amylopectin, serves as a critical energy source in plants. However, its native properties often limit its application in the food industry. To overcome these limitations, starch modification is essential for enhancing its technological characteristics. In this context, this review explored the impacts of pulsed electric field (PEF) technology on starch modification. PEF, along with other electrotechnologies, utilizes high-voltage electrical pulses to induce structural and chemical changes in starch granules, leading to improvements in properties such as gelatinization, solubility, viscosity, and swelling capacity. Although PEF is a non-thermal process, it enables significant structural and physicochemical modifications in starch. By avoiding high temperatures that can cause changes in color, flavor, and degradation of essential nutrients, PEF-modified starch results in better preservation of nutritional and sensory qualities, while also enhancing its performance in various industrial processes. Despite its advantages, challenges such as the need for standardized protocols and potential unwanted side reactions at high intensities remain. This review examined the effectiveness of PEF in modifying starch for enhanced technological applications in the food industry, addressing both its benefits and limitations. Additionally, the article provided a foundational overview of starch, including its chemical structure, functionalities, and sources, both conventional and non-conventional, ensuring a comprehensive understanding of how PEF can be applied to optimize starch properties for industrial use.
Collapse
Affiliation(s)
- Gabriela Carolina Milanezzi
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil
| | - Eric Keven Silva
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil.
| |
Collapse
|
4
|
Hu W, Gu J, Yang K, Bu T, Natallia K, Zhang Z, Wu W. Mechanism of hydrocolloids effect on buckwheat starch gels from interaction and structural perspectives: A comparative study. Int J Biol Macromol 2025; 284:137886. [PMID: 39571845 DOI: 10.1016/j.ijbiomac.2024.137886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/27/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
Controlling the digestibility and gel properties of Tartary buckwheat starch (TBS) has become a central issue for functional foods. The effects of hydroxypropyl methylcellulose (HPMC), guar gum (GG) and Konjac glucomannan (KGM) on TBS from the interaction and structural perspectives were studied. Three hydrocolloids increased the peak, trough and final viscosity of TBS in a concentration-dependent manner. Dynamic frequency sweeps and flow state tests indicated that the TBS-hydrocolloid systems exhibited gel-like behaviour, and TBS-HPMC was more thixotropic than the other systems. The addition of hydrocolloids significantly enhanced the hardness and chewiness of the TBS gels. The structural analyses revealed that hydrocolloids did not affect the functional groups or crystalline structure of TBS, but did improve the orderliness of the systems. The interaction mechanism confirmed that hydrogen bonds and electrostatic forces are the main forces in the formation of HPMC and TBS-KGM gels; while hydrogen bonds are dominant in TBS-GG gels. Moreover, HPMC, GG and KGM can each delay starch hydrolysis to some extent, with a hydrolysis rate varying from 78.66 % ± 2.81 % to 44.8 % ± 0.35 % at three addition levels. The results can provide both theoretical and practical insights into the glycaemic control of starch and TBS-based jelly foods production.
Collapse
Affiliation(s)
- Weiwei Hu
- Food Science Institute, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Junchao Gu
- Food Science Institute, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Tingting Bu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Komarova Natallia
- Scientific-Practical Center for Foodstuffs of the National Academy of Sciences of Belarus, Minsk 220037, Belarus
| | - Zhiguo Zhang
- Food Science Institute, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Weicheng Wu
- Food Science Institute, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| |
Collapse
|
5
|
Zhao W, Liang W, Liu X, Zheng J, Shen H, Li W. Sequential effects of autoclaved heat treatment and electron beam irradiation on acorn starch: Multiscale structural differences and related mechanisms. Food Chem 2024; 458:140251. [PMID: 38944921 DOI: 10.1016/j.foodchem.2024.140251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
In this study, the differences in the modification effects and related mechanisms of different times (20 and 40 min) of autoclaved heat (AH) treatment and different doses (2 and 4 kGy) of electron beam irradiation (EBI) in different sequences of effects on acorn starch were investigated. The results showed that both AH and EBI reduced the amylose content (22.70 to 19.59%) and enthalpy (10.28 to 1.84%) of starch but increased the resistant starch content (53.69 to 64.11%). AH treatment made the crystalline regions of the residual starch granules denser, which was resistant to the action of amylase enzymes. EBI degraded the long chain of starch, which increased the solubility. Notably, EBI pretreatment improves the reactive sites by inducing depolymerization and disorder in starch internal structure, thus increasing the modification extent of AH-modified starch, forming starch with lower viscosity, better hydration, and digestibility resistance, therefore being used as an ingredient for functional foods.
Collapse
Affiliation(s)
- Wenqing Zhao
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wei Liang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xinyue Liu
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jiayu Zheng
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Huishan Shen
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Wenhao Li
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
6
|
Obadi M, Xu B. A review of the effects of physical processing techniques on the characteristics of legume starches and their application in low-glycemic index foods. Int J Biol Macromol 2024; 279:135124. [PMID: 39208910 DOI: 10.1016/j.ijbiomac.2024.135124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Physical processing techniques significantly influence the characteristics of legume starch, consequently affecting the potential applications of legume-based products. This review comprehensively examines the impact of various physical processing techniques on legume starch properties, including structure, granule morphology, gelatinization, pasting properties, solubility, and in vitro digestibility. Furthermore, it evaluates the implications of these processing methods for utilizing legumes in developing low-glycemic index (GI) foods. Notably, certain physical processing methods, such as heat-moisture treatment, ultrahigh-pressure processing, dry heat treatment, and gamma irradiation, under specific conditions, enhance the resistant starch or slowly digestible starch fractions in legume starches. This enhancement is particularly advantageous for producing low-GI foods. Conversely, techniques like annealing, extrusion, ultrasound, and germination increase starch digestibility, which is less favorable for low-GI food applications. This review also provides an up-to-date overview of the use of diverse preprocessed legume products in low-GI food production. The novelty of this review lies in its detailed comparative analysis of physical processing methods and their specific effects on legume starch digestibility, which has not been extensively covered in existing literature. The comprehensive insights presented herein will benefit the legume industry by informing effective strategies for converting legume starch into valuable low-GI products.
Collapse
Affiliation(s)
- Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
7
|
Maleki S, Aarabi A, Far FA, Dizaji HZ. Heat moisture treatment and ultrasound-induced hydrothermal wheat starch modification: Techno-functional, microstructural and quality 3D printed characteristics. Int J Biol Macromol 2024; 276:133992. [PMID: 39032880 DOI: 10.1016/j.ijbiomac.2024.133992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/19/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
In this study, the effect of hydrothermal process, ultrasound and combined freezing-ultrasound process on the physical and structural characteristics of wheat starch (Triticum aestivum) was investigated. Two heat-moisture treatments for 2 h (HMT2) and 4 h (HMT4), high-intensity, high-frequency ultrasound under two treatment times (10 to 20 min) (UT10 and UT20) as pre-treatment and sonication after freezing as post-treatment (FUT) on wheat starch suspension was applied. The modifications of starch crystallinity, chemical bonds of starch treated, morphology, thermal, swelling, pasting, and physicochemical characteristics were evaluated. Finally, the starches treated under these conditions were used as ink for a 3D printer, and the characteristics of the printed product were evaluated. The results demonstrate that heat-moisture modified starch increased swelling and size of granules and lowered syneresis values. Sonication promoted molecular depolymerization and reduction of starch swelling and crystallinity. Combined treatment (Sonication and freezing) showed higher peak apparent viscosity during gelatinization and pasting, and the FUT starch-based hydrogels showed the best printability (better ability to stack layers on top of each other and build the desired 3D shape), indicating better reproducibility of this ink. These results showed that FUT is a suitable process for improving the synergy and properties of wheat starch-based hydrogels, which are suitable as inks for use in 3D printers.
Collapse
Affiliation(s)
- Samaneh Maleki
- Department of Food Science and Technology, Shahreza Branch, Islamic Azad University, Shahreza, Iran
| | - Aazam Aarabi
- Department of Food Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Farhad Azimi Far
- Department of Biomedical Engineering, Isfahan (khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Hassan Zaki Dizaji
- Department of Biosystems Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| |
Collapse
|
8
|
Liang D, Liu Q, Luo H, Luo L, Temirlan K, Li W. The Effect of Maltose on Structural, Physicochemical, and Digestive Properties of Lentil Starch under Electron Beam Irradiation. Foods 2024; 13:2544. [PMID: 39200470 PMCID: PMC11353368 DOI: 10.3390/foods13162544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
This study investigated the effects of electron beam irradiation (EBI) on the structural, physicochemical, and functional properties of lentil starch with varying maltose content. EBI did not significantly disrupt the starch's surface structure or cause amorphization of starch and maltose crystals, but it significantly reduced the intensity of starch's XRD peaks. The presence of maltose intensified internal growth ring damage, leading to more cross-link and rearrangement between short chains, improving short-range ordering of lentil starch and enhancing starch's solubility and thermal stability. Additionally, adding maltose that EBI then treats can lead to an increased content of slowly digestible starch in samples.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling District, Xianyang 712100, China; (D.L.); (Q.L.); (H.L.); (L.L.); (K.T.)
| |
Collapse
|
9
|
Mhaske P, Farahnaky A, Majzoobi M. Advancements in Pulse Starches: Exploring Non-Thermal Modification Methods. Foods 2024; 13:2493. [PMID: 39200420 PMCID: PMC11353720 DOI: 10.3390/foods13162493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
The surge in the global demand for plant-based proteins has catapulted pulse protein into the spotlight. To ensure economic viability and sustainable production, it is crucial to utilize pulse starch, a by-product of plant protein fractionation. Despite the increasing interest in pulse starches, there is a notable gap in knowledge regarding their modifications and applications compared to cereal and tuber starches. Non-thermal techniques such as electron beam radiation, static high pressure, microfluidization, and cold plasma are emerging as innovative methods for starch modification. These techniques offer significant advantages, including enhanced safety, environmental sustainability, and the development of unique functional properties unattainable through conventional methods. However, challenges such as equipment availability, high costs, and energy consumption hinder their widespread adoption. In light of the growing emphasis on "clean and green labelling" and effective "waste management" in food production, evaluating non-thermal techniques for pulse starch modification is critical. This review aims to thoroughly assess these non-thermal techniques and their combinations, offering valuable insights for researchers and the food industry. By maximizing the potential of pulse starches in innovative food applications, it provides a comprehensive guide for effective non-thermal methods that add value and align with sustainable practices.
Collapse
Affiliation(s)
- Pranita Mhaske
- AFB International, 3 Research Park Drive, St. Charles, MO 63304, USA;
| | - Asgar Farahnaky
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia;
| | - Mahsa Majzoobi
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia;
| |
Collapse
|
10
|
Wang W, Hu A, Liu S, He J, Zheng J. Effects of microwave radiation on the physicochemical properties, structure, and digestibility of the synthesized different crystal forms of malic acid starch ester. Int J Biol Macromol 2024; 263:130236. [PMID: 38367786 DOI: 10.1016/j.ijbiomac.2024.130236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
The effects of microwave combined with L-malic acid treatment on the degree of substitution (DS), structure, physicochemical properties, and digestibility of sweet potato starch (A-type), potato starch (B-type), and pea starch (C-type) were evaluated. The order of DS obtained was: DSM-POS > DSM-SPS > DSM-PES. Fourier transform-infrared spectroscopy (FT-IR) showed that the obtained modified starch produced a new absorption band at 1735 cm-1. Scanning electron microscopy (SEM) and polarized light microscopy indicated that different types of native starches exhibited different granular morphologies and appeared to have different degrees of damage, but still had polarized crosses after modification. Sweet potato starch had the smallest particle size, while potato starch had the largest. X-ray diffractometry (XRD) showed that the modified starches still retained the same crystal structure as the native starches, but the relative crystallinity decreased. The apparent viscosity and swelling power of modified starches dropped, but their water/oil holding capacity, amylose content, and resistant starch content all increased. The results demonstrate that the degree of influence on the structure, physicochemical properties, and digestibility of different starches varies under the same modification conditions.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Aijun Hu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China.
| | - Shiwei Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Jie He
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Jie Zheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China.
| |
Collapse
|
11
|
Han X, Liang Q, Rashid A, Qayum A, Rehman A, Zhong M, Sun Y, Liu Y, Ma H, Miao S, Ren X. The effects of different hydrocolloids on lotus root starch gelatinization and gels properties. Int J Biol Macromol 2024; 257:128562. [PMID: 38056154 DOI: 10.1016/j.ijbiomac.2023.128562] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
In this study, xanthan gum (XG), sodium alginate (SA), guar gum (GG), and gum Arabic (GA), were used to modify Lotus root starch (LRS). The incorporation XG, SA, and GG significantly (p < 0.05) influence the swelling power (SP) of LRS, among which the 1.5 % of XG exhibited the highest value of 25.84 g/g at 90 °C. Gelatinization analysis revealed that XG raised the final viscosity (FV) and lowered the breakdown (BD), while SA significantly increased peak viscosity (PV) and BD. Furthermore, GG and GA exhibited a substantial reduction in setback (SB). The incorporation of XG, SA, and GG enhanced the rheological and structural properties (e.g., gel strength and elasticity) of LRS. Particularly, XG demonstrated a more prominent effect, while GA exhibited an opposite trend. Moreover, the structural analyses revealed that hydrophilic colloids have no impact on the functional group and crystal structure of the LRS. However, complex system exhibited the more stable hydrogen bonding. The addition of 1.5 % XG exhibited the most stable hydrogen bonding and highest water binding affinity. Overall, the results demonstrated the effect of different hydrophilic colloids on LRS, offering a theoretical basis for LRS applications and novel insights for the use of starches and hydrocolloids.
Collapse
Affiliation(s)
- Xu Han
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Mingming Zhong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Yufan Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Yuxuan Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
12
|
Jafari M, Koocheki A. Impact of ultrasound treatment on the physicochemical and rheological properties of acid hydrolyzed sorghum starch. Int J Biol Macromol 2024; 256:128521. [PMID: 38040142 DOI: 10.1016/j.ijbiomac.2023.128521] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
The present study aimed to evaluate the influence of ultrasonication on the physicochemical properties of native and acid-hydrolyzed white sorghum starch. Sorghum starch exhibited improved freeze-thaw stability, solubility, swelling power, and paste clarity after mild sonication. Starches sonicated at 30 % amplitude for 10 and 20 min increased the peak viscosity to 249 and 240 BU, gel firmness to 140.23 and 131.62 (g), ΔH to 13.4 and 13.1 (J/g), crystallinity to 29.51 and 29.10 (%), double helix content to 1.11 and 1.07 and degree of ordered structures to 1.16 and 1.09. The sonicated dual-treated samples (sonicated-acid hydrolyzed) exhibited reduced swelling power, peak viscosity, gelatinization temperatures and gel firmness. In contrast, the solubility, paste clarity, ΔH, percentage of crystallinity, double helix content and degree of ordered structures improved. Ultrasonic treatment made cracks and holes in the granule surface, whereas dual-treated starches were more porous and rougher, with deep depressions. All sorghum starches displayed shear-thinning behavior (n < 1). The pseudoplastic behavior and consistency indices of the starch paste decreased with increasing sonication time and amplitude. The G' was always higher than G" and tanδ was <1 for all samples, indicating a more solid/elastic behavior. The increased sonication time and amplitude, as well as the dual-treatment, caused the gel to become more susceptible to shear forces, which resulted in a decrease in G' and G" and an increase in tanδ.
Collapse
Affiliation(s)
- Morteza Jafari
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arash Koocheki
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
13
|
Sharma S, Thakur K, Sharma R, Bobade H. Molecular morphology & interactions, functional properties, rheology and in vitro digestibility of ultrasonically modified pearl millet and sorghum starches. Int J Biol Macromol 2023; 253:127476. [PMID: 37863145 DOI: 10.1016/j.ijbiomac.2023.127476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/04/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023]
Abstract
The present research investigated to study the effect of ultrasound treatment on isolated pearl millet starch (PMS) and sorghum starch (SS). Ultrasonication was applied to PMS and SS for 10, 15, and 20 min. Ultrasonically modified pearl millet and sorghum starches evaluated for their techno-functionality, pasting profile, morphology, in vitro starch digestibility, XRD, and molecular interactions. Ultrasound treatment increased water and oil absorption capacity, swelling power, and solubility with treatment time. For ultrasonicated PMS and SS, a significant increase (p < 0.05) in paste clarity (PC) (70.05 % and 67.23 %), freeze-thawing stability (FTS), gel consistency (GC) (25.05 mm and 32.95 mm), and in vitro starch digestibility were observed (57.70 g/100 g and 50.29 g/100 g), whereas no significant changes were recorded for the color values after the ultrasound treatment. Variations in pasting property were also observed in ultrasonicated starches with treatment duration. SEM images confirmed ultrasonication mainly forms pores and indentations on starch granule surface. FTIR spectra and X-ray diffractogram for ultrasonicated starches revealed a slight decrease in the peak intensity and A-type X-ray pattern with lower relative crystallinity (RC) than the native starches. G' > G″ value, indicating the elastic behavior and lower tan δ value, depicting viscous behavior and high gel strength.
Collapse
Affiliation(s)
- Savita Sharma
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Kavita Thakur
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Rajan Sharma
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Hanuman Bobade
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
14
|
Dhull SB, Chandak A, Chawla P, Goksen G, Rose PK, Rani J. Modifications of native lotus (Nelumbo nucifera G.) rhizome starch and its overall characterization: A review. Int J Biol Macromol 2023; 253:127543. [PMID: 37866555 DOI: 10.1016/j.ijbiomac.2023.127543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Lotus (Nelumbo nucifera G.) rhizomes are an under-utilized and sustainable starch source that constitutes up to 20 % starch. The review mainly focused on the extraction methods of starch, the chemical composition of LRS, and techno-functional characteristics such as swelling power, solubility, in vitro digestibility, pasting property, and gelatinization is highlighted in LRS review. Lotus rhizome starch (LRS) is also used as a water retention agent, thickening, gelling, stabilizing, and filling in food and non-food applications. Native starch has limited functional characteristics in food applications so by modifying the starch, functional characteristics are enhanced. Single and dual treatment processes are available to enhance microstructural properties, resistant starch, techno-functional, morphological, and, film-forming properties. Compared with other starch sources, there is a lack of systematic information on the LRS. Many industries are interested in developing food products based on starch such as nanoparticles, hydrogels, edible films, and many others. Additionally, there are several recommendations to improve the applications in the food industry. Finally, we provide an outlook on the future possibility of LRS.
Collapse
Affiliation(s)
- Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India.
| | - Ankita Chandak
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India.
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial zone, Tarsus University, 33100 Mersin, Turkey
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India
| | - Jyoti Rani
- Department of Botany, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India
| |
Collapse
|
15
|
Kumari B, Sit N. Comprehensive review on single and dual modification of starch: Methods, properties and applications. Int J Biol Macromol 2023; 253:126952. [PMID: 37722643 DOI: 10.1016/j.ijbiomac.2023.126952] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Starch is a natural, renewable, affordable, and easily available polymer used as gelling agents, thickeners, binders, and potential raw materials in various food products. Due to these techno-functional properties of starch, food and non-food industries are showing interest in developing starch-based food products such as films, hydrogels, starch nanoparticles, and many more. However, the application of native starch is limited due to its shortcomings. To overcome these problems, modification of starch is necessary. Various single and dual modification processes are used to improve techno-functional, morphological, and microstructural properties, film-forming capacity, and resistant starch. This review paper provides a comprehensive and critical understanding of physical, chemical, enzymatic, and dual modifications (combination of any two single modifications), the effects of parameters on modification, and their applications. The sequence of modification plays a key role in the dual modification process. All single modification methods modify the physicochemical properties, crystallinity, and emulsion properties, but some shortcomings such as lower thermal, acidic, and shear stability limit their application in industries. Dual modification has been introduced to overcome these limitations and maximize the effectiveness of single modification.
Collapse
Affiliation(s)
- Bharati Kumari
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India
| | - Nandan Sit
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India.
| |
Collapse
|
16
|
Di Y, Na R, Xia H, Wang Y, Li F. Irradiation effects on characteristics and ethanol fermentation of maize starch. Int J Biol Macromol 2023; 246:125602. [PMID: 37391000 DOI: 10.1016/j.ijbiomac.2023.125602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/26/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Maize starch was irradiated by a Co60 irradiator with different doses. The morphology and physicochemical properties of native and irradiated starches were investigated. Scanning electron microscopy showed that the shape and size of starch granules did not change after irradiation. However, the irradiated starch granules were easily destroyed by dissolution. Irradiation also caused the change of starch color, the decrease in the pH value, light transmittance, stability index, degree of polymerization, total sugar content, and the increase in the swelling index and the reducing sugar content. In this study, irradiated maize starch was also used as material for ethanol fermentation to investigate its potential as a pretreatment method. Results showed that the ethanol yield of cooked and raw starch fermentation using irradiated starch increased by 20.41 % and 5.18 %, respectively, and the ethanol concentration increased by 3 % and 2 %. This finding indicated that irradiation effectively improved the utilization rate of maize starch, making it an effective pretreatment method for ethanol fermentation.
Collapse
Affiliation(s)
- Yao Di
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Ren Na
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Hongmei Xia
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yang Wang
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Fan Li
- School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
17
|
Liu X, Liang W, Zheng J, Zhao W, Shen H, Ge X, Zeng J, Gao H, Hu Y, Li W. The role and mechanism of electron beam irradiation in glutaric anhydride esterified proso millet starch: Multi-scale structure and physicochemical properties. Int J Biol Macromol 2023:125246. [PMID: 37301340 DOI: 10.1016/j.ijbiomac.2023.125246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
To investigate the effect of electron beam irradiation (EBI) pretreatment on the multiscale structure and physicochemical properties of esterified starch, this study used EBI pretreatment to prepare glutaric anhydride (GA) esterified proso millet starch. GA starch did not show the corresponding distinct thermodynamics peaks. However, it had a high pasting viscosity and transparency (57.46-74.25 %). EBI pretreatment increased the degree of glutaric acid esterification (0.0284-0.0560) and changed its structure and physicochemical properties. EBI pretreatment disrupted its short-range ordering structure, reducing the crystallinity, molecular weight and pasting viscosity of glutaric acid esterified starch. Moreover, it produced more short chains and increased the transparency (84.28-93.11 %) of glutaric acid esterified starch. This study could offer a rationale for using EBI pretreatment technology to maximize the functional properties of GA modified starch and enlarge its implementation in modified starch.
Collapse
Affiliation(s)
- Xinyue Liu
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wei Liang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jiayu Zheng
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wenqing Zhao
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Huishan Shen
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xiangzhen Ge
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jie Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China
| | - Haiyan Gao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China
| | - Yayun Hu
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wenhao Li
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
18
|
Zhou Y, Wang M, Wang L, Liu L, Wu Y, Ouyang J. Comparison of the effect of ultrasound and microwave on the functional properties and in vitro digestibility of normal maize starch and potato starch. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yihan Zhou
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Meng Wang
- Beijing Key Laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease China National Research Institute of Food and Fermentation Industries Co. Ltd. Beijing China
| | - Luyu Wang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Lingling Liu
- Institute of Analysis and Testing Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis) Beijing China
| | - Yanwen Wu
- Institute of Analysis and Testing Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis) Beijing China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| |
Collapse
|
19
|
Du B, Jeepipalli SPK, Xu B. Critical review on alterations in physiochemical properties and molecular structure of natural polysaccharides upon ultrasonication. ULTRASONICS SONOCHEMISTRY 2022; 90:106170. [PMID: 36183549 PMCID: PMC9526224 DOI: 10.1016/j.ultsonch.2022.106170] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Natural polymers, such as polysaccharides, cellulose, and starch, have been widely used in the chemical engineering, medicine, food, and cosmetics industries, which had a great many of biological activities. Natural polysaccharides origin from algae, fungi and plants were components of human diet since antique times. Ultrasonication achieved the breakage the polysaccharides reticulum in an ordered fashion. The factors of temperature, ratio of water/material, sonication frequency, time of exposure, pH of the sonication medium influenced the polysaccharide digestion. Sonication improved the enzyme catalysis over its substrate molecule. Positive health promoting slow digestive starch and resistant starch can be prepared quite easily by the sonication process. The aim of this review is to present the current status and scope of natural polymers as well as some emerging polymers with special characteristic. The physiochemical properties and molecular structure of natural carbohydrates under ultrasonic irradiation were also discussed. Moreover, Polysaccharide based films had industrial applications is formed by ultrasonication. Polysaccharide nanoparticles obtained by sonication had efficient water holding capacity. Sonication is an advanced method to improve the food quality. Hence, this review describes the effects of ultrasonication on physical, chemical, and molecular structure of natural polysaccharides.
Collapse
Affiliation(s)
- Bin Du
- Hebei Key Laboratoryy of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, PR China
| | - Syam P K Jeepipalli
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, PR China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, PR China.
| |
Collapse
|
20
|
Tappiban P, Zhao J, Zhang Y, Gao Y, Zhang L, Bao J. Effects of single and dual modifications through electron beam irradiation and hydroxypropylation on physicochemical properties of potato and corn starches. Int J Biol Macromol 2022; 220:1579-1588. [PMID: 36113603 DOI: 10.1016/j.ijbiomac.2022.09.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/16/2022] [Accepted: 09/10/2022] [Indexed: 11/18/2022]
Abstract
In this study, electron beam irradiation (EBI; 2, 4, 6, 8 and 10 kGy), hydroxypropylation (HP) and dual modification of EBI-HP were applied to modify corn and potato starches. The results showed that the molar substitution (MS) of EBI-HP modified corn and potato starches were in the range of 0.060-0.087 and 0.080-0.124, respectively. After modifications, amylose content of corn (30.0 %) and potato (31.2 %) starches were declined to 24.2-28.1 % and 26.1-29.5 %, respectively, and relative crystallinity was reduced from 35.5 to 30.0 % for corn and 34.1 to 20.2 % for potato. Pasting properties decreased significantly in both starch sources with increasing irradiation dose. EBI decreased springiness, enthalpy of retrograded starch (ΔHr) and percentage of retrogradation (R%) on corn starches, which were different from those effects observed on potato starches. Meanwhile, HP increased peak viscosity up to 312.6 RVU and 1359.3 RVU for corn and potato starches, respectively. Moreover, EBI-HP was highly responsible for the decreases in the textural, gelatinization and retrogradation properties and relative crystallinity in both corn and potato starches. These results enhance the understanding of starch functionality modified by using both physical and chemical methods, and provide further insights on food and non-food applications.
Collapse
Affiliation(s)
- Piengtawan Tappiban
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| | - Jiajia Zhao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yu Zhang
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yan Gao
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Lin Zhang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China.
| |
Collapse
|
21
|
Adewale P, Yancheshmeh MS, Lam E. Starch modification for non-food, industrial applications: Market intelligence and critical review. Carbohydr Polym 2022; 291:119590. [DOI: 10.1016/j.carbpol.2022.119590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
|
22
|
Braşoveanu M, Nemţanu MR. Dual Modification of Starch by Physical Methods Based on Corona Electrical Discharge and Ionizing Radiation: Synergistic Impact on Rheological Behavior. Foods 2022; 11:foods11162479. [PMID: 36010483 PMCID: PMC9407343 DOI: 10.3390/foods11162479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
The present paper focuses on evaluating the synergistic effects of dual modification with corona electric discharge (CED) and electron beam irradiation (EBI) on the rheological behavior of starch. Combined treatments were applied successively (CED/EBI and EBI/CED) and compared with single treatments. The outcomes showed that the rheological features of starch were altered by the dual modification in correlation with the irradiation dose mainly as a result of radiation-induced degradation. Decreases in apparent viscosity were described by exponential-like-models according to the order of application of the treatment sequences. The mathematical models allowed the estimation of the irradiation doses for which the viscosity decreased by e times for the dual modified starches (3.3 ± 1.3 kGy for CED/EBI and 5.6 ± 0.5 kGy for EBI/CED, respectively) and the fraction (f) of 0.47 ± 0.10 corresponding to starch granule considered to be affected by plasma. Both dual treatments yielded a synergistic effect, regardless of the order of application of the treatment sequences, being more effective in decreasing starch apparent viscosity than single EBI. However, synergism evaluation proved that the use of plasma as a pre-treatment to irradiation processing could provide benefits up to 20 kGy. These findings support the practical goals of technologists with valuable information that may facilitate or simplify the experimental design of starch dual modification with plasma and ionizing radiation.
Collapse
|
23
|
Lee JS, Akanda JH, Fong SL, Siew CK, Ho AL. Effects of Annealing on the Properties of Gamma-Irradiated Sago Starch. Molecules 2022; 27:4838. [PMID: 35956797 PMCID: PMC9369607 DOI: 10.3390/molecules27154838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
The increase in health and safety concerns regarding chemical modification in recent years has caused a growing research interest in the modification of starch by physical techniques. There has been a growing trend toward using a combination of treatments in starch modification in producing desirable functional properties to widen the application of a specific starch. In this study, a novel combination of gamma irradiation and annealing (ANN) was used to modify sago starch (Metroxylon sagu). The starch was subjected to gamma irradiation (5, 10, 25, 50 kGy) prior to ANN at 5 °C (To-5) and 10 °C (To-10) below the gelatinization temperature. Determination of amylose content, pH, carboxyl content, FTIR (Fourier Transform Infrared) intensity ratio (R1047/1022), swelling power and solubility, thermal behavior, pasting properties, and morphology were carried out. Annealing irradiated starch at To-5 promoted more crystalline perfection as compared to To-10, particularly when combined with 25 and 50 kGy, whereby a synergistic effect was observed. Dual-modified sago starch exhibited lower swelling power, improved gel firmness, and thermal stability with an intact granular structure. Results suggested the potential of gamma irradiation and annealing to induce some novel characteristics in sago starch for extended applications.
Collapse
Affiliation(s)
- Jau-Shya Lee
- Faculty of Food Science and Nutrition, University Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (C.K.S.); (A.L.H.)
| | - Jahurul Haque Akanda
- Department of Agriculture, School of Agriculture, University of Arkansas, 1200 North University Drive, M/S 4913, Pine Bluff, AR 71601, USA;
| | - Soon Loong Fong
- ITS Nutriscience Sdn Bhd, 2, Jalan Sg. Kayu Ara 32/38, Berjaya Industrial Park, Shah Alam 40460, Selangor, Malaysia;
| | - Chee Kiong Siew
- Faculty of Food Science and Nutrition, University Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (C.K.S.); (A.L.H.)
| | - Ai Ling Ho
- Faculty of Food Science and Nutrition, University Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (C.K.S.); (A.L.H.)
| |
Collapse
|
24
|
Modulation of lentil antinutritional properties using non-thermal mediated processing techniques – A review. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Quintero-Quiroz J, Celis-Torres A, Ciro-Gómez G, Torres J, Corrales-García L, Rojas J. Physicochemical properties and functional characteristics of ultrasound-assisted legume-protein isolates: a comparative study. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1665-1676. [PMID: 35531395 PMCID: PMC9046477 DOI: 10.1007/s13197-021-05126-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/05/2020] [Accepted: 05/26/2020] [Indexed: 05/03/2023]
Abstract
Sonicated protein isolates were recovered from Chenopodium quinua, Phaseoulus vulgaris and Lens culinaris to develop a functional matrix by assessing the physicochemical and functional properties. The plant protein isolates were prepared from powdered materials followed by sonication in alkaline medium using a Box-Behnken design. pH (6-10), a buffer-to-material ratio (5:1 to 15:1) and sonication time (0-20 min) were taken as independent variables, whereas protein yield was taken as the dependent variable. A pH of 9, 20 min treatment, and a buffer-to-material ratio of 5:1 were the optimal extraction conditions for quinoa and black beans, whereas a 1:10 ratio was suitable for lentils. Sonication in alkaline medium caused partial protein unfolding and these isolates; in turn, the molecular weight affected the emulsifying activity and stability. Moreover, sonication had a strong effect on the gelation temperature, emulsifying activity, the water, and oil sorption. Sonication improved protein yield and exposed amino acids such as glutamic acid, aspartic acid, leucine and glycine. In turn, thiol groups were responsible for the increased in gelation temperature. The better gelling property coupled with high emulsifying property of these proteins show potential application as protein emulsifiers in the production of gels, sausages, and pet foods.
Collapse
Affiliation(s)
- Julián Quintero-Quiroz
- Department of Food, College of Pharmaceutical and Food Sciences, University of Antioquia, Street 67, No. 53-108, Medellin, Colombia
| | - Angélica Celis-Torres
- Department of Food, College of Pharmaceutical and Food Sciences, University of Antioquia, Street 67, No. 53-108, Medellin, Colombia
| | - Gelmy Ciro-Gómez
- Department of Food, College of Pharmaceutical and Food Sciences, University of Antioquia, Street 67, No. 53-108, Medellin, Colombia
| | - Juan Torres
- Department of Food, College of Pharmaceutical and Food Sciences, University of Antioquia, Street 67, No. 53-108, Medellin, Colombia
| | - Ligia Corrales-García
- Department of Food, College of Pharmaceutical and Food Sciences, University of Antioquia, Street 67, No. 53-108, Medellin, Colombia
| | - John Rojas
- Department of Food, College of Pharmaceutical and Food Sciences, University of Antioquia, Street 67, No. 53-108, Medellin, Colombia
| |
Collapse
|
26
|
Modification of structural and physicochemical properties of cowpea (Vigna unguiculata) starch by hydrothermal and ultrasound treatments. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Sunder M, Mumbrekar KD, Mazumder N. Gamma radiation as a modifier of starch – Physicochemical perspective. Curr Res Food Sci 2022; 5:141-149. [PMID: 35059645 PMCID: PMC8760443 DOI: 10.1016/j.crfs.2022.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/30/2021] [Accepted: 01/02/2022] [Indexed: 11/06/2022] Open
Abstract
Starch is one of the most common and abundantly found carbohydrates in cereals, roots, legumes, and some fruits. It is a tasteless, colorless, and odorless source of energy that is present in the amyloplasts of plants. Native starch comprises amylose, a linear α-glucan having α-1,4-linkage and amylopectin, a branched polysaccharide with both α-1,4-linkage and α-1,6-linkage. Due to the low solubility, high viscosity, and unstable pasting property of native starch, it has been restricted from its application in industries. Although native starch has been widely used in various industries, modification of the same by various chemical, enzymatic and physical methods have been carried out to alter its properties for better performance in several industrial aspects. Physical modification like gamma radiation is frequently used as it is rapid, penetrates deeper, less toxic, and cost-effective. Starch when irradiated with gamma rays is observed to produce free radicals, generate sugars owing to cleavage of amylopectin branches, and exhibit variation in enzymatic digestion, amylose content, morphology, crystallinity, thermal property, and chemical composition. These physicochemical properties of the starch due to gamma radiation are assessed using optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and its application are discussed. Assessment and comparison of morphological features of native and gamma-irradiated starch. Investigation of crystallinity and structural type of crystalline domains through XRD. FTIR spectroscopy confirmed the changes in chemical composition of gamma-irradiated and native starch. DSC analysis revealed the changes in gelatinization temperature of gamma-irradiated and native starch.
Collapse
|
28
|
Han L, Cao S, Yu Y, Xu X, Cao X, Chen W. Modification in physicochemical, structural and digestive properties of pea starch during heat-moisture process assisted by pre- and post-treatment of ultrasound. Food Chem 2021; 360:129929. [PMID: 33989884 DOI: 10.1016/j.foodchem.2021.129929] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/28/2021] [Accepted: 04/19/2021] [Indexed: 11/23/2022]
Abstract
Ultrasound is increasingly used for physicochemical modification of food systems as a green technology. Effects of heat-moisture treatment (HMT) assisted by pre- and post-treatment of ultrasound on physicochemical, structural and digestive properties of pea starch was investigated. Pea starch maintained the original morphology and C-type of crystalline after ultrasound treatment (UT), but 4 h or more of HMT and HMT assisted by UT changed the crystalline from C-type to A-type. All treatments decreased the crystallinity, molecular weight, swelling power and solubility at 70-90 °C, and elevated the content of resistant starch. Moreover, HMT assisted by pretreatment of UT was found to increase the viscosity and high-temperature stability of starch paste compared with others by the orderly combined effect of UT-induced depolymerization and HMT-induced depolymerization and rearrangement of starch chains. These results may promote the appropriate use of ultrasound in food industries and the production of starch materials for potential applications.
Collapse
Affiliation(s)
- Lihong Han
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China; Ningxia Ruichun Coarse Cereals Co., Ltd., Guyuan, Ningxia 756500, China.
| | - Shaopan Cao
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China.
| | - Yingtao Yu
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China.
| | - Xiaochun Xu
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China.
| | - Xiaohong Cao
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China.
| | - Wenjuan Chen
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
29
|
Noor N, Gani A, Jhan F, Jenno JLH, Arif Dar M. Resistant starch type 2 from lotus stem: Ultrasonic effect on physical and nutraceutical properties. ULTRASONICS SONOCHEMISTRY 2021; 76:105655. [PMID: 34225214 PMCID: PMC8259399 DOI: 10.1016/j.ultsonch.2021.105655] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 05/04/2023]
Abstract
Resistant starch type 2 (RS) was isolated from lotus stem using enzymatic digestion method. The isolated RS was subjected to ultrasonication (US) at different sonication power (100-400 W). The US treated and untreated RS samples were characterized using dynamic light scattering (DLS), scanning electron microscopy (SEM), light microscopy and Fourier transform infrared spectroscopy (FT-IR). DLS revealed that particle size of RS decreased from 12.80 µm to 413.19 nm and zeta potential increased from -12.34 mV to -26.09 mV with the increase in sonication power. SEM revealed smaller, disintegrated and irregular shaped RS particles after ultrasonication. FT-IR showed the decreased the band intensity at 995 cm-1 and 1047 cm-1 signifying that US treatment decreased the crystallinity of RS and increased its amorphous character. The bile acid binding, anti-oxidant and pancreatic lipase inhibition activity of samples also increased significantly (p < 0.05) with the increase in sonication power. Increase in US power however increased the values of hydrolysis from 23.11 ± 1.09 to 36.06 ± 0.13% and gylcemic index from 52.39 ± 0.38 to 59.50 ± 0.11. Overall, the non-thermal process of ultrasonic treatment can be used to change the structural, morphological and nutraceutical profile of lotus stem resistant starch which can have great food and pharamaceutical applications.
Collapse
Affiliation(s)
- Nairah Noor
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India; Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Faiza Jhan
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - J L H Jenno
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Mohd Arif Dar
- Department of Physics, Annamalai University, Annamalinagar, India
| |
Collapse
|
30
|
Han L, Wei Q, Cao S, Yu Y, Cao X, Chen W. The assisting effects of ultrasound on the multiscale characteristics of heat-moisture treated starch from Agriophyllum squarrosum seeds. Int J Biol Macromol 2021; 187:471-480. [PMID: 34324904 DOI: 10.1016/j.ijbiomac.2021.07.123] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/03/2021] [Accepted: 07/18/2021] [Indexed: 11/17/2022]
Abstract
Present study was aimed to characterize the effects of heat-moisture treatments supported by ultrasound on structural, physicochemical and digestive properties of the starch from Agriophyllum squarrosum seeds. The starch sample was subjected to heat-moisture (120°C, 25% moisture) for different durations with assisting by pre- or post-treatment of ultrasound (20 Hz, 300 W, 20 min). A. squarrosum starch exhibited the original A-type of crystalline structure after all treatments. All modified starches had lower amylose content, amylopectin molecular weight, swelling power and solubility, and higher resistant starch content than the native starch. Heat-moisture treatments and dual modifications of heat-moisture and ultrasound increased the gelatinization temperature of starch granules and significantly (p ≤ 0.05) reduced the viscosity of starch paste. Pretreatment of ultrasound enhanced the effects of heat-moisture on the viscosity properties while post-treatment of ultrasound weakened which on the gelatinization temperature, by regulating the changes of double helix structure and short-range ordered structure in starch granules tested by Fourier-transform infrared spectrometer. Scanning electron microscopy unveiled that A. squarrosum starch pretreated by ultrasound became more susceptible to heat moisture in morphology. This work was very important for the deep excavation of the characteristics of A. squarrosum starch and the effective application of ultrasound in starch modifications.
Collapse
Affiliation(s)
- Lihong Han
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China; Ningxia Ruichun Coarse Cereals Co., Ltd., Guyuan, Ningxia 756500, China.
| | - Qiang Wei
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China.
| | - Shaopan Cao
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China.
| | - Yingtao Yu
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China.
| | - Xiaohong Cao
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China
| | - Wenjuan Chen
- Collaborative Innovation Center for Food Production and Safety, College of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
31
|
Punia Bangar S, Nehra M, Siroha AK, Petrů M, Ilyas RA, Devi U, Devi P. Development and Characterization of Physical Modified Pearl Millet Starch-Based Films. Foods 2021; 10:1609. [PMID: 34359479 PMCID: PMC8304386 DOI: 10.3390/foods10071609] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/19/2021] [Accepted: 07/07/2021] [Indexed: 01/31/2023] Open
Abstract
Pearl millet is an underutilized and drought-resistant crop that is mainly used for animal feed and fodder. Starch (70%) is the main constituent of the pearl millet grain; this starch may be a good substitute for major sources of starch such as corn, rice, potatoes, etc. Starch was isolated from pearl millet grains and modified with different physical treatments (heat-moisture (HMT), microwave (MT), and sonication treatment (ST)). The amylose content and swelling capacity of the starches decreased after HMT and MT, while the reverse was observed for ST. Transition temperatures (onset (To), peak of gelatinization (Tp), and conclusion (Tc)) of the starches ranged from 62.92-76.16 °C, 67.95-81.05 °C, and 73.78-84.50 °C, respectively. After modification (HMT, MT, and ST), an increase in the transition temperatures was observed. Peak-viscosity of the native starch was observed to be 995 mPa.s., which was higher than the starch modified with HMT and MT. Rheological characteristics (storage modulus (G') and loss modulus (G'')) of the native and modified starches differed from 1039 to 1730 Pa and 83 to 94 Pa; the largest value was found for starch treated with ST and HMT. SEM showed cracks and holes on granule surfaces after HMT as well as MT starch granules. Films were prepared using both native and modified starches. The modification of the starches with different treatments had a significant impact on the moisture, transmittance, and solubility of films. The findings of this study will provide a better understanding of the functional properties of pearl millet starch for its possible utilization in film formation.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA
| | - Manju Nehra
- Department Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India; (M.N.); (U.D.); (P.D.)
| | - Anil Kumar Siroha
- Department Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India; (M.N.); (U.D.); (P.D.)
| | - Michal Petrů
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic;
| | - Rushdan Ahmad Ilyas
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM, Johor Bahru 81310, Johor, Malaysia;
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, UTM, Johor Bahru 81310, Johor, Malaysia
| | - Urmila Devi
- Department Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India; (M.N.); (U.D.); (P.D.)
| | - Priyanka Devi
- Department Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India; (M.N.); (U.D.); (P.D.)
| |
Collapse
|
32
|
Okonkwo VC, Kwofie EM, Mba OI, Ngadi MO. Impact of thermo-sonication on quality indices of starch-based sauces. ULTRASONICS SONOCHEMISTRY 2021; 73:105473. [PMID: 33609994 PMCID: PMC7903464 DOI: 10.1016/j.ultsonch.2021.105473] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/24/2020] [Accepted: 01/16/2021] [Indexed: 05/25/2023]
Abstract
In this study, ultrasonication, a physical, relatively cheap, and environmentally benign technology, was investigated to characterize its effect on functional properties of rice starch and rice starch-based sauces. Temperature-assisted ultrasound treatment improved the granular swelling power, fat and water absorption capacities, and thermal properties of rice starch, signifying its suitability in the formulation of starch-based sauces. Rheological characterization of the formulated sauces revealed a shear-thinning flow behavior, well described by the Ostwald de Waele model, while viscoelastic properties showed the existence of a weak gel. Results indicated that ultrasonication significantly enhanced the pseudoplastic behavior of starch-based sauces. Additionally, textural analysis showed that textural attributes (stickiness, stringiness, and work of adhesion) were also improved with ultrasonication. Moreover, enhanced freeze/thaw stability was also achieved with ultrasound-treated starch-based sauces. Overall, the results from this study show that ultrasound-treated starches can be used in the formulation of sauces and potentially other food products, which meets the requirements for clean label and minimally processed foods.
Collapse
Affiliation(s)
- Valentine C Okonkwo
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec H9X 1V9, Canada
| | - Ebenezer M Kwofie
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec H9X 1V9, Canada
| | - Ogan I Mba
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec H9X 1V9, Canada
| | - Michael O Ngadi
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec H9X 1V9, Canada.
| |
Collapse
|
33
|
Ren Y, Yuan TZ, Chigwedere CM, Ai Y. A current review of structure, functional properties, and industrial applications of pulse starches for value-added utilization. Compr Rev Food Sci Food Saf 2021; 20:3061-3092. [PMID: 33798276 DOI: 10.1111/1541-4337.12735] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/28/2021] [Accepted: 02/06/2021] [Indexed: 12/22/2022]
Abstract
Pulse crops have received growing attention from the agri-food sector because they can provide advantageous health benefits and offer a promising source of starch and protein. Pea, lentil, and faba bean are the three leading pulse crops utilized for extracting protein concentrate/isolate in food industry, which simultaneously generates a rising volume of pulse starch as a co-product. Pulse starch can be fractionated from seeds using dry and wet methods. Compared with most commercial starches, pea, lentil, and faba bean starches have relatively high amylose contents, longer amylopectin branch chains, and characteristic C-type polymorphic arrangement in the granules. The described molecular and granular structures of the pulse starches impart unique functional attributes, including high final viscosity during pasting, strong gelling property, and relatively low digestibility in a granular form. Starch isolated from wrinkled pea-a high-amylose mutant of this pulse crop-possesses an even higher amylose content and longer branch chains of amylopectin than smooth pea, lentil, and faba bean starches, which make the physicochemical properties and digestibility of the former distinctively different from those of common pulse starches. The special functional properties of pulse starches promote their applications in food, feed, bioplastic and other industrial products, which can be further expanded by modifying them through chemical, physical and/or enzymatic approaches. Future research directions to increase the fractionation efficiency, improve the physicochemical properties, and enhance the industrial utilization of pulse starches have also been proposed. The comprehensive information covered in this review will be beneficial for the pulse industry to develop effective strategies to generate value from pulse starch.
Collapse
Affiliation(s)
- Yikai Ren
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Tommy Z Yuan
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | | | - Yongfeng Ai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
34
|
da Silva Anthero AG, Comunian TA, Bezerra EO, Hubinger MD. Barley Malt Esterification after Ultrasound and Stearic Acid Treatment: Characterization and Use as Stabilizing Agent in Oil-in-Water Emulsions. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-020-02569-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Ashogbon AO. Dual modification of various starches: Synthesis, properties and applications. Food Chem 2020; 342:128325. [PMID: 33153808 DOI: 10.1016/j.foodchem.2020.128325] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 01/07/2023]
Abstract
The problems associated with native starches (NSs) and single modified starches were stated in order to justify dual modification of various starches. Broadly, there are two types of dual modification, i.e., homogeneous dual modification and heterogeneous dual modification. The combination of two physical modifications, e.g., (extrusion/annealing); two chemical modifications, e.g., (succinylation/cross-linking) and two enzymes modification (α-amylase/pullulanase) falls under the former classification and the latter classification is the combination of two of each of the differently stated modifications, e.g., acetylation/annealing, extrusion/succinylation, and microwave-assisted phosphorylation, etc. The classification, synthesis, properties and applications of dually modified starches were discussed. There is an attempt to elucidate the problems of each of the single modification in order to justify dual modifications. In dual modifications, the order of reactions, the reaction conditions, the medium of reaction, and the botanical sources of the various starches are very important parameters.
Collapse
|
36
|
Liu S, Xie L, Shen M, Xiao Y, Yu Q, Chen Y, Xie J. Dual modifications on the gelatinization, textural, and morphology properties of pea starch by sodium carbonate and Mesona chinensis polysaccharide. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
Quintero Quiroz J, Velazquez V, Corrales-Garcia LL, Torres JD, Delgado E, Ciro G, Rojas J. Use of Plant Proteins as Microencapsulating Agents of Bioactive Compounds Extracted from Annatto Seeds ( Bixa orellana L.). Antioxidants (Basel) 2020; 9:E310. [PMID: 32294926 PMCID: PMC7222217 DOI: 10.3390/antiox9040310] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/21/2022] Open
Abstract
This study aimed to assess the thermal stability of the bioactive compounds from annatto seed extract, encapsulated by ionic gelation using quinoa proteins, lentil proteins, soy proteins, and sodium caseinate as carrying materials. The 10.0% aqueous dispersions of the different proteins (carriers) were prepared and mixed with the annatto seed extract. The dispersions were then extruded into a calcium chloride solution to induce the extract encapsulation. The capsules were characterized by encapsulation efficiency, particle size, infrared transmission spectroscopy, confocal microscopy, and scanning electron microscopy (SEM). The antioxidant and antimicrobial activities, the polyphenol compounds, and bixin content from the free and encapsulated extract were assessed once stored for 12 d at different temperatures (4 °C, 25 °C, and 65 °C). The results demonstrated the ability of the proteins to encapsulate the annatto extract with encapsulation efficiencies ranging from 58% to 80%, where the protein structure and amino acid content were the relevant factors to obtain high encapsulation efficiencies. The free extracts stored at 65 °C for 12 d experienced a degradation of bixin and polyphenol compounds, respectively. Conversely, the encapsulated extract had degradations from ~34.00% to ~4.05% for polyphenol compounds and ~20.0% for bixin, respectively. These proteins have a potential encapsulation capacity of annatto extract by ionic gelation.
Collapse
Affiliation(s)
- Julián Quintero Quiroz
- Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 67 No. 53-108, University Campus, Medellín 050010, Colombia; (L.L.C.-G.); (J.D.T.); (G.C.); (J.R.)
- Department of Family and Consumer Sciences, College of Agriculture, Consumer and Environmental Sciences, New Mexico State University, NMSU Gerald Thomas Hall Room, 308 P.O. Box 30003 MSC 3470, Las Cruces, NM 88003, USA; (V.V.); (E.D.)
| | - Víctor Velazquez
- Department of Family and Consumer Sciences, College of Agriculture, Consumer and Environmental Sciences, New Mexico State University, NMSU Gerald Thomas Hall Room, 308 P.O. Box 30003 MSC 3470, Las Cruces, NM 88003, USA; (V.V.); (E.D.)
| | - Ligia Luz Corrales-Garcia
- Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 67 No. 53-108, University Campus, Medellín 050010, Colombia; (L.L.C.-G.); (J.D.T.); (G.C.); (J.R.)
| | - Juan D. Torres
- Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 67 No. 53-108, University Campus, Medellín 050010, Colombia; (L.L.C.-G.); (J.D.T.); (G.C.); (J.R.)
| | - Efren Delgado
- Department of Family and Consumer Sciences, College of Agriculture, Consumer and Environmental Sciences, New Mexico State University, NMSU Gerald Thomas Hall Room, 308 P.O. Box 30003 MSC 3470, Las Cruces, NM 88003, USA; (V.V.); (E.D.)
| | - Gelmy Ciro
- Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 67 No. 53-108, University Campus, Medellín 050010, Colombia; (L.L.C.-G.); (J.D.T.); (G.C.); (J.R.)
| | - John Rojas
- Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 67 No. 53-108, University Campus, Medellín 050010, Colombia; (L.L.C.-G.); (J.D.T.); (G.C.); (J.R.)
| |
Collapse
|
38
|
Steinbrunner PJ, Limcharoenchat P, Suehr QJ, Ryser ET, Marks BP, Jeong S. Effect of Food Structure, Water Activity, and Long-Term Storage on X-Ray Irradiation for Inactivating Salmonella Enteritidis PT30 in Low-Moisture Foods. J Food Prot 2019; 82:1405-1411. [PMID: 31335188 DOI: 10.4315/0362-028x.jfp-19-091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent outbreaks and recalls of low-moisture foods contaminated with Salmonella have been recognized as a major public health risk that demands the development of new Salmonella mitigation strategies and technologies. This study aimed to assess the efficacy of X-ray irradiation for inactivating Salmonella on or in almonds (kernels, meal, butter), dates (whole fruit, paste), and wheat (kernels, flour) at various water activities (aw) and storage periods. The raw materials were inoculated with Salmonella Enteritidis PT30, conditioned to 0.25, 0.45, and 0.65 aw in a humidity-controlled chamber, processed to various fabricated products, and reconditioned to the desired aw before treatment. In a storage study, inoculated almond kernels were stored in sealed tin cans for 7, 15, 27, and 103 weeks, irradiated with X ray (0.5 to 11 kGy, targeting up to a ∼2.5-log reduction) at the end of each storage period, and plated for Salmonella survivors to determine the efficacy of irradiation in terms of D10-value (dose required to reduce 90% of the population). Salmonella was least resistant (D10-value = 0.378 kGy) on the surface of almond kernels at 0.25 aw and most resistant (D10-value = 2.34 kGy) on the surface of dates at 0.45 aw. The Salmonella D10-value was 61% lower in date paste than on whole date fruit. Storage of almonds generally had no effect on the irradiation resistance of Salmonella over 103 weeks. Overall, these results indicate that product structure (whole, meals, powder, or paste), water activity (0.25 to 0.65 aw), and storage period (0 to 103 weeks) should be considered when determining the efficacy of X-ray irradiation for inactivating Salmonella in various low-water-activity foods.
Collapse
Affiliation(s)
- Philip J Steinbrunner
- 1 Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Pichamon Limcharoenchat
- 1 Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Quincy J Suehr
- 1 Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Elliot T Ryser
- 2 Department of Food Science, Michigan State University, East Lansing, Michigan 48824, USA (ORCID: https://orcid.org/0000-0003-1337-2658 [E.T.R.]; https://orcid.org/0000-0002-8017-8786 [S.J.])
| | - Bradley P Marks
- 1 Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan 48824, USA.,2 Department of Food Science, Michigan State University, East Lansing, Michigan 48824, USA (ORCID: https://orcid.org/0000-0003-1337-2658 [E.T.R.]; https://orcid.org/0000-0002-8017-8786 [S.J.])
| | - Sanghyup Jeong
- 1 Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
39
|
Iftikhar SA, Dutta H. Status of polymorphism, physicochemical properties and in vitro digestibility of dual retrogradation-annealing modified rice starches. Int J Biol Macromol 2019; 132:330-339. [DOI: 10.1016/j.ijbiomac.2019.03.206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
|
40
|
Wani IA, Farooq G, Qadir N, Wani TA. Physico-chemical and rheological properties of Bengal gram (Cicer arietinum L.) starch as affected by high temperature short time extrusion. Int J Biol Macromol 2019; 131:850-857. [DOI: 10.1016/j.ijbiomac.2019.03.135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 11/25/2022]
|
41
|
Li S, Luo Z, Guan X, Huang K, Li Q, Zhu F, Liu J. Effect of ultrasonic treatment on the hydration and physicochemical properties of brewing rice. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Advances in chemical modifications of starches and their applications. Carbohydr Res 2019; 476:12-35. [DOI: 10.1016/j.carres.2019.02.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 11/23/2022]
|
43
|
|
44
|
Jain S, Winuprasith T, Suphantharika M. Design and synthesis of modified and resistant starch-based oil-in-water emulsions. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.10.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Babu AS, Mohan RJ, Parimalavalli R. Effect of single and dual-modifications on stability and structural characteristics of foxtail millet starch. Food Chem 2018; 271:457-465. [PMID: 30236702 DOI: 10.1016/j.foodchem.2018.07.197] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/10/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
Foxtail millet starch was modified by annealing (AS), ultra-sonication (US) and a combination of the two treatments (annealing and ultra-sonication (AUS) or ultra-sonication and annealing (UAS)) and they were characterized. Compared to the native starch (NS), modified starches particularly UAS contained the highest amylose (27.96%). Ultra-sonication prior to annealing had a predominant effect on resistant starch (RS) level (UAS-45.59%). Among the modified starches, UAS had exhibited superior resistance to acidic (0.94) and shear (0.68) stability. Sonication, when used as the second treatment (AUS) elevated the final viscosity compared to its counter ones possibly due to the effects of cavitation promoted by sonication treatment. UAS had showed an A-type diffraction pattern and dominant peaks in FT-IR spectra. It can be inferred that dual modification of starch by ultra-sonication followed by annealing had exhibited the most desirable properties such as high acid and shear resistance, high freeze-thaw stability and improved gel texture.
Collapse
Affiliation(s)
- Ayenampudi Surendra Babu
- Department of Food Product Development, Indian Institute of Food Processing Technology, Pudukkottai Road, Thanjavur 613005, Tamil Nadu, India
| | - Rangarajan Jagan Mohan
- Department of Food Product Development, Indian Institute of Food Processing Technology, Pudukkottai Road, Thanjavur 613005, Tamil Nadu, India.
| | - Ramanathan Parimalavalli
- Department of Food Science and Nutrition, School of Professional Studies, Periyar University, Salem 636011, Tamil Nadu, India
| |
Collapse
|
46
|
Impact of ultrasonication on the physicochemical properties of sorghum kafirin and in vitro pepsin-pancreatin digestibility of sorghum gluten-like flour. Food Chem 2018; 240:1121-1130. [DOI: 10.1016/j.foodchem.2017.08.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/03/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
|